Sample records for nasa telerobotics program

  1. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  2. Terrestrial applications of NASA space telerobotics technologies

    NASA Technical Reports Server (NTRS)

    Lavery, Dave

    1994-01-01

    In 1985 the National Aeronautics and Space Administration (NASA) instituted a research program in telerobotics to develop and provide the technology for applications of telerobotics to the United States space program. The activities of the program are intended to most effectively utilize limited astronaut time by facilitating tasks such as inspection, assembly, repair, and servicing, as well as providing extended capability for remotely conducting planetary surface operations. As the program matured, it also developed a strong heritage of working with government and industry to directly transfer the developed technology into industrial applications.

  3. Robotics Algorithms Provide Nutritional Guidelines

    NASA Technical Reports Server (NTRS)

    2009-01-01

    On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat

  4. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    NASA Technical Reports Server (NTRS)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  5. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  6. Custom electronic subsystems for the laboratory telerobotic manipulator

    NASA Technical Reports Server (NTRS)

    Glassell, R. L.; Butler, P. L.; Rowe, J. C.; Zimmermann, S. D.

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Space Station Program presents new opportunities for the application of telerobotic and robotic systems. The Laboratory Telerobotic Manipulator (LTM) is a highly advanced 7 degrees-of-freedom (DOF) telerobotic/robotic manipulator. It was developed and built for the Automation Technology Branch at NASA's Langley Research Center (LaRC) for work in research and to demonstrate ground-based telerobotic manipulator system hardware and software systems for future NASA applications in the hazardous environment of space. The LTM manipulator uses an embedded wiring design with all electronics, motor power, and control and communication cables passing through the pitch-yaw differential joints. This design requires the number of cables passing through the pitch/yaw joint to be kept to a minimum. To eliminate the cables needed to carry each pitch-yaw joint's sensor data to the VME control computers, a custom-embedded electronics package for each manipulator joint was developed. The electronics package collects and sends the joint's sensor data to the VME control computers over a fiber optic cable. The electronics package consist of five individual subsystems: the VME Link Processor, the Joint Processor and the Joint Processor power supply in the joint module, the fiber optics communications system, and the electronics and motor power cabling.

  7. Manipulator control and mechanization: A telerobot subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Wilcox, B.

    1987-01-01

    The short- and long-term autonomous robot control activities in the Robotics and Teleoperators Research Group at the Jet Propulsion Laboratory (JPL) are described. This group is one of several involved in robotics and is an integral part of a new NASA robotics initiative called Telerobot program. A description of the architecture, hardware and software, and the research direction in manipulator control is given.

  8. Visual Information Processing for Television and Telerobotics

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)

    1989-01-01

    This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.

  9. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    NASA Technical Reports Server (NTRS)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  10. Proceedings of the NASA Conference on Space Telerobotics, volume 5

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.

  11. Proceedings of the Workshop on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. (Editor)

    1987-01-01

    These proceedings report the results of a workshop on space telerobotics, which was held at the Jet Propulsion Laboratory, January 20-22, 1987. Sponsored by the NASA Office of Aeronautics and Space Technology (OAST), the Workshop reflected NASA's interest in developing new telerobotics technology for automating the space systems planned for the 1990s and beyond. The workshop provided a window into NASA telerobotics research, allowing leading researchers in telerobotics to exchange ideas on manipulation, control, system architectures, artificial intelligence, and machine sensing. One of the objectives was to identify important unsolved problems of current interest. The workshop consisted of surveys, tutorials, and contributed papers of both theoretical and practical interest. Several sessions were held on the themes of sensing and perception, control execution, operator interface, planning and reasoning, and system architecture.

  12. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  13. Hierarchical Ada robot programming system (HARPS)- A complete and working telerobot control system based on the NASREM model

    NASA Technical Reports Server (NTRS)

    Leake, Stephen; Green, Tom; Cofer, Sue; Sauerwein, Tim

    1989-01-01

    HARPS is a telerobot control system that can perform some simple but useful tasks. This capability is demonstrated by performing the ORU exchange demonstration. HARPS is based on NASREM (NASA Standard Reference Model). All software is developed in Ada, and the project incorporates a number of different CASE (computer-aided software engineering) tools. NASREM was found to be a valid and useful model for building a telerobot control system. Its hierarchical and distributed structure creates a natural and logical flow for implementing large complex robust control systems. The ability of Ada to create and enforce abstraction enhanced the implementation of such control systems.

  14. Proceedings of the NASA Conference on Space Telerobotics, volume 4

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center.

  15. Control of Free-Flying Space Robot Manipulator Systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.; Rock, Stephen M.; How, Jonathan

    2000-01-01

    This is the final report on the Stanford University portion of a major NASA program in telerobotics called the TRIWG Program, led strongly from NASA Headquarters by David Lavery This portion of the TRIWG research was carried out in Stanford's Aerospace Robotics Laboratory (ARL) to (1) contribute in unique and valuable ways to new fundamental capability for NASA in its space missions (the total contribution came from some 100 PhD-student years of research), and (2) to provide a steady stream of very capable PhD graduates to the American space enterprise.

  16. Telerobot operator control station requirements

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.

    1988-01-01

    The operator control station of a telerobot system has unique functional and human factors requirements. It has to satisfy the needs of a truly interactive and user-friendly complex system, a telerobot system being a hybrid between a teleoperated and an autonomous system. These functional, hardware and software requirements are discussed, with explicit reference to the design objectives and constraints of the JPL/NASA Telerobot Demonstrator System.

  17. The NASA automation and robotics technology program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  18. Space Station flight telerobotic servicer functional requirements development

    NASA Technical Reports Server (NTRS)

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  19. Commercial users panel

    NASA Technical Reports Server (NTRS)

    Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.

    1987-01-01

    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.

  20. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  1. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  2. System architecture for asynchronous multi-processor robotic control system

    NASA Technical Reports Server (NTRS)

    Steele, Robert D.; Long, Mark; Backes, Paul

    1993-01-01

    The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.

  3. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  4. Human-telerobot interactions - Information, control, and mental models

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  5. Overview of the NASA automation and robotics research program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Larsen, Ron

    1985-01-01

    NASA studies over the last eight years have identified five opportunities for the application of automation and robotics technology: (1) satellite servicing; (2) system monitoring, control, sequencing and diagnosis; (3) space manufacturing; (4) space structure assembly; and (5) planetary rovers. The development of these opportunities entails two technology R&D thrusts: telerobotics and system autonomy; both encompass such concerns as operator interface, task planning and reasoning, control execution, sensing, and systems integration.

  6. Information sciences and human factors overview

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee B.

    1988-01-01

    An overview of program objectives of the Information Sciences and Human Factors Division of NASA's Office of Aeronautics and Space Technology is given in viewgraph form. Information is given on the organizational structure, goals, the research and technology base, telerobotics, systems autonomy in space operations, space sensors, humans in space, space communications, space data systems, transportation vehicle guidance and control, spacecraft control, and major program directions in space.

  7. Proceedings of the NASA Conference on Space Telerobotics, volume 1

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty.

  8. Lunar Limb Observatory: An Incremental Plan for the Utilization, Exploration, and Settlement of the Moon

    NASA Technical Reports Server (NTRS)

    Lowman, Paul. D., Jr.

    1996-01-01

    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration, settlement, and terraforming of Mars.

  9. Lunar Limb Observatory: an Incremental Plan for the Utilization, Exploration, and Settlement of the Moon

    NASA Astrophysics Data System (ADS)

    Lowman, Paul. D., Jr.

    1996-10-01

    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration, settlement, and terraforming of Mars.

  10. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  11. JPL space robotics: Present accomplishments and future thrusts

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-10-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  12. JPL space robotics: Present accomplishments and future thrusts

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-01-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  13. Space robotics in the '90s

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F.

    1989-01-01

    The use of telerobots and rovers in space missions is examined. The functioning of the telerobots and rovers and their proposed applications are described. Research developments needed to design robots for specific environments and functions are described. Examples of NASA robotics projects are presented.

  14. Humans and machines in space: The vision, the challenge, the payoff; AAS Goddard Memorial Symposium, 29th, Washington, DC, March 14-15, 1991

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    A recent symposium produced papers in the areas of solar system exploration, man machine interfaces, cybernetics, virtual reality, telerobotics, life support systems and the scientific and technology spinoff from the NASA space program. A number of papers also addressed the social and economic impacts of the space program. For individual titles, see A95-87468 through A95-87479.

  15. A flexible telerobotic system for space operations

    NASA Technical Reports Server (NTRS)

    Sliwa, N. O.; Will, R. W.

    1987-01-01

    The objective and design of a proposed goal-oriented knowledge-based telerobotic system for space operations is described. This design effort encompasses the elements of the system executive and user interface and the distribution and general structure of the knowledge base, the displays, and the task sequencing. The objective of the design effort is to provide an expandable structure for a telerobotic system that provides cooperative interaction between the human operator and computer control. The initial phase of the implementation provides a rule-based, goal-oriented script generator to interface to the existing control modes of a telerobotic research system, in the Intelligent Systems Research Lab at NASA Research Center.

  16. Potential roles for EVA and telerobotics in a unified worksite

    NASA Astrophysics Data System (ADS)

    Akin, David; Howard, Russel D.

    1993-02-01

    Although telerobotics and extravehicular activity (EVA) are often portrayed as competitive approaches to space operations, ongoing research in the Space Systems Laboratory (SSL) has demonstrated the utility of cooperative roles in an integrated EVA/telerobotic work site. Working in the neutral buoyancy simulation environment, tests were performed on interactive roles or EVA subjects and telerobots in structural assembly and satellite servicing tasks. In the most elaborate of these tests to date, EVA subjects were assisted by the SSL's Beam Assembly Teleoperator (BAT) in several servicing tasks planned for Hubble Space Telescope, using the high-fidelity crew training article in the NASA Marshall Neutral Buoyancy Simulator. These tests revealed several shortcomings in the design of BAT for satellite servicing and demonstrated the utility of a free-flying or RMS-mounted telerobot for providing EVA crew assistance. This paper documents the past tests, including the use of free-flying telerobots to effect the rescue of a simulated incapacitated EVA subject, and details planned future efforts in this area, including the testing of a new telerobotic system optimized for the satellite servicing role, the development of dedicated telerobotic devices designed specifically for assisting EVA crew, and conceptual approaches to advanced EVA/telerobotic operations such as the Astronaut Operations Vehicle.

  17. Simulation of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1988-01-01

    A part of NASA's Space Station will be a Flight Telerobotic Servicer (FTS) used to help assemble, service, and maintain the Space Station. Since the human operator will be required to control the FTS, the design of the human-telerobot interface must be optimized from a human factors perspective. Simulation has been used as an aid in the development of complex systems. Simulation has been especially useful when it has been applied to the development of complex systems. Simulation should ensure that the hardware and software components of the human-telerobot interface have been designed and selected so that the operator's capabilities and limitations have been accommodated for since this is a complex system where few direct comparisons to existent systems can be made. Three broad areas of the human-telerobot interface where simulation can be of assistance are described. The use of simulation not only can result in a well-designed human-telerobot interface, but also can be used to ensure that components have been selected to best meet system's goals, and for operator training.

  18. Implementation of RCCL, a robot control C library on a microVAX II

    NASA Technical Reports Server (NTRS)

    Lee, Jin S.; Hayati, Samad; Hayward, Vincent; Lloyd, John E.

    1987-01-01

    The robot control C library (RCCL), a high-level robot programing system which enables a progammer to employ a set of system calls to specify robot manipulator tasks, is discussed. The general structure of RCCL is described, and the implementation of RCCL on a microVAX II is examined. Proposed extensions and improvements of RCCL relevant to NASA's telerobotic system are addressed.

  19. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  20. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  1. Robonaut testing

    NASA Image and Video Library

    2013-08-05

    ISS036-E-029110 (6 Aug. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, wears tele-operation gear consisting of a vest, gloves and visor to telerobotically test Robonaut 2’s maneuvers. Cassidy was able to manipulate R2’s head, neck, arms and fingers telerobotically through his own movements as well as through verbal commands.

  2. Robonaut testing

    NASA Image and Video Library

    2013-08-05

    ISS036-E-029109 (6 Aug. 2013) --- In the International Space Station’s Destiny laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, wears tele-operation gear consisting of a vest, gloves and visor to telerobotically test Robonaut 2’s maneuvers. Cassidy was able to manipulate R2’s head, neck, arms and fingers telerobotically through his own movements as well as through verbal commands.

  3. Cassidy with Robonaut 2

    NASA Image and Video Library

    2013-08-28

    ISS036-E-038293 (28 Aug. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, wears tele-operation gear consisting of a vest, gloves and visor to telerobotically test Robonaut 2's maneuvers. Cassidy was able to manipulate R2's head, neck, arms and fingers telerobotically through his own movements as well as through verbal commands.

  4. Robonaut 2 Teleops

    NASA Image and Video Library

    2013-07-22

    ISS036-E-029140 (6 Aug. 2013) --- In the International Space Station?s Destiny laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, wears tele-operation gear consisting of a vest, gloves and visor to telerobotically test Robonaut 2?s maneuvers. Cassidy was able to manipulate R2?s head, neck, arms and fingers telerobotically through his own movements as well as through verbal commands.

  5. Robonaut 2 Teleops

    NASA Image and Video Library

    2013-07-22

    ISS036-E-029144 (6 Aug. 2013) --- In the International Space Station?s Destiny laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, wears tele-operation gear consisting of a vest, gloves and visor to telerobotically test Robonaut 2?s maneuvers. Cassidy was able to manipulate R2?s head, neck, arms and fingers telerobotically through his own movements as well as through verbal commands.

  6. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be referenced as is, without requiring data to be transferred into any other database. TEJAS is simple to use and requires no formal training. Some knowledge of HyperCard is helpful, but not essential. All Help cards printed in the TEJAS User's Guide are part of the TEJAS Help Stack and are available from a pop-up menu any time you are using TEJAS. Specific stacks created in TEJAS can be exchanged between groups, divisions, companies, or centers for complete communication of fundamental information that forms the basis for further analyses. TEJAS runs on any Apple Macintosh personal computer with at least one megabyte of RAM, a hard disk, and HyperCard 1.21, or later version. TEJAS is a copyrighted work with all copyright vested in NASA. HyperCard and Macintosh are registered trademarks of Apple Computer, Inc.

  7. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  9. MIT research in telerobotics

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1987-01-01

    Ongoing MIT research in telerobotics (vehicles capable of some autonomous sensing and manipulating, having some remote supervisory control by people) and teleoperation (vehicles for sensing and manipulating which are fully controlled remotely by people) is discussed. The current efforts mix human and artificial intelligence/control. The idea of adjustable impedance at either end of pure master-slave teleoperation, and simultaneous coordinated control of teleoperator/telerobotic systems which have more than six degrees of freedom (e.g., a combined vehicle and arm, each with five or six DOF) are discussed. A new cable-controlled parallel link arm which offers many advantages over conventional arms for space is briefly described. Predictor displays to compensate for time delay in teleoperator loops, the use of state estimation to help human control decisions in space, and ongoing research in supervisory command language are covered. Finally, efforts to build a human flyable real-time dynamic computer-graphic telerobot simulator are described. These projects represent most, but not all, of the telerobotics research in our laboratory, supported by JPL, NASA Ames and NOAA.

  10. Design of a telerobotic controller with joint torque sensors

    NASA Technical Reports Server (NTRS)

    Jansen, J. F.; Herndon, J. N.

    1990-01-01

    The purpose was to analytically show how to design a joint controller for a telerobotic system when joint torque sensors are available. Other sensors such as actuator position, actuator velocity, joint position, and joint velocity are assumed to be accessible; however, the results will also be useful when only partial measurements are available. The controller presented can be applied to either mode of operation of a manipulator (i.e., teleoperation or robotic). Mechanical manipulators with high levels of friction are assumed. The results are applied to a telerobotic system built for NASA. Very high levels of friction have been reduced using high-gain feedback while avoiding limit cycles.

  11. Software architecture for a distributed real-time system in Ada, with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Olsen, Douglas R.; Messiora, Steve; Leake, Stephen

    1992-01-01

    The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.

  12. Integrated Design of a Telerobotic Workstation

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John-Paul

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.

  13. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  14. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  15. Systems autonomy technology: Executive summary and program plan

    NASA Technical Reports Server (NTRS)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  16. Application of structured analysis to a telerobotic system

    NASA Technical Reports Server (NTRS)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  17. Advancing automation and robotics technology for the Space Station Freedom and for the U.S. economy. Submitted to the Congress of the U.S. May 1991

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.

  18. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  19. The telerobot testbed: An architecture for remote servicing

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.

    1990-01-01

    The NASA/OAST Telerobot Testbed will reach its next increment in development by the end of FY-89. The testbed will have the capability for: force reflection in teleoperation, shared control, traded control, operator designate and relative update. These five capabilities will be shown in a module release and exchange operation using mockups of Orbital Replacement Units (ORU). This development of the testbed shows examples of the technologies needed for remote servicing, particularly under conditions of delay in transmissions to the servicing site. Here, the following topics are presented: the system architecture of the testbed which incorporates these telerobotic technologies for servicing, the implementation of the five capabilities and the operation of the ORU mockups.

  20. Benchmarking Ada tasking on tightly coupled multiprocessor architectures

    NASA Technical Reports Server (NTRS)

    Collard, Philippe; Goforth, Andre; Marquardt, Matthew

    1989-01-01

    The development of benchmarks and performance measures for parallel Ada tasking is reported with emphasis on the macroscopic behavior of the benchmark across a set of load parameters. The application chosen for the study was the NASREM model for telerobot control, relevant to many NASA missions. The results of the study demonstrate the potential of parallel Ada in accomplishing the task of developing a control system for a system such as the Flight Telerobotic Servicer using the NASREM framework.

  1. The Space Station Freedom Flight Telerobotic Servicer - The design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    Mccain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.

    1990-01-01

    The Flight Telerobotic Servicer (FTS) will provide a telerobotic capability to the Space Station in the early assembly phases of the program and will be used for assembly, maintenance, and inspection throughout the lifetime of the Station. Here, the FTS design approach to the development of autonomous capabilities is discussed. The FTS telerobotic workstations for the Shuttle and Space Station, and facility for on-orbit storage are examined. The rationale of the FTS with regard to ease of operation, operational versatility, maintainability, safety, and control is discussed.

  2. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  3. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  4. The NASA/OAST telerobot testbed architecture

    NASA Technical Reports Server (NTRS)

    Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.

    1989-01-01

    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.

  5. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  6. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  7. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  8. The use of computer graphic simulation in the development of on-orbit tele-robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Hinman, Elaine

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.

  9. Space Station Freedom coupling tasks: An evaluation of their space operational compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1991-01-01

    The development of the Space Station Freedom tasks that are compatible with both telerobotic as well as extravehicular activity is a necessary redundancy in order to insure successful day to day operation. One task to be routinely performed aboard Freedom will be the changeout of various quick disconnect fluid connectors. In an attempt to resolve these potentially contradictory issues of compatibility, mock-ups of couplings suitable to both extravehicular as well as telerobotic activity were designed and built. An evaluation performed at the Remote Operator Interaction Laboratory at NASA's Johnson Space Center is discussed, which assessed the prototype couplings as well as three standard coupling designs. Data collected during manual and telerobotic manipulation of the couplings indicated that the custom coupling was in fact shown to be faster to operate and generally preferred over the standard coupling designs.

  10. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; hide

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other publications. This document focuses on the CTCV design.

  11. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  12. A unified teleoperated-autonomous dual-arm robotic system

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam Sing; Backes, Paul G.; Lloyd, John

    1991-01-01

    A description is given of complete robot control facility built as part of a NASA telerobotics program to develop a state-of-the-art robot control environment for performing experiments in the repair and assembly of spacelike hardware to gain practical knowledge of such work and to improve the associated technology. The basic architecture of the manipulator control subsystem is presented. The multiarm Robot Control C Library (RCCL), a key software component of the system, is described, along with its implementation on a Sun-4 computer. The system's simulation capability is also described, and the teleoperation and shared control features are explained.

