Sample records for nasa surface initializations

  1. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    NASA Technical Reports Server (NTRS)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using

  2. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  3. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  4. Propellant for the NASA Standard Initiator

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.; Dutton, Maureen

    2000-01-01

    This paper discusses processes employed in manufacturing zirconium-potassium perchlorate propellant for the NASA standard initiator. It provides both a historical background on the NSI device-detailing problem areas and their resolution--and on propellant blending techniques. Emphasis is placed on the precipitation blending method. The findings on mixing equipment, processing, and raw materials are described. Also detailed are findings on the bridgewire slurry operation, one of the critical steps in the production of the NASA standard initiator.

  5. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  6. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  7. 78 FR 64253 - NASA Asteroid Initiative Idea Synthesis Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-124] NASA Asteroid Initiative Idea.... SUMMARY: The National Aeronautics and Space Administration announces that the agency will resume the NASA... INFORMATION CONTACT: Michele Gates, Senior Technical Advisor, NASA Human Exploration and Operations Mission...

  8. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  9. NASA's Climate Data Services Initiative

    NASA Astrophysics Data System (ADS)

    McInerney, M.; Duffy, D.; Schnase, J. L.; Webster, W. P.

    2013-12-01

    Our understanding of the Earth's processes is based on a combination of observational data records and mathematical models. The size of NASA's space-based observational data sets is growing dramatically as new missions come online. However a potentially bigger data challenge is posed by the work of climate scientists, whose models are regularly producing data sets of hundreds of terabytes or more. It is important to understand that the 'Big Data' challenge of climate science cannot be solved with a single technological approach or an ad hoc assemblage of technologies. It will require a multi-faceted, well-integrated suite of capabilities that include cloud computing, large-scale compute-storage systems, high-performance analytics, scalable data management, and advanced deployment mechanisms in addition to the existing, well-established array of mature information technologies. It will also require a coherent organizational effort that is able to focus on the specific and sometimes unique requirements of climate science. Given that it is the knowledge that is gained from data that is of ultimate benefit to society, data publication and data analytics will play a particularly important role. In an effort to accelerate scientific discovery and innovation through broader use of climate data, NASA Goddard Space Flight Center's Office of Computational and Information Sciences and Technology has embarked on a determined effort to build a comprehensive, integrated data publication and analysis capability for climate science. The Climate Data Services (CDS) Initiative integrates people, expertise, and technology into a highly-focused, next-generation, one-stop climate science information service. The CDS Initiative is providing the organizational framework, processes, and protocols needed to deploy existing information technologies quickly using a combination of enterprise-level services and an expanding array of cloud services. Crucial to its effectiveness, the CDS

  10. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  11. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  12. 78 FR 31977 - NASA Asteroid Initiative Call for Ideas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-060] NASA Asteroid Initiative Call for... agency's asteroid initiative planning and to encourage feedback and ideas from the global community and... Perspective--Tom Kalil 9:55-10:15 Asteroid Initiative--Associate Administrator Lightfoot [[Page 31978

  13. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  14. 78 FR 51750 - NASA Asteroid Initiative Idea Synthesis Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-096] NASA Asteroid Initiative Idea... Conference to examine ideas in response to the recent RFI for the agency's Asteroid Initiative. SUMMARY: The... Agency's Asteroid Initiative planning and to enable feedback and discussion from the global community and...

  15. NASA's small spacecraft technology initiative _Clark_ spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1996-11-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of "Clark," a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  16. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2006-01-01

    The presentation describes the recently awarded ACCESS project to provide data management of NASA remote sensing data for the Northern Eurasia Earth Science Partnership Initiative (NEESPI). The project targets integration of remote sensing data from MODIS, and other NASA instruments on board US-satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEP/NCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  17. NASA Workshop on future directions in surface modeling and grid generation

    NASA Technical Reports Server (NTRS)

    Vandalsem, W. R.; Smith, R. E.; Choo, Y. K.; Birckelbaw, L. D.; Vogel, A. A.

    1992-01-01

    Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation.

  18. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  19. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  20. NASA GISS Climate Change Research Initiative: A Multidisciplinary Vertical Team Model for Improving STEM Education by Using NASA's Unique Capabilities.

    NASA Astrophysics Data System (ADS)

    Pearce, M. D.

    2017-12-01

    CCRI is a year-long STEM education program designed to bring together teams of NASA scientists, graduate, undergraduate and high school interns and high school STEM educators to become immersed in NASA research focused on atmospheric and climate changes in the 21st century. GISS climate research combines analysis of global datasets with global models of atmospheric, land surface, and oceanic processes to study climate change on Earth and other planetary atmospheres as a useful tool in assessing our general understanding of climate change. CCRI interns conduct research, gain knowledge in assigned research discipline, develop and present scientific presentations summarizing their research experience. Specifically, CCRI interns write a scientific research paper explaining basic ideas, research protocols, abstract, results, conclusion and experimental design. Prepare and present a professional presentation of their research project at NASA GISS, prepare and present a scientific poster of their research project at local and national research symposiums along with other federal agencies. CCRI Educators lead research teams under the direction of a NASA GISS scientist, conduct research, develop research based learning units and assist NASA scientists with the mentoring of interns. Educators create an Applied Research STEM Curriculum Unit Portfolio based on their research experience integrating NASA unique resources, tools and content into a teacher developed unit plan aligned with the State and NGSS standards. STEM Educators also Integrate and implement NASA unique units and content into their STEM courses during academic year, perform community education STEM engagement events, mentor interns in writing a research paper, oral research reporting, power point design and scientific poster design for presentation to local and national audiences. The CCRI program contributes to the Federal STEM Co-STEM initiatives by providing opportunities, NASA education resources and

  1. NASA Gulf of Mexico Initiative Hypoxia Research

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.

    2012-01-01

    The Applied Science & Technology Project Office at Stennis Space Center (SSC) manages NASA's Gulf of Mexico Initiative (GOMI). Addressing short-term crises and long-term issues, GOMI participants seek to understand the environment using remote sensing, in-situ observations, laboratory analyses, field observations and computational models. New capabilities are transferred to end-users to help them make informed decisions. Some GOMI activities of interest to the hypoxia research community are highlighted.

  2. Crew and Thermal Systems Strategic Communications Initiatives in Support of NASA's Strategic Goals

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    NASA has defined strategic goals to invest in next-generation technologies and innovations, to inspire students to become the future leaders of space exploration, and to expand partnerships with industry and academia around the world. The Crew and Thermal Systems Division (CTSD) at the NASA Johnson Space Center actively supports these NASA initiatives. In July 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to internal NASA and external technical audiences for business development and collaborative initiatives, and to students, educators, and the general public for education and public outreach efforts. This paper summarizes the CTSD Strategic Communications efforts and metrics through the first nine months of fiscal year 2012.

  3. A systems engineering initiative for NASA's space communications

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda S.; Hei, Donald J., Jr.; Kelly, Angelita C.; Lightfoot, Patricia C.; Bell, Holland T.; Cureton-Snead, Izeller E.; Hurd, William J.; Scales, Charles H.

    1993-01-01

    In addition to but separate from the Red and Blue Teams commissioned by the NASA Administrator, NASA's Associate Administrator for Space Communications commissioned a Blue Team to review the Office of Space Communications (Code O) Core Program and determine how the program could be conducted faster, better, and cheaper, without compromising safety. Since there was no corresponding Red Team for the Code O Blue Team, the Blue Team assumed a Red Team independent attitude and challenged the status quo. The Blue Team process and results are summarized. The Associate Administrator for Space Communications subsequently convened a special management session to discuss the significance and implications of the Blue Team's report and to lay the groundwork and teamwork for the next steps, including the transition from engineering systems to systems engineering. The methodology and progress toward realizing the Code O Family vision and accomplishing the systems engineering initiative for NASA's space communications are presented.

  4. NASA Earth Sciences Data Support System and Services for the Northern Eurasia Earth Science Partnership Initiative

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2005-01-01

    The presentation describes data management of NASA remote sensing data for Northern Eurasia Earth Science Partnership Initiative (NEESPI). Many types of ground and integrative (e.g., satellite, GIs) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of Northern Eurasia cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential. The proposed project targets integration of remote sensing data from AVHRR, MODIS, and other NASA instruments on board US- satellites (with potential expansion to data from non-US satellites), customized data products from climatology data sets (e.g., ISCCP, ISLSCP) and model data (e.g., NCEPNCAR) into a single, well-architected data management system. It will utilize two existing components developed by the Goddard Earth Sciences Data & Information Services Center (GES DISC) at the NASA Goddard Space Flight Center: (1) online archiving and distribution system, that allows collection, processing and ingest of data from various sources into the online archive, and (2) user-friendly intelligent web-based online visualization and analysis system, also known as Giovanni. The former includes various kinds of data preparation for seamless interoperability between measurements by different instruments. The latter provides convenient access to various geophysical parameters measured in the Northern Eurasia region without any need to learn complicated remote sensing data formats, or retrieve and process large volumes of NASA data. Initial implementation of this data management system will concentrate on atmospheric data and surface data aggregated to coarse resolution to support collaborative environment and climate change studies and modeling, while at later stages, data from NASA and non-NASA satellites at higher resolution will be integrated into the system.

  5. History of NASA/Native People Native Homelands Initiative

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy

    2000-01-01

    This workshop is one of the follow-on local assessment activities from the US National Assessment on the Impact of Climate Change on the US. N. Maynard (for NASA) helped create and get under way an initiative which brought together climate change scientists from around the US with Native Americans to bring together classic Western European scientists with knowledge from native peoples - from such sources as oral histories of drought, major fires, etc. The purpose of this was to encourage not only joint science but also bring NASA resources and education materials to Tribal schools and encourage joint preparation of educational and training materials. N. Maynard's talk will provide history of that process and discuss possible ways to collaborate in the future, building on this effort.

  6. NASA scientific and technical information program multimedia initiative

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Kaye, Karen

    1993-01-01

    This paper relates the experiences of the NASA Scientific and Technical Information Program in introducing multimedia within the STI Program framework. A discussion of multimedia technology is included to provide context for the STI Program effort. The STI Program's Multimedia Initiative is discussed in detail. Parallels and differences between multimedia and traditional information systems project development are highlighted. Challenges faced by the program in initiating its multimedia project are summarized along with lessons learned. The paper concludes with a synopsis of the benefits the program hopes to provide its users through the introduction of multimedia illustrated by examples of successful multimedia projects.

  7. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  8. Crew and Thermal Systems Strategic Communications Initiatives in Support of NASA's Strategic Goals

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Lamberth, Erika Guillory; Jennings, Mallory A.

    2012-01-01

    NASA has defined strategic goals to invest in next-generation technologies and innovations, inspire students to become the future leaders of space exploration, and expand partnerships with industry and academia around the world. The Crew and Thermal Systems Division (CTSD) at the NASA Johnson Space Center actively supports these NASA initiatives. In July 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to external technical audiences for business development and collaborative initiatives, and to students, educators, and the general public for education and public outreach efforts. This paper summarizes the CTSD Strategic Communications efforts and metrics through the first half of fiscal year 2012 with projections for end of fiscal year data.

  9. NASA safety program activities in support of the Space Exploration Initiatives Nuclear Propulsion program

    NASA Technical Reports Server (NTRS)

    Sawyer, J. C., Jr.

    1993-01-01

    The activities of the joint NASA/DOE/DOD Nuclear Propulsion Program Technical Panels have been used as the basis for the current development of safety policies and requirements for the Space Exploration Initiatives (SEI) Nuclear Propulsion Technology development program. The Safety Division of the NASA Office of Safety and Mission Quality has initiated efforts to develop policies for the safe use of nuclear propulsion in space through involvement in the joint agency Nuclear Safety Policy Working Group (NSPWG), encouraged expansion of the initial policy development into proposed programmatic requirements, and suggested further expansion into the overall risk assessment and risk management process for the NASA Exploration Program. Similar efforts are underway within the Department of Energy to ensure the safe development and testing of nuclear propulsion systems on Earth. This paper describes the NASA safety policy related to requirements for the design of systems that may operate where Earth re-entry is a possibility. The expected plan of action is to support and oversee activities related to the technology development of nuclear propulsion in space, and support the overall safety and risk management program being developed for the NASA Exploration Program.

  10. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Poston, David I.

    2011-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.

  11. Crew and Thermal Systems Division Strategic Communications Initiatives in Support of NASA's Strategic Goals: Fiscal Year 2012 Summary and Initial Fiscal Year 2013 Metrics

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2013-01-01

    The NASA strategic plan includes overarching strategies to inspire students through interactions with NASA people and projects, and to expand partnerships with industry and academia around the world. The NASA Johnson Space Center Crew and Thermal Systems Division (CTSD) actively supports these NASA initiatives. At the end of fiscal year 2011, CTSD created a strategic communications team to communicate CTSD capabilities, technologies, and personnel to internal NASA and external technical audiences for collaborative and business development initiatives, and to students, educators, and the general public for education and public outreach efforts. The strategic communications initiatives implemented in fiscal year 2012 resulted in 707 in-reach, outreach, and commercialization events with 39,731 participant interactions. This paper summarizes the CTSD Strategic Communications metrics for fiscal year 2012 and provides metrics for the first nine months of fiscal year 2013.

  12. Examining the Impacts of High-Resolution Land Surface Initialization on Model Predictions of Convection in the Southeastern U.S.

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.

    2009-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF

  13. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  14. NASA industry education initiative. Education programs report, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Findings from the initial inventory of education programs show that support for the NASA-Industry Education Initiative (NIEI) appears to be strong among the organizations surveyed. In addition, the range, depth and historical baselines of NIEI education programs are encouraging. It is also apparent that there is a significant level of cooperation between NIEI members and other organizations. Heavily focused towards science, engineering, mathematics and technology achievement, NIEI activities appear to be aligned with national education goals. Three criticisms are revealed: (1) the majority of programs are targeted fairly late in the education cycle; (2) the number of initiatives geared towards adult literacy and adult skills-enhancement appears to be relatively low; (3) the majority of NIEI activities involve traditional education-assistance programs, but the number of critical assessment and systematic reform initiatives is low. Four Working Group recommendations resulted from this activity: (1) NIEI Working Group operations should continue for an indefinite period, with participation open to other like-minded private-sector organization; (2) the report should be periodically updated; (3) an analysis of ongoing education programs should be conducted; (4) American corporations should continue to support education and evaluate in-house programs periodically.

  15. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  16. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, Dave

    2010-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.

  17. Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.

    2016-01-01

    Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated

  18. Gulf of Mexico Initiative: NASA Capacity Building in the Gulf Region

    NASA Astrophysics Data System (ADS)

    Armstrong, D.; Graham, W. D.; Searby, N. D.

    2012-12-01

    In the wake of hurricanes Katrina and Rita, NASA created the Gulf of Mexico Initiative (GOMI) to help the region recover and to build the capacity of local and regional organizations to utilize NASA Earth science assets to establish effective policies, encourage sustainable natural resource management and utilization, and to expeditiously respond to crises. GOMI worked closely with the Gulf of Mexico Alliance (GOMA), a regional collaboration of the five US Gulf states and 13 federal agencies, to select projects that addressed high priority issues of the region. Many capabilities developed by this initiative have been adopted by end-users and have been leveraged to respond to other natural and man made disasters such as the Deepwater Horizon oil spill (2010), record breaking floods along the Mississippi River (2011), unprecedented tornado supercells (2011), and extreme drought (2012). Examples of successful capacity building projects will be presented and the lessons learned from these projects will be discussed.

  19. Shaping NASA's Earth Science Enterprise Workforce Development Initiative to Address Industry Needs

    NASA Technical Reports Server (NTRS)

    Rosage, David; Meeson, Blanche W. (Technical Monitor)

    2001-01-01

    It has been well recognized that the commercial remote sensing industry will expand in new directions, resulting in new applications, thus requiring a larger, more skilled workforce to fill the new positions. In preparation for this change, NASA has initiated a Remote Sensing Professional Development Program to address the workforce needs of this emerging industry by partnering with the private sector, academia, relevant professional societies, and other R&D organizations. Workforce needs will in part include understanding current industry concerns, personnel competencies, current and future skills, growth rates, geographical distributions, certifications, and sources of pre-service and in-service personnel. Dave Rosage of the NASA Goddard Space Flight Center and a panel of MAPPS members will lead a discussion to help NASA specifically address private firms' near and long-term personnel needs to be included in NASA's Remote Sensing Professional Development Program. In addition, Dave Rosage will present perspectives on how remote sensing technologies are evolving, new NASA instruments being developed, and what future workforce skills are expected to support these new developments.

  20. NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies

    NASA Technical Reports Server (NTRS)

    Mueller, Rob P.

    2012-01-01

    NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

  1. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  2. The JOVE initiative - A NASA/university Joint Venture in space science

    NASA Technical Reports Server (NTRS)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  3. Viton's Impact on NASA Standard Initiator Propellant Properties

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.

    2000-01-01

    This paper discusses some of the properties of Viton that are relevant to its use as a pyrotechnic binder in a NASA standard initiator (NSI) propellant. Nearly every aspect of NSI propellant manufacture and use is impacted by the binder system. The effect of Viton's molecular weight on solubility, solution viscosity, glass transition temperature, and strength characteristics as applied to NSI production and performance are reviewed. Emphasis is placed on the Viton fractionation that occurs during the precipitation cycle and its impact on bridgewire functions. Special consideration is given to the production of bridgewire slurry mixtures.

  4. Reference reactor module for NASA's lunar surface fission power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I; Kapernick, Richard J; Dixon, David D

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on themore » lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.« less

  5. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  6. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Jennings, Mallory A.; Lamberth, Erika Guillory

    2011-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  7. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  8. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    NASA Astrophysics Data System (ADS)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  9. NASA Enterprise Managed Cloud Computing (EMCC): Delivering an Initial Operating Capability (IOC) for NASA use of Commercial Infrastructure-as-a-Service (IaaS)

    NASA Technical Reports Server (NTRS)

    O'Brien, Raymond

    2017-01-01

    In 2016, Ames supported the NASA CIO in delivering an initial operating capability for Agency use of commercial cloud computing. This presentation provides an overview of the project, the services approach followed, and the major components of the capability that was delivered. The presentation is being given at the request of Amazon Web Services to a contingent representing the Brazilian Federal Government and Defense Organization that is interested in the use of Amazon Web Services (AWS). NASA is currently a customer of AWS and delivered the Initial Operating Capability using AWS as its first commercial cloud provider. The IOC, however, designed to also support other cloud providers in the future.

  10. NASA GISS Surface Temperature (GISTEMP) Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, G.; Ruedy, R.; Persin, A

    The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data that the GISTEMP Team use for the analysis, collected by many national meteorological services around the world, are the adjusted data of the Global Historical Climatology Network (GHCN) Vs. 3 (this represents a change from prior use of unadjusted Vs. 2 data) (Peterson and Vose, 1997 and 1998), United States Historical Climatology Network (USHCN) data, and SCAR (Scientific Committee on Antarctic Research) datamore » from Antarctic stations. Documentation of the basic analysis method is provided by Hansen et al. (1999), with several modifications described by Hansen et al. (2001). The GISS analysis is updated monthly, however CDIAC's presentation of the data here is updated annually.« less

  11. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  12. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  13. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  14. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    NASA Technical Reports Server (NTRS)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  15. The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.

    2006-01-01

    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.

  16. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  17. NASA's East and Southeast Asia Initiatives: BASE-ASIA and EAST-AIRE

    NASA Technical Reports Server (NTRS)

    Tsay, S.; Maring, H.

    2005-01-01

    Airborne dust from northern China influences air quality and regional climate in Asia during springtime. However, with the economic growth in China, increased emission of particulate air pollutants from industrial and vehicular sources will not only impact the earth's radiation balance, but also adversely affect human health year round. In addition, both of dust and aerosol pollutants can be transported swiftly across the Pacific affecting North America within a few days. Asian dust and pollutant aerosols can be detected by their colored appearance using current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and by sunphotometers deployed on the surface of the earth. Biomass burning has been a regular practice for land clearing and conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Globally significant sources of greenhouse gases (eg., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play a role in determining cloud lifetime and precipitation, altering the earth's radiation and water budgets. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds; the hydrological cycle; land surface reflectivity and emissivity; and ecosystem biodiversity and stability. Two NASA initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented. The objectives of these initiatives is to

  18. The NASA Scientific and Technical Information (STI) Program's Implementation of Open Archives Initiation (OAI) for Data Interoperability and Data Exchange

    NASA Technical Reports Server (NTRS)

    Rocker, JoAnne; Roncaglia, George J.; Heimerl, Lynn N.; Nelson, Michael L.

    2002-01-01

    Interoperability and data-exchange are critical for the survival of government information management programs. E-government initiatives are transforming the way the government interacts with the public. More information is to be made available through web-enabled technologies. Programs such as the NASA's Scientific and Technical Information (STI) Program Office are tasked to find more effective ways to disseminate information to the public. The NASA STI Program is an agency-wide program charged with gathering, organizing, storing, and disseminating NASA-produced information for research and public use. The program is investigating the use of a new protocol called the Open Archives Initiative (OAI) as a means to improve data interoperability and data collection. OAI promotes the use of the OAI harvesting protocol as a simple way for data sharing among repositories. In two separate initiatives, the STI Program is implementing OAI In collaboration with the Air Force, Department of Energy, and Old Dominion University, the NASA STI Program has funded research on implementing the OAI to exchange data between the three organizations. The second initiative is the deployment of OAI for the NASA technical report server (TRS) environment. The NASA TRS environment is comprised of distributed technical report servers with a centralized search interface. This paper focuses on the implementation of OAI to promote interoperability among diverse data repositories.