  13. An operator interface design for a telerobotic inspection system

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tso, Kam S.; Hayati, Samad

    1993-01-01

    The operator interface has recently emerged as an important element for efficient and safe interactions between human operators and telerobotics. Advances in graphical user interface and graphics technologies enable us to produce very efficient operator interface designs. This paper describes an efficient graphical operator interface design newly developed for remote surface inspection at NASA-JPL. The interface, designed so that remote surface inspection can be performed by a single operator with an integrated robot control and image inspection capability, supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  14. NASA's Space Launch System: Positioning Assets for Tele-Robotic Operations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.; Robinson, Kimberly F.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) is designing and developing America's most capable launch vehicle to support high-priority human and scientific exploration beyond Earth's orbit. The Space Launch System (SLS) will initially lift 70 metric tons (t) on its first flights, slated to begin in 2017, and will be evolved after 2021 to a full 130-t capability-larger than the Saturn V Moon rocket. This superior lift and associated volume capacity will support game-changing exploration in regions that were previously unattainable, being too costly and risky to reach. On the International Space Station, astronauts are training for long-duration missions to asteroids and cis-martian regions, but have not had transportation out of Earth's orbit - until now. Simultaneously, productive rovers are sending scientists - and space fans - unprecedented information about the composition and history of Mars, the planet thought to be most like Earth. This combination of experience and information is laying the foundation for future missions, such as those outlined in NASA's "Mars Next Decade" report, that will rely on te1e-robotic operations to take exploration to the next level. Within this paradigm, NASA's Space Launch System stands ready to manifest the unique payloads that will be required for mission success. Ultimately, the ability to position assets - ranging from orbiters, to landers, to communication satellites and surface systems - is a critical step in broadening the reach of technological innovation that will benefit all Earth's people as the Space Age unfolds. This briefing will provide an overview of how the Space Launch System will support delivery of elements for tele-robotic operations at destinations such as the Moon and Mars, which will synchronize the human-machine interface to deliver hybrid on-orbit capabilities. Ultimately, telerobotic operations will open entirely new vistas and the doors of discovery. NASA's Space Launch System will be a safe, affordable, and sustainable platform for these purposes and more.

  15. Project Introduction for SUBSEA: Systematic Underwater Biogeochemical Science and Exploration Analog

    NASA Astrophysics Data System (ADS)

    Nawotniak, S. E. K.; Lim, D. S. S.; German, C. R.; Shock, E. L.; Huber, J. A.; Breier, J. A.

    2018-05-01

    NASA SUBSEA studies low T, low P seamounts via integrated volcanology, geochemistry, and microbiology as an analog for Enceladus. Research done in telerobotic space exploration simulation. First cruise is Loihi in August 2018.

  16. Proceedings of the 2nd NASA Ada User's Symposium

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several presentations, mostly in viewgraph form, on various topics relating to Ada applications are given. Topics covered include the use of Ada in NASA, Ada and the Space Station, the software support environment, Ada in the Software Engineering Laboratory, Ada at the Jet Propulsion Laboratory, the Flight Telerobotic Servicer, and lessons learned in prototyping the Space Station Remote Manipulator System control.

  17. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  18. The sensing and perception subsystem of the NASA research telerobot

    NASA Technical Reports Server (NTRS)

    Wilcox, B.; Gennery, D. B.; Bon, B.; Litwin, T.

    1987-01-01

    A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described.

  19. Machine intelligence and autonomy for aerospace systems

    NASA Technical Reports Server (NTRS)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  20. Advancing automation and robotics technology for the Space Station Freedom and for the US economy: Submitted to the United States Congress

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.

  1. Miniature Telerobots in Space Applications

    NASA Technical Reports Server (NTRS)

    Venema, S. C.; Hannaford, B.

    1995-01-01

    Ground controlled telerobots can be used to reduce astronaut workload while retaining much of the human capabilities of planning, execution, and error recovery for specific tasks. Miniature robots can be used for delicate and time consuming tasks such as biological experiment servicing without incurring the significant mass and power penalties associated with larger robot systems. However, questions remain regarding the technical and economic effectiveness of such mini-telerobotic systems. This paper address some of these open issues and the details of two projects which will provide some of the needed answers. The Microtrex project is a joint University of Washington/NASA project which plans on flying a miniature robot as a Space Shuttle experiment to evaluate the effects of microgravity on ground-controlled manipulation while subject to variable time-delay communications. A related project involving the University of Washington and Boeing Defense and Space will evaluate the effectiveness f using a minirobot to service biological experiments in a space station experiment 'glove-box' rack mock-up, again while subject to realistic communications constraints.

  2. The flight telerobotic servicer Tinman concept: System design drivers and task analysis

    NASA Technical Reports Server (NTRS)

    Andary, J. F.; Hewitt, D. R.; Hinkal, S. W.

    1989-01-01

    A study was conducted to develop a preliminary definition of the Flight Telerobotic Servicer (FTS) that could be used to understand the operational concepts and scenarios for the FTS. Called the Tinman, this design concept was also used to begin the process of establishing resources and interfaces for the FTS on Space Station Freedom, the National Space Transportation System shuttle orbiter, and the Orbital Maneuvering vehicle. Starting with an analysis of the requirements and task capabilities as stated in the Phase B study requirements document, the study identified eight major design drivers for the FTS. Each of these design drivers and their impacts on the Tinman design concept are described. Next, the planning that is currently underway for providing resources for the FTS on Space Station Freedom is discussed, including up to 2000 W of peak power, up to four color video channels, and command and data rates up to 500 kbps between the telerobot and the control station. Finally, an example is presented to show how the Tinman design concept was used to analyze task scenarios and explore the operational capabilities of the FTS. A structured methodology using a standard terminology consistent with the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) was developed for this analysis.

  3. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  4. i-SAIRAS '90; Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kobe, Japan, Nov. 18-20, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.

  5. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  6. Automation and Robotics for space operation and planetary exploration

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  7. Characteristics and requirements of robotic manipulators for space operations

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Hewitt, Dennis R.; Spidaliere, Peter D.; Lambeck, Robert W.

    1992-01-01

    A robotic manipulator, DTF-1, developed as part of the Flight Telerobotic Servicer (FTS) project at Goddard Space Flight Center is discussed focusing on the technical, operational, and safety requirements. The DTF-1 system design, which is based on the manipulator, gripper, cameras, computer, and an operator control station incorporates the fundamental building blocks of the original FTS, the end product of which was to have been a light-weight, dexterous telerobotic device. For the first time in the history of NASA, space technology and robotics were combined to find new and unique solutions to the demanding requirements of flying a sophisticated robotic manipulator in space. DTF-1 is considered to be the prototype for all future development in space robotics.

  8. 2010 NASA Exploration Systems Mission Directorate: Lunabotics Mining Competition Systems Engineering Paper

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.

  9. Telerobotic rendezvous and docking vision system architecture

    NASA Technical Reports Server (NTRS)

    Gravely, Ben; Myers, Donald; Moody, David

    1992-01-01

    This research program has successfully demonstrated a new target label architecture that allows a microcomputer to determine the position, orientation, and identity of an object. It contains a CAD-like database with specific geometric information about the object for approach, grasping, and docking maneuvers. Successful demonstrations were performed selecting and docking an ORU box with either of two ORU receptacles. Small, but significant differences were seen in the two camera types used in the program, and camera sensitive program elements have been identified. The software has been formatted into a new co-autonomy system which provides various levels of operator interaction and promises to allow effective application of telerobotic systems while code improvements are continuing.

  10. Station Astronaut Drives Rover from Space During Telerobotics Test (Reporter Pkg for Web)

    NASA Image and Video Library

    2013-07-26

    During a technology demonstration test, an astronaut onboard the International Space Station will remotely control a rover at NASA's Ames Research Center, Moffett Field, Calif. The test is designed to identify the technology and skills needed to remotely operate rovers on the surface of the moon, Mars or an asteroid.

  11. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report presents the on-going research activities at the NASA Marshall Space Flight Center for the year 1988. The subjects presented are space transportation systems, shuttle cargo vehicle, materials processing in space, environmental data base management, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, aeronomy, atomic physics, rocket propulsion, materials and processes, telerobotics, and space systems.

  12. Evaluation of telerobotic systems using an instrumented task board

    NASA Technical Reports Server (NTRS)

    Carroll, John D.; Gierow, Paul A.; Bryan, Thomas C.

    1991-01-01

    An instrumented task board was developed at NASA Marshall Space Flight Center (MSFC). An overview of the task board design, and current development status is presented. The task board was originally developed to evaluate operator performance using the Protoflight Manipulator Arm (PFMA) at MSFC. The task board evaluates tasks for Orbital Replacement Unit (ORU), fluid connect and transfers, electrical connect/disconnect, bolt running, and other basic tasks. The instrumented task board measures the 3-D forces and torques placed on the board, determines the robot arm's 3-D position relative to the task board using IR optics, and provides the information in real-time. The PFMA joint input signals can also be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to real-time force/torque data presentation. The instrumented task board's most promising use is developing benchmarks for NASA centers for comparison and evaluation of telerobotic performance.

  13. Automation and robotics for Space Station in the twenty-first century

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Pivirotto, D. L.

    1986-01-01

    Space Station telerobotics will evolve beyond the initial capability into a smarter and more capable system as we enter the twenty-first century. Current technology programs including several proposed ground and flight experiments to enable development of this system are described. Advancements in the areas of machine vision, smart sensors, advanced control architecture, manipulator joint design, end effector design, and artificial intelligence will provide increasingly more autonomous telerobotic systems.

  14. Man-machine interface issues in space telerobotics: A JPL research and development program

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1987-01-01

    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years.

  15. The space station assembly phase: System design trade-offs for the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The effects of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems often involves a substitution of automation capabilities for human EVA or IVA activities. A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effects of operational constaints. Changes in the region of cost-effectiveness are examined under a variety of system design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: as a research-oriented test bed to learn more about space usage of telerobotics; as a research based test bed having an experimental demonstration orientation with limited assembly and servicing applications; or as an operational system to augment EVA and to aid construction of the Space Station and to reduce the program (schedule) risk by increasing the flexibility of mission operations.

  16. Space robotics--DLR's telerobotic concepts, lightweight arms and articulated hands.

    PubMed

    Hirzinger, G; Brunner, B; Landzettel, K; Sporer, N; Butterfass, J; Schedl, M

    2003-01-01

    The paper briefly outlines DLR's experience with real space robot missions (ROTEX and ETS VII). It then discusses forthcoming projects, e.g., free-flying systems in low or geostationary orbit and robot systems around the space station ISS, where the telerobotic system MARCO might represent a common baseline. Finally it describes our efforts in developing a new generation of "mechatronic" ultra-light weight arms with multifingered hands. The third arm generation is operable now (approaching present-day technical limits). In a similar way DLR's four-fingered hand II was a big step towards higher reliability and yet better performance. Artificial robonauts for space are a central goal now for the Europeans as well as for NASA, and the first verification tests of DLR's joint components are supposed to fly already end of 93 on the space station.

  17. The flight telerobotic servicer: From functional architecture to computer architecture

    NASA Technical Reports Server (NTRS)

    Lumia, Ronald; Fiala, John

    1989-01-01

    After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.

  18. Operations analysis for lunar surface construction: Results of two office of exploration case studies

    NASA Astrophysics Data System (ADS)

    Bell, Lisa Y.; Boles, Walter; Smith, Alvin

    1991-08-01

    In an environment of intense competition for Federal funding, the U.S. space research community is responsible for developing a feasible, cost-effective approach to establishing a surface base on the moon to fulfill long-term Government objectives. This report presents the results of a construction operations analysis of two lunar scenarios provided by the National Aeronautics and Space Administration (NASA). Activities necessary to install the lunar base surface elements are defined and scheduled, based on the productivities and availability of the base resources allocated to the projects depicted in each scenario. The only construction project in which the required project milestones were not completed within the nominal timeframe was the initial startup phase of NASA's FY89 Lunar Evolution Case Study (LECS), primarily because this scenario did not include any Earth-based telerobotic site preparation before the arrival of the first crew. The other scenario analyzed. Reference Mission A from NASA's 90-Day Study of the Human Exploration of the Moon and Mars, did use telerobotic site preparation before the manned phase of the base construction. Details of the analysis for LECS are provided, including spreadsheets indicating quantities of work and Gantt charts depicting the general schedule for the work. This level of detail is not presented for the scenario based on the 90-Day Study because many of the projects include the same (or similar) surface elements and facilities.

  19. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  20. Telerobotic controller development

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, Ken; Rhoades, Don

    1987-01-01

    To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented.

  1. Fault-Tolerant Control For A Robotic Inspection System

    NASA Technical Reports Server (NTRS)

    Tso, Kam Sing

    1995-01-01

    Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.

  2. Telerobotics for depot modernization

    NASA Technical Reports Server (NTRS)

    Leahy, M. B., Jr.; Petroski, S. B.

    1994-01-01

    Development and application of telerobotics technology for the enhancement of the quality of the Air Logistic Centers (ALC) repair and remanufacturing processes is described. Telerobotics provides the means for bridging the gap between manual operation and full automation. The Robotics and Automation Center for Excellence (RACE) initiated the Unified Telerobotics Architecture Project (UTAP) to support the development and application of telerobotics for depot operation.

  3. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  4. Dexterous Orbital Servicing System (DOSS)

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Berka, Reginald B.; Chladek, John T.

    1994-01-01

    The Dexterous Orbiter Servicing System (DOSS) is a dexterous robotic spaceflight system that is based on the manipulator designed as part of the Flight Telerobotics Servicer program for the Space Station Freedom and built during a 'technology capture' effort that was commissioned when the FTS was cancelled from the Space Station Freedom program. The FTS technology capture effort yielded one flight manipulator and the 1 g hydraulic simulator that had been designed as an integrated test tool and crew trainer. The DOSS concept was developed to satisfy needs of the telerobotics research community, the space shuttle, and the space station. As a flight testbed, DOSS would serve as a baseline reference for testing the performance of advanced telerobotics and intelligent robotics components. For shuttle, the DOSS, configured as a movable dexterous tool, would be used to provide operational flexibility for payload operations and contingency operations. As a risk mitigation flight demonstration, the DOSS would serve the International Space Station to characterize the end to end system performance of the Special Purpose Dexterous Manipulator performing assembly and maintenance tasks with actual ISSA orbital replacement units. Currently, the most likely entrance of the DOSS into spaceflight is a risk mitigation flight experiment for the International Space Station.

  5. Initial Experience Using a Telerobotic Ultrasound System for Adult Abdominal Sonography.

    PubMed

    Adams, Scott J; Burbridge, Brent E; Badea, Andreea; Langford, Leanne; Vergara, Vincent; Bryce, Rhonda; Bustamante, Luis; Mendez, Ivar M; Babyn, Paul S

    2017-08-01

    The study sought to assess the feasibility of performing adult abdominal examinations using a telerobotic ultrasound system in which radiologists or sonographers can control fine movements of a transducer and all ultrasound settings from a remote location. Eighteen patients prospectively underwent a conventional sonography examination (using EPIQ 5 [Philips] or LOGIQ E9 [GE Healthcare]) followed by a telerobotic sonography examination (using the MELODY System [AdEchoTech] and SonixTablet [BK Ultrasound]) according to a standardized abdominal imaging protocol. For telerobotic examinations, patients were scanned remotely by a sonographer 2.75 km away. Conventional examinations were read independently from telerobotic examinations. Image quality and acceptability to patients and sonographers was assessed. Ninety-two percent of organs visualized on conventional examinations were sufficiently visualized on telerobotic examinations. Five pathological findings were identified on both telerobotic and conventional examinations, 3 findings were identified using only conventional sonography, and 2 findings were identified using only telerobotic sonography. A paired sample t test showed no significant difference between the 2 modalities in measurements of the liver, spleen, and diameter of the proximal aorta; however, telerobotic assessments overestimated distal aorta and common bile duct diameters and underestimated kidney lengths (P values < .05). All patients responded that they would be willing to have another telerobotic examination. A telerobotic ultrasound system is feasible for performing abdominal ultrasound examinations at a distant location with minimal training and setup requirements and a moderate learning curve. Telerobotic sonography (robotic telesonography) may open up the possibility of remote ultrasound clinics for communities that lack skilled sonographers and radiologists, thereby improving access to care. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Demonstration of surgical telerobotics and virtual telepresence by Internet + ISDN from Monterey (USA) to Milan (Italy).

    PubMed

    Rovetta, A; Sala, R; Bressanelli, M; Garavaldi, M E; Lorini, F; Pegoraro, R; Canina, M

    1998-01-01

    This paper deals with the connection which has been held on 8th July 1997 in collaboration with the JPL of the NASA, Pasadena, California, between the Eighth International Conference on the Advanced Robotics (ICAR '97) in course at Monterey, California and the Telerobotics Laboratory of Politecnico di Milano connected in a multipoint teleconference through the MCU of Rome with the Aula Magna of the same Politecnico and the Palace Business of the Giureconsulti of the Chamber of Commerce of Milan. The demonstration has allowed to telecontrol a scara robot of the Sankyo and an ABB robot, which have affected simulations of operations of biopsy to the prostate, to the liver and to the breast, a mechanical hand and a model of a car, disposed in a space destined to reproduce the Martian ground, from Monterey to Milan by means of the INTERNET+ISDN connection from. In fact the event has taken place four days after the landing on Mars happily successful of the spatial probe Pathfinder from which it has gone out the "Sojourner" robot, telecontrolled from the JPL of the NASA, which has begun to take photos of the Martian ground and also some of these images have been transmitted in the course of the connection.

  7. A distributed telerobotics construction set

    NASA Technical Reports Server (NTRS)

    Wise, James D.

    1994-01-01

    During the course of our research on distributed telerobotic systems, we have assembled a collection of generic, reusable software modules and an infrastructure for connecting them to form a variety of telerobotic configurations. This paper describes the structure of this 'Telerobotics Construction Set' and lists some of the components which comprise it.

  8. The space station freedom flight telerobotic servicer. The design and evolution of a dexterous space robot

    NASA Astrophysics Data System (ADS)

    McCain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the general nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  9. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  10. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  11. Development and demonstration of a telerobotic excavation system

    NASA Technical Reports Server (NTRS)

    Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.

    1994-01-01

    Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.

  12. Selected topics in robotics for space exploration

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)

    1993-01-01

    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.

  13. Commercialization of JPL Virtual Reality calibration and redundant manipulator control technologies

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Seraji, Homayoun; Fiorini, Paolo; Brown, Robert; Christensen, Brian; Beale, Chris; Karlen, James; Eismann, Paul

    1994-01-01

    Within NASA's recent thrust for industrial collaboration, JPL (Jet Propulsion Laboratory) has recently established two technology cooperation agreements in the robotics area: one on virtual reality (VR) calibration with Deneb Robotics, Inc., and the other on redundant manipulator control with Robotics Research Corporation (RRC). These technology transfer cooperation tasks will enable both Deneb and RRC to commercialize enhanced versions of their products that will greatly benefit both space and terrestrial telerobotic applications.

  14. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  15. (abstract) An Ada Language Modular Telerobot Task Execution System

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Long, Mark; Steele, Robert

    1993-01-01

    A telerobotic task execution system is described which has been developed for space flight applications. The Modular Telerobot Task Execution System (MOTES) provides the remote site task execution capability in a local-remote telerobotic system. The system provides supervised autonomous control, shared control, and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion.

  16. Telerobotics in rehabilitation: Barriers to a virtual existence

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Vanderloos, Machiel; Michalowski, Stefan

    1991-01-01

    The topics covered include the following: the need for telerobotics in rehabilitation; barriers to telerobotics technology in rehabilitation and health care; institutional barriers; technical barriers; and a partial view of the future.

  17. A simulation facility for testing Space Station assembly procedures

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.

    1994-01-01

    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  18. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  19. Baseline tests of an autonomous telerobotic system for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung

    1994-01-01

    Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.

  20. Telerobotic workstation design aid

    NASA Technical Reports Server (NTRS)

    Corker, K.; Hudlicka, E.; Young, D.; Cramer, N.

    1989-01-01

    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design.

  1. Ergonomics and human factors in endoscopic surgery: a comparison of manual vs telerobotic simulation systems.

    PubMed

    Lee, E C; Rafiq, A; Merrell, R; Ackerman, R; Dennerlein, J T

    2005-08-01

    Minimally invasive surgical techniques expose surgeons to a variety of occupational hazards that may promote musculoskeletal disorders. Telerobotic systems for minimally invasive surgery may help to reduce these stressors. The objective of this study was to compare manual and telerobotic endoscopic surgery in terms of postural and mental stress. Thirteen participants with no experience as primary surgeons in endoscopic surgery performed a set of simulated surgical tasks using two different techniques--a telerobotic master--slave system and a manual endoscopic surgery system. The tasks consisted of passing a soft spherical object through a series of parallel rings, suturing along a line 5-cm long, running a 32-in ribbon, and cannulation. The Job Strain Index (JSI) and Rapid Upper Limb Assessment (RULA) were used to quantify upper extremity exposure to postural and force risk factors. Task duration was quantified in seconds. A questionnaire provided measures of the participants' intuitiveness and mental stress. The JSI and RULA scores for all four tasks were significantly lower for the telerobotic technique than for the manual one. Task duration was significantly longer for telerobotic than for manual tasks. Participants reported that the telerobotic technique was as intuitive as, and no more stressful than, the manual technique. Given identical tasks, the time to completion is longer using the telerobotic technique than its manual counterpart. For the given simulated tasks in the laboratory setting, the better scores for the upper extremity postural analysis indicate that telerobotic surgery provides a more comfortable environment for the surgeon without any additional mental stress.

  2. Control Software for a High-Performance Telerobot

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Finger, William

    2005-01-01

    A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.

  3. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  4. A Space Data System Standard for Telerobotic Operations

    NASA Technical Reports Server (NTRS)

    Mittman, David S.; Martinez, Lindolfo

    2014-01-01

    The Telerobotics Working Group of the Mission Operations and Information Management Services Area of the Consultative Committee for Space Data Systems is drafting a document that will help bound the scope of an eventual international standard for telerobotic operations services. This paper will present the work in progress and provide background for how the international community is beginning to define standards in telerobotic operations that will help ensure the success of complex missions to explore beyond Earth orbit.