  19. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    NASA Astrophysics Data System (ADS)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order

  20. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  1. Joint NASA/EPA AVIRIS Analysis in the Chesapeake Bay Region: Plans and Initial Results

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Stokely, Peter; Lobitz, Brad; Shelton, Gary

    1998-01-01

    NASA's Ames Research Center is performing an AVIRIS demonstration project in conjunction with the U. S. Environmental Protection Agency (Region 3). NASA and EPA scientists have jointly defined a Study Area in eastern Virginia to include portions of the Chesapeake Bay, southern Delmarva Peninsula, and the mouths of the York and James Rivers. Several environmental issues have been identified for study. These include, by priority: 1) water constituent analysis in the Chesapeake Bay, 2) mapping of submerged aquatic vegetation in the Bay, 3) detection of vegetation stress related to Superfund sites at the Yorktown Naval Weapons Station, and 4) wetland species analysis in the York River vicinity. In support of this project, three lines of AVIRIS data were collected during the Wallops Island deployment on 17 August 1997. The remote sensing payload included AVIRIS, MODIS Airborne Simulator and an RC-10 color infrared film camera. The AVIRIS data were delivered to Ames from the JPL AVIRIS Data Facility, on 29 September 1997. Quicklook images indicate nominal data acquisition, and at the current time an atmospheric correction is being applied. Water constituent analysis of the Bay is our highest priority based on EPA interest and available collateral data, both from the surface and from other remote sensing instruments. Constituents of interest include suspended sediments, chlorophyll-a and accessory pigments, Analysis steps will include: verification of data quality, location of study sites in imagery, incorporation of relevant field data from EPA and other Chesapeake Bay cooperators, processing of imagery to show phenomenon of interest, verification of results with cooperators. By 1st quarter CY98 we plan to circulate initial results to NASA and EPA management for review. In the longer term we will finalize documentation, prepare results for publication, and complete any needed technology transfer to EPA remote sensing personnel.

  2. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  3. NASA initiatives with historically black colleges and universities

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA programs involving students and teachers at historically Black colleges and universities are discussed. The programs at each of the NASA research centers are described. Guidance is given on proposal submission for NASA grants. The Cooperative Education program, the Graduate Student Researchers program, and summer faculty fellowships are discussed.

  4. NASA Initiatives with Historically Black Colleges & Universities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication outlines the involvement of the National Aeronautics and Space Administration (NASA) with Historically Black Colleges and Universities (HBCU) programs in aeronautics and space research. NASA aims to assist HBCUs in science, engineering, and technology programs and also to encourage greater participation of minorities in its…

  5. NASA/GEWEX Surface Radiation Budget: First Results From The Release 4 GEWEX Integrated Data Products

    NASA Astrophysics Data System (ADS)

    Stackhouse, Paul; Cox, Stephen; Gupta, Shashi; Mikovitz, J. Colleen; zhang, taiping

    2016-04-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number should help improve the RMS of the existing products and allow for future higher resolution SRB gridded product (e.g. 0.5 degree). In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  6. Fission Surface Power Technology Development Testing at NASA's Early Flight Fission Test Facility

    NASA Technical Reports Server (NTRS)

    Houts. Michael G.

    2009-01-01

    Fission surface power (FSP) systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at polar locations, at locations away from the poles, or in permanently shaded regions, with excellent performance at all sites. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system (FSPS) is also readily extensible for use on Mars. At Mars the system would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Under the NASA Exploration Technology Development Program (ETDP), NASA and the Department of Energy (DOE) have begun technology development on Fission Surface Power (FSP). The primary customer for this technology is the NASA Constellation Program which is responsible for the development of surface systems to support human exploration on the moon and Mars. The objectives of the FSP technology project are: 1) Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FSP design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow Agency decision-makers to consider FSP as a viable option for flight development. To be mass efficient, FSP systems must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial systems. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference FSP system uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage

  7. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  8. The NASA Climate Change Research Initiative - A Scientist's Perspective

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.

    2017-12-01

    For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed

  9. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  10. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  11. Updates of Land Surface and Air Quality Products in NASA MAIRS and NEESPI Data Portals

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Following successful support of the Northern Eurasia Earth Sciences Partner Initiative (NEESPI) project with NASA satellite remote sensing data, from Spring 2009 the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has been working on collecting more satellite and model data to support the Monsoon Asia Integrated Regional Study (MAIRS) project. The established data management and service infrastructure developed for NEESPI has been used and improved for MAIRS support.Data search, subsetting, and download functions are available through a single system. A customized Giovanni system has been created for MAIRS.The Web-based on line data analysis and visualization system, Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) allows scientists to explore, quickly analyze, and download data easily without learning the original data structure and format. Giovanni MAIRS includes satellite observations from multiple sensors and model output from the NASA Global Land Data Assimilation System (GLDAS), and from the NASA atmospheric reanalysis project, MERRA. Currently, we are working on processing and integrating higher resolution land data in to Giovanni, such as vegetation index, land surface temperature, and active fire at 5km or 1km from the standard MODIS products. For data that are not archived at the GESDISC,a product metadata portal is under development to serve as a gateway for providing product level information and data access links, which include both satellite, model products and ground-based measurements information collected from MAIRS scientists.Due to the large overlap of geographic coverage and many similar scientific interests of NEESPI and MAIRS, these data and tools will serve both projects.

  12. Status of NASA's commercial cargo and crew transportation initiative

    NASA Astrophysics Data System (ADS)

    Lindenmoyer, Alan; Stone, Dennis

    2010-03-01

    To stimulate the commercial space transportation industry, the National Aeronautics and Space Administration (NASA) is facilitating the demonstration of Commercial Orbital Transportation Services (COTS) to Low Earth Orbit (LEO) by private-sector companies. In 2006, NASA entered into funded agreements with two such companies to share NASA's 500 million investment, Space Exploration Technologies (SpaceX) and Rocketplane Kistler (RpK), each of which proposed to obtain the additional private financing needed to complete its flight demonstrations. In 2007, NASA terminated the agreement with RpK because it failed to meet a series of technical and financial milestones which were necessary to receive the incremental NASA payments. In 2008, NASA conducted another competition for the remaining 170 million of NASA funding and entered into a funded agreement with Orbital Sciences Corporation (OSC). This paper provides an overview of the COTS approach of SpaceX and OSC and the status of their efforts to develop reliable and cost-effective commercial transportation to serve the LEO marketplace.

  13. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  14. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa

  15. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  16. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS). In last year's NWA abstract on this topic, the suite of SPoRT products supported in the STRC EMS was presented, which includes a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This abstract and companion presentation describes recent upgrades made to the SST and GVF composites, as well as the real-time LIS runs. The Great Lakes sea-ice product is unchanged from 2011. The SPoRT SST composite product has been expanded geographically and as a result, the resolution has been coarsened from 1 km to 2 km to accommodate the larger domain. The expanded domain covers much of the northern hemisphere from eastern Asia to western Europe (0 N to 80 N latitude and 150 E to 10 E longitude). In addition, the NESDIS POES-GOES product was added to fill in gaps caused by the Moderate Resolution Imaging Spectroradiometer (MODIS) being unable to sense in cloudy regions, replacing the recently-lost Advanced Microwave Scanning Radiometer for EOS with negligible change to product fidelity. The SST product now runs twice per day for Terra and Aqua combined data collections from 0000 to 1200 UTC and from 1200 to 0000 UTC, with valid analysis times at 0600 and 1800 UTC. The twice-daily compositing technique reduces the overall latency of the previous version while still representing the diurnal cycle characteristics. The SST composites are available at approximately four hours after the end of each collection period (i.e. 1600 UTC for the nighttime analysis and 0400 UTC for the daytime analysis). The real-time MODIS GVF composite has only received minor updates in the

  17. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Epithelial and fibroblast cell coculture: Long-term growth human mammary epithelial cells (HMEC) admixed in coculture with fibroblast from the same initial breast tissue grown as 3-dimenstional constructions in the presence of attachment beads in the NASA Bioreactor. A: A typical constrct about 2.0 mm in diameter without beads on the surface. The center of these constrcts is hollow, and beads are organized about the irner surface. Although the coculture provides smaller constructs than the monoculture, the metabolic of the organized cells is about the same. B, C, D: Closer views of cells showing that the shape of cells and cell-to-cell interactions apprear different in the coculture than in the monoculture constructs. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  18. NASA's initial flight missions in the Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Rasch, Nickolus O.; Brown, William W.

    1989-01-01

    A new component of NASA's Explorer Program has been initiated in order to provide research opportunities characterized by small, quick-turn-around, and frequent space missions. Objectives include the launching of one or two payloads per year, depending on mission cost and availability of funds and launch vehicles. The four missions chosen from the proposals solicited by the Small Explorer Announcement Opportunity are discussed in detail. These include the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) designed to carry out energetic particle studies of outstanding questions in the fields of space plasma, solar, heliospheric, cosmic ray, and middle atmospheric physics; the Submillimeter Wave Astronomy Satellite (SWAS), which will conduct both pointed and survey observations of dense galactic molecular clouds; the Fast Auroral Snapshot Explorer (FAST); and the Total Ozone Mapping Spectrometer (TOMS).

  19. Initial Results of Interdisciplinary Science Enabled by Eclipse 2017: NASA Perspective

    NASA Astrophysics Data System (ADS)

    Guhathakurta, M.

    2017-12-01

    The exceptionally long path over land of the August 21st total and partial solar eclipse provided an unprecedented opportunity for cross disciplinary studies of the sun, moon, Earth, and their interactions. NASA supported research using ground-based measurements, balloons and planes that "chased" the eclipse as well as data taken from a vast array of orbiting spacecraft, all of which helped scientists take continuous measurements of the sun and the effects of the eclipse on the ionosphere and Earth for relatively long periods of time. This talk will summarize some of the initial findings from these research.

  20. The NASA astrobiology program

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  1. The NASA astrobiology program.

    PubMed

    Morrison, D

    2001-01-01

    The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.

  2. NASA Low Visibility Landing and Surface Operations (LVLASO) Atlanta Demonstration: Surveillance Systems Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Hicok, Dan; Lee, Derrick

    1999-01-01

    NASA conducted a series of flight experiments at Hartsfield Atlanta International Airport as part of the Low Visibility Landing and Surface Operations (LVLASO) Program. LVLASO is one of the subelements of the NASA Terminal Area Productivity (TAP) Program, which is focused on providing technology and operating procedures for achieving clear-weather airport capacity in instrument-weather conditions, while also improving safety. LVLASO is investigating various technologies to be applied to airport surface operations, including advanced flight deck displays and surveillance systems. The purpose of this report is to document the performance of the surveillance systems tested as part of the LVLASO flight experiment. There were three surveillance sensors tested: primary radar using Airport Surface Detection Equipment (ASDE-3) and the Airport Movement Area Safety System (AMASS), Multilateration using the Airport Surface Target Identification System (ATIDS), and Automatic Dependent Surveillance - Broadcast (ADS-B) operating at 1090 MHz. The performance was compared to the draft requirements of the ICAO Advanced Surface Movement Guidance and Control System (A-SMGCS). Performance parameters evaluated included coverage, position accuracy, and update rate. Each of the sensors was evaluated as a stand alone surveillance system.

  3. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  4. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  5. Reaching for the Stars: A New NASA-National Federation of the Blind Initiative

    NASA Astrophysics Data System (ADS)

    Maynard, N. G.; Riccobono, M. A.

    2004-12-01

    The National Aeronautics and Space Administration (NASA) and the National Federation of the Blind (NFB) recently launched a unique new partnership which will inspire and empower blind youth to consider opportunities in science, technologies, engineering, and math related careers from which they have typically been excluded. This partnership presents a framework for successful cultivation of the next generation of scientists. By partnering with the NFB Jernigan Institute, a one of a kind research and training facility developed and directed by blind people, NASA has engaged the most powerful tool for tapping the potential of blind youth. By teaming NASA scientists and engineers with successful blind adults within a national organization, the NFB, this partnership has established an unparalleled pipeline of talent and imagination. The NASA/NFB partnership seeks to facilitate the means that will lead to increased science and technology employment opportunities for the blind, and particularly within NASA. The initiative is facilitating the development of education programs and products which will stimulate better educational opportunities and supports for blind youth in the STEM areas and better preparing them to enter the NASA employment path. In addition, the partnership brings the unique perspective of the blind to the continuing effort to develop improved space technologies, which may be applied for navigation and wayfinding, technologies for education and outreach, and technologies for improving access to information using nonvisual techniques. This presentation describes some of the activities accomplished in the first year of the partnership. Examples include the establishment of the first NFB Science Academy for Blind Youth which included two summer science camps supported by NASA. During the first camp session, twelve middle school age blind youth explored earth science concepts such as identification and characterization of soils, weather parameters, plants

  6. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable

  7. NASA CNES SWOT Agreement

    NASA Image and Video Library

    2014-05-02

    NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall sign an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)

  8. Impact of atmosphere and land surface initial conditions on seasonal forecast of global surface temperature

    NASA Astrophysics Data System (ADS)

    Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio

    2014-05-01

    The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.

  9. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  10. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA. [high temperature tests of superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium surface-induced hot corrosion of B-1900 and NASA-TRW VIA alloys at 900 C has been studied, with special attention to the chemical reactions during and immediately after the induction period. Thermogravimetric tests were run and data were obtained by chemical analysis of water soluble metal salts and of residual sulfate. Surface analyses of hot corroded samples were obtained by spectroscopic techniques (ESCA). A chemical mechanism for elucidating Na2SO4-induced hot corrosion is proposed indicating that hot corrosion is initiated by basic fluxing of the protective Al2O3 scale. The sequential, catastrophic corrosion results from molybdenum content. The self-sustaining feature is a consequence of the cyclic nature of the acidic fluxing. It is believed that the mechanism is applicable not only to laboratory results, but also to the practical problem of hot corrosion encountered in gas turbine engines.

  11. Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model

    NASA Technical Reports Server (NTRS)

    Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.

    2014-01-01

    The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.

  12. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  13. NASA-VOF2D: a computer program for incompressible flows with free surfaces

    NASA Astrophysics Data System (ADS)

    Torrey, M. D.; Cloutman, L. D.; Mjolsness, R. C.; Hirt, C. W.

    1985-12-01

    We present the NASA-VOF2D two-dimensional, transient, free-surface hydrodynamics program. It has a variety of options that provide capabilities for a wide range of applications, and it is designed to be relatively easy to use. It is based on the fractional volume-of-fluid method, and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report includes a discussion of the numerical method, a code listing, and a selection of sample problems.

  14. NASA CNES SWOT Agreement

    NASA Image and Video Library

    2014-05-02

    NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall talk after signing an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)

  15. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  16. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  17. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  18. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  19. NASA Completes LADEE Mission with Planned Impact on Moon's Surface (Reporter Package)

    NASA Image and Video Library

    2014-04-23

    NASA's LADEE mission came to an end as the spacecraft executed a planned de-orbit into the surface of the Moon at nearly three thousand, six hundred miles per hour. The primary goal of the mission was to collect data about the thin lunar atmosphere and the amounts of dust that are in it at multiple altitudes.

  20. NASA Looks at Land Surface Changes Following Chilean Quake

    NASA Image and Video Library

    2015-10-12

    On Sept. 16, 2015, a magnitude 8.3 earthquake struck near the coast of central Chile along the boundary of the Nazca and South American tectonic plates. Dubbed the Illapel earthquake, the shaking lasted at least three minutes and propelled a 15-foot (4.5-meter) tsunami that washed into Coquimbo and other coastal areas. Smaller tsunami waves raced across the Pacific and showed up on the shores of Hawaii and other islands. The earthquake and tsunami caused substantial damage in several Chilean coastal towns, and at least 13 deaths have been reported. Demanding building codes and extensive disaster preparedness helped to limit the loss of life and property. The maps above, known as interferograms, show how the quake moved the ground, as observed by the Copernicus Sentinel-1A satellite (operated by the European Space Agency) and reported by ground stations to the U.S. Geological Survey. Sentinel-1A carries a synthetic aperture radar (SAR) instrument, which beams radio signals toward the ground and measures the reflections to determine the distance between the ground and the satellite. By comparing measurements made on Aug. 24 and Sept. 17, Cunren Liang, Eric Fielding, and other researchers from NASA's Jet Propulsion Laboratory were able to determine how the land surface shifted during and after the earthquake. Interferograms can be used to estimate where the fault moved deep in Earth and which areas have increased stress and higher likelihood of future earthquakes. The details can also provide important information to better understand the earthquake process. On both the close-up and the broad-view maps, the amount of land motion is represented in shades from yellow to purple. Areas where the ground shifted the most (vertically, horizontally, or both) are represented in yellow, while areas with little change are represented in purple. Circles show the location of earthquakes and aftershocks in the two days after the initial 8.3 earthquake, as reported by the USGS

  1. Multiscale crack initiator promoted super-low ice adhesion surfaces.

    PubMed

    He, Zhiwei; Xiao, Senbo; Gao, Huajian; He, Jianying; Zhang, Zhiliang

    2017-09-27

    Preventing icing on exposed surfaces is important for life and technology. While suppressing ice nucleation by surface structuring and local confinement is highly desirable and yet to be achieved, a realistic roadmap of icephobicity is to live with ice, but with lowest possible ice adhesion. According to fracture mechanics, the key to lower ice adhesion is to maximize crack driving forces at the ice-substrate interface. Herein, we present a novel integrated macro-crack initiator mechanism combining nano-crack and micro-crack initiators, and demonstrate a new approach to designing super-low ice adhesion surfaces by introducing sub-structures into smooth polydimethylsiloxane coatings. Our design promotes the initiation of macro-cracks and enables the reduction of ice adhesion by at least ∼50% regardless of the curing temperature, weight ratio and size of internal holes, reaching a lowest ice adhesion of 5.7 kPa. The multiscale crack initiator mechanisms provide an unprecedented and versatile strategy towards designing super-low ice adhesion surfaces.

  2. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.

    PubMed

    Lego, Béatrice; Skene, W G; Giasson, Suzanne

    2008-01-15

    Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.

  3. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  4. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Leland Melvin, right, Education Design Team Co-Chair and NASA Astronaut, speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  5. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  6. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    James Stofan, right, NASA Acting Associate Administrator for Education, introduces the keynote speakers at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  7. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    William Kelly, PhD, PE, Manager, Public Affairs, American Society for Engineering Education speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated are NASA Administrator Charles Bolden, left, and NASA Acting Associate Administrator for Education, James Stofan. (Photo Credit: NASA/Carla Cioffi)

  8. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  9. Bridging the Expert and Citizen Divide: Integrating Public Deliberation to Inform NASA's Asteroid Initiative

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Tomblin, D. C.; Sittenfeld, D.

    2017-12-01

    The demand for public engagement in upstream science and technology is fast becoming mainstream. From the National Academies to the European Commission, from geoengineering to gene editing, from artificial intelligence to synthetic biology—there is a growing recognition of the socio-technical nature of the inherent challenges and a variety of calls for earlier and sustained engagement with diverse stakeholders and the general public. Despite a significant increase in the number and sophistication of approaches, institutional and cultural barriers remain, particularly in linking techno-scientific discourse with socio-political discourse. We will report on a 2014 study to use Participatory Technology Assessment (pTA), a method for eliciting informed, deliberative, diverse, and representative citizen views prior to making decisions about science and technology, to inform upstream decisions concerning NASA's Asteroid Initiative. In partnership with NASA, the Expert and Citizen Assessment of Science and Technology (ECAST) network conducted pTA forums in Boston and Phoenix to assess citizens' preferences and values about potential options for asteroid detection, mitigation, and retrieval and the deployment of the Capability Driven Framework as a planning instrument for a journey to Mars. We describe the three-step trans-disciplinary research process applied for (a) issue framing and deliberation design, (b) content development and participant recruitment, and (c) value assessments and results integration. We present result highlights, describe how they were used, and what kind of impact they had on decisions made by NASA. We discuss the influence this project had on subsequent initiatives by NOAA for climate resilience planning and by DOE for nuclear waste management. We conclude with our thoughts on (i) a new institutional model and (ii) research, application and adaptation opportunities going forward focusing on the role pTA can play to bridge the divide between

  10. Initial Concept for Terminal Area Conflict Detection, Alerting, and Resolution Capability on or Near the Airport Surface

    NASA Technical Reports Server (NTRS)

    Green, David F.; Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.

    2009-01-01

    The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. In this report, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS). CAAT research is conducted jointly under NASA's Airspace Systems Program, Airportal Project and the Aviation Safety Program, Integrated Intelligent Flight Deck Project.

  11. The Mississippi NASA Community College Initiative

    NASA Technical Reports Server (NTRS)

    Lawhead, Pamela B.

    1998-01-01

    The object of this project was to provide greater utilization of existing resources to enhance the educational opportunities of Mississippi Community College students. When first introduced to the concept the teachers were understandably reluctant. They already had very heavy, prescribed work loads and most of what they had to do did not include NASA data. Teacher cooperation became a first goal. The second goal was effective use of NASA Earth Observation Data at every campus. Some compromises had to be made. The goal became to create a methodology or system that could be used on every campus and that the teachers would use. First year Biology was taught from a state-level prescribed curriculum on every one of the fifteen campuses. However, using Earth Observation Data in that curriculum was difficult. A compromise was made that allowed us to focus, in the first year, on the lesson hosting and creation process. Ten of the thirteen participating teachers agreed to create future lessons. They also asked to have a Community College Science Symposium in the Spring to demonstrate their lessons to the other science teachers in the state.

  12. NASA/GEWEX shortwave surface radiation budget: Integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2017-02-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.