  5. A Generalized-Compliant-Motion Primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.

    1993-01-01

    Computer program bridges gap between planning and execution of compliant robotic motions developed and installed in control system of telerobot. Called "generalized-compliant-motion primitive," one of several task-execution-primitive computer programs, which receives commands from higher-level task-planning programs and executes commands by generating required trajectories and applying appropriate control laws. Program comprises four parts corresponding to nominal motion, compliant motion, ending motion, and monitoring. Written in C language.

  6. Challenges of Human-Robot Communication in Telerobotics

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1996-01-01

    Some general considerations are presented on bilateral human-telerobot control and information communication issues. Advances are reviewed related to the more conventional human-telerobot communication techniques, and some unconventional but promising communication methods are briefly discussed. Future needs and emerging application domains are briefly indicated.

  7. Interactive Scene Analysis Module - A sensor-database fusion system for telerobotic environments

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Vazquez, Sixto L.; Goode, Plesent W.

    1992-01-01

    Accomplishing a task with telerobotics typically involves a combination of operator control/supervision and a 'script' of preprogrammed commands. These commands usually assume that the location of various objects in the task space conform to some internal representation (database) of that task space. The ability to quickly and accurately verify the task environment against the internal database would improve the robustness of these preprogrammed commands. In addition, the on-line initialization and maintenance of a task space database is difficult for operators using Cartesian coordinates alone. This paper describes the Interactive Scene' Analysis Module (ISAM) developed to provide taskspace database initialization and verification utilizing 3-D graphic overlay modelling, video imaging, and laser radar based range imaging. Through the fusion of taskspace database information and image sensor data, a verifiable taskspace model is generated providing location and orientation data for objects in a task space. This paper also describes applications of the ISAM in the Intelligent Systems Research Laboratory (ISRL) at NASA Langley Research Center, and discusses its performance relative to representation accuracy and operator interface efficiency.

  8. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1993-01-01

    Hand controller selection for NASA's Orbiter and Space Station Freedom is an important area of human-telerobot interface design and evaluation. These input devices will control remotely operated systems that include large crane-like manipulators (e.g., Remote Manipulator System or RMS), smaller, more dexterous manipulators (e.g., Flight Telerobotic Servicer or FTS), and free flyers (e.g., Orbital Maneuvering Vehicle or OMV). Candidate hand controller configurations for these systems vary in many ways: shape, size, number of degrees-of-freedom (DOF), operating modes, provision of force reflection, range of movement, and 'naturalness' of use. Unresolved design implementation issues remain, including such topics as how the current Orbiter RMS rotational and translational rate hand controllers compare with the proposed Space Station Freedom hand controllers, the advantages that position hand controllers offer for these applications, and whether separate hand controller configurations are required for each application. Since previous studies contain little empirical hand controller task performance data, a controlled study is needed that tests Space Station Freedom candidate hand controllers during representative tasks. This study also needs to include anthropometric and biomechanical considerations.

  9. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  10. Space teleoperations technology for Space Station evolution

    NASA Technical Reports Server (NTRS)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  11. JPL space station telerobotic engineering prototype development FY 91 status/achievements

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne

    1991-01-01

    The topics covered are presented in view graph form and include: (1) streamlining intravehicular activity (IVA) teleoperation activities on the Space Station Freedom (SSF); (2) enhancing SSF utilization during the man-tended phase; (3) telerobotic ground remote operations (TGRO); and (4) advanced telerobotics system technology (shared control).

  12. Human factors issues in telerobotic systems for Space Station Freedom servicing

    NASA Technical Reports Server (NTRS)

    Malone, Thomas B.; Permenter, Kathryn E.

    1990-01-01

    Requirements for Space Station Freedom servicing are described and the state-of-the-art for telerobotic system on-orbit servicing of spacecraft is defined. The projected requirements for the Space Station Flight Telerobotic Servicer (FTS) are identified. Finally, the human factors issues in telerobotic servicing are discussed. The human factors issues are basically three: the definition of the role of the human versus automation in system control; the identification of operator-device interface design requirements; and the requirements for development of an operator-machine interface simulation capability.

  13. PC/AT-based architecture for shared telerobotic control

    NASA Astrophysics Data System (ADS)

    Schinstock, Dale E.; Faddis, Terry N.; Barr, Bill G.

    1993-03-01

    A telerobotic control system must include teleoperational, shared, and autonomous modes of control in order to provide a robot platform for incorporating the rapid advances that are occurring in telerobotics and associated technologies. These modes along with the ability to modify the control algorithms are especially beneficial for telerobotic control systems used for research purposes. The paper describes an application of the PC/AT platform to the control system of a telerobotic test cell. The paper provides a discussion of the suitability of the PC/AT as a platform for a telerobotic control system. The discussion is based on the many factors affecting the choice of a computer platform for a real time control system. The factors include I/O capabilities, simplicity, popularity, computational performance, and communication with external systems. The paper also includes a description of the actuation, measurement, and sensor hardware of both the master manipulator and the slave robot. It also includes a description of the PC-Bus interface cards. These cards were developed by the researchers in the KAT Laboratory, specifically for interfacing to the master manipulator and slave robot. Finally, a few different versions of the low level telerobotic control software are presented. This software incorporates shared control by supervisory systems and the human operator and traded control between supervisory systems and the human operator.

  14. The WCSAR telerobotics test bed

    NASA Technical Reports Server (NTRS)

    Duffie, N.; Zik, J.; Teeter, R.; Crabb, T.

    1988-01-01

    Component technologies for use in telerobotic systems for space are being developed. As part of this effort, a test bed was established in which these technologies can be verified and integrated into telerobotic systems. The facility consists of two slave industrial robots, an articulated master arm controller, a cartesian coordinate master arm controller, and a variety of sensors, displays and stimulators for feedback to human operators. The controller of one of the slave robots remains in its commercial state, while the controller of the other robot has been replaced with a new controller that achieves high-performance in telerobotic operating modes. A dexterous slave hand which consists of two fingers and a thumb is being developed, along with a number of force-reflecting and non-force reflecting master hands, wrists and arms. A tactile sensing finger tip based on piezo-film technology has been developed, along with tactile stimulators and CAD-based displays for sensory feedback and sensory substitution. The telerobotics test bed and its component technologies are described, as well as the integration of these component technologies into telerobotic systems, and their performance in conjunction with human operators.

  15. Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent

    2014-01-01

    During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.

  16. Plugfest 2009: Global Interoperability in Telerobotics and Telemedicine

    PubMed Central

    King, H. Hawkeye; Hannaford, Blake; Kwok, Ka-Wai; Yang, Guang-Zhong; Griffiths, Paul; Okamura, Allison; Farkhatdinov, Ildar; Ryu, Jee-Hwan; Sankaranarayanan, Ganesh; Arikatla, Venkata; Tadano, Kotaro; Kawashima, Kenji; Peer, Angelika; Schauß, Thomas; Buss, Martin; Miller, Levi; Glozman, Daniel; Rosen, Jacob; Low, Thomas

    2014-01-01

    Despite the great diversity of teleoperator designs and applications, their underlying control systems have many similarities. These similarities can be exploited to enable inter-operability between heterogeneous systems. We have developed a network data specification, the Interoperable Telerobotics Protocol, that can be used for Internet based control of a wide range of teleoperators. In this work we test interoperable telerobotics on the global Internet, focusing on the telesurgery application domain. Fourteen globally dispersed telerobotic master and slave systems were connected in thirty trials in one twenty four hour period. Users performed common manipulation tasks to demonstrate effective master-slave operation. With twenty eight (93%) successful, unique connections the results show a high potential for standardizing telerobotic operation. Furthermore, new paradigms for telesurgical operation and training are presented, including a networked surgery trainer and upper-limb exoskeleton control of micro-manipulators. PMID:24748993

  17. Real-time, interactive, visually updated simulator system for telepresence

    NASA Technical Reports Server (NTRS)

    Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.

    1991-01-01

    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.

  18. Low-Latency Lunar Surface Telerobotics from Earth-Moon Libration Points

    NASA Technical Reports Server (NTRS)

    Lester, Daniel; Thronson, Harley

    2011-01-01

    Concepts for a long-duration habitat at Earth-Moon LI or L2 have been advanced for a number of purposes. We propose here that such a facility could also have an important role for low-latency telerobotic control of lunar surface equipment, both for lunar science and development. With distances of about 60,000 km from the lunar surface, such sites offer light-time limited two-way control latencies of order 400 ms, making telerobotic control for those sites close to real time as perceived by a human operator. We point out that even for transcontinental teleoperated surgical procedures, which require operational precision and highly dexterous manipulation, control latencies of this order are considered adequate. Terrestrial telerobots that are used routinely for mining and manufacturing also involve control latencies of order several hundred milliseconds. For this reason, an Earth-Moon LI or L2 control node could build on the technology and experience base of commercially proven terrestrial ventures. A lunar libration-point telerobotic node could demonstrate exploration strategies that would eventually be used on Mars, and many other less hospitable destinations in the solar system. Libration-point telepresence for the Moon contrasts with lunar telerobotic control from the Earth, for which two-way control latencies are at least six times longer. For control latencies that long, telerobotic control efforts are of the "move-and-wait" variety, which is cognitively inferior to near real-time control.

  19. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  20. A Multi-Center Space Data System Prototype Based on CCSDS Standards

    NASA Technical Reports Server (NTRS)

    Rich, Thomas M.

    2016-01-01

    Deep space missions beyond earth orbit will require new methods of data communications in order to compensate for increasing Radio Frequency (RF) propagation delay. The Consultative Committee for Space Data Systems (CCSDS) standard protocols Spacecraft Monitor & Control (SM&C), Asynchronous Message Service (AMS), and Delay/Disruption Tolerant Networking (DTN) provide such a method. However, the maturity level of this protocol stack is insufficient for mission inclusion at this time. This Space Data System prototype is intended to provide experience which will raise the Technical Readiness Level (TRL) of this protocol set. In order to reduce costs, future missions can take advantage of these standard protocols, which will result in increased interoperability between control centers. This prototype demonstrates these capabilities by implementing a realistic space data system in which telemetry is published to control center applications at the Jet Propulsion Lab (JPL), the Marshall Space Flight Center (MSFC), and the Johnson Space Center (JSC). Reverse publishing paths for commanding from each control center are also implemented. The target vehicle consists of realistic flight computer hardware running Core Flight Software (CFS) in the integrated Power, Avionics, and Power (iPAS) Pathfinder Lab at JSC. This prototype demonstrates a potential upgrade path for future Deep Space Network (DSN) modification, in which the automatic error recovery and communication gap compensation capabilities of DTN would be exploited. In addition, SM&C provides architectural flexibility by allowing new service providers and consumers to be added efficiently anywhere in the network using the common interface provided by SM&C's Message Abstraction Layer (MAL). In FY 2015, this space data system was enhanced by adding telerobotic operations capability provided by the Robot API Delegate (RAPID) family of protocols developed at NASA. RAPID is one of several candidates for consideration and inclusion in a new international standard being developed by the CCSDS Telerobotic Operations Working Group. Software gateways for the purpose of interfacing RAPID messages with the existing SM&C based infrastructure were developed. Telerobotic monitor, control, and bridge applications were written in the RAPID framework, which were then tailored to the NAO telerobotic test article hardware, a product of Aldebaran Robotics.

  1. Generic extravehicular (EVA) and telerobot task primitives for analysis, design, and integration. Version 1.0: Reference compilation for the EVA and telerobotics communities

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Drews, Michael

    1990-01-01

    The results are described of an effort to establish commonality and standardization of generic crew extravehicular (crew-EVA) and telerobotic task analysis primitives used for the study of spaceborne operations. Although direct crew-EVA plans are the most visible output of spaceborne operations, significant ongoing efforts by a wide variety of projects and organizations also require tools for estimation of crew-EVA and telerobotic times. Task analysis tools provide estimates for input to technical and cost tradeoff studies. A workshop was convened to identify the issues and needs to establish a common language and syntax for task analysis primitives. In addition, the importance of such a syntax was shown to have precedence over the level to which such a syntax is applied. The syntax, lists of crew-EVA and telerobotic primitives, and the data base in diskette form are presented.

  2. Space telerobotic systems: Applications and concepts

    NASA Technical Reports Server (NTRS)

    Jenkins, L.

    1987-01-01

    The definition of a variety of assembly, servicing, and maintenance missions has led to the generation of a number of space telerobot concepts. The remote operation of a space telerobot is seen as a means to increase astronaut productivity. Dexterous manipulator arms are controlled from the Space Shuttle Orbiter cabin or a Space Station module. Concepts for the telerobotic work system have been developed by the Lyndon B. Johnson Space Center through contracts with the Grumman Aerospace Corporation and Marin Marietta Corporation. These studies defined a concept for a telerobot with extravehicular activity (EVA) astronaut equivalent capability that would be controlled from the Space Shuttle. An evolutionary development of the system is proposed as a means of incorporating technology advances. Early flight testing is seen as needed to address the uncertainties of robotic manipulation in space. Space robotics can be expected to spin off technology to terrestrial robots, particularly in hazardous and unstructured applications.

  3. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  4. Video Compression

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Optivision developed two PC-compatible boards and associated software under a Goddard Space Flight Center Small Business Innovation Research grant for NASA applications in areas such as telerobotics, telesciences and spaceborne experimentation. From this technology, the company used its own funds to develop commercial products, the OPTIVideo MPEG Encoder and Decoder, which are used for realtime video compression and decompression. They are used in commercial applications including interactive video databases and video transmission. The encoder converts video source material to a compressed digital form that can be stored or transmitted, and the decoder decompresses bit streams to provide high quality playback.

  5. Virtual interface environment workstations

    NASA Technical Reports Server (NTRS)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  6. Experiences with Ada in an embedded system

    NASA Technical Reports Server (NTRS)

    Labaugh, Robert J.

    1988-01-01

    Recent experiences with using Ada in a real time environment are described. The application was the control system for an experimental robotic arm. The objectives of the effort were to experiment with developing embedded applications in Ada, evaluating the suitability of the language for the application, and determining the performance of the system. Additional objectives were to develop a control system based on the NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada, and to experiment with the control laws and how to incorporate them into the NASREM architecture.

  7. A Class of Selenocentric Retrograde Orbits With Innovative Applications to Human Lunar Operations

    NASA Technical Reports Server (NTRS)

    Adamo, Daniel R.; Lester, Daniel F.; Thronson, Harley A.; Barbee, Brent

    2014-01-01

    Selenocentric distant retrograde orbits with radii from approx. 12,500 km to approx. 25,000 km are assessed for stability and for suitability as crewed command and control infrastructure locations in support of telerobotic lunar surface operations and interplanetary human transport. Such orbits enable consistent transits to and from Earth at virtually any time if they are coplanar with the Moon's geocentric orbit. They possess multiple attributes and applications distinct from NASA's proposed destination orbit for a redirected asteroid about 70,000 km from the Moon.

  8. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  9. Human factors requirements for telerobotic command and control: The European Space Agency experimental programme

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    Space Telerobotics research, performed under contract to the European Space Agency (ESA), concerning the execution of human factors experiments, and ultimately leading to the development of a telerobotics test bed, has been carried out since 1985 by a British Consortium consisting of British Aerospace, the United Kingdom Atomic Energy Authority and, more recently, the UK National Advanced Robotics Research Centre. The principal aim of the first study of the series was to derive preliminary requirements for a teleoperation servicing system, with reference to two mission model scenarios. The first scenario introduced the problem of communications time delays, and their likely effect on the ground-based operator in control of a manipulator system on board an unmanned servicing vehicle in Low Earth Orbit. In the second scenario, the operator was located on the NASA Orbiter aft flight deck, supervising the control of a prototype manipulator in the 'servicing' of an experimental payload in the cargo bay area. Human factors analyses centered on defining the requirements for the teleoperator workstation, such as identifying basic ergonomic requirements for workstation and panel layouts, defining teleoperation strategies, developing alphanumeric and graphic screen formats for the supervision or direct control of the manipulator, and the potential applications of expert system technology. The second study for ESA involved an experimental appraisal of some of the important issues highlighted in the first study, for which relevant human factors data did not exist. Of central importance during the second study was the issue of communications time delays and their effect on the manual control of a teleoperated manipulator from a ground-based command and control station.

  10. Weighted feature selection criteria for visual servoing of a telerobot

    NASA Technical Reports Server (NTRS)

    Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.

    1989-01-01

    Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.

  11. Crew interface with a telerobotic control station

    NASA Technical Reports Server (NTRS)

    Mok, Eva

    1987-01-01

    A method for apportioning crew-telerobot tasks has been derived to facilitate the design of a crew-friendly telerobot control station. To identify the most appropriate state-of-the-art hardware for the control station, task apportionment must first be conducted to identify if an astronaut or a telerobot is best to execute the task and which displays and controls are required for monitoring and performance. Basic steps that comprise the task analysis process are: (1) identify space station tasks; (2) define tasks; (3) define task performance criteria and perform task apportionment; (4) verify task apportionment; (5) generate control station requirements; (6) develop design concepts to meet requirements; and (7) test and verify design concepts.

  12. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  13. Simulation of the human-telerobot interface on the Space Station

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1993-01-01

    Many issues remain unresolved concerning the components of the human-telerobot interface presented in this work. It is critical that these components be optimally designed and arranged to ensure, not only that the overall system's goals are met, but but that the intended end-user has been optimally accommodated. With sufficient testing and evaluation throughout the development cycle, the selection of the components to use in the final telerobotic system can promote efficient, error-free performance. It is recommended that whole-system simulation with full-scale mockups be used to help design the human-telerobot interface. It is contended that the use of simulation can facilitate this design and evaluation process.

  14. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  15. Complete modeling of rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph

    2000-06-01

    Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors are being adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and analytical tools for the design of efficient motors are being developed. A hybrid analytical model was developed to address a complete ultrasonic motor as a system. Included in this model is the influence of the rotor dynamics, which was determined experimentally to be important to the motor performance. The analysis employs a 3D finite element model to express the dynamic characteristics of the stator with piezoelectric elements and the rotor. The details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. are included to support practical USM designs. A brush model is used for the interface layer and Coulomb's law for the friction between the stator and the rotor. The theoretical predictions were corroborated experimentally for the motor. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  16. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  17. Graphical programming: A systems approach for telerobotic servicing of space assets

    NASA Technical Reports Server (NTRS)

    Pinkerton, James T.; Mcdonald, Michael J.; Palmquist, Robert D.; Patten, Richard

    1994-01-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenge presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability.

  18. Flight Telerobotic Servicer prototype simulator

    NASA Astrophysics Data System (ADS)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  19. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  20. Dual Arm Work Package performance estimates and telerobot task network simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draper, J.V.; Blair, L.M.

    1997-02-01

    This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less

  1. Planning and reasoning in the JPL telerobot testbed

    NASA Technical Reports Server (NTRS)

    Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark

    1990-01-01

    The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.

  2. The effect of monocular target blur on simulated telerobotic manipulation

    NASA Technical Reports Server (NTRS)

    Liu, Andrew; Stark, Lawrence

    1991-01-01

    A simulation involving three types of telerobotic tasks that require information about the spatial position of objects is reported. This is similar to the results of psychophysical experiments examining the effect of blur on stereoacuity. It is suggested that other psychophysical experimental results could be used to predict operator performance for other telerobotic tasks. It is demonstrated that refractive errors in the helmet-mounted stereo display system can affect performance in the three types of telerobotic tasks. The results of two sets of experiments indicate that monocular target blur of two diopters or more degrades stereo display performance to the level of monocular displays. This indicates that moderate levels of visual degradation that affect the operator's stereoacuity may eliminate the performance advantage of stereo displays.

  3. Virtual classroom

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    After four decades of perfecting techniques for communication with spacecraft on the way to other worlds, space scientists are now working on new ways to reach students in this one. In a partnership between NASA and the University of North Dakota (UND), scientists and engineers from both institutions will soon lead an experiment in Internet learning.Starting January 22, UND will offer a threemonth computerized course in telerobotics. Using RealAudio and CU-SeeMe channels of the Internet to allow real-time transmission of video and audio, instructors will teach college-and graduate-level students the fundamentals of the remote operation and control of a robot.

  4. The human factors of workstation telepresence

    NASA Technical Reports Server (NTRS)

    Smith, Thomas J.; Smith, Karl U.

    1990-01-01

    The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.

  5. Spaceborne construction and operations planning - Decision rules for selecting EVA, telerobot, and combined work-systems

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1992-01-01

    An approach is presented for selecting an appropriate work-system for performing construction and operations tasks by humans and telerobots. The decision to use extravehicular activity (EVA) performed by astronauts, extravehicular robotics (EVR), or a combination of EVA and EVR is determined by the ratio of the marginal costs of EVA, EVR, and IVA. The approach proposed here is useful for examining cost trade-offs between tasks and performing trade studies of task improvement techniques (human or telerobotic).

  6. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  7. Plan recognition and generalization in command languages with application to telerobotics

    NASA Technical Reports Server (NTRS)

    Yared, Wael I.; Sheridan, Thomas B.

    1991-01-01

    A method for pragmatic inference as a necessary accompaniment to command languages is proposed. The approach taken focuses on the modeling and recognition of the human operator's intent, which relates sequences of domain actions ('plans') to changes in some model of the task environment. The salient feature of this module is that it captures some of the physical and linguistic contextual aspects of an instruction. This provides a basis for generalization and reinterpretation of the instruction in different task environments. The theoretical development is founded on previous work in computational linguistics and some recent models in the theory of action and intention. To illustrate these ideas, an experimental command language to a telerobot is implemented. The program consists of three different components: a robot graphic simulation, the command language itself, and the domain-independent pragmatic inference module. Examples of task instruction processes are provided to demonstrate the benefits of this approach.

  8. Mosad and Stream Vision For A Telerobotic, Flying Camera System

    NASA Technical Reports Server (NTRS)

    Mandl, William

    2002-01-01

    Two full custom camera systems using the Multiplexed OverSample Analog to Digital (MOSAD) conversion technology for visible light sensing were built and demonstrated. They include a photo gate sensor and a photo diode sensor. The system includes the camera assembly, driver interface assembly, a frame stabler board with integrated decimeter and Windows 2000 compatible software for real time image display. An array size of 320X240 with 16 micron pixel pitch was developed for compatibility with 0.3 inch CCTV optics. With 1.2 micron technology, a 73% fill factor was achieved. Noise measurements indicated 9 to 11 bits operating with 13.7 bits best case. Power measured under 10 milliwatts at 400 samples per second. Nonuniformity variation was below noise floor. Pictures were taken with different cameras during the characterization study to demonstrate the operable range. The successful conclusion of this program demonstrates the utility of the MOSAD for NASA missions, providing superior performance over CMOS and lower cost and power consumption over CCD. The MOSAD approach also provides a path to radiation hardening for space based applications.

  9. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  10. A Telerobot to Extend the Skill of Microsurgeons

    NASA Technical Reports Server (NTRS)

    Das, H.; Ohm, T.; Boswell, C.; Rodriguez, G.; Steele, R.; Charles, S.

    1998-01-01

    The engineering details of the Robot Assisted MicroSurgery (RAMS) telerobotic system designed to assist microsurgeons improve the precision and dexterity with which they can position surgical instruments is described in this paper.

  11. Control strategies for a telerobot

    NASA Technical Reports Server (NTRS)

    Ohara, John; Stasi, Bill

    1989-01-01

    One of the major issues impacting the utility of telerobotic systems for space is the development of effective control strategies. For near-term applications, telerobot control is likely to utilize teleoperation methodologies with integrated supervisory control capabilities to assist the operator. Two different approaches to telerobotic control are evaluated: bilateral force reflecting master controllers and proportional rate six degrees-of-freedom hand controllers. The controllers' performance of single manipulator arm tasks is compared. Simultaneous operation of both manipulator arms and complex multiaxis slave arm movements is investigated. Task times are significantly longer and fewer errors are committed with the hand controllers. The hand controllers are also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers are rated significantly higher in physical workload. The implications of these findings for space teleoperations and higher levels of control are discussed.

  12. Experiences with the JPL telerobot testbed: Issues and insights

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Balaram, Bob; Beahan, John

    1989-01-01

    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.

  13. Proposal for a remotely manned space station

    NASA Technical Reports Server (NTRS)

    Minsky, Marvin

    1990-01-01

    The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.

  14. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    NASA Technical Reports Server (NTRS)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  15. Medical telerobotic systems: current status and future trends.

    PubMed

    Avgousti, Sotiris; Christoforou, Eftychios G; Panayides, Andreas S; Voskarides, Sotos; Novales, Cyril; Nouaille, Laurence; Pattichis, Constantinos S; Vieyres, Pierre

    2016-08-12

    Teleoperated medical robotic systems allow procedures such as surgeries, treatments, and diagnoses to be conducted across short or long distances while utilizing wired and/or wireless communication networks. This study presents a systematic review of the relevant literature between the years 2004 and 2015, focusing on medical teleoperated robotic systems which have witnessed tremendous growth over the examined period. A thorough insight of telerobotics systems discussing design concepts, enabling technologies (namely robotic manipulation, telecommunications, and vision systems), and potential applications in clinical practice is provided, while existing limitations and future trends are also highlighted. A representative paradigm of the short-distance case is the da Vinci Surgical System which is described in order to highlight relevant issues. The long-distance telerobotics concept is exemplified through a case study on diagnostic ultrasound scanning. Moreover, the present review provides a classification into short- and long-distance telerobotic systems, depending on the distance from which they are operated. Telerobotic systems are further categorized with respect to their application field. For the reviewed systems are also examined their engineering characteristics and the employed robotics technology. The current status of the field, its significance, the potential, as well as the challenges that lie ahead are thoroughly discussed.

  16. Advanced data management design for autonomous telerobotic systems in space using spaceborne symbolic processors

    NASA Technical Reports Server (NTRS)

    Goforth, Andre

    1987-01-01

    The use of computers in autonomous telerobots is reaching the point where advanced distributed processing concepts and techniques are needed to support the functioning of Space Station era telerobotic systems. Three major issues that have impact on the design of data management functions in a telerobot are covered. It also presents a design concept that incorporates an intelligent systems manager (ISM) running on a spaceborne symbolic processor (SSP), to address these issues. The first issue is the support of a system-wide control architecture or control philosophy. Salient features of two candidates are presented that impose constraints on data management design. The second issue is the role of data management in terms of system integration. This referes to providing shared or coordinated data processing and storage resources to a variety of telerobotic components such as vision, mechanical sensing, real-time coordinated multiple limb and end effector control, and planning and reasoning. The third issue is hardware that supports symbolic processing in conjunction with standard data I/O and numeric processing. A SSP that currently is seen to be technologically feasible and is being developed is described and used as a baseline in the design concept.

  17. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  18. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  19. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  20. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.

  1. The role of telementoring and telerobotic assistance in the provision of laparoscopic colorectal surgery in rural areas.

    PubMed

    Sebajang, H; Trudeau, P; Dougall, A; Hegge, S; McKinley, C; Anvari, M

    2006-09-01

    The aim of this study was to assess whether telementoring and telerobotic assistance would improve the range and quality of laparoscopic colorectal surgery being performed by community surgeons. We present a series of 18 patients who underwent telementored or telerobotically assisted laparoscopic colorectal surgery in two community hospitals between December 2002 and December 2003. Four community surgeons with no formal advanced laparoscopic fellowship were remotely mentored and assisted by an expert surgeon from a tertiary care center. Telementoring was achieved with real-time two-way audio-video communications over bandwidths of 384 kbps-1.2 mbps and included one redo ileocolic resection, two right hemicolectomies, two sigmoid resections, three low anterior resections, one subtotal colectomy, one reversal of a Hartmann operation, and one abdominoperineal resection. A Zeus TS microjoint system (Computer Motion Inc, Santa Barbara CA) was used to provide telepresence for the telerobotically assisted laparoscopic procedures, which included three right hemicolectomies, three sigmoid resections, and one low anterior resection. There were no major intraoperative complications. There were two minor intraoperative complications involving serosal tears of the colon from the robotic graspers. In the telementored cases, there were two postoperative complications requiring reoperation (intra-abdominal bleeding and small bowel obstruction). Two telementored procedures were converted because of the mentee's inability to find the appropriate planes of dissection. One telerobotically assisted procedure was completed laparoscopically by the local surgeon with aid of telementoring because of inadequate robotic arm position. The median length of hospital stay for this series was 4 days. The surgeons considered telementoring useful in all cases (median score 4 out of 5). The use of remote telerobotic assistance was also considered a significant enabling tool. Telementoring and remote telerobotic assistance are excellent tools for supporting community surgeons and providing patients better access to advanced surgical care.

  2. Design of a structural and functional hierarchy for planning and control of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Acar, Levent; Ozguner, Umit

    1989-01-01

    Hierarchical structures offer numerous advantages over conventional structures for the control of telerobotic systems. A hierarchically organized system can be controlled via undetailed task assignments and can easily adapt to changing circumstances. The distributed and modular structure of these systems also enables fast response needed in most telerobotic applications. On the other hand, most of the hierarchical structures proposed in the literature are based on functional properties of a system. These structures work best for a few given functions of a large class of systems. In telerobotic applications, all functions of a single system needed to be explored. This approach requires a hierarchical organization based on physical properties of a system and such a hierarchical organization is introduced. The decomposition, organization, and control of the hierarchical structure are considered, and a system with two robot arms and a camera is presented.

  3. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  4. Enhancing Tele-robotics with Immersive Virtual Reality

    DTIC Science & Technology

    2017-11-03

    graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive

  5. Emergence of telerobotic control enhancement from research in machine autonomy

    NASA Astrophysics Data System (ADS)

    Haddad, Albert G., Sr.; Adams, John C.; Berardo, Peter A.; Ohlund, Kent O.; Van Vactor, David L.

    1992-03-01

    This paper provides a description of the Robotic Research Program being conducted at the Lockheed Research and Development Division Laboratories. It details the approach taken to fuse autonomy with teleoperative control. The component/enabling technologies are defined and the status of the development of those technologies is reported. CASE tools used in an accelerated development environment are identified and discussed.

  6. VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Walker, M. E.; Burns, J. O.; Szafir, D. J.

    2018-02-01

    Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.

  7. A collision detection algorithm for telerobotic arms

    NASA Technical Reports Server (NTRS)

    Tran, Doan Minh; Bartholomew, Maureen Obrien

    1991-01-01

    The telerobotic manipulator's collision detection algorithm is described. Its applied structural model of the world environment and template representation of objects is evaluated. Functional issues that are required for the manipulator to operate in a more complex and realistic environment are discussed.

  8. Monovision techniques for telerobots

    NASA Technical Reports Server (NTRS)

    Goode, P. W.; Carnils, K.

    1987-01-01

    The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.

  9. Telerobotics for Human Exploration: Enhancing Crew Capabilities in Deep Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence

    2013-01-01

    Future space missions in Earth orbit, to the Moon, and to other distant destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible or efficient for humans to perform manually. Telerobots, however, can complement human explorers, performing work under remote control from Earth, orbit or nearby habitats. A central challenge, therefore, is to understand how humans and remotely operated robots can be jointly employed to maximize mission performance and success. This presentation provides an overview of the key issues with using telerobots for human exploration.

  10. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  11. Intelligent viewing control for robotic and automation systems

    NASA Astrophysics Data System (ADS)

    Schenker, Paul S.; Peters, Stephen F.; Paljug, Eric D.; Kim, Won S.

    1994-10-01

    We present a new system for supervisory automated control of multiple remote cameras. Our primary purpose in developing this system has been to provide capability for knowledge- based, `hands-off' viewing during execution of teleoperation/telerobotic tasks. The reported technology has broader applicability to remote surveillance, telescience observation, automated manufacturing workcells, etc. We refer to this new capability as `Intelligent Viewing Control (IVC),' distinguishing it from a simple programmed camera motion control. In the IVC system, camera viewing assignment, sequencing, positioning, panning, and parameter adjustment (zoom, focus, aperture, etc.) are invoked and interactively executed by real-time by a knowledge-based controller, drawing on a priori known task models and constraints, including operator preferences. This multi-camera control is integrated with a real-time, high-fidelity 3D graphics simulation, which is correctly calibrated in perspective to the actual cameras and their platform kinematics (translation/pan-tilt). Such merged graphics- with-video design allows the system user to preview and modify the planned (`choreographed') viewing sequences. Further, during actual task execution, the system operator has available both the resulting optimized video sequence, as well as supplementary graphics views from arbitrary perspectives. IVC, including operator-interactive designation of robot task actions, is presented to the user as a well-integrated video-graphic single screen user interface allowing easy access to all relevant telerobot communication/command/control resources. We describe and show pictorial results of a preliminary IVC system implementation for telerobotic servicing of a satellite.

  12. Planning And Reasoning For A Telerobot

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.

    1992-01-01

    Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.

  13. Low-Latency Telerobotic Sample Return and Biomolecular Sequencing for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Lupisella, M.; Bleacher, J.; Lewis, R.; Dworkin, J.; Wright, M.; Burton, A.; Rubins, K.; Wallace, S.; Stahl, S.; John, K.; Archer, D.; Niles, P.; Regberg, A.; Smith, D.; Race, M.; Chiu, C.; Russell, J.; Rampe, E.; Bywaters, K.

    2018-02-01

    Low-latency telerobotics, crew-assisted sample return, and biomolecular sequencing can be used to acquire and analyze lunar farside and/or Apollo landing site samples. Sequencing can also be used to monitor and study Deep Space Gateway environment and crew health.

  14. Lunar Sample Return Missions Using a Tele-Robotic Lander

    NASA Astrophysics Data System (ADS)

    Downes, H.; Crawford, I. A.; Alexander, L.

    2018-02-01

    Deep Space Gateway would allow tele-robotic landers and rovers to access regions of the Moon which have not been previously sampled. Scientific questions, e.g., the nature and duration of volcanic activity and the composition of the mantle/lower crust, could be addressed.

  15. Undersea applications of dexterous robotics

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark M.

    1994-01-01

    The revolution and application of dexterous robotics in the undersea energy production industry and how this mature technology has affected planned SSF dexterous robotic tasks are examined. Undersea telerobotics, or Remotely Operated Vehicles (ROV's), have evolved in design and use since the mid-1970s. Originally developed to replace commercial divers for both planned and unplanned tasks, they are now most commonly used to perform planned robotic tasks in all phases of assembly, inspection, and maintenance of undersea structures and installations. To accomplish these tasks, the worksites, the tasks themselves, and the tools are now engineered with both the telerobot's and the diver's capabilities in mind. In many cases, this planning has permitted a reduction in telerobot system complexity and cost. The philosophies and design practices that have resulted in the successful incorporation of telerobotics into the highly competitive and cost conscious offshore production industry have been largely ignored in the space community. Cases where these philosophies have been adopted or may be successfully adopted in the near future are explored.

  16. Test bed experiments for various telerobotic system characteristics and configurations

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Wiker, Steven F.; Zik, John J.

    1990-01-01

    Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.

  17. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  18. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  19. Semi-Automated Diagnosis, Repair, and Rework of Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Oeftering, Richard C.; Easton, John W.; Anderson, Eric E.

    2008-01-01

    NASA's Constellation Program for Exploration of the Moon and Mars places human crews in extreme isolation in resource scarce environments. Near Earth, the discontinuation of Space Shuttle flights after 2010 will alter the up- and down-mass capacity for the International Space Station (ISS). NASA is considering new options for logistics support strategies for future missions. Aerospace systems are often composed of replaceable modular blocks that minimize the need for complex service operations in the field. Such a strategy however, implies a robust and responsive logistics infrastructure with relatively low transportation costs. The modular Orbital Replacement Units (ORU) used for ISS requires relatively large blocks of replacement hardware even though the actual failed component may really be three orders of magnitude smaller. The ability to perform in-situ repair of electronics circuits at the component level can dramatically reduce the scale of spares and related logistics cost. This ability also reduces mission risk, increases crew independence and improves the overall supportability of the program. The Component-Level Electronics Assembly Repair (CLEAR) task under the NASA Supportability program was established to demonstrate the practicality of repair by first investigating widely used soldering materials and processes (M&P) performed by modest manual means. The work will result in program guidelines for performing manual repairs along with design guidance for circuit reparability. The next phase of CLEAR recognizes that manual repair has its limitations and some highly integrated devices are extremely difficult to handle and demand semi-automated equipment. Further, electronics repairs require a broad range of diagnostic capability to isolate the faulty components. Finally repairs must pass functional tests to determine that the repairs are successful and the circuit can be returned to service. To prevent equipment demands from exceeding spacecraft volume capacity and skill demands from exceeding crew time and training limits, the CLEAR project is examining options provided by non-real time tele-operations, robotics, and a new generation of diagnostic equipment. This paper outlines a strategy to create an effective repair environment where, with the support of ground based engineers, crewmembers can diagnose, repair and test flight electronics in-situ. This paper also discusses the implications of successful tele-robotic repairs when expanded to rework and reconfiguration of used flight assets for building Constellation infrastructure elements.

  20. System architectures for telerobotic research

    NASA Technical Reports Server (NTRS)

    Harrison, F. Wallace

    1989-01-01

    Several activities are performed related to the definition and creation of telerobotic systems. The effort and investment required to create architectures for these complex systems can be enormous; however, the magnitude of process can be reduced if structured design techniques are applied. A number of informal methodologies supporting certain aspects of the design process are available. More recently, prototypes of integrated tools supporting all phases of system design from requirements analysis to code generation and hardware layout have begun to appear. Activities related to system architecture of telerobots are described, including current activities which are designed to provide a methodology for the comparison and quantitative analysis of alternative system architectures.

  1. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  2. Task oriented nonlinear control laws for telerobotic assembly operations

    NASA Technical Reports Server (NTRS)

    Walker, R. A.; Ward, L. S.; Elia, C. F.

    1987-01-01

    The goal of this research is to achieve very intelligent telerobotic controllers which are capable of receiving high-level commands from the human operator and implementing them in an adaptive manner in the object/task/manipulator workspace. Initiatives by the authors at Integrated Systems, Inc. to identify and develop the key technologies necessary to create such a flexible, highly programmable, telerobotic controller are presented. The focus of the discussion is on the modeling of insertion tasks in three dimensions and nonlinear implicit force feedback control laws which incorporate tool/workspace constraints. Preliminary experiments with dual arm beam assembly in 2-D are presented.

  3. A run-time control architecture for the JPL telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Lokshin, A.; Kreutz, K.; Beahan, J.

    1987-01-01

    An architecture for implementing the process-level decision making for a hierarchically structured telerobot currently being implemented at the Jet Propolusion Laboratory (JPL) is described. Constraints on the architecture design, architecture partitioning concepts, and a detailed description of the existing and proposed implementations are provided.

  4. Establishment of the world's first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community.

    PubMed

    Anvari, Mehran; McKinley, Craig; Stein, Harvey

    2005-03-01

    To establish a telerobotic surgical service between a teaching hospital and a rural hospital for provision of telerobotic surgery and assistance to aid rural surgeons in providing a variety of advanced laparoscopic surgery to their community patients. The above service was established between St. Joseph's Hospital in Hamilton and North Bay General Hospital 400 km north of Hamilton on February 28, 2003. The service uses an IP-VPN (15 Mbps of bandwidth) commercially available network to connect the robotic console in Hamilton with 3 arms of the Zeus-TS surgical system in North Bay. To date, 21 telerobotic laparoscopic surgeries have taken place between North Bay and Hamilton, including 13 fundoplications, 3 sigmoid resections, 2 right hemicolectomies, 1 anterior resection, and 2 inguinal hernia repairs. The 2 surgeons were able to operate together using the same surgical footprint and interchange roles seamlessly when desired. There have been no serious intraoperative complications and no cases have had to be converted to open surgeries. The mean hospital stays were equivalent to mean laparoscopic LOS in the tertiary institution. Telerobotic remote surgery is now in routine use, providing high-quality laparoscopic surgical services to patients in a rural community and providing a superior degree of collaboration between surgeons in teaching hospitals and rural hospitals. Further refinement of the robotic and telecommunication technology should ensure its wider application in the near future.

  5. Establishment of the World's First Telerobotic Remote Surgical Service

    PubMed Central

    Anvari, Mehran; McKinley, Craig; Stein, Harvey

    2005-01-01

    Objective: To establish a telerobotic surgical service between a teaching hospital and a rural hospital for provision of telerobotic surgery and assistance to aid rural surgeons in providing a variety of advanced laparoscopic surgery to their community patients. Summary Background Data: The above service was established between St. Joseph's Hospital in Hamilton and North Bay General Hospital 400 km north of Hamilton on February 28, 2003. The service uses an IP-VPN (15 Mbps of bandwidth) commercially available network to connect the robotic console in Hamilton with 3 arms of the Zeus-TS surgical system in North Bay. Results: To date, 21 telerobotic laparoscopic surgeries have taken place between North Bay and Hamilton, including 13 fundoplications, 3 sigmoid resections, 2 right hemicolectomies, 1 anterior resection, and 2 inguinal hernia repairs. The 2 surgeons were able to operate together using the same surgical footprint and interchange roles seamlessly when desired. There have been no serious intraoperative complications and no cases have had to be converted to open surgeries. The mean hospital stays were equivalent to mean laparoscopic LOS in the tertiary institution. Conclusions: Telerobotic remote surgery is now in routine use, providing high-quality laparoscopic surgical services to patients in a rural community and providing a superior degree of collaboration between surgeons in teaching hospitals and rural hospitals. Further refinement of the robotic and telecommunication technology should ensure its wider application in the near future. PMID:15729068

  6. Robot geometry calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Roston, Gerald

    1988-01-01

    Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.

  7. Rebuilding the space technology base

    NASA Technical Reports Server (NTRS)

    Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry

    1989-01-01

    NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.