  13. Anode initiated surface flashover switch

    DOEpatents

    Brainard, John P.; Koss, Robert J.

    2003-04-29

    A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

  14. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  15. The NASA SARP Software Research Infusion Initiative

    NASA Technical Reports Server (NTRS)

    Hinchey, Mike; Pressburger, Tom; Markosian, Lawrence; Feather, Martin

    2006-01-01

    A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) research infusion projects is shown. The topics include: 1) Background/Motivation; 2) Proposal Solicitation Process; 3) Proposal Evaluation Process; 4) Overview of Some Projects to Date; and 5) Lessons Learned.

  16. NASA's Needs for Biomaterials within the HEDS Initiative

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    2000-01-01

    The part to be played by materials scientists to further NASA's exploration missions cannot be underestimated. To quote Jerome Groopman (New Yorker, February 14, 2000), "The rocket science will be the easy part". The four main risks on the Critical Path Road Map during a three-year sojourn to Mars are osteoporosis, psychological problems, radiation induced cancer and acute medical trauma. NASA's microgravity materials science program has investigations in membrane fabrication, bone growth and materials for radiation protection. These programs will be reviewed in the context of the four main risks, as will other potential uses of biomaterials and applications of biomimetic processing.

  17. The international surface temperature initiative

    NASA Astrophysics Data System (ADS)

    Thorne, P. W.; Lawrimore, J. H.; Willett, K. M.; Allan, R.; Chandler, R. E.; Mhanda, A.; de Podesta, M.; Possolo, A.; Revadekar, J.; Rusticucci, M.; Stott, P. A.; Strouse, G. F.; Trewin, B.; Wang, X. L.; Yatagai, A.; Merchant, C.; Merlone, A.; Peterson, T. C.; Scott, E. M.

    2013-09-01

    The aim of International Surface Temperature Initiative is to create an end-to-end process for analysis of air temperature data taken over the land surface of the Earth. The foundation of any analysis is the source data. Land surface air temperature records have traditionally been stored in local, organizational, national and international holdings, some of which have been available digitally but many of which are available solely on paper or as imaged files. Further, economic and geopolitical realities have often precluded open sharing of these data. The necessary first step therefore is to collate readily available holdings and augment these over time either through gaining access to previously unavailable digital data or through data rescue and digitization activities. Next, it must be recognized that these historical measurements were made primarily in support of real-time weather applications where timeliness and coverage are key. At almost every long-term station it is virtually certain that changes in instrumentation, siting or observing practices have occurred. Because none of the historical measures were made in a metrologically traceable manner there is no unambiguous way to retrieve the true climate evolution from the heterogeneous raw data holdings. Therefore it is desirable for multiple independent groups to produce adjusted data sets (so-called homogenized data) to adequately understand the data characteristics and estimate uncertainties. Then it is necessary to benchmark the performance of the contributed algorithms (equivalent to metrological software validation) through development of realistic benchmark datasets. In support of this, a series of successive benchmarking and assessment cycles are envisaged, allowing continual improvement while avoiding over-tuning of algorithms. Finally, a portal is proposed giving access to related data-products, utilizing the assessment results to provide guidance to end-users on which product is the most suited to

  18. NASA's Carbon Cycle OSSE Initiative - Informing future space-based observing strategies through advanced modeling and data assimilation

    NASA Astrophysics Data System (ADS)

    Ott, L.; Sellers, P. J.; Schimel, D.; Moore, B., III; O'Dell, C.; Crowell, S.; Kawa, S. R.; Pawson, S.; Chatterjee, A.; Baker, D. F.; Schuh, A. E.

    2017-12-01

    Satellite observations of carbon dioxide (CO2) and methane (CH4) are critically needed to improve understanding of the contemporary carbon budget and carbon-climate feedbacks. Though current carbon observing satellites have provided valuable data in regions not covered by surface in situ measurements, limited sampling of key regions and small but spatially coherent biases have limited the ability to estimate fluxes at the time and space scales needed for improved process-level understanding and informed decision-making. Next generation satellites will improve coverage in data sparse regions, either through use of active remote sensing, a geostationary vantage point, or increased swath width, but all techniques have limitations. The relative strengths and weaknesses of these approaches and their synergism have not previously been examined. To address these needs, a significant subset of the US carbon modeling community has come together with support from NASA to conduct a series of coordinated observing system simulation experiments (OSSEs), with close collaboration in framing the experiments and in analyzing the results. Here, we report on the initial phase of this initiative, which focused on creating realistic, physically consistent synthetic CO2 and CH4 observational datasets for use in inversion and signal detection experiments. These datasets have been created using NASA's Goddard Earth Observing System Model (GEOS) to represent the current state of atmospheric carbon as well as best available estimates of expected flux changes. Scenarios represented include changes in urban emissions, release of permafrost soil carbon, changes in carbon uptake in tropical and mid-latitude forests, changes in the Southern Ocean sink, and changes in both anthropogenic and natural methane emissions. This GEOS carbon `nature run' was sampled by instrument simulators representing the most prominent observing strategies with a focus on consistently representing the impacts of

  19. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS

  20. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  1. NASA Information Technology Implementation Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  2. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  3. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along

  4. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Special Assitant for STEM Education, U. S. Department of Education, Michael Lach, far right, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated from right are James Stofan, NASA Acting Associate Administrator for Education; Charles Bolden, NASA Administrator; and Cora B. Marrett, Acting Director, National Science Foundation. (Photo Credit: NASA/Carla Cioffi)

  5. Small business initiative -- Surface inspection machine infrared (SIMIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, G.L.; Beecroft, M.

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. A secondary purpose was to evaluate applications that would serve both the private and the public sector. The design function of the SIMIR is to inspect sandblasted metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure onmore » lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Surface Optics Corporation supplied LMES-Y12 with a prototype SOC-400 that was evaluated by LMES-Y12 and rebuilt by Surface Optics to achieve the desired performance. LMES-Y12 subsequently evaluated the instrument against numerous applications including determining part cleanliness at the Corpus Christi Army Depot, demonstrating the ability to detect plasticizers and other organic contaminants on metals to Pantex and LANL personnel, analyzed sandblasted metal contamination standards supplied by NASA-MSFC, and demonstrated to Lockheed Martin Tactical Aircraft, marietta, GA, for analyzing the paint applied to the F-22 Fighter. The instrument also demonstrated the analysis of yarn, fabric, and finish on the textiles.« less

  6. NASA Post-Columbia Safety & Mission Assurance, Review and Assessment Initiatives

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Wander, Stephen M.; Vecellio, Don; Miller, Andrew J.

    2005-12-01

    On February 1, 2003, NASA again experienced a tragic accident as the Space Shuttle Columbia broke apart upon reentry, resulting in the loss of seven astronauts. Several of the findings and observations of the Columbia Accident Investigation Board addressed the need to strengthen the safety and mission assurance function at NASA. This paper highlights key steps undertaken by the NASA Office of Safety and Mission Assurance (OSMA) to establish a stronger and more- robust safety and mission assurance function for NASA programs, projects, facilities and operations. This paper provides an overview of the interlocking OSMA Review and Assessment Division (RAD) institutional and programmatic processes designed to 1) educate, inform, and prepare for audits, 2) verify requirements flow-down, 3) verify process capability, 4) verify compliance with requirements, 5) support risk management decision making, 6) facilitate secure web- based collaboration, and 7) foster continual improvement and the use of lessons learned.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 12: An initial investigation into the production and use of Scientific and Technical Information (STI) at five NASA centers: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Glassman, Nanci A.; Pinelli, Thomas E.

    1992-01-01

    A study was conducted to provide NASA management with an 'initial' look at the production and use of scientific and technical information (STI) at five NASA centers (Ames, Goddard, Langley, Lewis, and Marshall). The 550 respondents who were interviewed by telephone held favorable views regarding the NASA STI system. About 65 percent of the respondents stated that it is either very or somewhat important for them to publish their work through the NASA STI system. About 10 percent of those respondents encountered problems using the NASA STI system services for publication. The most frequently reported problem was 'the process is too time consuming' (8.6 percent). Overall, those respondents using the NASA STI system to publish their work rated the system as excellent (24.6 percent) or good (37.6 percent). About 79 percent of the respondents stated that it is either very or somewhat important for them to use the NASA STI system to access information. The most frequently reported problems were 'the time and effort it takes to locate and obtain information through the system' (14.4 percent). Overall, about 83 percent of the respondents stated that the NASA STI system is important to performing their work. Overall, about 73 percent of the respondents stated that the NASA STI system meets their information needs.

  8. NASA's Big Earth Data Initiative Accomplishments

    NASA Technical Reports Server (NTRS)

    Klene, Stephan A.; Pauli, Elisheva; Pressley, Natalie N.; Cechini, Matthew F.; McInerney, Mark

    2017-01-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Services (GIBS).

  9. NASA's Big Earth Data Initiative Accomplishments

    NASA Astrophysics Data System (ADS)

    Klene, S. A.; Pauli, E.; Pressley, N. N.; Cechini, M. F.; McInerney, M.

    2017-12-01

    The goal of NASA's effort for BEDI is to improve the usability, discoverability, and accessibility of Earth Observation data in support of societal benefit areas. Accomplishments: In support of BEDI goals, datasets have been entered into Common Metadata Repository(CMR), made available via the Open-source Project for a Network Data Access Protocol (OPeNDAP), have a Digital Object Identifier (DOI) registered for the dataset, and to support fast visualization many layers have been added in to the Global Imagery Browse Service(GIBS)

  10. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  11. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  12. Status of Brayton Cycle Power Conversion Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Shaltens, Richard K.; Dolce, James L.; Cataldo, Robert L.

    2002-01-01

    The NASA Glenn Research Center (GRC) is pursuing the development of Brayton cycle power conversion for various NASA initiatives. Brayton cycle power systems offer numerous advantages for space power generation including high efficiency, long life, high maturity, and broad scalability. Candidate mission applications include surface rovers and bases, advanced propulsion vehicles, and earth orbiting satellites. A key advantage is the ability for Brayton converters to span the wide range of power demands of future missions from several kilowatts to multi-megawatts using either solar, isotope, or reactor heat sources. Brayton technology has been under development by NASA since the early 1960's resulting in engine prototypes in the 2 to 15 kW-class that have demonstrated conversion efficiency of almost 30% and cumulative operation in excess of 40,000 hours. Present efforts at GRC are focusing on a 2 kW testbed as a proving ground for future component advances and operational strategies, and a 25 kW engine design as a modular building block for 100 kW-class electric propulsion and Mars surface power applications.

  13. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  14. Runoff initiation from falling raindrops - comparison of smooth impervious surface and asphalt pavements. Effects of surface inclination and texture.

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal; Levenberg, Eyal

    2017-04-01

    The processes of runoff initiation on smooth impervious surfaces and various asphalt pavements are investigated in laboratory rain simulator experiments and outdoor sprinkling tests. Visual and FLIR observations indicate that runoff initiation is associated with coalescence of drop clusters on the surface and complex changes in micro-connectivity. Depending on surface inclination, several morphological regimes of flow initiation have been observed. In the case of very small inclination the runoff initiation is governed by critical merging of drop clusters on the surface and develops in broad flows (very abrupt, but delayed). For larger inclinations, the runoff occurs in rivulets or strongly directed flow threads. On asphalt pavements the runoff initiation is also strongly affected by pavement SVF (Surface Void Fraction), texture and even by the asphalt hydrophobicity. A simplified bi-level model of the pavement surface may explain principal differences in the runoff initiation on asphalts with small, intermediate and large SVF values. For small SVF (standard fresh asphalts) the runoff develops on the upper surface level, and filling of the surface voids is not always required (especially for the large inclinations). For intermediate SVF (considerably deteriorated asphalts) the runoff develops as well on the upper surface level, but only after considerable filling of the surface voids. Finally, on severely deteriorated asphalts (very large SVFs) the runoff develops on the "bottom" level of asphalt surface, after only partial filling of the surface voids. Other factors, such as drops splash and splitting, also affect the process of runoff initiation and explain rather considerable differences (sometimes of 2-3 mm rain depth) in the runoff thresholds on various non-porous asphalt pavements. Similar phenomena can be probably observed on certain types of rock outcrops.

  15. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Marion C. Blakey, President and CEO, Aerospace Industries Association, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  16. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert; Norgard, John

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability

  17. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Burnham, Karen; Scully, Robert C.; Norgard, John D.

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This paper outlines the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability.

  18. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden, far right, gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Administrator Bolden is joined on the panel from left to right by Leland Melvin, Education Design Team Co-Chair and NASA Astronaut; William Kelly, Manager, Public Affairs, American Society for Engineering Education; Michael Lach, Special Assistant for STEM Education, U.S. Department of Education; Cora Marrett, Acting Director, National Science Foundation; and James Stofan, NASA Acting Associate Administrator for Education. (Photo Credit: NASA/Carla Cioffi)

  19. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Cora B. Marrett, right, PhD, Acting Director, National Science Foundation gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  20. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Cora B. Marrett, PhD, Acting Director, National Science Foundation gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  1. NASA WISE Cryostat

    NASA Image and Video Library

    2009-10-13

    Initial assembly of NASA Wide-field Infrared Survey Explorer cryostat. The cryostat is a 2-stage solid hydrogen dewar that is used to cool the WISE optics and detectors. Here the cryostat internal structures are undergoing their initial vacuum pumpdown.

  2. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    NASA Astrophysics Data System (ADS)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  3. A NASA/University Joint Venture in Space Science (JOVE)

    NASA Technical Reports Server (NTRS)

    Vaughn, Danny M.

    1997-01-01

    Several papers have been given to national level meeting and a paper has been published in an international journal. Several additional papers have been co-author by students. The initial research project on the Atchafalaya Delta seems to have died in part due to a transfer of the NASA colleague to another location and subsequent reassigment to another job title. I have continued to include credit to NASA for many of my papers presented and published: A major debris flow along the Wasatch front in Northern Ogden; Spatial and volumetric changes in the Atchafalaya delta, Louisiana; An analysis of prehistoric Greenstone artifact in northern Alabama; An assessment of surfacing algorithm; Analysis of georeferencing algorithms to assess spatial accuracy.

  4. NASA's post-Challenger safety program - Themes and thrusts

    NASA Technical Reports Server (NTRS)

    Rodney, G. A.

    1988-01-01

    The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.

  5. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  6. Mathematical model of solar radiation based on climatological data from NASA SSE

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-05-01

    An original model of solar radiation arriving at the arbitrarily oriented surface has been developed. The peculiarity of the model is that it uses numerical values of the atmospheric transparency index and the surface albedo from the NASA SSE database as initial data. The model is developed in the MatLab/Simulink environment to predict the main characteristics of solar radiation for any geographical point in Russia, including those for territories with no regular actinometric observations.

  7. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  8. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale

  9. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, C.; Coe, L.; Rask, Jon; Paradise, Jim; Wynne, J.J.

    2008-01-01

    Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Methods: The investigation further provides a detailed overview of the structure of these two NASA education outreach programs, while providing information regarding selection criteria and program developments over time. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  10. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    DTIC Science & Technology

    2015-09-01

    Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of

  11. NASA Education and Public Outreach Initiatives at the MIT Center for Space Research

    NASA Astrophysics Data System (ADS)

    Porro, I. L.

    2003-12-01

    Since its inception in 1999, the EPO office of the MIT Center for Space Research (CSR) has fostered direct participation of local scientists in educational initiatives such as teachers workshops and public tours of the Chandra Operations and Control Center. The role played by the CSR EPO office has grown significantly, thanks to the award of a number of EPO grants associated with the Chandra and HETE missions. In the past year about one-third of the CSR research staff was involved in the office's EPO initiatives: more than 500 K-12 students, about half from underrepresented groups, were included in formal education programs and informal education events attracted an estimated 900 people. Today the mission of the CSR EPO office is focused in two areas: professional development for K-12 science teachers, and educational programs in out-of-school time. To be associated with major NASA research missions is beneficial to our mission in several respects, but provides also specific challenges. We present here some of the strategies and intiatives that we have undertaken to overcome those challenges.

  12. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  13. NASA's Productivity Improvement and Quality Enhancement Initiatives

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The National Aeronautics and Space Administration celebrated its 25th Anniversary in 1983 at the Air and Space Museum in Washington, DC, with President Reagan in attendance. We look back on the accomplishments of these twenty-five years with pride in our missions and our people. NASA captured the world's imagination during the days of the Apollo mission. So much so, that we now talk about the Apollo era. In the l970s, we moved into the Space Transportation business and in the 199Os, we look forward to having a manned Space Station. Each succeeding mission has presented its own challenge in terms of technology and resources. This is especially true today, when we are being asked to do more with less. To ensure that NASA continues to be a productive and quality conscious agency, one of our highest Agency goals is leadership in the development and application of practices which contribute to high productivity and quality. greatest competitive strength, and this country has a solid scientific and engineering foundation. Traditionally we have spent more money on research and development than Japan and Europe combined, and we are the source of most of this century significant innovations. We should build on this solid base and use it more effectively.

  14. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  15. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  16. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  17. 78 FR 20359 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NASA Robotics Technologies project and NASA's work with the National Robotics Initiative; and an annual... Sail project --Update on NASA's Robotic Technologies and the National Robotics Initiative It is...

  18. Next Generation NASA Initiative for Space Geodesy

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  19. Universal Surface-initiated Polymerization of Antifouling Zwitterionic Brushes Using A Mussel-Mimetic Peptide Initiator

    PubMed Central

    Kuang, Jinghao; Messersmith, Phillip B.

    2012-01-01

    We report a universal method for the surface-initated polymerization (SIP) of a antifouling polymer brush on various classes of surfaces, including noble metals, metal oxides and inert polymers. Inspired by the versatility of mussel adhesive proteins, we synthesized a novel bifunctional tripeptide bromide (BrYKY) which combines an atom transfer radical polymerization (ATRP) initiating alkyl bromide with l-3,4-dihydroxyphenylalanine (DOPA) and lysine. Simple dip-coating of substrates with variable wetting properties and compositions, including Teflon®, in a BrYKY solution at pH 8.5 led to formation of a thin film of cross-linked BrYKY. Subsequently, we showed that the BrYKY layer initiated the ATRP of a zwitterionic monomer, sulfobetaine methacrylate (SBMA) on all substrates, resulting in high density antifouling pSBMA brushes. Both BrYKY deposition and pSBMA grafting were unambiguously confirmed by ellipsometry, X-ray photoelectron spectroscopy and goniometry. All substrates that were coated with BrYKY/pSBMA dramatically reduced bacterial adhesion for 24 h and also resisted mammalian cell adhesion for at least 4 months, demonstrating the long-term stability of the BrYKY anchoring and antifouling properties of pSBMA. The use of BrYKY as a primer and polymerization initiator has the potential to be widely employed in surface grafted polymer brush modifications for biomedical and other applications. PMID:22506651

  20. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  1. X-37 C-Sic CMC Control Surface Components Development [Status of the NASA/Boeing/USAF Orbital Vehicle and Related Efforts

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G; Rivers, H. Kevin; Chen, Victor L.

    2004-01-01

    Carbon/Silicon-Carbide (C-Sic) ceramic matrix composite (CMC) flaperon and ruddervator control surface components are being developed for the X-37 Orbital Vehicle (OV). The results of the prior NASA LaRC led work, aimed at developing C-Sic flaperon and ruddervator components for the X-37, will be reviewed. The status of several on-going and/or planned NASA, USAF, and Boeing programs that will support the development of control surface components for the X-37 OV will also be reviewed. The overall design and development philosophy being employed to assemble a team(s) to develop both: (a) C-Sic hot structure control surface components for the X-37 OV, and (b) carbon-carbon (C-C) hot structure components (a risk-reduction backup option for the OV), will be presented.

  2. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  3. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans.

    PubMed

    Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G

    2009-01-01

    Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.

  4. The NASA Scientific and Technical Information (STI) Program's Implementation of Open Archives Initiative (OAI) for Data Interoperability and Data Exchange.

    ERIC Educational Resources Information Center

    Rocker, JoAnne; Roncaglia, George J.; Heimerl, Lynn N.; Nelson, Michael L.

    Interoperability and data-exchange are critical for the survival of government information management programs. E-government initiatives are transforming the way the government interacts with the public. More information is to be made available through Web-enabled technologies. Programs such as the NASA's Scientific and Technical Information (STI)…

  5. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  6. Taxiway Navigation and Situation Awareness (T-NASA) System : problem, design philosophy, and description of an integrated display suite for low-visibility airport surface operations

    DOT National Transportation Integrated Search

    1996-01-01

    An integrated cockpit display suite, the T-NASA (Taxiway Navigation and : Situation Awareness) system, is under development for NASA's Terminal Area : Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) : program. This system ha...

  7. Surface contamination artificially elevates initial sweat mineral concentrations

    USDA-ARS?s Scientific Manuscript database

    During exercise in the heat, sweat is initially concentrated in minerals, but serial sweat samples appear more dilute. Possible causes include reduced dermal mineral concentrations or flushing of surface contamination. PURPOSE: To simultaneously sample mineral concentrations in transdermal fluid (T...

  8. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  9. Benefit from NASA

    NASA Image and Video Library

    1998-01-01

    The Ultra 500 Series golf balls, introduced in 1995 by Wilson Sporting Goods Company, has 500 dimples arranged in a pattern of 60 spherical triangles. The design employs NASA's aerodynamics technology analysis of air loads of the tank and Shuttle orbiter that was performed under the Space Shuttle External Tank program. According to Wilson, this technology provides "the most symmetrical ball surface available, sustaining initial velocity longer and producing the most stable ball flight for unmatched accuracy and distance." The dimples are in three sizes, shapes and depths mathematically positioned for the best effect. The selection of dimples and their placement optimizes the interaction of opposing forces of lift and drag. Large dimples reduce air drag, enhance lift, and maintain spin for distance. Small dimples prevent excessive lift that destabilizes the ball flight and the medium size dimples blend the other two.

  10. NASA's Black Marble Nighttime Lights Product Suite

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas; hide

    2018-01-01

    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

  11. The homestake surface-underground scintillators: Initial results

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Corbato, S.; Daily, T.; Fenyves, E. J.; Kieda, D.; Lande, K.; Lee, C. K.

    1986-01-01

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed.

  12. NASA/Caltech Team Images Nepal Quake Fault Rupture, Surface Movements

    NASA Image and Video Library

    2015-05-04

    Using a combination of GPS-measured ground motion data, satellite radar data, and seismic observations from instruments distributed around the world, scientists have constructed preliminary estimates of how much the fault responsible for the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal moved below Earth's surface (Figure 1). This information is useful for understanding not only what happened in the earthquake but also the potential for future events. It can also be used to infer a map of how Earth's surface moved due to the earthquake over a broader region (Figure 2). The maps created from these data can be viewed at PIA19384. In the first figure, the modeled slip on the fault is shown as viewed from above and indicated by the colors and contours within the rectangle. The peak slip in the fault exceeds 19.7 feet (6 meters). The ground motion measured with GPS is shown by the red and purple arrows and was used to develop the fault slip model. In the second figure, color represents vertical movement and the scaled arrows indicate direction and magnitude of horizontal movement. In both figures, aftershocks are indicated by red dots. Background color and shaded relief reflect regional variations in topography. The barbed lines show where the main fault reaches Earth's surface. The main fault dives northward into the Earth below the Himalaya. http://photojournal.jpl.nasa.gov/catalog/PIA19384

  13. National Aeronautics and Space Administration (NASA) education 1993--2009

    NASA Astrophysics Data System (ADS)

    Ivie, Christine M.

    The National Aeronautics and Space Administration was established in 1958 and began operating a formal education program in 1993. The purpose of this study was to analyze the education program from 1993 -- 2009 by examining strategic plan documents produced by the NASA education office and interviewing NASA education officials who served during that time period. Constant changes in education leadership at NASA resulted in changes in direction in the education program and the documents produced by each administration reflected both small and some significant changes in program direction. The result of the analysis of documents and interview data was the identification of several trends in the NASA education program. This study identified three significant trends in NASA education. First, the approach that NASA took in both its EPO efforts and in the efforts directed by the Office of Education is disjointed and seems to reflect individual preferences in education approaches designed to reach populations that are of interest to the individuals in decision-making positions rather than reflect a systematic approach designed to meet identified goals and outcomes. Second, this disjointed and person-driven approach led to a lack of consistent evaluation data available for review and planning purposes. Third, there was an ongoing assumption made by the education community that NASA education efforts were tied to larger education reports, concerns, needs, initiatives and evidence collected and presented in Science Technology Engineering and Math (STEM) education-related studies over the past twenty years. In fact, there is no evidence that the programs and projects initiated were a response to these identified needs or initiatives. That does not mean that NASA's efforts did not contribute to STEM education initiatives in the United States. This study, however, indicates that contributions to those initiatives occurred as a byproduct of the effort and not because of specific

  14. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Student Ambassadors and Facilitator are seen on a panel at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. From left to right are: Quenton Bonds, University of South Florida; Geoffrey Wawrzyniak, Purdue University; Heriberto Reynoso, University of Texas at Brownsville; Marie Kingbird-Lowry, Leech Lake Tribal College; Kareen Borders, University of Washington; Katelyn Doran, University of North Carolina at Charlotte and Ashanti Johnson, PhD, Executive Director, Institute for Broadening Participation. (Photo Credit: NASA/Carla Cioffi)

  15. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  16. Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Nahra, Henry K.

    2009-01-01

    The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.

  17. Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.

    2009-01-01

    The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.

  18. Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem

    NASA Astrophysics Data System (ADS)

    Biber, P.; Seifert, S.; Zaplata, M. K.; Schaaf, W.; Pretzsch, H.; Fischer, A.

    2013-12-01

    We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.

  19. Overview of NASA's space radiation research program.

    PubMed

    Schimmerling, Walter

    2003-06-01

    NASA is developing the knowledge required to accurately predict and to efficiently manage radiation risk in space. The strategy employed has three research components: (1) ground-based simulation of space radiation components to develop a science-based understanding of radiation risk; (2) space-based measurements of the radiation environment on planetary surfaces and interplanetary space, as well as use of space platforms to validate predictions; and, (3) implementation of countermeasures to mitigate risk. NASA intends to significantly expand its support of ground-based radiation research in line with completion of the Booster Applications Facility at Brookhaven National Laboratory, expected in summer of 2003. A joint research solicitation with the Department of Energy is under way and other interagency collaborations are being considered. In addition, a Space Radiation Initiative has been submitted by the Administration to Congress that would provide answers to most questions related to the International Space Station within the next 10 years.

  20. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  1. Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Campbell, J. F.

    1983-01-01

    The importance of leadingedge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.

  2. Recent studies at NASA-Langley of vortical flows interacting with neighboring surfaces

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Campbell, J. F.

    1983-01-01

    The importance of leading edge vortical flows, which occur near and interact with neighboring surfaces, is stressed. Research in this area conducted or sponsored by the NASA Langley Research Center since 1978 is surveyed. Particular attention is given to the cumulative results of a number of theoretical and experimental studies. It is noted that these studies have been carried out in order to understand and use this kind of flow. Much of the work has been devoted to improving the lift-to-drag ratio and pitch characteristics for wings in this flow, although work has also been done on examining the unsteady and lateral characteristics.

  3. CTAS and NASA Air Traffic Management Fact Sheets for En Route Descent Advisor and Surface Management System

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.

  4. Strategies for recruiting additional African Americans into the NASA JSC summer faculty fellows program

    NASA Technical Reports Server (NTRS)

    Hyman, Ladelle M.

    1993-01-01

    African Americans have participated sporadically in the NASA JSC Summer Faculty Fellows Program--none in 1992 and four in 1993. There is a pool of African Americans who are both qualified to provide services and willing to participate in initiatives which support technologies required for future JSC programs. They can provide human support and handle mission operations, spacecraft systems, planet surface systems, and management tools. Most of these faculty teach at historically black colleges and universities (HBCU's). This research will document the current recruitment system, critique it, and develop a strategy which will facilitate the diversification of the NASA JSC Summer Faculty Fellows Program. While NASA currently mails notices to HBCU's, such notices have generated few applications from, and fewer selections of, targeted faculty. To increase the participation of African Americans in the NASA JSC Summer Faculty Fellows Program, this participant will prepare a strategy which includes a document which identifies HBCU-targeted faculty and enumerates more formally extensive and intensive communication procedures. A fifteen-minute panel discussion, which will include a video, will be delivered during the annual meeting of the American Society for Engineering Education (ASEE) to be held in Edmonton, Alberta, Canada, June 26-29, 1994. An announcement letter will be mailed to targeted faculty; follow-up telephone calls and personal visits will be made and a checklist flowchart will be completed by key NASA personnel or designee. Although initially limited to NASA JSC's recruitment of African Americans, this strategy may be broadened to include other NASA sites and other targeted minority groups.

  5. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  6. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  7. Recent NASA/GSFC cryogenic measurements of the total hemispheric emissivity of black surface preparations

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.

    2015-12-01

    High-emissivity (black) surfaces are commonly used on deep-space radiators and thermal radiation absorbers in test chambers. Since 2011 NASA Goddard Space Flight Center has measured the total hemispheric emissivity of such surfaces from 20 to 300 K using a test apparatus inside a small laboratory cryostat. We report the latest data from these measurements, including Aeroglaze Z307 paint, Black Kapton, and a configuration of painted aluminum honeycomb that was not previously tested. We also present the results of batch-to- batch reproducibility studies in Ball Infrared BlackTM and painted aluminum honeycomb. Finally, we describe a recently-adopted temperature control method which significantly speeds the data acquisition, and we discuss efforts to reduce the noise in future data.

  8. Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.

  9. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length.

    PubMed

    Lego, Béatrice; François, Marion; Skene, W G; Giasson, Suzanne

    2009-05-05

    The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.

  10. 2004 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.

  11. Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1973-01-01

    A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.

  12. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    NASA Administrator Charles Bolden, right, poses with U.S. Rep. Lincoln Diaz-Balart, R-Fla., prior to the start of an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    NASA Administrator Charles Bolden, left, speaks with Melinda French Gates, of the Bill & Melinda Gates Foundation, right, prior to the start of an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  14. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  15. Advanced aerodynamics. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.

  16. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  17. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  18. Advantages of a Modular Mars Surface Habitat Approach

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  19. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  20. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  1. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  2. Administrator Talk at NASA Industry Day

    NASA Image and Video Library

    2018-05-08

    NASA Administrator Jim Bridenstine asks commercial companies to help get the agency back to the Moon as quickly as possible during an ‘industry day', Tuesday, May 8, 2018 held at NASA Headquarters in Washington. NASA is calling for commercial proposals for delivering instruments, experiments, and other small payloads to the surface of the Moon as early as next year. This solicitation is part of a broader Exploration Campaign that will pave the way for a human return to the Moon. Photo Credit: (NASA/Bill Ingalls)

  3. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  4. Nasa's Emerging Productivity Program

    NASA Technical Reports Server (NTRS)

    Braunstein, D. R.

    1984-01-01

    The goals, membership, and organizational structure of the NASA Productivity Steering Committee are described as well as steps taken to make NASA a leader in the development and application of productivity and quality concepts at every level of agency management. The overall strategy for the Productivity Improvement and Quality Enhancement (PIQE) Program is through employee involvement, both civil servant and contractor, in all phases of agency-wide activity. Elements of the PIQE program and initial thrusts are examined.

  5. The effect of environmental initiatives on NASA specifications and standards activities

    NASA Technical Reports Server (NTRS)

    Griffin, Dennis; Webb, David; Cook, Beth

    1995-01-01

    The NASA Operational Environment Team (NOET) has conducted a survey of NASA centers specifications and standards that require the use of Ozone Depleting Substances (ODS's) (Chlorofluorocarbons (CFCs), Halons, and chlorinated solvents). The results of this survey are presented here, along with a pathfinder approach utilized at Marshall Space Flight Center (MSFC) to eliminate the use of ODS's in targeted specifications and standards. Presented here are the lessons learned from a pathfinder effort to replace CFC-113 in a significant MSFC specification for cleaning and cleanliness verification methods for oxygen, fuel and pneumatic service, including Shuttle propulsion elements.

  6. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  7. NASA Satellite Captures Super Bowl Cities - Seattle

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA Satellite Captures Super Bowl Cities - Phoenix

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Radical Initiated Hydrosilylation on Silicon Nanocrystal Surfaces: An Evaluation of Functional Group Tolerance and Mechanistic Study.

    PubMed

    Yang, Zhenyu; Gonzalez, Christina M; Purkait, Tapas K; Iqbal, Muhammad; Meldrum, Al; Veinot, Jonathan G C

    2015-09-29

    Hydrosilylation is among the most common methods used for modifying silicon surface chemistry. It provides a wide range of surface functionalities and effective passivation of surface sites. Herein, we report a systematic study of radical initiated hydrosilylation of silicon nanocrystal (SiNC) surfaces using two common radical initiators (i.e., 2,2'-azobis(2-methylpropionitrile) and benzoyl peroxide). Compared to other widely applied hydrosilylation methods (e.g., thermal, photochemical, and catalytic), the radical initiator based approach is particle size independent, requires comparatively low reaction temperatures, and yields monolayer surface passivation after short reaction times. The effects of differing functional groups (i.e., alkene, alkyne, carboxylic acid, and ester) on the radical initiated hydrosilylation are also explored. The results indicate functionalization occurs and results in the formation of monolayer passivated surfaces.

  10. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  11. Status of the NASA Balloon Program

    NASA Astrophysics Data System (ADS)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  12. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  13. NASA's Education Program Inventory FY 91

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1988, the Education Division produced an inventory of NASA-supported education programs. Since then, mathematics, science, and technology education has taken on a more visible role, not only as part of NASA's mission, but as part of the National Education Goals and other Federal initiatives. Therefore, it became important to update the 1988 inventory in order to achieve a more accurate and comprehensive look at NASA's educational programs. The data collected is summarized and descriptions of each program are provided.

  14. NASA geodynamics program: Bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Seventh Geodynamics Program report summarizes program activities and achievements during 1988 and 1989. Included is a 115 page bibliography of the publications associated with the NASA Geodynamics Program since its initiation in 1979.

  15. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  16. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects

    PubMed Central

    Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel

    2015-01-01

    Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of

  17. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden delivers remarks before a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  18. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  19. Initial Concept for Terminal Area Conflict Detection, Alerting, and Resolution Capability On or Near the Airport Surface, Version 2.0

    NASA Technical Reports Server (NTRS)

    Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.

    2013-01-01

    The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. The term ATMA was created to reflect the fact that the CD&R concept area of operation is focused near the airport within the terminal maneuvering area. In the following, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS).

  20. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision news anchor Jorge Ramos speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision Networks president Cesar Conde speaks at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  2. OAI and NASA's Scientific and Technical Information.

    ERIC Educational Resources Information Center

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2003-01-01

    Details NASA's (National Aeronautics & Space Administration (USA)) involvement in defining and testing the Open Archives Initiative (OAI) Protocol for Metadata Harvesting (OAI-PMH) and experience with adapting existing NASA distributed searching DLs (digital libraries) to use the OAI-PMH and metadata harvesting. Discusses some new digital…

  3. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to Gwynne Shotwell, President, SpaceX, at NASA Headquarters in Washington on Thursday, November 13, 2013. Shotwell received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  4. The Role of DYNAMO in Situ Observations in Improving NASA Ceres-like Daily Surface and Atmospheric Radiative Flux Estimates

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Su, Wenying; Loeb, Norman G.; Achuthavarier, Deepthi; Schubert, Siegfried D.

    2017-01-01

    The daily surface and atmospheric radiative fluxes from NASA Clouds and the Earths RadiantEnergy System (CERES) Synoptic 1 degree (SYN1deg) Ed3A are among the most widely used data to studycloud-radiative feedback. The CERES SYN1deg data are based on Fu-Liou radiative transfer computations thatuse specific humidity (Q) and air temperature (T) from NASA Global Modeling and Assimilation Office (GMAO)reanalyses as inputs and are therefore subject to the quality of those fields. This study uses in situ Q and Tobservations collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign toaugment the input stream used in the NASA GMAO reanalysis and assess the impact on the CERES dailysurface and atmospheric longwave estimates. The results show that the assimilation of DYNAMOobservations considerably improves the vertical profiles of analyzed Q and T over and near DYNAMO stationsby moistening and warming the lower troposphere and upper troposphere and drying and cooling themid-upper troposphere. As a result of these changes in Q and T, the computed CERES daily surface downwardlongwave flux increases by about 5 W m(exp -2), due mainly to the warming and moistening in the lowertroposphere; the computed daily top-of-atmosphere (TOA) outgoing longwave radiation increases by2-3 W m(exp -2) during dry periods only. Correspondingly, the estimated local atmospheric longwave radiativecooling enhances by about 5 W m(exp -2) (7-8 W m(exp -2)) during wet (dry) periods. These changes reduce the bias inthe CERES SYN1deg-like daily longwave estimates at both the TOA and surface and represent animprovement over the DYNAMO region.

  5. NASA grievance system: Employee handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This revised handbook updates the minimum provisions of the agency-wide Grievance System and applies to NASA Headquarters and field installations. All grievances initiated on or after June 15, 1981, will be processed under these provisions. NASA recognizes and endorses the importance of bringing to light and adjusting grievances promptly and of treating all employees reasonably and fairly. Achieving these objectives requires great competence, mature judgment, and true willingness to reach a satisfactory solution. Provisions of the NASA Grievance System are directed to this purpose. Grievances and misunderstandings can arise in almost any working situation. It follows then that an employee's initiation of a grievance in good faith should not cast any reflection on the employee's standing with his or her supervisor or loyalty and importance to the organization. At the same time, the initiation of a grievance should not automatically be considered as a reflection on the employee's supervisor or on the general management of the activity. This handbook should be used in conjunction with Office of Personnel Management regulations in 5 CFR Part 771 and Chapter 771 of the Federal Personnel Manual. Installations may issue implementing instructions, e.g. specifying when fact-finding is required or when an unresolved grievance must be referred to a higher level of authority.

  6. Probing below the Surface of Mars. ITEA/NASA-JPL Learning Activity.

    ERIC Educational Resources Information Center

    Urquhart, Mary; Urquhart, Sally

    2000-01-01

    This activity, developed by NASA's Jet Propulsion Laboratory, involves students in recording and graphing temperature data to learn about NASA's Mars Microprobe Mission, Deep Space 2, and how the properties of a material affect the transfer of heat. (Author/JOW)

  7. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    NASA Astrophysics Data System (ADS)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  8. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  9. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Phil McAlister, Director of Commercial Spaceflight Development at NASA, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  10. The GLOBE Contrail Protocol: Initial Analysis of Results

    NASA Technical Reports Server (NTRS)

    Chambers, Lin; Duda, David

    2004-01-01

    The GLOBE contrail protocol was launched in March 2003 to obtain surface observer reports of contrail occurrence to complement satellite and model studies underway at NASA Langley, among others. During the first year, more than 30,000 ground observations of contrails were submitted to GLOBE. An initial analysis comparing the GLOBE observations to weather prediction model results for relative humidity at flight altitudes is in progress. This paper reports on the findings to date from this effort.

  11. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  12. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  13. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  14. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  15. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final

  16. Spacecraft Hybrid Control At NASA: A Look Back, Current Initiatives, and Some Future Considerations

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.

  17. The use of NASA GEOS Global Analysis in MM5/WRF Initialization: Current Studies and Future Applications

    NASA Technical Reports Server (NTRS)

    Pu, Zhao-Xia; Tao, Wei-Kuo

    2004-01-01

    An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.

  18. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  19. Pharmacy in Space: A Session on NASA Technologies

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    1998-01-01

    In 1993, Vice-president Gore was charged with creation of a correctional plan for the poor findings from an efficiency study of governmental agencies. That correctional analysis was then used to support efforts to balance the budget in ways anticipated to improve the value returned per tax payer dollar spent. The final result was a broad initiative collectively termed "reinventing the government", which included major restructuring within NASA as well, termed "reinventing NASA This included substantial elimination of middle management and downsizing such that about 2 million government workers employed in 1992 has shrunk now to about 1.2 million government workers who are employed in ways that at least somewhat decrease bureaucratic and programmatic inefficiencies. Today, "reinvented NASA" has an awareness of contractual commitment to the public. NASA now operates within a so-called "strategic plan" that requires awareness and response to domestic needs. This is important to this audience because it means that NASA is committed to exploring interactions that you may wish to initiate. That is, you are urged to explore with NASA on topics of educational support, collaborative research, or commercial partnerships in drug development and application, as the pertinent examples here, in ways that can include involvement of central NASA resources and missions.

  20. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Melinda French Gates, of the Bill & Melinda Gates Foundation, speaks during an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Melinda French Gates, of the Bill & Melinda Gates Foundation speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    Univision Communications President and Chief Executive Officer Joe Uva speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Education Arne Duncan speaks during an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Education Arne Duncan speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  5. NASA Univision Hispanic Education Campaign

    NASA Image and Video Library

    2010-02-23

    U.S. Secretary of Labor Hilda Solis speaks at an event at the National Press Club in Washington, Tuesday, Feb. 23, 2010. NASA is working with Univision Communications Inc. to develop a partnership in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. Photo Credit: (NASA/Bill Ingalls)

  6. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, listens as other NASA senior leadership talk during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  7. Characteristics and mechanism of laser-induced surface damage initiated by metal contaminants

    NASA Astrophysics Data System (ADS)

    Shi, Shuang; Sun, Mingying; Shi, Shuaixu; Li, Zhaoyan; Zhang, Ya-nan; Liu, Zhigang

    2015-08-01

    In high power laser facility, contaminants on optics surfaces reduce damage resistance of optical elements and then decrease their lifetime. By damage test experiments, laser damage induced by typical metal particles such as stainless steel 304 is studied. Optics samples with metal particles of different sizes on surfaces are prepared artificially based on the file and sieve. Damage test is implemented in air using a 1-on-1 mode. Results show that damage morphology and mechanism caused by particulate contamination on the incident and exit surfaces are quite different. Contaminants on the incident surface absorb laser energy and generate high temperature plasma during laser irradiation which can ablate optical surface. Metal particles melt and then the molten nano-particles redeposit around the initial particles. Central region of the damaged area bears the same outline as the initial particle because of the shielding effect. However, particles on the exit surface absorb a mass of energy, generate plasma and splash lots of smaller particles, only a few of them redeposit at the particle coverage area on the exit surface. Most of the laser energy is deposited at the interface of the metal particle and the sample surface, and thus damage size on the exit surface is larger than that on the incident surface. The areas covered by the metal particle are strongly damaged. And the damage sites are more serious than that on the incident surface. Besides damage phenomenon also depends on coating and substrate materials.

  8. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  9. Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2015-07-15

    The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.

  10. Controlled grafting of comb copolymer brushes on poly(tetrafluoroethylene) films by surface-initiated living radical polymerizations.