  8. Development of advanced control schemes for telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1991-01-01

    To study space applications of telerobotics, Goddard Space Flight Center (NASA) has recently built a testbed composed mainly of a pair of redundant slave arms having seven degrees of freedom and a master hand controller system. The mathematical developments required for the computerized simulation study and motion control of the slave arms are presented. The slave arm forward kinematic transformation is presented which is derived using the D-H notation and is then reduced to its most simplified form suitable for real-time control applications. The vector cross product method is then applied to obtain the slave arm Jacobian matrix. Using the developed forward kinematic transformation and quaternions representation of the slave arm end-effector orientation, computer simulation is conducted to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of the Jacobian pseudo-inverse for various sampling times. In addition, the equivalence between Cartesian velocities and quaternion is also verified using computer simulation. The motion control of the slave arm is examined. Three control schemes, the joint-space adaptive control scheme, the Cartesian adaptive control scheme, and the hybrid position/force control scheme are proposed for controlling the motion of the slave arm end-effector. Development of the Cartesian adaptive control scheme is presented and some preliminary results of the remaining control schemes are presented and discussed.

  9. An Intelligent Simulator for Telerobotics Training

    ERIC Educational Resources Information Center

    Belghith, K.; Nkambou, R.; Kabanza, F.; Hartman, L.

    2012-01-01

    Roman Tutor is a tutoring system that uses sophisticated domain knowledge to monitor the progress of students and advise them while they are learning how to operate a space telerobotic system. It is intended to help train operators of the Space Station Remote Manipulator System (SSRMS) including astronauts, operators involved in ground-based…

  10. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  11. Execution environment for intelligent real-time control systems

    NASA Technical Reports Server (NTRS)

    Sztipanovits, Janos

    1987-01-01

    Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.

  12. A situated reasoning architecture for space-based repair and replace tasks

    NASA Technical Reports Server (NTRS)

    Bloom, Ben; Mcgrath, Debra; Sanborn, Jim

    1989-01-01

    Space-based robots need low level control for collision detection and avoidance, short-term load management, fine-grained motion, and other physical tasks. In addition, higher level control is required to focus strategic decision making as missions are assigned and carried out. Reasoning and control must be responsive to ongoing changes in the environment. Research aimed at bridging the gap between high level artificial intelligence (AI) planning techniques and task-level robot programming for telerobotic systems is described. Situated reasoning is incorporated into AI and Robotics systems in order to coordinate a robot's activity within its environment. An integrated system under development in a component maintenance domain is described. It is geared towards replacing worn and/or failed Orbital Replacement Units (ORUs) designed for use aboard NASA's Space Station Freedom based on the collection of components available at a given time. High level control reasons in component space in order to maximize the number operational component-cells over time, while the task-level controls sensors and effectors, detects collisions, and carries out pick and place tasks in physical space. Situated reasoning is used throughout the system to cope with component failures, imperfect information, and unexpected events.

  13. The Flight Telerobotic Servicer (FTS) - A focus for automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Hinkal, Sanford W.; Andary, James F.; Watzin, James G.; Provost, David E.

    1987-01-01

    The concept, fundamental design principles, and capabilities of the FTS, a multipurpose telerobotic system for use on the Space Station and Space Shuttle, are discussed. The FTS is intended to assist the crew in the performance of extravehicular tasks; the telerobot will also be used on the Orbital Maneuvering Vehicle to service free-flyer spacecraft. The FTS will be capable of both teleoperation and autonomous operation; eventually it may also utilize ground control. By careful selection of the functional architecture and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance.

  14. Teleoperation, telerobotics, and telepresence in surgery.

    PubMed

    Satava, R M; Simon, I B

    1993-06-01

    The concepts of teleoperation, telerobotics, and telepresence are presented and defined. Current surgical systems, some in clinical practice and others in prototype demonstration, are used to illustrate each of these principles. The importance and impact of these technologies and their relation to other advanced technologies are illustrated to project a framework for the future of surgery.

  15. Automation and robotics

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin

    1988-01-01

    The Autonomous Systems focus on the automation of control systems for the Space Station and mission operations. Telerobotics focuses on automation for in-space servicing, assembly, and repair. The Autonomous Systems and Telerobotics each have a planned sequence of integrated demonstrations showing the evolutionary advance of the state-of-the-art. Progress is briefly described for each area of concern.

  16. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    NASA Technical Reports Server (NTRS)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  17. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  18. Design, development and evaluation of a compact telerobotic catheter navigation system.

    PubMed

    Tavallaei, Mohammad Ali; Gelman, Daniel; Lavdas, Michael Konstantine; Skanes, Allan C; Jones, Douglas L; Bax, Jeffrey S; Drangova, Maria

    2016-09-01

    Remote catheter navigation systems protect interventionalists from scattered ionizing radiation. However, these systems typically require specialized catheters and extensive operator training. A new compact and sterilizable telerobotic system is described, which allows remote navigation of conventional tip-steerable catheters, with three degrees of freedom, using an interface that takes advantage of the interventionalist's existing dexterity skills. The performance of the system is evaluated ex vivo and in vivo for remote catheter navigation and ablation delivery. The system has absolute errors of 0.1 ± 0.1 mm and 7 ± 6° over 100 mm of axial motion and 360° of catheter rotation, respectively. In vivo experiments proved the safety of the proposed telerobotic system and demonstrated the feasibility of remote navigation and delivery of ablation. The proposed telerobotic system allows the interventionalist to use conventional steerable catheters; while maintaining a safe distance from the radiation source, he/she can remotely navigate the catheter and deliver ablation lesions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Robotic technologies of the Flight Telerobotic Servicer (FTS) including fault tolerance

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    The original FTS concept for Space Station Freedom (SSF) was to provide telerobotic assistance to enhance crew activity and safety and to reduce crew EVA (Extra Vehicular Activity) activity. The first flight of the FTS manipulator systems would demonstrate several candidate tasks and would verify manipulator performance parameters. These first flight tasks included unlocking a SSF Truss Joint, mating/demating a fluid coupling, contact following of a contour board, demonstrating peg-in-hole assembly, and grasping and moving a mass. Future tasks foreseen for the FTS system included ORU (Orbit Replaceable Unit) change-out, Hubble Space Telescope Servicing, Gamma Ray Observatory refueling, and several in-situ SSF servicing and maintenance tasks. Operation of the FTS was planned to evolve from teleoperation to fully autonomous execution of many tasks. This wide range of mission tasks combined with the desire to evolve toward fully autonomy forced several requirements which may seen extremely demanding to the telerobotics community. The FTS requirements appear to have been created to accommodate the open-ended evolution plan such that operational evolution would not be impeded by function limitations. A recommendation arising from the FTS program to remedy the possible impacts from such ambitious requirements is to analyze candidate robotic tasks. Based on these task analyses, operational impacts against development impacts were weighed prior to requirements definition. Many of the FTS requirements discussed in the following sections greatly influenced the development cost and schedule of the FTS manipulator. The FTS manipulator has been assembled at Martin Marietta and is currently in testing. Successful component tests indicate a manipulator which achieves unprecedented performance specifications.

  20. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  1. Mars Surface Operations via Low-Latency Telerobotics from Phobos

    NASA Technical Reports Server (NTRS)

    Wright, Michael; Lupisella, Mark

    2016-01-01

    To help assess the feasibility and timing of Low-Latency Telerobotics (LLT) operations on Mars via a Phobos telecommand base, operations concepts (ops cons) and timelines for several representative sequences for Mars surface operations have been developed. A summary of these LLT sequences and timelines will be presented, along with associated assumptions, operational considerations, and challenges.

  2. Compact Telerobot Hand

    NASA Technical Reports Server (NTRS)

    Rosheim, Mark; Trechsel, Hans

    1993-01-01

    Anthropomorphic telerobotic hand contains actuators, joints, sensors, and complex wiring harnesses. Glove protects interior components of hand from dirt and damage. Imitates motions of human fingers and wrist in lifelike and dexterous way. Incorporates pitch/yaw joints in wrist and head knuckles. Hand modular; so fingers removable, interchangeable units. Feature simplifies servicing and maintenance, which must be done frequently in such complex mechanism.

  3. Geometric database maintenance using CCTV cameras and overlay graphics

    NASA Astrophysics Data System (ADS)

    Oxenberg, Sheldon C.; Landell, B. Patrick; Kan, Edwin

    1988-01-01

    An interactive graphics system using closed circuit television (CCTV) cameras for remote verification and maintenance of a geometric world model database has been demonstrated in GE's telerobotics testbed. The database provides geometric models and locations of objects viewed by CCTV cameras and manipulated by telerobots. To update the database, an operator uses the interactive graphics system to superimpose a wireframe line drawing of an object with known dimensions on a live video scene containing that object. The methodology used is multipoint positioning to easily superimpose a wireframe graphic on the CCTV image of an object in the work scene. An enhanced version of GE's interactive graphics system will provide the object designation function for the operator control station of the Jet Propulsion Laboratory's telerobot demonstration system.

  4. Automation and robotics and related technology issues for Space Station customer servicing

    NASA Technical Reports Server (NTRS)

    Cline, Helmut P.

    1987-01-01

    Several flight servicing support elements are discussed within the context of the Space Station. Particular attention is given to the servicing facility, the mobile servicing center, and the flight telerobotic servicer (FTS). The role that automation and robotics can play in the design and operation of each of these elements is discussed. It is noted that the FTS, which is currently being developed by NASA, will evolve to increasing levels of autonomy to allow for the virtual elimination of routine EVA. Some of the features of the FTS will probably be: dual manipulator arms having reach and dexterity roughly equivalent to that of an EVA-suited astronaut, force reflection capability allowing efficient teleoperation, and capability of operating from a variety of support systems.

  5. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  6. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  7. Teleoperated position control of a PUMA robot

    NASA Technical Reports Server (NTRS)

    Austin, Edmund; Fong, Chung P.

    1987-01-01

    A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.

  8. Telerobotic Perception During Asteroid and Mars Regolith Operations Project

    NASA Technical Reports Server (NTRS)

    Gaddis, Steven; Zeitlin, Nancy (Compiler); Mueller, Robert (Compiler)

    2015-01-01

    Current space telerobotic systems are constrained to only operating in bright light and dust-free conditions. This project will study the effects of difficult lighting and dust conditions on telerobotic perception systems to better assess and refine regolith operations on other neighboring celestial bodies. In partnership with Embry-Riddle Aeronautical University and Caterpillar, Inc., optical, LiDAR and RADAR sensing equipment will be used in performing the study. This project will create a known dust environment in the Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory regolith test bin to characterize the behavior of the sensing equipment in various calibrated lighting and dust conditions. It will also identify potential methods for mitigating the impacts of these undesirable conditions on the performance of the sensing equipment. Enhancing the capability of telerobotic perception systems will help improve life on earth for those working in dangerous, dusty mining conditions, as well as help advance the same technologies used for safer self-driving automobiles in various lighting and weather conditions. It will also prove to be a critical skill needed for advancing robotic and human exploration throughout our solar system, for activities such as mining on an asteroid or pioneering the first colony on Mars.

  9. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  10. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating, the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics. This program was proposed and accepted as a three year research program, a period of time necessary to make the type of fundamental developments to make a significant contributions to space robotics. Unfortunately, less than a year into the program it became clear that the NASA Langley Research Center would be forced by budgetary constraints to essentially leave this area of research. As a result, the total funding we received under this grant represented approximately one year of the original, proposed and approved, funding. For some time, there was substantial uncertainty that even this very reduced level of funding would be provided. The spending of the reduced available funds was spread just over two years to provide the support to permit the MS students who had joined the program to receive their master's degree and terminate their studies in this area.

  11. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  12. Thermal feedback in virtual reality and telerobotic systems

    NASA Technical Reports Server (NTRS)

    Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars

    1994-01-01

    A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.

  13. NASREN: Standard reference model for telerobot control

    NASA Technical Reports Server (NTRS)

    Albus, J. S.; Lumia, R.; Mccain, H.

    1987-01-01

    A hierarchical architecture is described which supports space station telerobots in a variety of modes. The system is divided into three hierarchies: task decomposition, world model, and sensory processing. Goals at each level of the task dedomposition heirarchy are divided both spatially and temporally into simpler commands for the next lower level. This decomposition is repreated until, at the lowest level, the drive signals to the robot actuators are generated. To accomplish its goals, task decomposition modules must often use information stored it the world model. The purpose of the sensory system is to update the world model as rapidly as possible to keep the model in registration with the physical world. The architecture of the entire control system hierarch is described and how it can be applied to space telerobot applications.

  14. The effect of bandwidth on telerobot system performance

    NASA Technical Reports Server (NTRS)

    Uebel, Mark; Ali, Michael S.; Minis, Ioannis

    1991-01-01

    The purpose of the experiment was to determine the effect that various slave-joint bandwidths have on telerobot system performance. The telerobot system consisted of a slave arm controlled by a master. The slave incorporated an impedance loop to provide local compliance in addition to the compliance provided by the operator via force feedback. Three joint bandwidths, 0.5, 1.0, and 2.0 Hz, were used. The performance measures were the task completion time and the sums of the squared forces and moments exerted on the environment. The task consisted of peg-in-hole insertion and removal. The results of the experiment indicate a significant performance decrease at 0.5-Hz bandwidth relative to the 1- and 2-Hz bandwidths. There was no significant change in performance between the 1- and 2-Hz bandwidths.

  15. Evolution and advanced technology. [of Flight Telerobotic Servicer

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford; Pennington, Jack E.; Hansen, Bert, III

    1990-01-01

    The NASREM architecture with its standard interfaces permits development and evolution of the Flight Telerobotic Servicer to greater autonomy. Technologies in control strategies for an arm with seven DOF, including a safety system containing skin sensors for obstacle avoidance, are being developed. Planning and robotic execution software includes symbolic task planning, world model data bases, and path planning algorithms. Research over the last five years has led to the development of laser scanning and ranging systems, which use coherent semiconductor laser diodes for short range sensing. The possibility of using a robot to autonomously assemble space structures is being investigated. A control framework compatible with NASREM is being developed that allows direct global control of the manipulator. Researchers are developing systems that permit an operator to quickly reconfigure the telerobot to do new tasks safely.

  16. Issues, concerns, and initial implementation results for space based telerobotic control

    NASA Technical Reports Server (NTRS)

    Lawrence, D. A.; Chapel, J. D.; Depkovich, T. M.

    1987-01-01

    Telerobotic control for space based assembly and servicing tasks presents many problems in system design. Traditional force reflection teleoperation schemes are not well suited to this application, and the approaches to compliance control via computer algorithms have yet to see significant testing and comparison. These observations are discussed in detail, as well as the concerns they raise for imminent design and testing of space robotic systems. As an example of the detailed technical work yet to be done before such systems can be specified, a particular approach to providing manipulator compliance is examined experimentally and through modeling and analysis. This yields some initial insight into the limitations and design trade-offs for this class of manipulator control schemes. Implications of this investigation for space based telerobots are discussed in detail.

  17. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.

    PubMed

    Ballantyne, Garth H; Moll, Fred

    2003-12-01

    The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.

  18. Multi-level manual and autonomous control superposition for intelligent telerobot

    NASA Technical Reports Server (NTRS)

    Hirai, Shigeoki; Sato, T.

    1989-01-01

    Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.

  19. Hazardous Environment Robotics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.

  20. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  1. The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.

    1989-01-01

    The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.

  2. A distributed data acquisition software scheme for the Laboratory Telerobotic Manipulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.L.; Glassell, R.L.; Rowe, J.C.

    1990-01-01

    A custom software architecture was developed for use in the Laboratory Telerobotic Manipulator (LTM) to provide support for the distributed data acquisition electronics. This architecture was designed to provide a comprehensive development environment that proved to be useful for both hardware and software debugging. This paper describes the development environment and the operational characteristics of the real-time data acquisition software. 8 refs., 5 figs.

  3. Real-time qualitative reasoning for telerobotic systems

    NASA Technical Reports Server (NTRS)

    Pin, Eancois G.

    1993-01-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  4. Participatory telerobotics

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2013-05-01

    We present a novel "participatory telerobotics" system that generalizes the existing concept of participatory sensing to include real-time teleoperation and telepresence by treating humans with mobile devices as ad-hoc telerobots. In our approach, operators or analysts first choose a desired location for remote surveillance or activity from a live geographic map and are then automatically connected via a coordination server to the nearest available trusted human. That human's device is then activated and begins recording and streaming back to the operator a live audiovisual feed for telepresence, while allowing the operator in turn to request complex teleoperative motions or actions from the human. Supported action requests currently include walking, running, leaning, and turning, all with controllable magnitudes and directions. Compliance with requests is automatically measured and scored in real time by fusing information received from the device's onboard sensors, including its accelerometers, gyroscope, magnetometer, GPS receiver, and cameras. Streams of action requests are visually presented by each device to its human in the form of an augmented reality game that rewards prompt physical compliance while remaining tolerant of network latency. Because of its ability to interactively elicit physical knowledge and operations through ad-hoc collaboration, we anticipate that our participatory telerobotics system will have immediate applications in the intelligence, retail, healthcare, security, and travel industries.

  5. The space station assembly phase: Flight telerobotic servicer feasibility, volume 1

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.

  6. Electrostrictive Graft Elastomers and Applications

    NASA Technical Reports Server (NTRS)

    Su, J.; Harrison, J. S.; St.Clair, T. L.; Bar-Cohen, Y.; Leary, S.

    1999-01-01

    Efficient actuators that are lightweight, high performance and compact are needed to support telerobotic requirements for future NASA missions. In this work, we present a new class of electromechanically active polymers that can potentially be used as actuators to meet many NASA needs. The materials are graft elastomers that offer high strain under an applied electric field. Due to its higher mechanical modulus, this elastomer also has a higher strain energy density as compared to previously reported electrostrictive polyurethane elastomers. The dielectric, mechanical and electromechanical properties of this new electrostrictive elastomer have been studied as a function of temperature and frequency. Combined with structural analysis using x-ray diffraction and differential scanning calorimetry on the new elastomer, structure-property interrelationship and mechanisms of the electric field induced strain in the graft elastomer have also been investigated. This electroactive polymer (EAP) has demonstrated high actuation strain and high mechanical energy density. The combination of these properties with its tailorable molecular composition and excellent processability makes it attractive for a variety of actuation tasks. The experimental results and applications will be presented.

  7. A smart telerobotic system driven by monocular vision

    NASA Technical Reports Server (NTRS)

    Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.

    1994-01-01

    A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.

  8. Telerobotic hand controller study of force reflection with position control mode

    NASA Technical Reports Server (NTRS)

    Willshire, Kelli F.; Hankins, Walter W.; Morris, A. Terry; Mixon, Randolph W.

    1992-01-01

    To gain further information about the effectiveness of kinesthetic force feedback or force reflection in position control mode for a telerobot, two Space Station related tasks were performed by eight subjects with and without the use of force reflection. Both time and subjective responses were measured. No differences due to force were found, however, other differences were found, e.g., gender. Comparisons of these results with other studies are discussed.

  9. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  10. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  11. Automated Telerobotic Inspection Of Surfaces

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Prasad, K. Venkatesh

    1996-01-01

    Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.

  12. The JAU-JPL anthropomorphic telerobot

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1989-01-01

    Work in progress on the new anthropomorphic telerobot is described. The initial robot configuration consists of a seven DOF arm and a sixteen DOF hand, having three fingers and a thumb. The robot has active compliance, enabling subsequent dual arm manipulations. To control the rather complex configuration of this robot, an exoskeleton master arm harness and a glove controller were built. The controller will be used for teleoperational tasks and as a research tool to efficiently teach the computer controller advanced manipulation techniques.

  13. Head-coupled remote stereoscopic camera system for telepresence applications

    NASA Astrophysics Data System (ADS)

    Bolas, Mark T.; Fisher, Scott S.

    1990-09-01

    The Virtual Environment Workstation Project (VIEW) at NASA's Ames Research Center has developed a remotely controlled stereoscopic camera system that can be used for telepresence research and as a tool to develop and evaluate configurations for head-coupled visual systems associated with space station telerobots and remote manipulation robotic arms. The prototype camera system consists of two lightweight CCD video cameras mounted on a computer controlled platform that provides real-time pan, tilt, and roll control of the camera system in coordination with head position transmitted from the user. This paper provides an overall system description focused on the design and implementation of the camera and platform hardware configuration and the development of control software. Results of preliminary performance evaluations are reported with emphasis on engineering and mechanical design issues and discussion of related psychophysiological effects and objectives.

  14. Neural-Learning-Based Telerobot Control With Guaranteed Performance.

    PubMed

    Yang, Chenguang; Wang, Xinyu; Cheng, Long; Ma, Hongbin

    2017-10-01

    In this paper, a neural networks (NNs) enhanced telerobot control system is designed and tested on a Baxter robot. Guaranteed performance of the telerobot control system is achieved at both kinematic and dynamic levels. At kinematic level, automatic collision avoidance is achieved by the control design at the kinematic level exploiting the joint space redundancy, thus the human operator would be able to only concentrate on motion of robot's end-effector without concern on possible collision. A posture restoration scheme is also integrated based on a simulated parallel system to enable the manipulator restore back to the natural posture in the absence of obstacles. At dynamic level, adaptive control using radial basis function NNs is developed to compensate for the effect caused by the internal and external uncertainties, e.g., unknown payload. Both the steady state and the transient performance are guaranteed to satisfy a prescribed performance requirement. Comparative experiments have been performed to test the effectiveness and to demonstrate the guaranteed performance of the proposed methods.