    PubMed

    Yu, W H; Kang, E T; Neoh, K G

    2005-01-04

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by well-defined comb copolymer brushes was carried out. Peroxide initiators were generated directly on the PTFE film surface via radio frequency Ar plasma pretreatment, followed by air exposure. Poly(glycidyl methacrylate) (PGMA) brushes were first prepared by surface-initiated reversible addition-fragmentation chain transfer polymerization from the peroxide initiators on the PTFE surface in the presence of a chain transfer agent. Kinetics study revealed a linear increase in the graft concentration of PGMA with the reaction time, indicating that the chain growth from the surface was consistent with a "controlled" or "living" process. alpha-Bromoester moieties were attached to the grafted PGMA by reaction of the epoxide groups with 2-bromo-2-methylpropionic acid. The comb copolymer brushes were subsequently prepared via surface-initiated atom transfer radical polymerization of two hydrophilic vinyl monomers, including poly(ethylene glycol) methyl ether methacrylate and sodium salt of 4-styrenesulfonic acid. The chemical composition of the modified PTFE surfaces was characterized by X-ray photoelectron spectroscopy.

  11. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.

    PubMed

    Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli

    2011-08-08

    Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.

  12. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  13. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Science John Grunsfeld, Ph.D, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  14. The 2nd NASA Aerospace Pyrotechnic Systems Workshop

    NASA Technical Reports Server (NTRS)

    St.Cyr, William W. (Compiler)

    1994-01-01

    This NASA Conference Publication contains the proceedings of the Second NASA Aerospace Pyrotechnics Systems Workshop held at Sandia National Laboratories, Albuquerque, New Mexico, February 8-9, 1994. The papers are grouped by sessions: (1) Session 1 - Laser Initiation and Laser Systems; (2) Session 2 - Electric Initiation; (3) Session 3 - Mechanisms & Explosively Actuated Devices; (4) Session 4 - Analytical Methods and Studies; and (5) Session 5 - Miscellaneous. A sixth session, a panel discussion and open forum, concluded the workshop.

  15. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Deputy Administrator Lori Garver discusses the progress being made on NASA's mission to capture, redirect, and explore an asteroid during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  16. NASA/French Satellite Data Reveal New Details of Tsunami

    NASA Image and Video Library

    2005-01-12

    Displayed in blue color is the height of sea surface (shown in blue) measured by the Jason satellite two hours after the initial magnitude 9 earthquake hit the region (shown in red) southwest of Sumatra on December 26, 2004. The data were taken by a radar altimeter onboard the satellite along a track traversing the Indian Ocean when the tsunami waves had just filled the entire Bay of Bengal (see the model simulation inset image). The data shown are the changes of sea surface height from previous observations made along the same track 20-30 days before the earthquake, reflecting the signals of the tsunami waves. The maximum height of the leading wave crest was about 50 cm (or 1.6 ft), followed by a trough of sea surface depression of 40 cm. The directions of wave propagation along the satellite track are shown by the blue arrows. http://photojournal.jpl.nasa.gov/catalog/PIA07219

  17. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  18. NASA spinoffs to energy and the environment

    NASA Technical Reports Server (NTRS)

    Gilbert, Ray L.; Lehrman, Stephen A.

    1989-01-01

    Thousands of aerospace innovations have found their way into everyday use, and future National Aeronautics and Space Administration (NASA) missions promise to provide many more spinoff opportunities. Each spinoff has contributed some measure of benefit to the national economy, productivity, or lifestyle. In total, these spinoffs represent a substantial dividend on the national investment in aerospace research. Along with examples of the many terrestrial applications of NASA technology to energy and the environment, this paper presents the mechanisms by which NASA promotes technology transfer. Also discussed are new NASA initiatives in superconductivity research, global warming, and aeropropulsion.

  19. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to (L-R) Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group,at NASA Headquarters in Washington on Thursday, November 13, 2013. Culbertson received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  20. Plasma nanotexturing of silicon surfaces for photovoltaics applications: influence of initial surface finish on the evolution of topographical and optical properties

    PubMed Central

    FISCHER, GUILLAUME; DRAHI, ETIENNE; FOLDYNA, MARTIN; GERMER, THOMAS A.; JOHNSON, ERIK V.

    2018-01-01

    Using a plasma to generate a surface texture with feature sizes on the order of tens to hundreds of nanometers (“nanotexturing”) is a promising technique being considered to improve efficiency in thin, high-efficiency crystalline silicon solar cells. This study investigates the evolution of the optical properties of silicon samples with various initial surface finishes (from mirror polish to various states of micron-scale roughness) during a plasma nanotexturing process. It is shown that during said process, the appearance and growth of nanocone-like structures are essentially independent of the initial surface finish, as quantified by the auto-correlation function of the surface morphology. During the first stage of the process (2 min to 15 min etching), the reflectance and light-trapping abilities of the nanotextured surfaces are strongly influenced by the initial surface roughness; however, the differences tend to diminish as the nanostructures become larger. For the longest etching times (15 min or more), the effective reflectance is less than 5 % and a strong anisotropic scattering behavior is also observed for all samples, leading to very elevated levels of light-trapping. PMID:29220984

  1. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, listens, during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  2. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, listens during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  3. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David

    2014-01-01

    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.

  4. NASA Satellite Captures Super Bowl Cities - Denver, CO

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of Denver area acquired Nov 3, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA Satellite Captures Super Bowl Cities - Seattle [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Satellite Captures Super Bowl Cities - Boston/Providence

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Satellite Captures Super Bowl Cities - Phoenix [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Modeling Archean Subduction Initiation from Continental Spreading with a Free-Surface

    NASA Astrophysics Data System (ADS)

    Adams, A.; Thielmann, M.; Golabek, G.

    2017-12-01

    Earth is the only planet known to have plate tectonics, however the onset of plate tectonics and Earth's early tectonic environment are highly uncertain. Modern plate tectonics are characterized by the sinking of dense lithosphere at subduction zones; however this process may not have been feasible if Earth's interior was hotter in the Archean, resulting in thicker and more buoyant oceanic lithosphere than observed at present [van Hunen and van den Berg, 2008]. Previous studies have proposed gravitational spreading of early continents at passive margins as a mechanism to trigger early episodes of plate subduction using numerical simulations with a free-slip upper boundary condition [Rey et al., 2014]. This study utilizes 2D thermo-mechanical numerical experiments using the finite element code MVEP2 [Kaus, 2010; Thielmann et al., 2014] to investigate the viability of this mechanism for subduction initiation in an Archean mantle for both free-slip and free-surface models. Radiogenic heating, strain weakening, and eclogitization were systematically implemented to determine critical factors for modeling subduction initiation. In free-slip models, results show episodes of continent spreading and subduction initiation of oceanic lithosphere for low limiting yield stresses (100-150 MPa) and increasing continent width with no dependency on radiogenic heating, strain weakening, or eclogitization. For models with a free-surface, subduction initiation was observed at low limiting yield stresses (100-225 MPa) with increasing continent width and only in models with eclogitization. Initial lithospheric stress states were studied as a function of density and viscosity ratios between continent and oceanic lithosphere, and results indicate the magnitude of lithospheric stresses increases with increasing continental buoyancy. This work suggests continent spreading may trigger episodes of subduction in models with a free-surface with critical factors being low limiting yield stresses

  9. The NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.

    2015-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  10. NASA's Myriad Uses of Digital Video

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; George, Sandy

    1999-01-01

    Since it's inception, NASA has created many of the most memorable images seen this Century. From the fuzzy video of Neil Armstrong taking that first step on the moon, to images of the Mars surface available to all on the internet, NASA has provided images to inspire a generation, all because a scientist or researcher had a requirement to see something unusual. Digital Television technology will give NASA unprecedented new tools for acquiring, analyzing, and distributing video. This paper will explore NASA's DTV future. The agency has a requirement to move video from one NASA Center to another, in real time. Specifics will be provided relating to the NASA video infrastructure, including video from the Space Shuttle and from the various Centers. A comparison of the pros and cons of interlace and progressive scanned images will be presented. Film is a major component of NASA's image acquisition for analysis usage. The future of film within the context of DTV will be explored.

  11. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium sulfate induced hot corrosion of B-1900 and NASA-TRW VIA at 900 C was studied with special emphasis on the chemical reactions occurring during and immediately after the induction period. Thermogravimetric tests were run for set periods of time after which the samples were washed with water and water soluable metal salts and/or residual sulfates were analyzed chemically. Element distributions within the oxide layer were obtained from electron microprobe X-ray micrographs. A third set of samples were subjected to surface analysis by X-ray photoelectron spectroscopy. Evolution of SO2 was monitored throughout many of the hot corrosion tests. Results are interpreted in terms of acid-base fluxing mechanisms.

  12. Space exploration initiative (SEI) logistics support lessons from the DoD

    NASA Astrophysics Data System (ADS)

    Cox, John R.; McCoy, Walbert G.; Jenkins, Terence

    Proven and innovative logistics management approaches and techniques used for developing and supporting DoD and Strategic Defense Initiative Office (SDIO) systems are described on the basis of input from DoD to the SEI Synthesis Group; SDIO-developed logistics initiatives, innovative tools, and methodologies; and logistics planning support provided to the NASA/Johnson Planet Surface System Office. The approach is tailored for lunar/Martian surface operations, and provides guidelines for the development and management of a crucial element of the SEI logistics support program. A case study is presented which shows how incorporation of DoD's proven and innovative logistics management approach, tools, and techniques can substantially benefit early logistics planning for SEI, while also implementing many of DoD's recommendations for SEI.

  13. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  14. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Jenn Gustetic, Prizes Program Executive, NASA Office of the Chief Technologist moderates the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  15. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  16. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Jason Kessler, Special Projects Program Executive, NASA Office of the Chief Technologist, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  17. Issues in NASA program and project management. Special Report: 1993 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, ED (Editor); Kishiyama, Jenny S. (Editor)

    1993-01-01

    This volume is the seventh in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1993 Conference: perspectives in NASA program/project management; the best job in aerospace; improvements in project management at NASA; strategic planning...mapping the way to NASA's future; new NASA procurement initiatives; international cooperation; and industry, government and university partnership. A section on resources for NASA managers rounds out the publication.

  18. The New Approach to Self-Achievement (N.A.S.A.) Project 2004

    NASA Technical Reports Server (NTRS)

    Thomas, Candace J.

    2004-01-01

    The New Approach to Self-Achievement Program is designed to target rising seventh, eighth, and ninth grade students who require assistance in refining their mathematical skills, science awareness and knowledge, and test taking strategies. During the six week duration of the program, students are challenged in these areas through the application of robotic and aeronautic projects which encourage the students to practically apply their mathematical and science awareness accordingly. The first three weeks of my tenure were designated to assisting Mrs. Tammy Allen in the preparation of the 2004 NASA Project. As her assistant, I was held accountable for organizing, filing, preparing, analyzing, and completing the applications for the NASA Project. Additionally, I constructed the apposite databases which contained imperative information which aided in the selection of our participants. During the latter portion of those three weeks, Mrs. Allen, various staff members, and I, interviewed the numerous first-time applicants of the NASA Project. Furthermore, I was assigned to contact the accepted applicants of the program and provide all necessary information for the initiation of the child into the NASA Project. During the six week duration of the program, I will be working as a Project Leader at the Lorain Middle School site located in Lorain, Oh, with Mr. Fondriest Fountain. Mr. Fountain and I Will work with the eighth and ninth grade students in constructing robots, in which the students are told are made for NASA research which is being conducted on the surface of planet Mars. The robots, which are built from LEGOS and programmed through RoboLab computer software, are prepared to complete assigned Missions such as running obstacle courses; plowing and retrieving LEGOS; and scanning surfaces for intense regions of light.

  19. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Melissa Trainer, Sample Analysis at, Mars (SAM) team member and Charles Malespin, SAM Deputy Principal Investigator and Operations Test Lead discuss research being done in the SAM lab being carried by the Curiosity Rover on the surface of Mars. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of

  1. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, listens to a question from the audience during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  2. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, listens to a question from the audience during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  3. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  4. A NASA Applied Spaceflight Environments Office Concept

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Edwards, David L.; Burns, Howard D.; Xapsos, Mike

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use and for use outside NASA. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling. Additionally the ASE office will serve as an entry point of contact for external users who wish to take advantage of data and assets associated with space environments, including space weather. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas.

  5. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  6. NASA's Indigenous Capacity Building Initiative: Balancing Traditional Knowledge and Existing Remote Sensing Training to Inform Management Decisions

    NASA Astrophysics Data System (ADS)

    McCullum, A. J. K.; Schmidt, C.; Palacios, S. L.; Ly, V.

    2017-12-01

    NASA's Indigenous Capacity Building Initiative is aimed to provide remote sensing training, mentoring, and research opportunities to the indigenous community. A key programmatic goal is the co-production of place-based trainings where participants have the opportunity to address specific natural resource research and management issues facing their tribal lands. Three primary strategies have been adopted to engage with our tribal partners, these include: (1) the use of existing tribal networks and conferences such as the National Tribal GIS Conference, (2) coordination with other federal agencies such as the Bureau of Indian Affairs (BIA) and tribal liaisons at regional Climate Science Centers, and (3) connecting with tribes directly. Regional partner visits with tribes, such as meetings with the Samish Indian Nation, are integral to cultivate trusting, collaborative, and sustained partnerships and an understanding of how Earth Observations can be applied to the unique set of challenges and goals each tribe faces. As the program continues to grow, we aim to increase our incorporation of Traditional Ecological Knowledge (TEK) into technical methods and to develop trainings tailored to thematic areas of interest to specific tribes. Engagement and feedback are encouraged to refine our approaches to increase capacity within the indigenous community to utilize NASA Earth Observations.

  7. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  8. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Gwynne Shotwell, President of SpaceX, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  9. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, right, talks as NASA Associate Administrator Robert Lightfoot, left, NASA Associate Administrator Science John Grunsfeld, Ph.D, second from left, and NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, look on during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  10. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Robert Lightfoot, left, talks as NASA Associate Administrator Science John Grunsfeld, Ph.D, second from left, NASA Associate Administrator for Space Technology, Mike Gazarik, Ph.D, and, NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, right, look on during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  11. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  12. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  13. The influence of initial and surface boundary conditions on a model-generated January climatology

    NASA Technical Reports Server (NTRS)

    Wu, K. F.; Spar, J.

    1981-01-01

    The influence on a model-generated January climate of various surface boundary conditions, as well as initial conditions, was studied by using the GISS coarse-mesh climate model. Four experiments - two with water planets, one with flat continents, and one with mountains - were used to investigate the effects of initial conditions, and the thermal and dynamical effects of the surface on the model generated-climate. However, climatological mean zonal-symmetric sea surface temperature is used in all four runs over the model oceans. Moreover, zero ground wetness and uniform ground albedo except for snow are used in the last experiments.

  14. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  15. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  16. Space Exploration Initiative: Chronology

    NASA Technical Reports Server (NTRS)

    McCurdy, Howard E.

    1992-01-01

    This chronology gives an overview of the human space exploration initiative from 1956 through 1989. Details are given for the political milestones of the initiative, including information on presidential mandates and NASA Administrator appointments.

  17. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  18. Figure 12(a) Effects of Inclining Water. Figure 12(b) Sand. NASA document NASA-TN-D-56 An investigation to determine conditions under which downwash from VTOL aircraft will start surface erosion from various types of terrain

    NASA Image and Video Library

    1959-05-04

    Figure 12(a) Effects of Inclining Water. Figure 12(b) Sand. NASA-TN-D-56 An investigation to determine conditions under which downwash from VTOL aircraft will start surface erosion from various types of terrain.

  19. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.

  20. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  1. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  2. NASA Satellite Captures Super Bowl Cities - Charlotte, NC

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of the Charlotte, NC area acquired Oct 18, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's Newest SeaWinds Instrument Breezes Into Operation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.

    From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.

    Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.

    'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.'

    'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other

  4. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  5. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Tom Kalil, Deputy Director for Technology and Innovation, White House Office of Science and Technology Policy, and, NASA Deputy Administrator Lori Garver, listen as NASA Associate Administrator for Human Exploration and Operations, William Gerstenmaier, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  6. Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.

    2007-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.

  7. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    Tom Kalil, Deputy Director for Technology and Innovation, White House Office of Science and Technology Policy, talks during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  8. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  9. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  10. NASA's approach to commercial cargo and crew transportation

    NASA Astrophysics Data System (ADS)

    Stone, Dennis; Lindenmoyer, Alan; French, George; Musk, Elon; Gump, David; Kathuria, Chirinjeev; Miller, Charles; Sirangelo, Mark; Pickens, Tom

    2008-07-01

    To stimulate the commercial space industry and potentially serve the logistics needs of the International Space Station (ISS) in the post-Space Shuttle era, the National Aeronautics and Space Administration (NASA) in 2006 began the Commercial Orbital Transportation Services (COTS) initiative. NASA entered into agreements with two U.S. firms, Rocketplane Kistler and Space Exploration Technologies to share up to 485,000,000 USD to demonstrate cargo transportation services to and from Low Earth orbit (LEO), with an option for additional funds to demonstrate human transportation services. Subsequently, NASA also entered into unfunded agreements with five companies to develop innovative space transportation capabilities. This paper reviews this unique initiative, describes the concepts of these seven companies, and discusses the potential of this emerging industry to make LEO more accessible.

  11. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  12. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  13. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    L-R: Alan Lindenmoyer, Manager of Commercial Crew and Cargo Program, NASA; Gwynne Shotwell, President, SpaceX; Frank Culbertson, Executive Vice President and General Manager, Orbital Sciences Advanced Programs Group; Frank Slazer, Vice President of Space Systems, Aerospace Industries Association and Phil McAlister, Director of Commercial Spaceflight Development at NASA, participate in a panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  14. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    Frank Slazer, Vice President of Space Systems, Aerospace Industries Association, delivers remarks panel discussion on the Commercial Orbital Transportation Services (COTS) initiative at NASA Headquarters in Washington on Wednesday, November 13, 2013. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  15. NASA Satellite Captures Super Bowl Cities - Boston/Providence [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Cloud-enabled large-scale land surface model simulations with the NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Vaughan, G.; Clark, M. P.; Peters-Lidard, C. D.; Nijssen, B.; Nearing, G. S.; Rheingrover, S.; Kumar, S.; Geiger, J. V.

    2017-12-01

    Developed by the Hydrological Sciences Laboratory at NASA Goddard Space Flight Center (GSFC), the Land Information System (LIS) is a high-performance software framework for terrestrial hydrology modeling and data assimilation. LIS provides the ability to integrate satellite and ground-based observational products and advanced modeling algorithms to extract land surface states and fluxes. Through a partnership with the National Center for Atmospheric Research (NCAR) and the University of Washington, the LIS model is currently being extended to include the Structure for Unifying Multiple Modeling Alternatives (SUMMA). With the addition of SUMMA in LIS, meaningful simulations containing a large multi-model ensemble will be enabled and can provide advanced probabilistic continental-domain modeling capabilities at spatial scales relevant for water managers. The resulting LIS/SUMMA application framework is difficult for non-experts to install due to the large amount of dependencies on specific versions of operating systems, libraries, and compilers. This has created a significant barrier to entry for domain scientists that are interested in using the software on their own systems or in the cloud. In addition, the requirement to support multiple run time environments across the LIS community has created a significant burden on the NASA team. To overcome these challenges, LIS/SUMMA has been deployed using Linux containers, which allows for an entire software package along with all dependences to be installed within a working runtime environment, and Kubernetes, which orchestrates the deployment of a cluster of containers. Within a cloud environment, users can now easily create a cluster of virtual machines and run large-scale LIS/SUMMA simulations. Installations that have taken weeks and months can now be performed in minutes of time. This presentation will discuss the steps required to create a cloud-enabled large-scale simulation, present examples of its use, and

  17. NASA Year 2000 (Y2K) Program Plan

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  18. NASA AIRS Detects Extent of Pakistan Flooding

    NASA Image and Video Library

    2010-08-19

    This image from NASA Aqua spacecraft shows how surface emissivity -- how efficiently Earth surface radiates heat -- changed in several regions of Pakistan over a 32-day period between July 11 pre-flood and August 12 post-flood.

  19. NASA Satellite Tracks Severity of African Drought

    NASA Image and Video Library

    2011-07-28

    Surface relative humidity anomalies in percent, during July 2011 compared to the average surface relative humidity over the previous eight years, as measured by NASA Aqua instrument AIRS. The driest areas are shown in oranges and reds.

  20. Investigation of heat transfer in zirconium potassium perchlorate at low temperature: A study of the failure mechanism of the NASA standard initiator

    NASA Technical Reports Server (NTRS)

    Varghese, Philip L.

    1989-01-01

    The objective of this work was to study the reasons for the failure of pyrotechnic initiators at very low temperatures (10 to 100 K). A two-dimensional model of the NASA standard initiator was constructed to model heat transfer from the electrically heated stainless steel bridgewire to the zirconium potassium perchlorate explosive charge and the alumina charge cup. Temperature dependent properties were used in the model to simulate initiator performance over a wide range of initial temperatures (10 to 500 K). A search of the thermophysical property data base showed that pure alumina has a very high thermal conductivity at low temperatures. It had been assumed to act as a thermal insulator in all previous analyses. Rapid heat transfer from the bridgewire to the alumina at low initial temperatures was shown to cause failure of the initiators if the wire did not also make good contact with the zirconium potassium perchlorate charge. The mode is able to reproduce the results of the tests that had been conducted to investigate the cause for failure. It also provides an explanation for previously puzzling results and suggests simple design changes that will increase reliability at very low initial temperatures.

  1. TOPEX/POSEIDON - Mapping the ocean surface

    NASA Technical Reports Server (NTRS)

    Yamarone, C. A.; Rosell, S.; Farless, D. L.

    1986-01-01

    Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.