  15. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; hide

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  16. Advanced Video Guidance Sensor and next-generation autonomous docking sensors

    NASA Astrophysics Data System (ADS)

    Granade, Stephen R.

    2004-09-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  17. Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  18. Development of a vision non-contact sensing system for telerobotic applications

    NASA Astrophysics Data System (ADS)

    Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.

    2013-08-01

    The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw

  19. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  20. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  1. Dual use display systems for telerobotics

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    This paper describes a telerobotics display system, the Multi-mode Manipulator Display System (MMDS), that has applications for a variety of remotely controlled tasks. Designed primarily to assist astronauts with the control of space robotics systems, the MMDS has applications for ground control of space robotics as well as for toxic waste cleanup, undersea, remotely operated vehicles, and other environments which require remote operations. The MMDS has three modes: (1) Manipulator Position Display (MPD) mode, (2) Joint Angle Display (JAD) mode, and (3) Sensory Substitution (SS) mode. These three modes are discussed in the paper.

  2. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  3. A modular telerobotic task execution system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Tso, Kam S.; Hayati, Samad; Lee, Thomas S.

    1990-01-01

    A telerobot task execution system is proposed to provide a general parametrizable task execution capability. The system includes communication with the calling system, e.g., a task planning system, and single- and dual-arm sensor-based task execution with monitoring and reflexing. A specific task is described by specifying the parameters to various available task execution modules including trajectory generation, compliance control, teleoperation, monitoring, and sensor fusion. Reflex action is achieved by finding the corresponding reflex action in a reflex table when an execution event has been detected with a monitor.

  4. Telerobotics: methodology for the development of through-the-Internet robotic teleoperated system

    NASA Astrophysics Data System (ADS)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Romariz, Luiz S. J.; Alfaro, Sadek C. A.

    1999-11-01

    This work presents a methodology for the development of Teleoperated Robotic System through Internet. Initially, it is presented a bibliographical review of the telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through Internet denominated RobWebCam. The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink.

  5. Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.

  6. Development of kinematic equations and determination of workspace of a 6 DOF end-effector with closed-kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This report presents results from the research grant entitled Active Control of Robot Manipulators, funded by the Goddard Space Flight Center, under Grant NAG5-780, for the period July 1, 1988 to January 1, 1989. An analysis is presented of a 6 degree-of-freedom robot end-effector built to study telerobotic assembly of NASA hardware in space. Since the end-effector is required to perform high precision motion in a limited workspace, closed-kinematic mechanisms are chosen for its design. A closed-form solution is obtained for the inverse kinematic problem and an iterative procedure employing Newton-Raphson method is proposed to solve the forward kinematic problem. A study of the end-effector workspace results in a general procedure for the workspace determination based on link constraints. Computer simulation results are presented.

  7. Simulation of Hazards and Poses for a Rocker-Bogie Rover

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Norris, Jeffrey; Powell, Mark; Tharp, Gregory

    2004-01-01

    Provisions for specification of hazards faced by a robotic vehicle (rover) equipped with a rocker-bogie suspension, for prediction of collisions between the vehicle and the hazards, and for simulation of poses of the vehicle at selected positions on the terrain have been incorporated into software that simulates the movements of the vehicle on planned paths across the terrain. The software in question is that of the Web Interface for Telescience (WITS), selected aspects of which have been described in a number of prior NASA Tech Briefs articles. To recapitulate: The WITS is a system of computer software that enables scientists, located at geographically dispersed computer terminals connected to the World Wide Web, to command instrumented robotic vehicles (rovers) during exploration of Mars and perhaps eventually of other planets. The WITS also has potential for adaptation to terrestrial use in telerobotics and other applications that involve computer-based remote monitoring, supervision, control, and planning.

  8. Spheres: from Ground Development to ISS Operations

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  9. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups of mice exposed to simulated Galactic Cosmic Radiation (at the NASA Space Radiation Lab). Results can then be compared to identical experiments conducted on the ISS. Together results from Gateway, ground-based, and ISS rodent experiments will provide novel insight into the effects of space radiation.

  10. An expert system for planning and scheduling in a telerobotic environment

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.

    1991-01-01

    A knowledge based approach to assigning tasks to multi-agents working cooperatively in jobs that require a telerobot in the loop was developed. The generality of the approach allows for such a concept to be applied in a nonteleoperational domain. The planning architecture known as the task oriented planner (TOP) uses the principle of flow mechanism and the concept of planning by deliberation to preserve and use knowledge about a particular task. The TOP is an open ended architecture developed with a NEXPERT expert system shell and its knowledge organization allows for indirect consultation at various levels of task abstraction. Considering that a telerobot operates in a hostile and nonstructured environment, task scheduling should respond to environmental changes. A general heuristic was developed for scheduling jobs with the TOP system. The technique is not to optimize a given scheduling criterion as in classical job and/or flow shop problems. For a teleoperation job schedule, criteria are situation dependent. A criterion selection is fuzzily embedded in the task-skill matrix computation. However, goal achievement with minimum expected risk to the human operator is emphasized.

  11. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  12. Location of planar targets in three space from monocular images

    NASA Technical Reports Server (NTRS)

    Cornils, Karin; Goode, Plesent W.

    1987-01-01

    Many pieces of existing and proposed space hardware that would be targets of interest for a telerobot can be represented as planar or near-planar surfaces. Examples include the biostack modules on the Long Duration Exposure Facility, the panels on Solar Max, large diameter struts, and refueling receptacles. Robust and temporally efficient methods for locating such objects with sufficient accuracy are therefore worth developing. Two techniques that derive the orientation and location of an object from its monocular image are discussed and the results of experiments performed to determine translational and rotational accuracy are presented. Both the quadrangle projection and elastic matching techniques extract three-space information using a minimum of four identifiable target points and the principles of the perspective transformation. The selected points must describe a convex polygon whose geometric characteristics are prespecified in a data base. The rotational and translational accuracy of both techniques was tested at various ranges. This experiment is representative of the sensing requirements involved in a typical telerobot target acquisition task. Both techniques determined target location to an accuracy sufficient for consistent and efficient acquisition by the telerobot.

  13. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration program and reducing the risks that are indigenous to Mars exploration. Among those areas being explored are alternative space propulsion approaches, solar vs. nuclear power, and reductions in the size of crews.

  14. Telerobotic control of the seven-degree-of-freedom CESAR manipulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babcock, S.M.; Dubey, R.V.; Euler, J.A.

    1988-01-01

    The application of a computationally efficient kinematic control scheme for manipulators with redundant degrees of freedom to the unilateral telerobotic control of seven-degree-of-freedom manipulator (CESARM) at the Oak Ridge National Laboratory Center for Engineering Systems Advanced Research is presented. The kinematic control scheme uses a gradient projection optimization method, which eliminates that need to determine the generalized inverse of the Jacobian when solving for joint velocities, given Cartesian end-effector velocities. A six-degree-of-freedom (nonreplica) master controller is used. Performance indices for redundancy resolution are discussed. 5 ref., 6 figs.

  15. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  16. The space station assembly phase: Flight telerobotic servicer feasibility. Volume 2: Methodology and case study

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.

    1987-01-01

    A methodology is described for examining the feasibility of a Flight Telerobotic Servicer (FTS) using two assembly scenarios, defined at the EVA task level, for the 30 shuttle flights (beginning with MB-1) over a four-year period. Performing all EVA tasks by crew only is compared to a scenario in which crew EVA is augmented by FTS. A reference FTS concept is used as a technology baseline and life-cycle cost analysis is performed to highlight cost tradeoffs. The methodology, procedure, and data used to complete the analysis are documented in detail.

  17. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.; Lightman, A.

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  18. A Graphical Operator Interface for a Telerobotic Inspection System

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Tso, K. S.; Hayati, S.

    1993-01-01

    Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.

  19. NASA Tech Briefs, December 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Video Mosaicking for Inspection of Gas Pipelines; Shuttle-Data-Tape XML Translator; Highly Reliable, High-Speed, Unidirectional Serial Data Links; Data-Analysis System for Entry, Descent, and Landing; Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes; Multiple Embedded Processors for Fault-Tolerant Computing; Hybrid Power Management; Magnetometer Based on Optoelectronic Microwave Oscillator; Program Predicts Time Courses of Human/ Computer Interactions; Chimera Grid Tools; Astronomer's Proposal Tool; Conservative Patch Algorithm and Mesh Sequencing for PAB3D; Fitting Nonlinear Curves by Use of Optimization Techniques; Tool for Viewing Faults Under Terrain; Automated Synthesis of Long Communication Delays for Testing; Solving Nonlinear Euler Equations With Arbitrary Accuracy; Self-Organizing-Map Program for Analyzing Multivariate Data; Tool for Sizing Analysis of the Advanced Life Support System; Control Software for a High-Performance Telerobot; Java Radar Analysis Tool; Architecture for Verifiable Software; Tool for Ranking Research Options; Enhanced, Partially Redundant Emergency Notification System; Close-Call Action Log Form; Task Description Language; Improved Small-Particle Powders for Plasma Spraying; Bonding-Compatible Corrosion Inhibitor for Rinsing Metals; Wipes, Coatings, and Patches for Detecting Hydrazines; Rotating Vessels for Growing Protein Crystals; Oscillating-Linear-Drive Vacuum Compressor for CO2; Mechanically Biased, Hinged Pairs of Piezoelectric Benders; Apparatus for Precise Indium-Bump Bonding of Microchips; Radiation Dosimetry via Automated Fluorescence Microscopy; Multistage Magnetic Separator of Cells and Proteins; Elastic-Tether Suits for Artificial Gravity and Exercise; Multichannel Brain-Signal-Amplifying and Digitizing System; Ester-Based Electrolytes for Low-Temperature Li-Ion Cells; Hygrometer for Detecting Water in Partially Enclosed Volumes; Radio-Frequency Plasma Cleaning of a Penning Malmberg Trap; Reduction of Flap Side Edge Noise - the Blowing Flap; and Preventing Accidental Ignition of Upper-Stage Rocket Motors.

  20. The KALI multi-arm robot programming and control environment

    NASA Technical Reports Server (NTRS)

    Backes, Paul; Hayati, Samad; Hayward, Vincent; Tso, Kam

    1989-01-01

    The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded.

  1. Telerobotic surgery: applications on human patients and training with virtual reality.

    PubMed

    Rovetta, A; Bejczy, A K; Sala, R

    1997-01-01

    This paper deals with the developed researches and applications on telerobotic surgery, devoted to human patients and with training by virtual reality. The researches have been developed in cooperation between Telerobotics Laboratory, Department of Mechanics, Politecnico di Milano, Italy, and Automation and Control Section, Jet Propulsion Laboratory, Pasadena, USA. The researches carried to a telesurgery robotic operation on a dummy on 7th July 1993, by means of satellites communications, to a prostatic biopsy on a human patient on 1st September 1995 with optical fibers, to results on time delay effects, to results on virtual reality applications for training on laparoscopy and surgery. The search implied time delay when the control input originated in Politecnico di Milano, Italy. The results were satisfactory, but also pointed out the need for specific new control transformations to ease the operator's or surgeon's visual/mental workload for hand-eye coordination. In the same research, dummy force commands from JPL to Milan were sent, and were echoed immediately back to JPL, measuring the round-trip time of the command signal. This, to some degree, simulates a contact force feedback situation. The results were very surprising; despite the fact that the ISDN calls are closed and "private" calls, the round-trip time exhibited great variations not only between calls but also within the same call. The results proved that telerobotics and telecontrol may be applied to surgery. Time latency variations are caused by features of communication network, of sending and receiving end computer software. The problem and its solution is also an architectural issue, and considerable improvements are possible. Virtual reality in the application of the research is a strong support to training on virtual objects and not on living beings.

  2. Traction-drive, seven-degree-of-freedom telerobot arm: A concept for manipulaton in space

    NASA Technical Reports Server (NTRS)

    Kuban, D. P.; Williams, D. M.

    1987-01-01

    As man seeks to expand his dominion into new environments, the demand increases for machines that perform useful functions in remote locations. This new concept for manipulation in space is based on knowledge and experience gained from manipulator systems developed to meet the needs of remote nuclear applications. It merges the best characteristics of teleoperation and robotic technologies. The design goals for the telerobot, a mechanical description, and technology areas that must be addressed for successful implementation are presented and discussed. The concept incorporates mechanical traction drives, redundant kinematics, and modular arm subelements to provide a backlash-free manipulator capable of obstacle avoidance.

  3. Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator

    PubMed Central

    Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi

    2017-01-01

    This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635

  4. Stereoscopic, Force-Feedback Trainer For Telerobot Operators

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1994-01-01

    Computer-controlled simulator for training technicians to operate remote robots provides both visual and kinesthetic virtual reality. Used during initial stage of training; saves time and expense, increases operational safety, and prevents damage to robots by inexperienced operators. Computes virtual contact forces and torques of compliant robot in real time, providing operator with feel of forces experienced by manipulator as well as view in any of three modes: single view, two split views, or stereoscopic view. From keyboard, user specifies force-reflection gain and stiffness of manipulator hand for three translational and three rotational axes. System offers two simulated telerobotic tasks: insertion of peg in hole in three dimensions, and removal and insertion of drawer.

  5. Space Station Freedom coupling tasks: An evaluation of their telerobotic and EVA compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1993-01-01

    Of the couplings included in this study, several design components were found to be of interest. With respect to the operation of the couplings, the various concepts resulted in differing reactions from the four subjects who participated in this study. The purpose of this study was not to conceive the final coupling design. Rather, it was intended as a step along an interactive process. The newly modified coupling will be included in a series of further controlled, as well as subjective, evaluations. This part of the ongoing work in the Remote Operator Interaction Laboratory (ROIL) designed to enhance the overall interface by improving design at both the teleoperator and telerobot ends of the system.

  6. A helmet mounted display to adapt the telerobotic environment to human vision

    NASA Technical Reports Server (NTRS)

    Tharp, Gregory; Liu, Andrew; Yamashita, Hitomi; Stark, Lawrence

    1990-01-01

    A Helmet Mounted Display system has been developed. It provides the capability to display stereo images with the viewpoint tied to subjects' head orientation. The type of display might be useful in a telerobotic environment provided the correct operating parameters are known. The effects of update frequency were tested using a 3D tracking task. The effects of blur were tested using both tracking and pick-and-place tasks. For both, researchers found that operator performance can be degraded if the correct parameters are not used. Researchers are also using the display to explore the use of head movements as part of gaze as subjects search their visual field for target objects.

  7. (abstract) NDE and Advanced Actuators at JPL

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1996-01-01

    JPL is responsible for deep space exploration using spacecraft and telerobotic technologies. Since all JPL's missions are one of a kind and hardware dependent, the requirements for nondestructive evaluation (NDE) of the materials and structures that are employed are significantly more stringent than the ones for conventional aerospace needs. The multidisciplinary technologies that are developed at JPL, particularily the ones for the exploration of Mars, are finding applications to a wide variety of NDE applications. Further, technology spin-offs are enabling the development of advanced actuators that are being used to drive various types of telerobotic devices. A review will be given of the recent JPL NDE and advanced actuators activity and it will include several short videos.

  8. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  9. Analysis of the human operator subsystems

    NASA Technical Reports Server (NTRS)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    Except in low-bandwidth systems, knowledge of the human operator transfer function is essential for high-performance telerobotic systems. This information has usually been derived from detailed analyses of tracking performance, in which the human operator is considered as a complete system rather than as a summation of a number of subsystems, each of which influences the operator's output. Studies of one of these subsystems, the limb mechanics system, demonstrate that large parameter variations can occur that can have a profound effect on the stability of force-reflecting telerobot systems. An objective of this research was to decompose the performance of the human operator system in order to establish how the dynamics of each of the elements influence the operator's responses.

  10. Telerobotic management system: coordinating multiple human operators with multiple robots

    NASA Astrophysics Data System (ADS)

    King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.

    2003-09-01

    This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.

  11. Dexterity-Enhanced Telerobotic Microsurgery

    NASA Technical Reports Server (NTRS)

    Charles, Steve; Das, Hari; Ohm, Timothy; Boswell, Curtis; Rodriguez, Guillermo; Steele, Robert; Istrate, Dan

    1997-01-01

    The work reported in this paper is the result, of a collaboration between researchers at the Jet Propulsion Laboratory and Steve Charles, MD, a vitreo-retinal surgeon. The Robot Assisted MicroSurgery (RAMS) telerobotic workstation developed at JPL is a prototype of a system that will be completely under the manual control of a surgeon. The system has a slave robot that will hold surgical instruments. The slave robot motions replicate in six degrees of freedom those of tile. surgeon's hand measured using a master input device with a surgical instrument, shaped handle. The surgeon commands motions for the instrument by moving the handle in the desired trajectories. The trajectories are measured, filtered, and scaled down then used to drive the slave robot.

  12. A survey of telerobotic surface finishing

    NASA Astrophysics Data System (ADS)

    Höglund, Thomas; Alander, Jarmo; Mantere, Timo

    2018-05-01

    This is a survey of research published on the subjects of telerobotics, haptic feedback, and mixed reality applied to surface finishing. The survey especially focuses on how visuo-haptic feedback can be used to improve a grinding process using a remote manipulator or robot. The benefits of teleoperation and reasons for using haptic feedback are presented. The use of genetic algorithms for optimizing haptic sensing is briefly discussed. Ways of augmenting the operator's vision are described. Visual feedback can be used to find defects and analyze the quality of the surface resulting from the surface finishing process. Visual cues can also be used to aid a human operator in manipulating a robot precisely and avoiding collisions.

  13. The blackboard model - A framework for integrating multiple cooperating expert systems

    NASA Technical Reports Server (NTRS)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  14. Robotics development for the enhancement of space endeavors

    NASA Astrophysics Data System (ADS)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  15. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Hamel, Dr. William R.

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simplermore » perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.« less

  16. Evaluation of teleoperated surgical robots in an enclosed undersea environment.

    PubMed

    Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J

    2009-05-01

    The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.

  17. Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin

    NASA Technical Reports Server (NTRS)

    Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.

    2016-01-01

    A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both methods must assume a mean particle size in order to extract a number density. The optical extinction measurement yields the product of the 2nd moment of the particle size distribution and the extinction efficiency Qe. For particle sizes in the range of interest (greater than 1 micrometer), Qe approximately equal to 2. Scaling up of the PES single laser and camera system is underway in the PRTB, where an array of lasers penetrate a con-trolled dust cloud, illuminating multiple targets. Using high speed HD GoPro video cameras, the evolution of the dust cloud and particle size density can be studied in detail.

  18. Satellite Test Assistant Robot (STAR)

    NASA Technical Reports Server (NTRS)

    Mcaffee, D. A.; Kerrisk, D. J.; Johnson, K. R.

    1993-01-01

    A three-year, three-phase program to demonstrate the applicability of telerobotic technology to the testing of satellites and other spacecraft has been initiated. Specifically, the objectives are to design, fabricate, and install into the JPL 25-ft. Space Simulator (SS) a system that will provide the capability to view test articles from all directions in both the visible and infrared (IR) spectral regions, to automatically map the solar flux intensity over the entire work volume of the chamber, and to provide the capability for leak detection. The first year's work, which provides a vertically mobile viewing platform equipped with stereo cameras, will be discussed. Design constraints and system implementation approaches mandated by the requirements of thermal vacuum operation will be emphasized.

  19. Robust control of multi-jointed arm with a decentralized autonomous control mechanism

    NASA Technical Reports Server (NTRS)

    Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki

    1994-01-01

    A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.

  20. Virtual reality and telerobotics applications of an Address Recalculation Pipeline

    NASA Technical Reports Server (NTRS)

    Regan, Matthew; Pose, Ronald

    1994-01-01

    The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.

  1. A kinematic analysis of the modified flight telerobotic servicer manipulator system

    NASA Technical Reports Server (NTRS)

    Crane, Carl; Carnahan, Tim; Duffy, Joseph

    1992-01-01

    A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic servicer manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.

  2. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling

    PubMed Central

    Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei

    2012-01-01

    Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710

  3. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  4. Mechatronic design of haptic forceps for robotic surgery.

    PubMed

    Rizun, P; Gunn, D; Cox, B; Sutherland, G

    2006-12-01

    Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High-fidelity haptic forceps were then developed through an iterative process between engineering and surgery. The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact-free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact-free magnetic position sensor as well as micro-machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 microm with 1.3 microm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright 2006 John Wiley & Sons, Ltd.