  2. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  3. NASA Weather Support 2017

    NASA Technical Reports Server (NTRS)

    Carroll, Matt

    2017-01-01

    In the mid to late 1980's, as NASA was studying ways to improve weather forecasting capabilities to reduce excessive weather launch delays and to reduce excessive weather Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF weather personnel had advance knowledge of extremely high levels of weather hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of weather LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on weather support. These meteorological boards recommended the development of a dedicated organization with the highest levels of weather expertise and influence to support all of American spaceflight. NASA immediately established the Weather Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for weather support as recommended. Soon after, the USAF established a senior civilian Launch Weather Officer (LWO) position to provide meteorological support and continuity of weather expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National Weather Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several weather office reorganizations, the WSO function had been assigned to a weather branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of weather support. The recommendation proposed

  4. Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study.

    PubMed

    Ferreira Ribeiro, Cyntia; Cogo-Müller, Karina; Franco, Gilson Cesar; Silva-Concílio, Laís Regiane; Sampaio Campos, Márcia; de Mello Rode, Sigmar; Claro Neves, Ana Christina

    2016-09-01

    The aim of this study was to examine in vivo the initial bacterial adhesion on titanium implants with different surface treatments. Ten subjects wore oral splints containing machined pure titanium disks (Ti-M), acid-etched titanium (Ti-AE) and anodized and laser irradiated disks (Ti-AL) for 24h. After this period, disks were removed from the splints and adherent bacteria were quantified by an enzymatic assay to assess total viable bacteria and by Real Time PCR to evaluate total bacteria and Streptococcus oralis levels. Additionally, the initial adherent microorganisms were visualized by scanning electron microscopy (SEM). Titanium surface morphology was verified using SEM, and roughness was evaluated by profilometer analysis. Regarding titanium surface roughness, Ti-AL (1.423±0.397) showed significantly higher Ra values than did Ti-M (0.771±0.182) and Ti-AE (0.735±0.196) (p<0.05, ANOVA - Tahame). Ti-AE and Ti-AL presented roughened micro-structure surfaces characterized by open pores, whereas Ti-M showed long grooves alternating with planed areas. Comparing the Ti-M, Ti-AE and Ti-AL groups for viable bacteria (MTT assay), total bacteria and S. oralis quantification (qPCR), no significant differences were observed among these three groups (p>0.05, ANOVA - Tahame). SEM images showed similar bacterial adhesion on the three titanium surfaces, predominantly characterized by cocci and several bacilli, indicating an initial colonization of the oral biofilm. In conclusion, roughness and microtopography did not stimulate initial biofilm formation on titanium surfaces with different surface treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  6. Using dual-polarization interferometry to study surface-initiated DNA hybridization chain reactions in real time.

    PubMed

    Huang, Fujian; Xu, Pingping; Liang, Haojun

    2014-01-15

    In this study we used dual-polarization interferometry to investigate DNA hybridization chain reactions (HCRs) at solid-liquid interfaces. We monitored the effects of variations in mass, thickness, and density of the immobilized initiator on the subsequent HCRs at various salt concentrations. At low salt concentrations, the single-stranded DNA (ssDNA) initiator was attached uniformly to the chip surface. At high salt concentrations, it lay on the surface at the onset of the immobilization process, but the approaching ssDNA forced the pre-immobilized ssDNA strands to extend into solution as a result of increased electrostatic repulsion between the pre-adsorbed and approaching ssDNA chains. Injection of a mixture of H1 and H2 increased the mass and thickness of the films initially, but thereafter the thickness decreased. These changes indicate that the long double-stranded DNA that formed lay on the surface, rather than extended into the solution, thereby suppressing the subsequent initiation activity of the released single-strand parts of H1 and H2. Increasing the salt concentration increased the HCR efficiency and reaction rate. The HCR efficiency of the initiator ssDNA immobilized on its 5' end was higher than that immobilized on its 3' end, suggesting that the released single-strand parts of H1 and H2 close to the chip surface decreased the initiation activity relative to those of the ones extending into solution. © 2013 Elsevier B.V. All rights reserved.

  7. NASA Advisory Council: Fact-Finding Session

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Martin, Franklin D.; Craig, Mark K.; Duke, Michael B.

    1992-01-01

    The principal agenda item for this fact-finding meeting of the NASA Advisory Council was NASA's preliminary planning of options to implement the President's initiative for establishing a base on the Moon and launching a human expedition to Mars. NASA's presentation (1) reviewed the key elements in the President's speech of July 20, 1989, summoning the Nation to launch a new exploration initiative to the Moon and Mars; (2) outlined five candidate options analyzed in terms of schedule and scale of effort (for a return to the Moon and for a voyage to Mars); (3) outlined tentative robotic mission milestones for both a 'vigorous deployment' option and a 'paced deployment' option; (4) reviewed Earth-to-orbit delivery requirements for a lunar heavy-lift launch vehicle, the National Space Transportation System, and a Mars heavy-lift launch vehicle; (5) summarized the associated Space Station Freedom requirements; (6) outlined the technology as well as human factors requirements for the candidate options; and (7) summarized the themes and approaches that could be employed for the science aspects of a national Moon/Mars exploration program.

  8. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings.

    PubMed

    Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming

    2015-03-09

    Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling.

  9. Updating the NASA LEO Orbital Debris Environment Model with Recent Radar and Optical Observations and in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Anz-Meador, P.; Matney, M. J.; Kessler, D. J.; Theall, J.; Johnson, N. L.

    2000-01-01

    The Low Earth Orbit (LEO, between 200 and 2000 km altitudes) debris environment has been constantly measured by NASA Johnson Space Center's Liquid Mirror Telescope (LMT) since 1996 (Africano et al. 1999, NASA JSC-28826) and by Haystack and Haystack Auxiliary radars at MIT Lincoln Laboratory since 1990 (Settecerri et al. 1999, NASA JSC-28744). Debris particles as small as 3 mm can be detected by the radars and as small as 3 cm can be measured by LMT. Objects about 10 cm in diameter and greater are tracked and catalogued by the US Space Surveillance Network. Much smaller (down to several micrometers) natural and debris particle populations can be estimated based on in situ measurements, such as Long Duration Exposure Facility, and based on analyses of returned surfaces, such as Hubble Space Telescope solar arrays, European Retrievable Carrier, and Space Shuttles. To increase our understanding of the current LEO debris environment, the Orbital Debris Program Office at NASA JSC has initiated an effort to improve and update the ORDEM96 model (Kessler et al. 1996, NASA TM-104825) utilizing the recently available data. This paper gives an overview of the new NASA orbital debris engineering model, ORDEM2000.

  10. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  11. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  12. Prediction Activities at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2010-01-01

    The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the

  13. The NASA/GEWEX Surface Radiation Budget Release 4 Integrated Product: An Assessment of Improvements in Algorithms and Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.; Gupta, S. K.

    2016-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces, validates and analyzes shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. The current release 3.0/3.1 consists of 1x1 degree radiative fluxes (available at gewex-srb.larc.nasa.gov) and is produced using the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This ISCCP DX product is subsampled to 30 km. ISCCP is currently recalibrating and reprocessing their entire data series, to be released as the H product series, with its highest resolution at 10km pixel resolution. The nine-fold increase in number of pixels will allow SRB to produce a higher resolution gridded product (e.g. 0.5 degree or higher), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice maps. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data (for at least 5 years, 2005-2009), various other improved input data sets and incorporation of many additional internal SRB model improvements. We assess the radiative fluxes from new SRB products and contrast these at various resolutions. All these fluxes are compared to both surface measurements and to CERES SYN1Deg and EBAF data products for assessment of the effect of improvements. The SRB data produced will be released as part of the Release 4.0 Integrated Product that shares key input and output quantities with other GEWEX global products providing estimates of the Earth's global water and energy cycle (i.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  14. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  15. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  16. Asteroid Initiative Industry and Partner Day

    NASA Image and Video Library

    2013-06-18

    NASA Associate Administrator Science John Grunsfeld, Ph.D, displays a fragment of the Pallasite meteorite from Chubut, Argentina found in 1951 and given to him by his daughter on Father's Day during the Asteroid Initiative Industry and Partner Day at NASA Headquarters on Tuesday, June 18, 2013 in Washington. During the event NASA Deputy Administrator Lori Garver and other senior NASA officials discussed the progress being made on NASA's mission to capture, redirect, and explore an asteroid. NASA also announced an Asteroid Grand Challenge focused on finding all asteroid threats to human populations and knowing what to do about them. Photo Credit: (NASA/Bill Ingalls)

  17. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  18. Refining the Ares V Design to Carry Out NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

  19. Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.

  20. Eclipse 2017: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Heliophysics Education Consortium

    2017-10-01

    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  1. Change in surface properties of zirconia and initial attachment of osteoblastlike cells with hydrophilic treatment.

    PubMed

    Watanabe, Hiroaki; Saito, Kensuke; Kokubun, Katsutoshi; Sasaki, Hodaka; Yoshinari, Masao

    2012-01-01

    The objectives of this study were to characterize change in surface properties of tetragonal zirconia polycrystals (TZP) after hydrophilic treatment, and to determine the effect of such changes on initial attachment of osteoblast-like cells. Roughened surfaces were produced by alumina-blasting and acid-etching. Hydrophilic treatment comprised application of immediately after blasting and acid-etching (Blast/Etch), oxygen plasma (O2-Plasma), ultraviolet light (UV). Specimens stored in air were used as a control. The water contact angle was determined and surface analysis was performed using an X-ray photoelectron spectroscopy. Blast/Etch, O2-Plasma and UV specimens showed superhydrophilicity, and these hydrophilic treatments to TZP elicited a marked decrease in carbon content and an increase in hydroxyl groups. Hydrophilic treatments enhanced initial attachment of osteoblast-like cells and a change in cell morphologies. These results indicate that Blast/Etch, O2-Plasma, or UV treatment has potential in the creation and maintenance of superhydrophilic surfaces and enhancing initial attachment of osteoblast-like cells.

  2. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  3. NASA Report to Education, Volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.

  4. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  5. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    NASA Astrophysics Data System (ADS)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics

  6. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  7. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  8. Influence of the initial surface texture on the resulting surface roughness and waviness for micro-machining with ultra-short laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat

    2017-03-01

    The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.

  9. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide

    NASA Astrophysics Data System (ADS)

    Ma, Yuhao; Cai, Mengtan; He, Liu; Luo, Xianglin

    2016-01-01

    To enhance the biocompatibility or extend the biomedical application of poly(caprolactone) (PCL), protein retention on PCL surface is often required. In this study, poly(acrylamide) (PAAm) brushes were grown from PCL surface via surface-initiated atom transfer radical polymerization (SI-ATRP) and served as a protein-capturing platform. Grafted PAAm was densely packed on surface and exhibited superior protein retention ability. Captured protein was found to be resistant to washing under detergent environment. Furthermore, protein structure after being captured was investigated by circular dichroism (CD) spectroscopy, and the CD spectra verified that secondary structure of captured proteins was maintained, indicating no denaturation of protein happened for retention process.

  10. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  11. Calcium and initial surface binding phase of pinocytosis in Amoeba proteus.

    PubMed

    Prusch, R D

    1986-08-01

    The uptake of membrane-bound solute and external medium by bulk-phase pinocytosis in Amoeba proteus is influenced by the level of Ca2+ in the external medium. Increasing external Ca2+ to approximately 10(-4) M increases pinocytotic intensity, while increases in Ca2+ above this level decrease the intensity of pinocytosis. The initial interaction of pinocytotic inducers and Ca2+ at the surface of Amoeba proteus was therefore examined. Alcian blue and Na+, both inducers of pinocytosis, differ in the manner with which they associate with the amoeba surface, suggesting the possibility of different pinocytosis-inducing sites on the amoeba surface. Low levels of external Ca2+ in the range of 3 X 10(-5) to 1.5 X 10(-4) M increase the amount of cationic inducer associated with the cell surface while, at the same time, decreasing anion association with the cell surface. It is suggested that Ca2+ influences ion association with the cell surface by controlling the availability of negative surface sites, which in turn influences pinocytotic intensity.

  12. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  13. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  14. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  15. Methane Lunar Surface Thermal Control Test

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Sutherlin, Steven G.; Johnson, Wesley L.; Feller, Jeffrey R.; Jurns, John M.

    2012-01-01

    NASA is considering propulsion system concepts for future missions including human return to the lunar surface. Studies have identified cryogenic methane (LCH4) and oxygen (LO2) as a desirable propellant combination for the lunar surface ascent propulsion system, and they point to a surface stay requirement of 180 days. To meet this requirement, a test article was prepared with state-of-the-art insulation and tested in simulated lunar mission environments at NASA GRC. The primary goals were to validate design and models of the key thermal control technologies to store unvented methane for long durations, with a low-density high-performing Multi-layer Insulation (MLI) system to protect the propellant tanks from the environmental heat of low Earth orbit (LEO), Earth to Moon transit, lunar surface, and with the LCH4 initially densified. The data and accompanying analysis shows this storage design would have fallen well short of the unvented 180 day storage requirement, due to the MLI density being much higher than intended, its substructure collapse, and blanket separation during depressurization. Despite the performance issue, insight into analytical models and MLI construction was gained. Such modeling is important for the effective design of flight vehicle concepts, such as in-space cryogenic depots or in-space cryogenic propulsion stages.

  16. NASA Blue Marble 2007 East

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  17. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  18. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    EPA Pesticide Factsheets

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  19. NASA Satellite Captures Super Bowl Cities - Santa Clara, CA

    NASA Image and Video Library

    2017-12-08

    Landsat 7 image of the Santa Clara area acquired Nov 16, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  1. Investigation of wing upper surface flow-field disturbance due to NASA DC-8-72 in-flight inboard thrust-reverser deployment

    NASA Technical Reports Server (NTRS)

    Hamid, Hedayat U.; Margason, Richard J.; Hardy, Gordon

    1995-01-01

    An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information.

  2. MoonRIDERS: NASA and Hawaiis Innovative Lunar Surface Flight Experiment for Landing in Late 2017

    NASA Technical Reports Server (NTRS)

    Kelso, R. M.; Romo, R.; Mackey, P. J.; Phillips, J. R., III; Cox, R. E.; Hogue, M. D.; Calle, C. I.

    2016-01-01

    Recently, NASA Kennedy Space Center, Hawaii's state aerospace agency PISCES, and two Hawaii high schools Iolani and Kealakehe have come together in a unique collaboration called MoonRIDERS. This strategic partnership will allow Hawaii students to participate directly in sending a science experiment to the surface of the moon. The MoonRIDERS project started in the spring of 2014, with each institution responsible for its own project costs and activities. PISCES, given its legislative direction in advancing planetary surface systems, saw this collaboration as an important opportunity to inspire a young generation and encourage STEM (Science, Technology, Engineering, and Mathematics) learning. Under the guidance of PISCES and NASA, the students will be involved hands-on from start to finish in the engineering, testing, and validation of a space technology called the Electrodynamic Dust Shield (EDS). Dust is a critical issue for space exploration, as evidenced by the Apollo lunar missions and Mars rovers and landers. Dust creates a number of problems for humans and hardware, including inhalation, mechanical interference, wear and tear on spacesuits, inhibition of heat transfer on radiators, and reduced efficiency of solar panels. To address this, the EDS is designed to work on a variety of materials, and functions by generatingelectrodynamic fields to clear away the dust. The Google Lunar XPRIZE (GLXP), a space competition "designed to inspire pioneers to do robotic space transport on a budget," serves as a likely method for the MoonRIDERS to get their project to the moon. The EDS would potentially be flown as a hosted payload on a competitor's lander (still to be chosen). This briefing will provide an overview of the technology, the unique partnership, progress update and testing leading to this flight opportunity.

  3. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  4. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  5. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  6. NASA's Swift Mission Observes Mega Flares from a Mini Star

    NASA Image and Video Library

    2017-12-08

    Caption: DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger ----- On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series of explosions was as much as 10,000 times more powerful than the largest solar flare ever recorded. Read more: 1.usa.gov/1poKiJ5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Improving the Interoperability and Usability of NASA Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Walter, J.; Berrick, S. W.; Murphy, K. J.; Mitchell, A. E.; Tilmes, C.

    2014-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth Science data. The system supports a multitude of missions and serves diverse science research and other user communities. While NASA has made, and continues to make, great strides in the discoverability and accessibility of its earth observation data holdings, issues associated with data interoperability and usability still present significant challenges to realizing the full scientific and societal benefits of these data. This concern has been articulated by multiple government agencies, both U.S. and international, as well as other non-governmental organizations around the world. Among these is the White House Office of Science and Technology Policy who, in response, has launched the Big Earth Data Initiative and the Climate Data Initiative to address these concerns for U.S. government agencies. This presentation will describe NASA's approach for addressing data interoperability and usability issues with our earth observation data.

  8. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes.

  9. The Myth, the Truth, the NASA IRB

    NASA Technical Reports Server (NTRS)

    Covington, M. D.; Flores, M. P.; Neutzler, V. P.; Schlegel, T. T.; Platts, S. H.; Lioyd, C. W.

    2017-01-01

    The purpose of the NASA Institutional Review Board (IRB) is to review research activities involving human subjects to ensure that ethical standards for the care and protection of human subjects have been met and research activities are in compliance with all pertinent federal, state and local regulations as well as NASA policies. NASA IRB's primary role is the protection of human subjects in research studies. Protection of human subjects is the shared responsibility of NASA, the IRB, and the scientific investigators. Science investigators who plan to conduct NASA-funded human research involving NASA investigators, facilities, or funds must submit and coordinate their research studies for review and approval by the NASA IRB prior to initiation. The IRB has the authority to approve, require changes in, or disapprove research involving human subjects. Better knowledge of the NASA IRB policies, procedures and guidelines should help facilitate research protocol applications and approvals. In this presentation, the myths and truths of NASA IRB policies and procedures will be discussed. We will focus on the policies that guide a protocol through the NASA IRB and the procedures that principal investigators must take to obtain required IRB approvals for their research studies. In addition, tips to help ensure a more efficient IRB review will be provided. By understanding the requirements and processes, investigators will be able to more efficiently prepare their protocols and obtain the required NASA IRB approval in a timely manner.

  10. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores

  11. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  12. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  13. Concepts for a NASA Applied Spaceflight Environments Office

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Xapsos, Michael; Spann, Jim; Suggs, Robert

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is launching a bold and ambitious new space initiative. A significant part of this new initiative includes exploration of new worlds, the development of more innovative technologies, and expansion our presence in the solar system. A common theme to this initiative is the exploration of space beyond Low Earth Orbit (LEO). As currently organized, NASA does not have an Agency-level office that provides coordination of space environment research and development. This has contributed to the formation of a gap between spaceflight environments knowledge and the application of this knowledge for multi-program use. This paper outlines a concept to establish a NASA-level Applied Spaceflight Environments (ASE) office that will provide coordination and funding for sustained multi-program support in three technical areas that have demonstrated these needs through customer requests. These technical areas are natural environments characterization and modeling, materials and systems analysis and test, and operational space environments modeling and prediction. This paper will establish the need for the ASE, discuss a concept for organizational structure and outline the scope in the three technical areas

  14. NASA HyspIRI Workshop Report

    USDA-ARS?s Scientific Manuscript database

    On October 21-23rd 2008 NASA held a three-day workshop to consider the Hyperspectral and Infrared Imager (HyspIRI) mission recommended for implementation by the 2007 National Research Council Earth Science Decadal Survey. The open workshop provided a forum to present the initial observational requir...

  15. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  16. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  17. NASA Instrument Cost/Schedule Model

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George

    2011-01-01

    NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.

  18. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  19. Civil space technology initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Civil Space Technology Initiative (CSTI) is a major, focused, space technology program of the Office of Aeronautics, Exploration and Technology (OAET) of NASA. The program was initiated to advance technology beyond basic research in order to expand and enhance system and vehicle capabilities for near-term missions. CSTI takes critical technologies to the point at which a user can confidently incorporate the new or expanded capabilities into relatively near-term, high-priority NASA missions. In particular, the CSTI program emphasizes technologies necessary for reliable and efficient access to and operation in Earth orbit as well as for support of scientific missions from Earth orbit.

  20. Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.

    2007-01-01

    As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.

  1. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  2. NASA UAVSAR Images Colorado Slumgullion Landslide

    NASA Image and Video Library

    2012-08-15

    This false-color, oblique perspective image of the Slumgullion landslide in southwestern Colorado depicting its surface motion was created by data acquired by NASA UAVSAR between two airplane flights in August 2011.

  3. Remote Sensing of Smoke, Land and Clouds from the NASA ER-2 during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen

    2002-01-01

    The NASA ER-2 aircraft was deployed to southern Africa between August 17 and September 25, 2000 as part of the Southern Africa Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 x 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa, and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this sophisticated high altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectro-radiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces, and Terra analyses of cloud optical and micro-physical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom.

  4. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  5. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  6. Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle

    NASA Astrophysics Data System (ADS)

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel

    2016-11-01

    Railway axles are subjected to cyclic loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect on railway axle surface is often required. The contribution deals with an estimation of residual fatigue lifetime of railway axle with initial inclined surface crack. 3D numerical model of inclined semi-elliptical surface crack in railway axle was developed and its curved propagation through the axle was simulated by finite element method. Presence of press-fitted wheel in the vicinity of initial crack was taken into account. A typical loading spectrum of railway axle was considered and residual fatigue lifetime was estimated by NASGRO approach. Material properties of typical axle steel EA4T were considered in numerical calculations and lifetime estimation.

  7. Calcium and initial surface binding phase of pinocytosis in Amoeba proteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prusch, R.D.