  5. Connectionist model-based stereo vision for telerobotics

    NASA Technical Reports Server (NTRS)

    Hoff, William; Mathis, Donald

    1989-01-01

    Autonomous stereo vision for range measurement could greatly enhance the performance of telerobotic systems. Stereo vision could be a key component for autonomous object recognition and localization, thus enabling the system to perform low-level tasks, and allowing a human operator to perform a supervisory role. The central difficulty in stereo vision is the ambiguity in matching corresponding points in the left and right images. However, if one has a priori knowledge of the characteristics of the objects in the scene, as is often the case in telerobotics, a model-based approach can be taken. Researchers describe how matching ambiguities can be resolved by ensuring that the resulting three-dimensional points are consistent with surface models of the expected objects. A four-layer neural network hierarchy is used in which surface models of increasing complexity are represented in successive layers. These models are represented using a connectionist scheme called parameter networks, in which a parametrized object (for example, a planar patch p=f(h,m sub x, m sub y) is represented by a collection of processing units, each of which corresponds to a distinct combination of parameter values. The activity level of each unit in the parameter network can be thought of as representing the confidence with which the hypothesis represented by that unit is believed. Weights in the network are set so as to implement gradient descent in an energy function.

  6. Design guidelines for remotely maintainable equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Margaret M.; Manouchehri, Davoud

    1988-01-01

    The quantity and complexity of on-orbit assets will increase significantly over the next decade. Maintaining and servicing these costly assets represent a difficult challenge. Three general methods are proposed to maintain equipment while it is still in orbit: an extravehicular activity (EVA) crew can perform the task in an unpressurized maintenance area outside any space vehicle; an intravehicular activity (IVA) crew can perform the maintenance in a shirt sleeve environment, perhaps at a special maintenance work station in a space vehicle; or a telerobotic manipulator can perform the maintenance in an unpressurized maintenance area at a distance from the crew (who may be EVA, IVA, or on the ground). However, crew EVA may not always be possible; the crew may have other demands on their time that take precedence. In addition, the orbit of the tasks themselves may be impossible for crew entry. Also crew IVA may not always be possible as option for equipment maintenance. For example, the equipment may be too large to fit through the vehicle airlock. Therefore, in some circumstances, the third option, telerobotic manipulation, may be the only feasible option. Telerobotic manipulation has, therefore, an important role for on-orbit maintenance. It is not only used for the reasons outlined above, but also used in some cases as backup to the EVA crew in an orbit that they can reach.

  7. Haptics-based immersive telerobotic system for improvised explosive device disposal: Are two hands better than one?

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lambert, Jason Michel; Mantegh, Iraj; Crymble, Derry; Daly, John; Zhao, Yan

    2012-06-01

    State-of-the-art robotic explosive ordnance disposal robotics have not, in general, adopted recent advances in control technology and man-machine interfaces and lag many years behind academia. This paper describes the Haptics-based Immersive Telerobotic System project investigating an immersive telepresence envrionment incorporating advanced vehicle control systems, Augmented immersive sensory feedback, dynamic 3D visual information, and haptic feedback for explosive ordnance disposal operators. The project aim is to provide operatiors a more sophisticated interface and expand sensory input to perform complex tasks to defeat improvised explosive devices successfully. The introduction of haptics and immersive teleprescence has the potential to shift the way teleprescence systems work for explosive ordnance disposal tasks or more widely for first responders scenarios involving remote unmanned ground vehicles.

  8. Preshaping command inputs to reduce telerobotic system oscillations

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1989-01-01

    The results of using a new technique for shaping inputs to a model of the space shuttle Remote Manipulator System (RMS) are presented. The shapes inputs move the system to the same location that was originally commanded, however, the oscillations of the machine are considerably reduced. An overview of the new shaping method is presented. A description of RMS model is provided. The problem of slow joint servo rates on the RMS is accommodated with an extension of the shaping method. The results and sample data are also presented for both joint and three-dimensional cartesian motions. The results demonstrate that the new shaping method performs well on large, telerobotic systems which exhibit significant structural vibration. The new method is shown to also result in considerable energy savings during operations of the RMS manipulator.

  9. Conference on Space and Military Applications of Automation and Robotics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.

  10. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    NASA Astrophysics Data System (ADS)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.

  11. NASA VERVE: Interactive 3D Visualization Within Eclipse

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar; Allan, Mark B.

    2014-01-01

    At NASA, we develop myriad Eclipse RCP applications to provide situational awareness for remote systems. The Intelligent Robotics Group at NASA Ames Research Center has developed VERVE - a high-performance, robot user interface that provides scientists, robot operators, and mission planners with powerful, interactive 3D displays of remote environments.VERVE includes a 3D Eclipse view with an embedded Java Ardor3D scenario, including SWT and mouse controls which interact with the Ardor3D camera and objects in the scene. VERVE also includes Eclipse views for exploring and editing objects in the Ardor3D scene graph, and a HUD (Heads Up Display) framework allows Growl-style notifications and other textual information to be overlayed onto the 3D scene. We use VERVE to listen to telemetry from robots and display the robots and associated scientific data along the terrain they are exploring; VERVE can be used for any interactive 3D display of data.VERVE is now open source. VERVE derives from the prior Viz system, which was developed for Mars Polar Lander (2001) and used for the Mars Exploration Rover (2003) and the Phoenix Lander (2008). It has been used for ongoing research with IRG's K10 and KRex rovers in various locations. VERVE was used on the International Space Station during two experiments in 2013 - Surface Telerobotics, in which astronauts controlled robots on Earth from the ISS, and SPHERES, where astronauts control a free flying robot on board the ISS.We will show in detail how to code with VERVE, how to interact between SWT controls to the Ardor3D scenario, and share example code.

  12. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  13. Concept for a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  14. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  15. Shared resource control between human and computer

    NASA Technical Reports Server (NTRS)

    Hendler, James; Wilson, Reid

    1989-01-01

    The advantages of an AI system of actively monitoring human control of a shared resource (such as a telerobotic manipulator) are presented. A system is described in which a simple AI planning program gains efficiency by monitoring human actions and recognizing when the actions cause a change in the system's assumed state of the world. This enables the planner to recognize when an interaction occurs between human actions and system goals, and allows maintenance of an up-to-date knowledge of the state of the world and thus informs the operator when human action would undo a goal achieved by the system, when an action would render a system goal unachievable, and efficiently replans the establishment of goals after human intervention.

  16. ROBOSIM: An intelligent simulator for robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Cook, George E.; Biegl, Csaba; Springfield, James F.

    1993-01-01

    The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year).

  17. Telerobotic control of a dextrous manipulator using master and six-DOF hand-controllers for space assembly and servicing tasks

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.

    1987-01-01

    Two studies were conducted evaluating methods of controlling a telerobot; bilateral force reflecting master controllers and proportional rate six degrees of freedom (DOF) hand controllers. The first study compared the controllers on performance of single manipulator arm tasks, a peg-in-the-hole task, and simulated satellite orbital replacement unit changeout. The second study, a Space Station truss assembly task, required simultaneous operation of both manipulator arms (all 12 DOFs) and complex multiaxis slave arm movements. Task times were significantly longer and fewer errors were committed with the hand controllers. The hand controllers were also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers were rated significantly higher in physical workload. There were no significant differences in ratings of manipulator control quality.

  18. Kinematics of the six-degree-of-freedom force-reflecting Kraft Master

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    Presented here are kinematic equations for a six degree of freedom force-reflecting hand controller. The forward kinematics solution is developed and shown in simplified form. The Jacobian matrix, which uses terms from the forward kinematics solution, is derived. Both of these kinematic solutions require joint angle inputs. A calibration method is presented to determine the hand controller joint angles given the respective potentiometer readings. The kinematic relationship describing the mechanical coupling between the hand and controller shoulder and elbow joints is given. These kinematic equations may be used in an algorithm to control the hand controller as a telerobotic system component. The purpose of the hand controller is two-fold: operator commands to the telerobotic system are entered using the hand controller, and contact forces and moments from the task are reflected to the operator via the hand controller.

  19. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  20. FTS evolution

    NASA Technical Reports Server (NTRS)

    Provost, David E.

    1990-01-01

    Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.

  1. Technology Demonstration Missions

    NASA Technical Reports Server (NTRS)

    McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen

    2015-01-01

    Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion (SEP): 50-kW class spacecraft that uses flexible blanket solar arrays for power generation and an electric propulsion system that delivers payload from low-Earth orbit to higher orbits. (10) Solar Sail Demonstration (SSD): Demo to validate sail deployment techniques for solar sails that are propelled by the pressure of sunlight. (11) Terrestrial HIAD Orbit Reentry (THOR): Demo of a 3.7-m Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry vehicle to test second generation aerothermal performance and modeling.

  2. 14 CFR § 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Establishment of NASA Program Identifiers... THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications...

  3. 14 CFR § 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of the NASA Program Identifiers. Â... NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype, NASA Program Identifiers, NASA Flags, and the Agency's Unified Visual Communications System...

  4. A new six-degree-of-freedom force-reflecting hand controller for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Snow, Edward; Townsend, William; Robinson, Lee; Hanson, Joe

    1990-01-01

    A new 6 degree of freedom universal Force Reflecting Hand Controller (FRHC) was designed for use as the man-machine interface in teleoperated and telerobotic flight systems. The features of this new design include highly intuitive operation, excellent kinesthetic feedback, high fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all 6 DOF, good back-drivability, and zero backlash. In addition, the new design has a much larger work envelope, smaller stowage volume, greater stiffness and responsiveness, and better overlap of the human operator's range of motion than do previous designs. The utility and basic operation of a new, flight prototype FRHC called the Model X is briefly discussed. The design heritage, general design goals, and design implementation of this advanced new generation of FRHCs are presented, followed by a discussion of basic features and the results of initial testing.

  5. Operator assistant systems - An experimental approach using a telerobotics application

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Mathe, Nathalie

    1993-01-01

    This article presents a knowledge-based system methodology for developing operator assistant (OA) systems in dynamic and interactive environments. This is a problem both of training and design, which is the subject of this article. Design includes both design of the system to be controlled and design of procedures for operating this system. A specific knowledge representation is proposed for representing the corresponding system and operational knowledge. This representation is based on the situation recognition and analytical reasoning paradigm. It tries to make explicit common factors involved in both human and machine intelligence, including perception and reasoning. An OA system based on this representation has been developed for space telerobotics. Simulations have been carried out with astronauts and the resulting protocols have been analyzed. Results show the relevance of the approach and have been used for improving the knowledge representation and the OA architecture.

  6. Telepresence and telerobotics

    NASA Technical Reports Server (NTRS)

    Garin, John; Matteo, Joseph; Jennings, Von Ayre

    1988-01-01

    The capability for a single operator to simultaneously control complex remote multi degree of freedom robotic arms and associated dextrous end effectors is being developed. An optimal solution within the realm of current technology, can be achieved by recognizing that: (1) machines/computer systems are more effective than humans when the task is routine and specified, and (2) humans process complex data sets and deal with the unpredictable better than machines. These observations lead naturally to a philosophy in which the human's role becomes a higher level function associated with planning, teaching, initiating, monitoring, and intervening when the machine gets into trouble, while the machine performs the codifiable tasks with deliberate efficiency. This concept forms the basis for the integration of man and telerobotics, i.e., robotics with the operator in the control loop. The concept of integration of the human in the loop and maximizing the feed-forward and feed-back data flow is referred to as telepresence.

  7. Optimized resolved rate control of seven-degree-of-freedom Laboratory Telerobotic Manipulator (LTM) with application to three-dimensional graphics simulation

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Mckinney, William S., Jr.

    1989-01-01

    The Laboratory Telerobotic Manipulator (LTM) is a seven-degree-of-freedom robot arm. Two of the arms were delivered to Langley Research Center for ground-based research to assess the use of redundant degree-of-freedom robot arms in space operations. Resolved-rate control equations for the LTM are derived. The equations are based on a scheme developed at the Oak Ridge National Laboratory for computing optimized joint angle rates in real time. The optimized joint angle rates actually represent a trade-off, as the hand moves, between small rates (least-squares solution) and those rates which work toward satisfying a specified performance criterion of joint angles. In singularities where the optimization scheme cannot be applied, alternate control equations are devised. The equations developed were evaluated using a real-time computer simulation to control a 3-D graphics model of the LTM.

  8. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  9. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  10. openSE: a Systems Engineering Framework Particularly Suited to Particle Accelerator Studies and Development Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnal, P.; Féral, B.; Kershaw, K.

    Particle accelerator projects share many characteristics with industrial projects. However, experience has shown that best practice of industrial project management is not always well suited to particle accelerator projects. Major differences include the number and complexity of technologies involved, the importance of collaborative work, development phases that can last more than a decade, and the importance of telerobotics and remote handling to address future preventive and corrective maintenance requirements due to induced radioactivity, to cite just a few. The openSE framework it is a systems engineering and project management framework specifically designed for scientific facilities’ systems and equipment studies andmore » development projects. Best practices in project management, in systems and requirements engineering, in telerobotics and remote handling and in radiation safety management were used as sources of inspiration, together with analysis of current practices surveyed at CERN, GSI and ESS.« less

  11. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  12. Haptic device for telerobotic surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt; Salisbury, Jr., J. Kenneth

    A haptic device for telerobotic surgery, including a base; a linkage system having first and second linkage members coupled to the base; a motor that provides a motor force; a transmission including first and second driving pulleys arranged such that their faces form an angle and their axes form a plane, first and second idler pulleys offset from the plane and arranged between the first and second driving pulleys such that their axes divide the angle between the first and second driving pulleys, and a cable that traverses the first and second driving pulleys and the set of idler pulleysmore » and transfers the motor force to the linkage system; an end effector coupled to distal ends of the first and second linkage members and maneuverable relative to the base; and a controller that modulates the motor force to simulate a body part at a point portion of the end effector.« less

  13. The effects of spatially displaced visual feedback on remote manipulator performance

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Stuart, Mark A.

    1993-01-01

    The results of this evaluation have important implications for the arrangement of remote manipulation worksites and the design of workstations for telerobot operations. This study clearly illustrates the deleterious effects that can accompany the performance of remote manipulator tasks when viewing conditions are less than optimal. Future evaluations should emphasize telerobot camera locations and the use of image/graphical enhancement techniques in an attempt to lessen the adverse effects of displaced visual feedback. An important finding in this evaluation is the extent to which results from previously performed direct manipulation studies can be generalized to remote manipulation studies. Even though the results obtained were very similar to those of the direct manipulation evaluations, there were differences as well. This evaluation has demonstrated that generalizations to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  14. Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.

  15. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  16. Analytic and simulation studies on the use of torque-wheel actuators for the control of flexible robotic arms

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Ghosh, Dave; Kenny, Sean

    1991-01-01

    This paper presents results of analytic and simulation studies to determine the effectiveness of torque-wheel actuators in suppressing the vibrations of two-link telerobotic arms with attached payloads. The simulations use a planar generic model of a two-link arm with a torque wheel at the free end. Parameters of the arm model are selected to be representative of a large space-based robotic arm of the same class as the Space Shuttle Remote Manipulator, whereas parameters of the torque wheel are selected to be similar to those of the Mini-Mast facility at the Langley Research Center. Results show that this class of torque-wheel can produce an oscillation of 2.5 cm peak-to-peak in the end point of the arm and that the wheel produces significantly less overshoot when the arm is issued an abrupt stop command from the telerobotic input station.

  17. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  18. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)

  19. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  20. Developing a Tele-Robotic Platform for Bridge Inspection

    DOT National Transportation Integrated Search

    2011-05-01

    There are many bridges in Virginia with high traffic volumes or difficult access conditions which make these bridges difficult and expensive to inspect. In addition, the inspection of many bridges exposes the inspectors to hazardous conditions such a...

  1. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  2. The NASA Scientific and Technical Information Program: Prologue to the Future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA STI Program offers researchers an infrastructure of people and systems that facilitates access to STI; worldwide. The Program is also NASA's institutional mechanism for disseminating the results of its research and developing activities. Through discussions in 1991, the STI Program formulated its Strategic Plan. The plan gives the Program a renewed sense of direction by focusing on future opportunities, customer requirements and Program goals, along with the changes needed to achieve those goals. The Program provides users access to a massive flow of STI which, in fact, represents the largest collection of aeronautical and space science information in the world. The STI Program products and services are outlined, along with the NASA centers, international operations, and the fact that total quality management drives NASA wide program developments. As is detailed, the NASA STI Program is using its resources as effectively as possible to meet the missing needs of NASA.

  3. 2002 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim (Editor); Black, Cassandra (Editor)

    2002-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2002 NASA/ASEE Faculty Fellowship Program at the John F. Kennedy Space Center (KSC). This was the 18th year that a NASA/ASEE program has been conducted at KSC. The 2002 program was administered by the University of Central Florida (UCF) in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) and the Education Division, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 2002. The KSC Faculty Fellows spent ten weeks working with NASA scientists and engineers on research of mutual interest to the university faculty member and the NASA colleague. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many research areas of current interest to NASA/KSC. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the university faculty member.

  4. NASA and the United States educational system - Outreach programs in aeronautics, space science, and technology

    NASA Technical Reports Server (NTRS)

    Owens, Frank C.

    1990-01-01

    The role of NASA in developing a well-educated American work force is addressed. NASA educational programs aimed at precollege students are examined, including the NASA Spacemobile, Urban Community Enrichment Program, and Summer High School Apprenticeship Program. NASA workshops and programs aimed at helping teachers develop classroom curriculum materials are described. Programs aimed at college and graduate-level students are considered along with coordination efforts with other federal agencies and with corporations.

  5. 1999 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Buckingham, Gregg (Editor)

    2000-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1999 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 15th year that a NASA/ASEE program has been conducted at KSC. The 1999 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE and the Education Division, NASA Headquarters, Washington, DC, and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1999. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member.

  6. Research state-of-the-art of mobile robots in China

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhao, Jinglun; Zhang, Peng; Li, Shiqing

    1991-03-01

    Several newly developed mobile robots in china are described in the paper. It includes masterslave telerobot sixleged robot biped walking robot remote inspection robot crawler moving robot and autonomous mobi le vehicle . Some relevant technology are also described.

  7. Virtual Reality.

    ERIC Educational Resources Information Center

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  8. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Johnson, Roger (Editor); Buckingham, Gregg (Editor)

    1996-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1996 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the twelfth year that a NASA/ASEE program has been conducted at KSC. The 1996 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, DC and KSC. The KSC Program was one of nine such Aeronautics and Space Research Program funded by NASA in 1996. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  9. 2000 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Buckingham, Gregg (Editor)

    2001-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2000 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 16th year that a NASA/ASEE program has been conducted at KSC. The 2000 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Education Division, NASA Headquarters, Washington, D.C., and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA in 2000. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  10. NASA/ASEE Summer Faculty Fellowship Program. 1994 research reports

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A. (Editor); Hosler, E. Ramon (Editor); Camp, Warren (Editor)

    1994-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1994 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the tenth year that a NASA/ASEE program has been conducted at KSC. The 1994 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1994. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  11. 1997 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Buckingham, Gregg (Editor)

    1997-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1997 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 13th year that a NASA/ASEE program has been conducted at KSC. The 1997 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Education Division, NASA Headquarters, Washington, D.C., and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA in 1997. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  12. 1998 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Buckingham, Gregg (Editor)

    1999-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1998 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the 14th year that a NASA/ASEE program has been conducted at KSC. The 1998 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Education Division, NASA Headquarters, Washington, D.C., and KSC. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA in 1998. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the university faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  13. NASA/ASEE Faculty Fellowship Program: 2003 Research Reports

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim (Editor); LopezdeCastillo, Eduardo (Editor)

    2003-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2003 NASA/ASEE Faculty Fellowship Program at the John F. Kennedy Space Center (KSC). This was the nineteenth year that a NASA/ASEE program has been conducted at KSC. The 2003 program was administered by the University of Central Florida (UCF) in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) and the Education Division, NASA Headquarters, Washington, D.C. The KSC program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 2003. The basic common objectives of the NASA/ASEE Faculty Fellowship Program are: A) To further the professional knowledge of qualified engineering and science faculty members; B) To stimulate an exchange of ideas between teaching participants and employees of NASA; C) To enrich and refresh the research and teaching activities of participants institutions; D) To contribute to the research objectives of the NASA center. The KSC Faculty Fellows spent ten weeks (May 19 through July 25, 2003) working with NASA scientists and engineers on research of mutual interest to the university faculty member and the NASA colleague. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many research areas of current interest to NASA/KSC. A separate document reports on the administrative aspects of the 2003 program. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the university faculty member. In many cases a faculty member has developed a close working relationship with a particular NASA group that had provided funding beyond the two-year limit.

  14. NASA Ambassadors: A Speaker Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1998-01-01

    The work done on this project this summer has been geared toward setting up the necessary infrastructure and planning to support the operation of an effective speaker outreach program. The program has been given the name, NASA AMBASSADORS. Also, individuals who become participants in the program will be known as "NASA AMBASSADORS". This summer project has been conducted by the joint efforts of this author and those of Professor George Lebo who will be issuing a separate report. The description in this report will indicate that the NASA AMBASSADOR program operates largely on the contributions of volunteers, with the assistance of persons at the Marshall Space Flight Center (MSFC). The volunteers include participants in the various summer programs hosted by MSFC as well as members of the NASA Alumni League. The MSFC summer participation programs include: the Summer Faculty Fellowship Program for college and university professors, the Science Teacher Enrichment Program for middle- and high-school teachers, and the NASA ACADEMY program for college and university students. The NASA Alumni League members are retired NASA employees, scientists, and engineers. The MSFC offices which will have roles in the operation of the NASA AMBASSADORS include the Educational Programs Office and the Public Affairs Office. It is possible that still other MSFC offices may become integrated into the operation of the program. The remainder of this report will establish the operational procedures which will be necessary to sustain the NASA AMBASSADOR speaker outreach program.