    1986-08-01

    The uptake of membrane-bound solute and external medium by bulk-phase pinocytosis in Amoeba proteus is influenced by the level of Ca/sup 2 +/ in the external medium. Increasing external Ca/sup 2 +/ to approx.10/sup -4/ M increases pinocytotic intensity, while increases in Ca/sup 2 +/ above this level decrease the intensity of pinocytosis. The initial interaction of pinocytotic inducers and Ca/sup +2/ at the surface of A moeba proteus was therefore examined. Alcain blue and Na/sup +/, both inducers of pinocytosis, differ in the manner with which they associate with the amoeba surface, suggesting the possibility of different pinocytosis-inducing sitesmore » on the amoeba surface. Low levels of external Ca/sup 2 +/ in the range of 3 x 10/sup -5/ to 4.5 x 10/sup -4/ M increase the amount of cationic inducer associated with the cell surface while, at the same time, decreasing anion association with the cell surface. It is suggested that Ca/sup 2 +/ influences ion association with the cell surface by controlling the availability of negative surface sites, which in turn influences pinocytotic intensity. Surface binding of Na/sup +/, Ca/sup 2 +/ and Cl/sup -/ was determined by adding /sup 22/Na, /sup 45/Ca or /sup 36/Cl.« less

  8. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  9. NASA Spacecraft Image Shows Location of Iranian Earthquake

    NASA Image and Video Library

    2017-12-08

    On April 9, 2013 at 11:52 GMT, a magnitude 6.3 earthquake hit southwestern Iran's Bushehr province near the town of Kaki. Preliminary information is that several villages have been destroyed and many people have died, as reported by BBC News. This perspective view of the region was acquired Nov. 17, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The location of the earthquake's epicenter is marked with a yellow star. Vegetation is displayed in red; the vertical exaggeration of the topography is 2X. The image is centered near 28.5 degrees north latitude, 51.6 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA

  10. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  11. NASA's Mars 2020 Rover Artist's Concept #1

    NASA Image and Video Library

    2017-05-23

    This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars. The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA21635

  12. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing

    NASA Technical Reports Server (NTRS)

    Thorp, Scott A.

    1992-01-01

    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  13. An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces

    PubMed Central

    Liang, Guoxing; Schmauder, Siegfried; Lyu, Ming; Schneider, Yanling; Zhang, Cheng; Han, Yang

    2018-01-01

    Friction and wear tests were performed on AISI 1045 steel specimens with different initial roughness parameters, machined by a creep-feed dry grinding process, to study the friction and wear behavior on a pin-on-disc tester in dry sliding conditions. Average surface roughness (Ra), root mean square (Rq), skewness (Rsk) and kurtosis (Rku) were involved in order to analyse the influence of the friction and wear behavior. The observations reveal that a surface with initial roughness parameters of higher Ra, Rq and Rku will lead to a longer initial-steady transition period in the sliding tests. The plastic deformation mainly concentrates in the depth of 20–50 μm under the worn surface and the critical plastic deformation is generated on the rough surface. For surfaces with large Ra, Rq, low Rsk and high Rku values, it is easy to lose the C element in, the reciprocating extrusion. PMID:29401703

  14. Initial Plasma Testing of the Ion Proportional Surface Emission Cathode

    DTIC Science & Technology

    2008-07-15

    REPRINT 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Plasma Testing of the Ion Proportional Surface Emission Cathode 5a. CONTRACT NUMBER...substrate and an adjacent metal cathode element. The substrate potential is held positive of the cathode with gate elements. In plasma , the gate is...eliminated due to ambient ion flux which maintains the substrate potential near plasma ground. Prototype devices have been tested using a laboratory plasma

  15. Commercialization of NASA PS304 Solid Lubricant Coating Enhanced by Fundamental Powder Flow Research

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2003-01-01

    The NASA Glenn Research Center has developed a patented high-temperature solid lubricant coating, designated PS304, for reducing friction and wear in bearing systems. The material used to produce the coating is initially a blend of metallic and ceramic powders that are deposited on the bearing surface by the plasma spray process. PS304 was developed to lubricate foil air bearings in Oil-Free turbomachinery, where the moving surfaces are coated with a hydrodynamic air film except at the beginning and end of an operation cycle when the air film is not present. The coating has been successful in several applications including turbochargers, land-based turbines, and industrial drying furnace conveyor components, with current development activities directed at implementation in Oil-Free aeropropulsion engines.

  16. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  17. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  18. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.

  19. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  20. Initialization of high resolution surface wind simulations using NWS gridded data

    Treesearch

    J. Forthofer; K. Shannon; Bret Butler

    2010-01-01

    WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...

  1. Studies of the Surface Treatment and Sizing of Carbon Fiber Surfaces on the Mechanical Properties of Composites Containing Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Sherwood, Peter M. A.; Lease, Kevin B.; Locke, James E.; Tomblin, John S.; Wang, Youqi

    1996-01-01

    Carbon fiber reinforced composites are materials where carbon fibers are used to reinforce a matrix to produce a light and strong material with important applications in the aerospace industry. There are many aspects of the preparation of these materials that would benefit from a study which combines the research of groups involved in the production, testing and analysis of these materials, and studies of the basic surface chemistry involved. This final reports presents the results of a project that has developed a collaboration between groups in all three of the major research universities in the State of Kansas, and promises to lead to a collaborative program that covers the major aspects of composite development and application. Sherwood has provided initial fiber surface treatment and sizing together with fiber and composite surface analysis; Lease, Tomblin and Wang have worked together toward the goal of preparing pre-preg and fabrication of laminated panels; Locke has developed computational models to evaluate the effect of surface treatment (and chemistry) on mechanical properties; Lease, Tomblin and Wang have worked together to perform all necessary mechanical testing. The research has been focused on materials that would benefit the High Speed Civil Transport (HSCT) program. The group has visited Dr. Howard Maars and his colleagues at NASA Langley, and has focused their studies on the NASA requirements discussed in this meeting. An important development, requested by NASA scientists, has been the acquisition and study of K3B as a matrix material for the composites. The project has led to the successful acquisition and surface analysis of K3B, together with the successful deposition of this material onto surface oxidized carbon fibers. Mechanical testing, modelling and the construction of composite preparation equipment has been achieved during the grant period.

  2. Advanced Stirling Convertor (ASC) Development for NASA RPS

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh

    2014-01-01

    Sunpower's Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center (GRC) and after a series of successful demonstrations, the ASC began transitioning from a technology development project to flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the U.S. In recent years, the ASC became part of the NASA-Department of Energy Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASC convertors, one with the Department of Energy/Lockheed Martin to produce the ASC-F flight convertors, and one with NASA GRC for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flight-like ASC-E3 by 2013. However, in late Fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at GRC, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  3. Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation

    NASA Astrophysics Data System (ADS)

    Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.

    2017-01-01

    This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.

  4. NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)

    NASA Image and Video Library

    2012-08-08

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.

  5. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  6. NASA Blue Marble 2007 West

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  7. NASA-IGES Translator and Viewer

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Logan, Michael A.

    1995-01-01

    NASA-IGES Translator (NIGEStranslator) is a batch program that translates a general IGES (Initial Graphics Exchange Specification) file to a NASA-IGES-Nurbs-Only (NINO) file. IGES is the most popular geometry exchange standard among Computer Aided Geometric Design (CAD) systems. NINO format is a subset of IGES, implementing the simple and yet the most popular NURBS (Non-Uniform Rational B-Splines) representation. NIGEStranslator converts a complex IGES file to the simpler NINO file to simplify the tasks of CFD grid generation for models in CAD format. The NASA-IGES Viewer (NIGESview) is an Open-Inventor-based, highly interactive viewer/ editor for NINO files. Geometry in the IGES files can be viewed, copied, transformed, deleted, and inquired. Users can use NIGEStranslator to translate IGES files from CAD systems to NINO files. The geometry then can be examined with NIGESview. Extraneous geometries can be interactively removed, and the cleaned model can be written to an IGES file, ready to be used in grid generation.

  8. The manager's guide to NASA graphics standards

    NASA Technical Reports Server (NTRS)

    1980-01-01

    NASA managers have the responsibility to initiate and carry out communication projects with a degree of sophistication that properly reflects the agency's substantial work. Over the course of the last decade, it has become more important to clearly communicate NASA's objectives in aeronautical research, space exploration, and related sciences. Many factors come into play when preparing communication materials for internal and external use. Three overriding factors are: producing the materials by the most cost-efficient method; ensuring that each item reflects the vitality, knowledge, and precision of NASA; and portraying all visual materials with a unified appearance. This guide will serve as the primary tool in meeting these criteria. This publication spells out the many benefits inherent in the Unified Visual Communication System and describes how the system was developed. The last section lists the graphic coordinators at headquarters and the centers who can assist with graphic projects. By understanding the Unified Visual Communication System, NASA managers will be able to manage a project from inception through production in the most cost-effective manner while maintaining the quality of NASA communications.

  9. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  10. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  11. Unique Education and Workforce Development for NASA Engineers

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  12. Surface Flooding from Hurricane Harvey Shown in New SMAP Imagery

    NASA Image and Video Library

    2017-08-30

    A new series of images generated with data from NASA's Soil Moisture Active Passive (SMAP) satellite illustrate the surface flooding caused by Hurricane Harvey from before its initial landfall through August 27, 2017. The SMAP observations detect the proportion of the ground covered by surface water within the satellite's field of view. The sequence of images depicts successive satellite orbital swath observations showing the surface water conditions on August 22, before Harvey's landfall (left), and then on Aug. 27, two days after landfall (middle). The resulting increase in surface flooding from record rainfall over the three-day period, shown at right, depicts regionally heavy flooding around the Houston metropolitan area. The hardest hit areas (blue and purple shades) cover more than 23,000 square miles (about 59,600 square kilometers) and indicate a more than 1,000-fold increase in surface water cover from rainfall-driven flooding. SMAP's low-frequency (L-band) microwave radiometer features enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. The satellite provides global coverage with one to three-day repeat sampling, which is well suited for monitoring dynamic inland waters around the world. https://photojournal.jpl.nasa.gov/catalog/PIA21930

  13. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  14. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    High magnification view of human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. The arrow points to bead surface indicating breast cancer cells (as noted by the staining of tumor cell intermediate filaments). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida

  15. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.

  16. Dynamics of initial drop splashing on a dry smooth surface

    PubMed Central

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study. PMID:28493989

  17. Dynamics of initial drop splashing on a dry smooth surface.

    PubMed

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study.

  18. NASA advanced cryocooler technology development program

    NASA Astrophysics Data System (ADS)

    Coulter, Daniel R.; Ross, Ronald G., Jr.; Boyle, Robert F.; Key, R. W.

    2003-03-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Over the years, NASA has developed new cryocooler technologies for a wide variety of space missions. Recent achievements include the NCS, AIRS, TES and HIRDLS cryocoolers, and miniature pulse tube coolers at TRW and Lockheed Martin. The largest technology push within NASA right now is in the temperature range of 4 to 10 K. Missions such as the Next Generation Space Telescope (NGST) and Terrestrial Planet Finder (TPF) plan to use infrared detectors operating between 6-8 K, typically arsenic-doped silicon arrays, with IR telescopes from 3 to 6 meters in diameter. Similarly, Constellation-X plans to use X-ray microcalorimeters operating at 50 mK and will require ~6 K cooling to precool its multistage 50 mK magnetic refrigerator. To address cryocooler development for these next-generation missions, NASA has initiated a program referred to as the Advanced Cryocooler Technology Development Program (ACTDP). This paper presents an overview of the ACTDP program including programmatic objectives and timelines, and conceptual details of the cooler concepts under development.

  19. NASA Nationwide and the Year of the Solar System (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2010-12-01

    NASA depends on the efforts of several volunteer networks to help implement its formal and informal education goals, to disseminate its key messages related to space and Earth science missions and to support broad public initiatives such as the upcoming Year of the Solar System (YSS), sponsored by the Planetary Science Education and Public Outreach Forum (SEPOF). These highly leveraged networks include programs such as Solar System Ambassadors, Solar System Educators, Night Sky Network, and NASA Explorer Schools. Founded in June 2008, NASA Nationwide: A Consortium of Formal and Informal Education Networks is a program that brings together these volunteer networks by creating an online community and shared resources which broadens the member networks’ base of support and provides opportunities to coordinate, cooperate, and collaborate with each other. Since its inception, NASA Nationwide has grown to include twelve NASA-funded volunteer networks as members and collaborates with three other NASA networks as affiliates. NASA Nationwide’s support for the Year of the Solar System includes management of several recently completed Solar System Nights kits, which will be made available regionally to collaborative teams of volunteers and affiliates for use in connecting with students in underserved, underrepresented and rural populations. In the latter part of 2010, the program will be further enhanced by the debut of the public NASA Nationwide website to showcase the successful efforts of these volunteers, provide information about member organizations and advertise their upcoming events in support of the Year of the Solar System. Through its broad reach and the dedicated enthusiasm of its members, NASA Nationwide will be an essential factor utilized to help achieve Year of the Solar System goals and ensure the ultimate success of the initiative.

  20. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  1. A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.

    PubMed

    Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2017-01-01

    The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful

  2. NASA's Space Launch Initiative Targets Toxic Propellants

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric; McNeal, Curtis; Davis, Daniel J. (Technical Monitor)

    2001-01-01

    When manned and unmanned space flight first began, the clear and overriding design consideration was performance. Consequently, propellant combinations of all kinds were considered, tested, and, when they lifted the payload a kilometer higher, or an extra kilogram to the same altitude, they became part of our operational inventory. Cost was not considered. And with virtually all of the early work being performed by the military, safety was hardly a consideration. After all, fighting wars has always been dangerous. Those days are past now. With space flight, and the products of space flight, a regular part of our lives today, safety and cost are being reexamined. NASA's focus turns naturally to its Shuttle Space Transportation System. Designed, built, and flown for the first time in the 1970s, this system remains today America's workhorse for manned space flight. Without its tremendous lift capability and mission flexibility, the International Space Station would not exist. And the Hubble telescope would be a monument to shortsighted management, rather than the clear penetrating eye on the stars it is today. But the Shuttle system fully represents the design philosophy of its period: it is too costly to operate, and not safe enough for regular long term access to space. And one of the key reasons is the utilization of toxic propellants. This paper will present an overview of the utilization of toxic propellants on the current Shuttle system.

  3. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  4. Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Srinivasan, Margaret; Peterson, Craig; Callahan, Phil

    2013-09-01

    The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop

  5. NASA Occupational Health Program FY98 Self-Assessment

    NASA Technical Reports Server (NTRS)

    Brisbin, Steven G.

    1999-01-01

    The NASA Functional Management Review process requires that each NASA Center conduct self-assessments of each functional area. Self-Assessments were completed in June 1998 and results were presented during this conference session. During FY 97 NASA Occupational Health Assessment Team activities, a decision was made to refine the NASA Self-Assessment Process. NASA Centers were involved in the ISO registration process at that time and wanted to use the management systems approach to evaluate their occupational health programs. This approach appeared to be more consistent with NASA's management philosophy and would likely confer status needed by Senior Agency Management for the program. During FY 98 the Agency Occupational Health Program Office developed a revised self-assessment methodology based on the Occupational Health and Safety Management System developed by the American Industrial Hygiene Association. This process was distributed to NASA Centers in March 1998 and completed in June 1998. The Center Self Assessment data will provide an essential baseline on the status of OHP management processes at NASA Centers. That baseline will be presented to Enterprise Associate Administrators and DASHO on September 22, 1998 and used as a basis for discussion during FY 99 visits to NASA Centers. The process surfaced several key management system elements warranting further support from the Lead Center. Input and feedback from NASA Centers will be essential to defining and refining future self assessment efforts.

  6. NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket

    NASA Image and Video Library

    2017-04-19

    This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program

  7. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  8. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  9. Synthesis of selenium nano-composite (t-Se@PS) by surface initiated atom transfer radical polymerization.

    PubMed

    Wang, Michael C P; Gates, Byron D

    2012-09-04

    Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.

  10. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner

  11. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  12. The NASA Low-Pressure Turbine Flow Physics Program: A Review

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.

    2002-01-01

    that was made since and will introduce newly started projects. The LPT program is focused on three areas: acquisition of experimental and numerical databases and on modeling and computation. Priority was initially given to experiments. There are three classes of experiments: simulated LPT passages, linear cascade, both with and without wakes, and low-speed rotating rig. They are being conducted as follows: At NASA GRC on a flat surface with blade pressure distribution, at the US Naval Academy on a curved surface. The addition of wakes is studied at the University of Minnesota in a curved passage with a retractable wake generator, and at Texas A&M University in a linear cascade with continuously running wake generator. The pressure distribution of the Pratt & Whitney blade 'Pak B' is used in all these experiments. Experiments have been performed also in the GEAE Low-Speed Rotating Turbine (LSRT) rig with GE-designed airfoils. Work on numerically generated database is in progress at the University of Kentucky, using the DNS/LES code LESTool developed there. Turbulence/transition model assessment and development is performed also at the University of Kentucky, where a new intermittency transport model was developed and many experimental test cases have been numerically computed. Assessments of models using simulations of multistage LPT experiments were performed at Virginia Commonwealth University using the Corsair code. Work on suction surface separation delay, using passive and active flow-control, has also been initiated. Following the overview, Principal Investigators attending the workshop will present in detail several of the projects supported by NASA.

  13. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. OAI and NASA's Scientific and Technical Information

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Rocker, JoAnne; Harrison, Terry L.

    2002-01-01

    The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) is an evolving protocol and philosophy regarding interoperability for digital libraries (DLs). Previously, "distributed searching" models were popular for DL interoperability. However, experience has shown distributed searching systems across large numbers of DLs to be difficult to maintain in an Internet environment. The OAI-PMH is a move away from distributed searching, focusing on the arguably simpler model of "metadata harvesting". We detail NASA s involvement in defining and testing the OAI-PMH and experience to date with adapting existing NASA distributed searching DLs (such as the NASA Technical Report Server) to use the OAI-PMH and metadata harvesting. We discuss some of the entirely new DL projects that the OAI-PMH has made possible, such as the Technical Report Interchange project. We explain the strategic importance of the OAI-PMH to the mission of NASA s Scientific and Technical Information Program.

  15. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  16. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  17. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    NASA Astrophysics Data System (ADS)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  18. NASA finds Shrimp Under Antarctic Ice [Video

    NASA Image and Video Library

    2017-12-08

    At a depth of 600 feet beneath the West Antarctic ice sheet, a small shrimp-like creature managed to brighten up an otherwise gray polar day in late November 2009. This critter is a three-inch long Lyssianasid amphipod found beneath the Ross Ice Shelf, about 12.5 miles away from open water. NASA scientists were using a borehole camera to look back up towards the ice surface when they spotted this pinkish-orange creature swimming beneath the ice. Credit: NASA

  19. Management of government quality assurance functions for NASA contracts

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  20. Management of government quality assurance functions for NASA contracts

    NASA Astrophysics Data System (ADS)

    1993-04-01

    This handbook sets forth requirements for NASA direction and management of government quality assurance functions performed for NASA contracts and is applicable to all NASA installations. These requirements will standardize management to provide the minimum oversight and effective use of resources. This handbook implements Federal Acquisition Regulation (FAR) Part 46, NASA FAR Supplement 18-46, Quality Assurance, and NMI 7410.1. Achievement of established quality and reliability goals at all levels is essential to the success of NASA programs. Active participation by NASA and other agency quality assurance personnel in all phases of contract operations, including precontract activity, will assist in the economic and timely achievement of program results. This involves broad participation in design, development, procurement, inspection, testing, and preventive and corrective actions. Consequently, government, as well as industry, must place strong emphasis on the accomplishment of all functions having a significant bearing on quality and reliability from program initiation through end-use of supplies and services produced. For purposes of implementing NASA and other agency agreements, and to provide for uniformity and consistency, the terminology and definitions prescribed herein and in a future handbook shall be utilized for all NASA quality assurance delegations and subsequent redelegations.

  1. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  2. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  3. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  4. Surface energy fluxes in complex terrain

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.; Sheaffer, J. D.; Bossert, J. E.

    1986-01-01

    The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented.

  5. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Technologists Embrace Laser Instrument Challenge

    NASA Image and Video Library

    2013-11-06

    Goddard scientist David Harding and Goddard technologist Tony Yu are developing a lidar system that could meet an ambitious requirement of the proposed LIST mission. ---------- In 2007, the National Research Council threw down a challenge: Design a space-based laser altimeter that could measure the height of Earth's surface everywhere to within a mere 10 centimeters — all at 5-meter resolution. To this day, some believe it can't be done. Goddard scientist Dave Harding begs to differ. He and his team have embraced the challenge and are developing a laser altimeter that could provide the data from a berth onboard the NRC-proposed Lidar Surface Topography, or LIST, mission. It would generate highly detailed maps of topography and vegetation that scientists could use to forecast and respond to natural hazards and study carbon storage in forests. Read more: 1.usa.gov/17N3Bql NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: Bill Hrybck/NASA

  7. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Seaweed and Light A type of seaweed called Sargassum, common in the Sargasso Sea, floats by an instrument deployed here on July 26, 2014, as part of NASA's SABOR experiment. Scientists from the City College of New York use the data to study the way light becomes polarized in various conditions both above and below the surface of the ocean. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. An Overview of the NASA Sounding Rockets and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Flowers, Bobby J.; Needleman, Harvey C.

    1999-01-01

    The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the

  9. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  10. Recommended techniques for effective maintainability. A continuous improvement initiative of the NASA Reliability and Maintainability Steering Committee

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.

  11. NASA's Student Airborne Research Program (SARP) 2009-2017

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  12. Stirling to Flight Initiative

    NASA Technical Reports Server (NTRS)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  13. Surface contamination analysis technology team overview

    NASA Astrophysics Data System (ADS)

    Burns, H. Dewitt, Jr.

    1996-11-01

    The surface contamination analysis technology (SCAT) team was originated as a working roup of NASA civil service, Space Shuttle contractor, and university groups. Participating members of the SCAT Team have included personnel from NASA Marshall Space Flight Center's Materials and Processes Laboratory and Langley Research Center's Instrument Development Group; contractors-Thiokol Corporation's Inspection Technology Group, AC Engineering support contractor, Aerojet, SAIC, and Lockheed MArtin/Oak Ridge Y-12 support contractor and Shuttle External Tank prime contractor; and the University of Alabama in Huntsville's Center for Robotics and Automation. The goal of the SCAT team as originally defined was to develop and integrate a multi-purpose inspection head for robotic application to in-process inspection of contamination sensitive surfaces. One area of interest was replacement of ozone depleting solvents currently used for surface cleanliness verification. The team approach brought together the appropriate personnel to determine what surface inspection techniques were applicable to multi-program surface cleanliness inspection. Major substrates of interest were chosen to simulate space shuttle critical bonding surface or surfaces sensitive to contamination such as fuel system component surfaces. Inspection techniques evaluated include optically stimulated electron emission or photoelectron emission; Fourier transform infrared spectroscopy; near infrared fiber optic spectroscopy; and, ultraviolet fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992. Instrumentation specifications and designs developed under this effort include a portable diffuse reflectance FTIR system built by Surface Optics Corporation and a third generation optically stimulated electron emission system built by LaRC. This paper will discuss the evaluation of the various techniques on a

  14. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  15. Fabrication of an SPR Sensor Surface with Antifouling Properties for Highly Sensitive Detection of 2,4,6-Trinitrotoluene Using Surface-Initiated Atom Transfer Polymerization

    PubMed Central

    Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-01-01

    In this study, we modified a surface plasmon resonance immunosensor chip with a polymer using surface-initiated atom transfer polymerization (SI-ATRP) for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT). To immobilize a TNT analogue on the polymer, mono-2-(methacryloyloxy)ethylsuccinate (MES), which has a carboxyl group, was used in this study. However, the anti-TNT antibody may adsorb non-specifically on the polymer surface by an electrostatic interaction because MES is negatively charged. Therefore, a mixed monomer with MES and diethylaminoethylmethacrylate (DEAEM), which has a tertiary amino group and is positively charged, was prepared to obtain electroneutrality for suppressing the nonspecific adsorption. The detection of TNT was performed by inhibition assay using the polymer surface. To ensure high sensitivity to TNT, the affinity between the surface and the antibody was optimized by controlling the density of the initiator for ATRP by mixing two types of self-assembled monolayer reagents. As a result, a limit of detection of 5.7 pg/mL (ppt) for TNT was achieved using the optimized surface. PMID:23877126

  16. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  17. Initial results from the NASA Lewis Bumpy Torus experiment. [of steady-state ion heating method based on modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Richardson, R. W.; Gerdin, G. A.

    1973-01-01

    Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field.

  18. Initial stage oxidation on nano-trenched Si(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Liu, Yi-Lun; Izumi, Satoshi; Chen, Xue-Feng; Zhai, Zhi; Tian, Shao-Hua

    2018-01-01

    As the size of an electronic element shrinks to nanoscale, trench design of Si strongly influences the performance of related semiconductor devices. By reactive force field molecular dynamics (ReaxFF MD) simulation, the initial stage oxidation on nano-trenched Si(1 0 0) angled 60°, 90°, 120°, 150° under temperatures from 300 K to 1200 K has been studied. Inhomogeneous oxidation at the convex-concave corners of the Si surface was observed. In general, the initial oxidation process on the Si surface was that, firstly, the O atoms ballistically transported into surface, then a high O concentration induced compressive stress at the surface layers, which prevented further oxidation. Compared to the concave corner, the convex one contacted a larger volume of oxygen at the very beginning stage, leading an anisotropic absorption of O atoms. Afterwards, a critical compression was produced at both the convex and concave corners to limit the oxidation. As a result, an inhomogeneous oxide film grew on nano-trenched Si. Meanwhile, due to enhanced O transport and compression relaxation by increasing temperature, the inhomogeneous oxidation was more obvious under 1200 K. These present results explained the observed experimental phenomena on the oxidation of non-planar Si and provided an aspect on the design of nano-trenched electronic components in the semiconductor field.

  19. Implementing DSpace at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Lowe, Greta

    2007-01-01

    This presentation looks at the implementation of the DSpace institutional repository system at the NASA Langley Technical Library. NASA Langley Technical Library implemented DSpace software as a replacement for the Langley Technical Report Server (LTRS). DSpace was also used to develop the Langley Technical Library Digital Repository (LTLDR). LTLDR contains archival copies of core technical reports in the aeronautics area dating back to the NACA era and other specialized collections relevant to the NASA Langley community. Extensive metadata crosswalks were created to facilitate moving data from various systems and formats to DSpace. The Dublin Core metadata screens were also customized. The OpenURL standard and Ex Libris Metalib are being used in this environment to assist our customers with either discovering full-text content or with initiating a request for the item.

  20. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  1. NASA's Evolving Views of Pluto

    NASA Image and Video Library

    2015-07-15

    NASA's New Horizons spacecraft flew within 8,000 miles of dwarf planet Pluto on 14 July 2015. Our view of this cold, previously unexplored world, 4.67 billion miles from Earth, has evolved since its discovery by Clyde W. Tombaugh in 1930. This short clip shows images from Tombaugh, Hubble and New Horizons over the years, arranged to illustrate improvements in resolution. The close-up image at the end of this clip was taken about 1.5 hours before New Horizons closest approach to Pluto, when the craft was 47,800 miles (77,000 kilometers) from the surface of the planet. The image easily resolves structures smaller than a mile across. Credit: NASA/Goddard

  2. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  3. NASA's Solar System Exploration Research Virtual Institute (SSERVI)

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2015-11-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  4. NASA's Student Airborne Research Program (2009-2013)

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  5. Highlights of contractor initiatives in quality enhancement and productivity improvement

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NASA/Contractor Team efforts are presented as part of NASA's continuing effort to facilitate the sharing of quality and productivity improvement ideas among its contractors. This complilation is not meant to be a comprehensive review of contractor initiative nor does it necessarily express NASA's views. The submissions represent samples from a general survey, and were not edited by NASA. The efforts are examples of quality and productivity programs in private industry, and as such, highlight company efforts in individual areas. Topics range from modernization of equipment, hardware, and technology to management of human resources. Of particular interest are contractor initiatives which deal with measurement and evaluation data pertaining to quality and productivity performance.

  6. NASA Langley developments in response calculations needed for failure and life prediction

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1993-01-01

    NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.

  7. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  8. Proceedings of the NASA Workshop on Surface Fitting

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1982-01-01

    Surface fitting techniques and their utilization are addressed. Surface representation, approximation, and interpolation are discussed. Along with statistical estimation problems associated with surface fitting.

  9. High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Kumar, S. V.; Eylander, J.; Peters-Lidard, C.

    2005-12-01

    Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET

  10. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  11. Location, location & size: defects close to surfaces dominate fatigue crack initiation

    NASA Astrophysics Data System (ADS)

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-03-01

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards

  12. Location, location &size: defects close to surfaces dominate fatigue crack initiation.

    PubMed

    Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves

    2017-03-27

    Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.

  13. Small Spacecraft Technology Initiative Education Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  14. NASA's future space power needs and requirements

    NASA Technical Reports Server (NTRS)

    Schnyer, A. D.; Sovie, Ronald J.

    1990-01-01

    The National Space Policy of 1988 established the U.S.'s long-range civil space goals, and has served to guide NASA's recent planning for future space mission operations. One of the major goals was to extend the human presence beyond earth's boundaries and to advance the scientific knowledge of the solar system. A broad spectrum of potential civil space mission opportunities and interests are currently being investigated by NASA to meet the espoused goals. Participation in many of these missions requires power systems with capabilities far beyond what exists today. In other mission examples, advanced power systems technology could enhance mission performance significantly. Power system requirements and issues that need resolution to ensure eventual mission accomplishment are addressed, in conjunction with the ongoing NASA technology development efforts and the need for even greater innovative efforts to match the ambitious solar exploration mission goals. Particular attention is given to potential lunar surface operations and technology goals, based on investigations to date. It is suggested that the nuclear reactor power systems can best meet long-life requirements as well as dramatically reduce the earth-surface-to-lunar-surface transportation costs due to the lunar day/night cycle impact on the solar system's energy storage mass requirements. The state of the art of candidate power systems and elements for the lunar application and the respective exploration technology goals for mission life requirements from 10 to 25 years are examined.

  15. Activities of NASA's Global Modeling Initiative (GMI) in the Assessment of Subsonic Aircraft Impact

    NASA Technical Reports Server (NTRS)

    Rodriquez, J. M.; Logan, J. A.; Rotman, D. A.; Bergmann, D. J.; Baughcum, S. L.; Friedl, R. R.; Anderson, D. E.

    2004-01-01

    The Intergovernmental Panel on Climate Change estimated a peak increase in ozone ranging from 7-12 ppbv (zonal and annual average, and relative to a baseline with no aircraft), due to the subsonic aircraft in the year 2015, corresponding to aircraft emissions of 1.3 TgN/year. This range of values presumably reflects differences in model input (e.g., chemical mechanism, ground emission fluxes, and meteorological fields), and algorithms. The model implemented by the Global Modeling Initiative allows testing the impact of individual model components on the assessment calculations. We present results of the impact of doubling the 1995 aircraft emissions of NOx, corresponding to an extra 0.56 TgN/year, utilizing meteorological data from NASA's Data Assimilation Office (DAO), the Goddard Institute for Space Studies (GISS), and the Middle Atmosphere Community Climate Model, version 3 (MACCM3). Comparison of results to observations can be used to assess the model performance. Peak ozone perturbations ranging from 1.7 to 2.2 ppbv of ozone are calculated using the different fields. These correspond to increases in total tropospheric ozone ranging from 3.3 to 4.1 Tg/Os. These perturbations are consistent with the IPCC results, due to the difference in aircraft emissions. However, the range of values calculated is much smaller than in IPCC.

  16. NASA and Superalloys: A Customer, a Participant, and a Referee

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.

    2008-01-01

    NASA has had a long history of research and development in the field of superalloys. These efforts have continued today, where the latest advancements in turbine disk and blade technologies are being developed. Although NASA does support military flight systems, its predominant role is in supporting civilian air transportation systems, and thus has goals for improving fuel efficiency, emissions, noise, and safety of today s aircraft. NASA has traditionally served several distinct but complimentary roles as participants in multi-disciplinary research teams, as customers who fund research and development efforts at industry and universities, and as referees who can address broad issues that affect the entire aeronautics community. Because of our longer range viewpoint, we can take on higher risk, higher reward research topics. NASA can also serve as an intermediary between the basic research performed primarily at universities and the development efforts emphasized by industry. By interacting with individual companies, NASA can identify areas of general interest and problems common to a large portion of the aeronautics community, and devise programs aimed at solving these problems. In space missions, NASA is a direct customer responsible for developing vehicles. In the case of the Space Shuttle, NASA has worked with various contractors to design and build numerous components out of superalloys. Another fascinating area for the use of superalloys is in power systems for long life applications in space. Potential missions include providing electric power for deep space missions, surface rovers, including lunar and Mars, and stationary power generators on the lunar surface.

  17. NASA and Superalloys: A Customer, a Participant, and a Referee

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.

    2008-01-01

    NASA has had a long history of research and development in the field of superalloys. These efforts have continued today, where the latest advancements in turbine disk and blade technologies are being developed Although NASA does support military flight systems, it s predominant role is in supporting civilian air transportation systems, and thus has goals for improving fuel efficiency, emissions, noise, and safety of today s aircraft. NASA has traditionally served several distinct but complimentary roles as participants in multi-disciplinary research teams, as customers who fund research and development efforts at industry and universities, and as referees who can address broad issues that affect the entire aeronautics community. Because of our longer range viewpoint, we can take on higher risk, higher reward research topics. NASA can also serve as an intermediary between the basic research performed primarily at universities and the development efforts emphasized by industry. By interacting with individual companies, NASA can identify areas of general interest and problems common to a large portion of the aeronautics community, and devise programs aimed at solving these problems. In space missions, NASA is a direct customer responsible for developing vehicles. In the case of the Space Shuttle, NASA has worked with various contractors to design and build numerous components out of superalloys. Another fascinating area for the use of superalloys is in power systems for long life applications in space. Potential missions include providing electric power for deep space missions, surface rovers, including lunar and Mars, and stationary power generators on the lunar surface.

  18. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  20. Open NASA Earth Exchange (OpenNEX): A Public-Private Partnership for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Lee, T. J.; Michaelis, A.; Ganguly, S.; Votava, P.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaborative that houses satellite, climate and ancillary data where a community of researchers can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As a part of broadening the community beyond NASA-funded researchers, NASA through an agreement with Amazon Inc. made available to the public a large collection of Climate and Earth Sciences satellite data. The data, available through the Open NASA Earth Exchange (OpenNEX) platform hosted by Amazon Web Services (AWS) public cloud, consists of large amounts of global land surface imaging, vegetation conditions, climate observations and climate projections. In addition to the data, users of OpenNEX platform can also watch lectures from leading experts, learn basic access and use of the available data sets. In order to advance White House initiatives such as Open Data, Big Data and Climate Data and the Climate Action Plan, NASA over the past six months conducted the OpenNEX Challenge. The two-part challenge was designed to engage the public in creating innovative ways to use NASA data and address climate change impacts on economic growth, health and livelihood. Our intention was that the challenges allow citizen scientists to realize the value of NASA data assets and offers NASA new ideas on how to share and use that data. The first "ideation" challenge, closed on July 31st attracted over 450 participants consisting of climate scientists, hobbyists, citizen scientists, IT experts and App developers. Winning ideas from the first challenge will be incorporated into the second "builder" challenge currently targeted to launch mid-August and close by mid-November. The winner(s) will be formally announced at AGU in December of 2014. We will share our experiences and lessons learned over the past year from OpenNEX, a public-private partnership for

  1. NASA's Geospatial Interoperability Office(GIO)Program

    NASA Technical Reports Server (NTRS)

    Weir, Patricia

    2004-01-01

    NASA produces vast amounts of information about the Earth from satellites, supercomputer models, and other sources. These data are most useful when made easily accessible to NASA researchers and scientists, to NASA's partner Federal Agencies, and to society as a whole. A NASA goal is to apply its data for knowledge gain, decision support and understanding of Earth, and other planetary systems. The NASA Earth Science Enterprise (ESE) Geospatial Interoperability Office (GIO) Program leads the development, promotion and implementation of information technology standards that accelerate and expand the delivery of NASA's Earth system science research through integrated systems solutions. Our overarching goal is to make it easy for decision-makers, scientists and citizens to use NASA's science information. NASA's Federal partners currently participate with NASA and one another in the development and implementation of geospatial standards to ensure the most efficient and effective access to one another's data. Through the GIO, NASA participates with its Federal partners in implementing interoperability standards in support of E-Gov and the associated President's Management Agenda initiatives by collaborating on standards development. Through partnerships with government, private industry, education and communities the GIO works towards enhancing the ESE Applications Division in the area of National Applications and decision support systems. The GIO provides geospatial standards leadership within NASA, represents NASA on the Federal Geographic Data Committee (FGDC) Coordination Working Group and chairs the FGDC's Geospatial Applications and Interoperability Working Group (GAI) and supports development and implementation efforts such as Earth Science Gateway (ESG), Space Time Tool Kit and Web Map Services (WMS) Global Mosaic. The GIO supports NASA in the collection and dissemination of geospatial interoperability standards needs and progress throughout the agency including

  2. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  3. Materials Genome Initiative

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  4. NASA Tools for Climate Impacts on Water Resources

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Brad

    2010-01-01

    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.

  5. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  6. Regional-Scale Modeling at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Baker, D.; Braun, S.; Chou, M.-D.; Jasinski, M. F.; Jia, Y.; Kakar, R.; Karyampudi, M.; Lang, S.

    2003-01-01

    Over the past decade, the Goddard Mesoscale Modeling and Dynamics Group has used a popular regional scale model, MM5, to study precipitation processes. Our group is making contributions to the MM5 by incorporating the following physical and numerical packages: improved Goddard cloud processes, a land processes model (Parameterization for Land-Atmosphere-Cloud Exchange - PLACE), efficient but sophisticated radiative processes, conservation of hydrometeor mass (water budget), four-dimensional data assimilation for rainfall, and better computational methods for trace gas transport. At NASA Goddard, the MM5 has been used to study: (1) the impact of initial conditions, assimilation of satellite-derived rainfall, and cumulus parameterizations on rapidly intensifying oceanic cyclones, hurricanes and typhoons, (2) the dynamic and thermodynamic processes associated with the development of narrow cold frontal rainbands, (3) regional climate and water cycles, (4) the impact of vertical transport by clouds and lightning on trace gas distributiodproduction associated with South and North American mesoscale convective systems, (5) the development of a westerly wind burst (WWB) that occurred during the TOGA COARE and the diurnal variation of precipitation in the tropics, (6) a Florida sea breeze convective event and a Mid-US flood event using a sophisticated land surface model, (7) the influence of soil heterogeneity on land surface energy balance in the southwest GCIP region, (8) explicit simulations (with 1.33 to 4 km horizontal resolution) of hurricanes Bob (1991) and Bonnie (1998), (9) a heavy precipitation event over Taiwan, and (10) to make real time forecasts for a major NASA field program. In this paper, the modifications and simulated cases will be described and discussed.

  7. NASA flight electronics environmental stress screening survey

    NASA Technical Reports Server (NTRS)

    Marian, E. J. (Compiler)

    1983-01-01

    Data compiled by the Institute of Environmental Sciences were used to establish guidelines for identifying defective, abnormal, or marginal parts as well as manufacturing defects. These data are augmented with other available sources of similar information in conjunction with NASA centers' data and presented in a form that may be useful to all NASA centers in planning and developing effective environmental stress screens. Information relative to thermal and vibration screens as the most effective methods for surfacing latent failures in electronic equipment at the component level is considered.

  8. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  9. NASA SCaN Overview and Ka-Band Actvities

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry

    2014-01-01

    The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.

  10. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  11. The viability of photovoltaics on the Martian surface

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1994-01-01

    The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.

  12. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  13. Investigation of the role of thermal boundary layer processes in initiating convection under the NASA SPACE Field Program

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Song, Aaron; Casey, Dan; Crosson, William; Wetzel, Peter

    1993-01-01

    The current NWS ground based network is not sufficient to capture the dynamic or thermodynamic structure leading to the initiation and organization of air mass moist convective events. Under this investigation we intend to use boundary layer mesoscale models (McNider and Pielke, 1981) to examine the dynamic triggering of convection due to topography and surface thermal contrasts. VAS and MAN's estimates of moisture will be coupled with the dynamic solution to provide an estimate of the total convective potential. Visible GOES images will be used to specify incoming insolation which may lead to surface thermal contrasts and JR skin temperatures will be used to estimate surface moisture (via the surface thermal inertia) (Weizel and Chang, 1988) which can also induce surface thermal contrasts. We will use the SPACE-COHMEX data base to evaluate the ability of the joint mesoscale model satellite products to show skill in predicting the development of air mass convection. We will develop images of model vertical velocity and satellite thermodynamic measures to derive images of predicted convective potential. We will then after suitable geographic registration carry out a pixel by pixel correlation between the model/satellite convective potential and the 'truth' which are the visible images. During the first half of the first year of this investigation we have concentrated on two aspects of the project. The first has been in generating vertical velocity fields from the model for COHMEX case days. We have taken June 19 as the first case and have run the mesoscale model at several different grid resolutions. We are currently developing the composite model/satellite convective image. The second aspect has been the attempted calibration of the surface energy budget to provide the proper horizontal thermal contrasts for convective initiation. We have made extensive progress on this aspect using the FIFE data as a test data set. The calibration technique looks very promising.

  14. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  15. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  16. An Overview: NASA LeRC Structures Programs

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1998-01-01

    A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.

  17. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  18. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  19. How NASA Sees the Earth and Its Climate

    NASA Technical Reports Server (NTRS)

    BrowndeColstoun, Eric

    2012-01-01

    NASA Research Addresses Broad Questions: (1) How are global ecosystems changing? (2) What changes are occurring in global land cover and land use and what are their causes? (3) How is the Earth s surface being transformed and how can such information be used to predict future changes? (4) What are the consequences of land cover and land use change for the sustainability of ecosystems and economic productivity? NASA uses the view from above to monitor our changing home. Different satellites help us study the various systems of the Earth. No one system can do it all. NASA tools and science helps us to understand how the planet is changing and what the changes mean for us.

  20. NASA Tech Helps Better Understand Our Home Planet

    NASA Image and Video Library

    2018-04-20

    NASA’s Earth observations are critical for understanding our home planet and how it is changing. For Earth Day NASA is spotlighting some of the agency’s work with the latest technologies that have the potential to transform how we see our Blue Marble. Join us as we speak with NASA Ames scientist Ved Chirayath, who has developed cameras that can image marine environments below the ocean’s surface; Shayna Skolnik, founder and CEO of Navteca, a company that’s working to bring NASA Earth data to life through virtual reality; and Brian Campbell, senior education and outreach specialist for ICESat-2 satellite, which is set to launch this fall to measure polar ice and other important Earth features.