  15. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  16. 48 CFR 1815.7001 - NASA Ombudsman Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA Ombudsman Program... ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Ombudsman 1815.7001 NASA Ombudsman Program. NASA's implementation of an ombudsman program is in NPR 5101.33, Procurement Advocacy...

  17. 48 CFR 1815.7001 - NASA Ombudsman Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA Ombudsman Program... ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Ombudsman 1815.7001 NASA Ombudsman Program. NASA's implementation of an ombudsman program is in NPR 5101.33, Procurement Advocacy...

  18. 48 CFR 1815.7001 - NASA Ombudsman Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA Ombudsman Program... ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Ombudsman 1815.7001 NASA Ombudsman Program. NASA's implementation of an ombudsman program is in NPR 5101.33, Procurement Advocacy...

  19. 48 CFR 1815.7001 - NASA Ombudsman Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA Ombudsman Program... ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Ombudsman 1815.7001 NASA Ombudsman Program. NASA's implementation of an ombudsman program is in NPR 5101.33, Procurement Advocacy...

  20. 48 CFR 1815.7001 - NASA Ombudsman Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA Ombudsman Program... ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Ombudsman 1815.7001 NASA Ombudsman Program. NASA's implementation of an ombudsman program is in NPR 5101.33, Procurement Advocacy...

  1. NASA Year 2000 (Y2K) Program Plan

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  2. The 1995 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Buckingham, Gregg (Editor)

    1995-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1995 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the eleventh year that a NASA/ASEE program has been conducted at KSC. The 1995 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1995. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the University faculty member.

  3. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  4. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  5. SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert

    "SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less

  6. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  7. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  8. Execution of robot-assisted biopsies within the clinical context.

    PubMed

    Rovetta, A; Sala, R

    1995-01-01

    This paper describes the first prostatic biopsy on a human patient using a robotic and telerobotic system. This system was designed at the Politecnico di Milano, and the biopsy was performed on April 7, 1995, in the Hospital Policlinico in Milan, Italy.

  9. HET2 Overview

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.; Bualat, Maria Gabriele; Diftler, Myron A.

    2015-01-01

    2015 mid-year review charts of the Human Exploration Telerobotics 2 project that describe the Astrobee free-flying robot and the Robonaut 2 humanoid robot. A planned replacement for Synchronized Position Hold, Engage, Reorient, Experimental Satellite (SPHERES), which is currently in use in the International Space Station (ISS).

  10. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  11. Issues in NASA Program and Project Management. Special Edition: A Collection of Papers on NASA Procedures and Guidance 7120.5A. Volume 14

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1998-01-01

    A key aspect of NASA's new Strategic Management System is improving the way we plan, approve, execute and evaluate our programs and projects. To this end, NASA has developed the NASA Program and Project Management processes and Requirements-NASA Procedures and Guidelines (NPG) 7120.5A, which formally documents the "Provide Aerospace Products and Capabilities" crosscutting process, and defines the processes and requirements that are responsive to the Program/Project Management-NPD 7120.4A. The Program/Project Management-NPD 7120.4A, issued November 14, 1996, provides the policy for managing programs and projects in a new way that is aligned with the new NASA environment. An Agencywide team has spent thousands of hours developing the NASA Program and Project Management Processes and Requirements-NPG 7120.5A. We have created significant flexibility, authority and discretion for the program and project managers to exercise and carry out their duties, and have delegated the responsibility and the accountability for their programs and projects.

  12. Guidance and control 1991; Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 2-6, 1991

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; McQuerry, James P.

    1991-07-01

    The present conference on guidance and control encompasses advances in guidance, navigation, and control, storyboard displays, approaches to space-borne pointing control, international space programs, recent experiences with systems, and issues regarding navigation in the low-earth-orbit space environment. Specific issues addressed include a scalable architecture for an operational spaceborne autonavigation system, the mitigation of multipath error in GPS-based attitude determination, microgravity flight testing of a laboratory robot, and the application of neural networks. Other issues addressed include image navigation with second-generation Meteosat, Magellan star-scanner experiences, high-precision control systems for telescopes and interferometers, gravitational effects on low-earth orbiters, experimental verification of nanometer-level optical pathlengths, and a flight telerobotic servicer prototype simulator. (For individual items see A93-15577 to A93-15613)

  13. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    NASA Technical Reports Server (NTRS)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  14. NASA initiatives with historically black colleges and universities

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA programs involving students and teachers at historically Black colleges and universities are discussed. The programs at each of the NASA research centers are described. Guidance is given on proposal submission for NASA grants. The Cooperative Education program, the Graduate Student Researchers program, and summer faculty fellowships are discussed.

  15. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)

  16. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)

  17. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)

  18. NASA's university program: Active grants and research contracts, fiscal year 1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    As basic policy NASA believes that colleges and universities should be encouraged to participate in the space and aeronautics program to the maximum extent practicable. The NASA objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA technical and scientific programs. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA University Program.

  19. Development and verification of ground-based tele-robotics operations concept for Dextre

    NASA Astrophysics Data System (ADS)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  20. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  1. University guide to NASA, 1993

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide provides brief descriptions of the two NASA Headquarters program offices through which NASA primarily funds universities, the Office of Space Science and Applications and the Office of Aeronautics and Space Technology. It also describes NASA's Office of Commercial Programs, which funds the Centers for the Commercial Development of Space and the Small Business Innovation Research Program. This guide explains the roles played by NASA's eight field centers and the Jet Propulsion Laboratory, and gives a sampling of ongoing NASA-wide educational programs and services. Most importantly, this guide provides practical information in the form of names and telephone numbers of NASA contacts.

  2. University guide to NASA, 1993

    NASA Astrophysics Data System (ADS)

    1992-10-01

    This guide provides brief descriptions of the two NASA Headquarters program offices through which NASA primarily funds universities, the Office of Space Science and Applications and the Office of Aeronautics and Space Technology. It also describes NASA's Office of Commercial Programs, which funds the Centers for the Commercial Development of Space and the Small Business Innovation Research Program. This guide explains the roles played by NASA's eight field centers and the Jet Propulsion Laboratory, and gives a sampling of ongoing NASA-wide educational programs and services. Most importantly, this guide provides practical information in the form of names and telephone numbers of NASA contacts.

  3. NASA university program management information system, FY 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The University Program Report provides current information and related statistics for approximately 4200 grants/contracts/cooperative agreements active during the reporting period. NASA Field Centers and certain Headquarters Program Offices provide funds for those research and development activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-University relationship, frequently denoted, collectively, as NASA's University Program.

  4. NASA university program management information system, FY 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The University Program Report provides current information and related statistics for approximately 4300 grants/contracts/cooperative agreements active during the report period. NASA Field centers and certain Headquarters Program Offices provide funds for those R&D activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  5. NASA University Program Management Information System: FY 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The University Program Report, Fiscal Year 1995, provides current information and related statistics for grants/contracts/cooperative agreements active during the report period. NASA field centers and certain Headquarters program offices provide funds for those R&D activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  6. NASA University program management information system, FY 1993

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Program Report, Fiscal Year 1993, provides current information and related statistics for 7682 grants/contracts/cooperative agreements active during the report period. NASA field centers and certain Headquarters program offices provide funds for those R&D activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  7. NASA university program management information system, FY 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The University Program report, Fiscal Year 1994, provides current information and related statistics for 7841 grants/contracts/cooperative agreements active during the reporting period. NASA field centers and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  8. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)

  9. Constellation Program Update

    NASA Image and Video Library

    2006-06-05

    Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  10. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  11. Low cost program practices for future NASA space programs, volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The progress and outcomes of a NASA/HQ indepth analysis of NASA program practices are documented. Included is a survey of NASA and industry reaction to the utility and application of a Program Effects Relationship Handbook. The results and outcomes of all study tasks are presented as engineering memoranda as the appendix.

  12. Virtual Reality Calibration for Telerobotic Servicing

    NASA Technical Reports Server (NTRS)

    Kim, W.

    1994-01-01

    A virtual reality calibration technique of matching a virtual environment of simulated graphics models in 3-D geometry and perspective with actual camera views of the remote site task environment has been developed to enable high-fidelity preview/predictive displays with calibrated graphics overlay on live video.

  13. Center for Space Construction Third Annual Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs from presentations given at the symposium are presented. The topics covered include the following: orbital assembly, large space structures, space stations, expert systems, lunar regolith and structure mechanics, lunar shelter construction from lunar resources, telerobotic rovers, lunar construction equipment, lunar based equipment, and lunar construction.

  14. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  15. Task automation in a successful industrial telerobot

    NASA Technical Reports Server (NTRS)

    Spelt, Philip F.; Jones, Sammy L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec, Inc., to automate components of the operator's workload using Remotec's Andros telerobot, thereby providing an enhanced user interface which can be retrofit to existing fielded units as well as being incorporated into new production units. Remotec's Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot's position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performance in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  16. Development of a semi-autonomous service robot with telerobotic capabilities

    NASA Technical Reports Server (NTRS)

    Jones, J. E.; White, D. R.

    1987-01-01

    The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.

  17. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  18. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  19. Telerobotics: A simulation facility for university research

    NASA Technical Reports Server (NTRS)

    Stark, L.; Kim, W.; Tendick, F.; Tyler, M.; Hannaford, B.; Barakat, W.; Bergengruen, O.; Braddi, L.; Eisenberg, J.; Ellis, S.

    1987-01-01

    An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views.

  20. The 3D model control of image processing

    NASA Technical Reports Server (NTRS)

    Nguyen, An H.; Stark, Lawrence

    1989-01-01

    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.

  1. Remote telepresence surgery: the Canadian experience.

    PubMed

    Anvari, M

    2007-04-01

    On 28 February 2003, the world's first telerobotic surgical service was established between St. Joseph's Healthcare Hamilton, a teaching hospital affiliated with McMaster University, and North Bay General Hospital, a community hospital 400 km away. The service was designed to provide telerobotic surgery and assistance by expert surgeons to local surgeons in North Bay, and to improve the range and quality of advanced laparoscopic surgeries offered locally. The two surgeons have collaboratively performed 22 remote telepresence surgeries including laparoscopic fundoplications, laparoscopic colon resections, and laparoscopic inguinal hernia repairs. This article describes the important lessons learned, including the telecommunication requirements, the impact from lack of haptic feedback, surgeons' adaptation to latency, and ethical and medicolegal issues. This is currently the largest clinical experience with assisted robotic telepresence surgery (ARTS) in the world, and the lessons learned will help guide the future design and development of telesurgical robotic platforms. It also will guide the establishment of telesurgical networks connecting various centers in the world, allowing for rapid and safe dissemination of new surgical techniques.

  2. Multi-arm multilateral haptics-based immersive tele-robotic system (HITS) for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir

    2014-06-01

    This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.

  3. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  4. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  5. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  6. Summary of NASA Aerospace Flight Battery Systems Program activities

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; Odonnell, Patricia

    1994-01-01

    A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.

  7. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  8. NASA's university program: Active grants and research contracts, fiscal year 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA Field Centers and certain Headquarters Program Offices provide funds for those research and development activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  9. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  10. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  11. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, listens to a question during a NASA Update outlining responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. NASA's Astronomy Education Program: Reaching Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise Anne; Hertz, Paul; Meinke, Bonnie

    2015-08-01

    An overview will be given of the rich programs developed by NASA to inject the science from it's Astrophysics missions into STEM activities targeted to diverse audiences. For example, Astro4Girls was started as a pilot program during IYA2009. This program partners NASA astrophysics education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families, and has been executed across the country. School curricula and NASA websites have been translated in Spanish; Braille books have been developed for the visually impaired; programs have been developed for the hearing impaired. Special effort has been made to reach underrepresented minorities. Audiences include students, teachers, and the general public through formal and informal education settings, social media and other outlets. NASA Astrophysics education providers include teams embedded in its space flight missions; professionals selected though peer reviewed programs; as well as the Science Mission Directorate Astrophysics Education forum. Representative examples will be presented to demonstrate the reach of NASA education programs, as well as an evaluation of the effectiveness of these programs.

  13. KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.

  14. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  15. Exploring TeleRobotics: A Radio-Controlled Robot

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2007-01-01

    Robotics is a rich and exciting multidisciplinary area to study and learn about electronics and control technology. The interest in robotic devices and systems provides the technology teacher with an excellent opportunity to make many concrete connections between electronics, control technology, and computers and science, engineering, and…

  16. Telerobotics control of ExoGeoLab lander instruments

    NASA Astrophysics Data System (ADS)

    Lillo, A.; Foing, B. H.

    2017-09-01

    This document is about the improvement of the autonomy and capabilities of the prototype lander ExoGeoLab, designed to host remote controlled instruments for analogue Moon/Mars manned missions. Accent is put on new exploration capabilities for the lander to reduce the need for EVA.

  17. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program

    NASA Astrophysics Data System (ADS)

    Prados, A. I.; Blevins, B.; Hook, E.

    2015-12-01

    NASA ARSET http://arset.gsfc.nasa.gov has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  18. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A (Editor); Valdes, Carol (Editor)

    1992-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1992 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the eighth year that a NASA/ASEE program has been conducted at KSC. The 1992 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1992. The basic common objectives are to further the professional knowledge, to stimulate an exchange of ideas, to enrich and refresh the research and teaching activities, and to contribute to the research objectives of the NASA centers.

  19. NASA's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2010-01-01

    NASA celebrated the International Year of Astronomy (IYA) 2009 by developing a rich and vibrant educational and public outreach program that increased the exposure of the public and students to NASA discoveries reaching audiences far and wide. We kicked off the event at the American Astronomical Society meeting in January 2009, with a sneak preview of the multiwavelength image of M101, taken by the three NASA Great Observatories, Hubble Space Telescope, Chandra X-Ray Observatory, and Spitzer Space Telescope. There was a steady stream of visitors at the NASA booth at the Opening Ceremony in Paris. Since then NASA programs have touched the hearts and souls of the young and old both in the U.S. and internationally. NASA IYA programs in the form of teacher workshops, student contests, exhibits in libraries, museums, planetaria and non traditional venues such as airports and music festivals, podcasts and vodcasts have reached a wide audience. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. The year 2009 saw the launch of several space astronomy, heliophysics and planetary science missions. NASA developed IYA programs associated which each launch, to capitalize on the associated interest generated in the public. Some examples of the impact of these programs and building on their success beyond 2009 will be discussed in this talk. All NASA programs can be accessed via the website http://astronomy2009.nasa.gov/.

  20. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  1. 14 CFR 1201.400 - NASA procurement program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA procurement program. 1201.400 Section... AND GENERAL INFORMATION General Information § 1201.400 NASA procurement program. (a) The Office of... contact for NASA procurements. Although the procurements may be made by the field installations, selected...

  2. 14 CFR 1201.400 - NASA procurement program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA procurement program. 1201.400 Section... AND GENERAL INFORMATION General Information § 1201.400 NASA procurement program. (a) The Office of... contact for NASA procurements. Although the procurements may be made by the field installations, selected...

  3. 14 CFR 1201.400 - NASA procurement program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA procurement program. 1201.400 Section... AND GENERAL INFORMATION General Information § 1201.400 NASA procurement program. (a) The Office of... contact for NASA procurements. Although the procurements may be made by the field installations, selected...

  4. 14 CFR 1201.400 - NASA procurement program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA procurement program. 1201.400 Section... AND GENERAL INFORMATION General Information § 1201.400 NASA procurement program. (a) The Office of... contact for NASA procurements. Although the procurements may be made by the field installations, selected...

  5. 48 CFR 1819.7210 - Agreement terminations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... available at http://www.osbp.nasa.gov. (b) NASA OSBP maintains the right to terminate an agreement if... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7210 Agreement... achieved, or for other reasons as determined necessary by the NASA OSBP. ...

  6. 48 CFR 1819.7210 - Agreement terminations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... available at http://www.osbp.nasa.gov. (b) NASA OSBP maintains the right to terminate an agreement if... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7210 Agreement... achieved, or for other reasons as determined necessary by the NASA OSBP. ...

  7. 48 CFR 1819.7210 - Agreement terminations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... available at http://www.osbp.nasa.gov. (b) NASA OSBP maintains the right to terminate an agreement if... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7210 Agreement... achieved, or for other reasons as determined necessary by the NASA OSBP. ...

  8. 48 CFR 1819.7210 - Agreement terminations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... available at http://www.osbp.nasa.gov. (b) NASA OSBP maintains the right to terminate an agreement if... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7210 Agreement... achieved, or for other reasons as determined necessary by the NASA OSBP. ...

  9. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez shake hands after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  10. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez pose for a photo after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  11. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  12. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin addresses NASA employees and members of the media about the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration during a NASA Update on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  13. Management of information in a research and development agency

    NASA Technical Reports Server (NTRS)

    Keene, Wallace O.

    1990-01-01

    The NASA program for managing scientific and technical information (STI) is examined, noting the technological, managerial, educational, and legal aspects of transferring and disseminating information. A definition of STI is introduced and NASA's STI-related management programs are outlined. Consideration is given to the role of STI management in NASA mission programs, research efforts supporting the management and use of STI, STI program interfaces, and the Automated Information Management Program to eliminate redundant automation efforts in common administrative functions. The infrastructure needed to manage the broad base of NASA information and the interfaces between NASA's STI management and external organizations are described.

  14. The NASA Electronic Parts and Packaging (NEPP) Program: Results and Direction

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2007-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program's mission is to provide guidance to NASA for the selection and application of microelectronic technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. This viewgraph presentation reviews the NEPP program's goals and objectives, and reviews many of the missions that the NEPP program has impacted, both in and out of NASA. Also included are examples of the evaluation that the program performed.

  15. 14 CFR § 1201.400 - NASA procurement program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false NASA procurement program. § 1201.400... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.400 NASA procurement program. (a) The Office of... contact for NASA procurements. Although the procurements may be made by the field installations, selected...

  16. Human Mars Surface Science Operations

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2014-01-01

    Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.

  17. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  18. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  19. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  20. 14 CFR 1221.105 - Establishment of NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Establishment of NASA Program Identifiers. 1221.105 Section 1221.105 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA...

  1. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. SBIR/STTR Programs

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Comstock, Douglas

    2008-01-01

    This presentation provides an overview of the NASA mission and overviews of both the Innovative Partnerships Program (IPP) and Small Business Innovation Research (SBIR) programs and how they relate to each other and to the NASA mission. Examples are provided concerning NASA technology needs and how the SBIR program has not only enabled technology development to meet those needs, but has also facilitated the infusion of that technology into the NASA mission.

  3. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    ERIC Educational Resources Information Center

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  4. KSC-2013-1046

    NASA Image and Video Library

    2013-01-09

    CAPE CANAVERAL, Fla. -- At a news conference NASA officials and industry partners discuss progress of the agency's Commercial Crew Program CCP. Participating in the briefing, from the left are, Mike Curie, NASA Public Affairs, Ed Mango, NASA Commercial Crew Program manager, Phil McAlister, NASA Commercial Spaceflight Development director, Rob Meyerson, Blue Origin president and program manager, John Mulholland, The Boeing Company Commercial Programs Space Exploration vice president and program manager, Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman and Garrett Reisman, Space Exploration Technologies SpaceX Commercial Crew project manager. Through CCP, NASA is facilitating the development of U.S. commercial crew space transportation capabilities to achieve safe, reliable and cost-effective access to and from low-Earth orbit for potential future government and commercial customers. For more information, visit http://www.nasa.gov/commercialcrew Photo credit: NASA/Kim Shiflett

  5. Space agency notes 20th anniversary

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1978-01-01

    The twentieth anniversary of NASA is announced. A chronology of major milestones of the NASA program is given along with a brief outline of the programs and responsibilities of NASA Headquarters and the NASA centers and facilities. The NASA launch record is included.

  6. Integrated prototyping environment for programmable automation

    NASA Astrophysics Data System (ADS)

    da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald

    1992-11-01

    We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).

  7. ThermoBuild: Online Method Made Available for Accessing NASA Glenn Thermodynamic Data

    NASA Technical Reports Server (NTRS)

    McBride, Bonnie; Zehe, Michael J.

    2004-01-01

    The new Web site program "ThermoBuild" allows users to easily access and use the NASA Glenn Thermodynamic Database of over 2000 solid, liquid, and gaseous species. A convenient periodic table allows users to "build" the molecules of interest and designate the temperature range over which thermodynamic functions are to be displayed. ThermoBuild also allows users to build custom databases for use with NASA's Chemical Equilibrium with Applications (CEA) program or other programs that require the NASA format for thermodynamic properties. The NASA Glenn Research Center has long been a leader in the compilation and dissemination of up-to-date thermodynamic data, primarily for use with the NASA CEA program, but increasingly for use with other computer programs.

  8. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  9. 2002 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2003-01-01

    The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.

  10. NASA's Optical Communications Program for 2015 and Beyond

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M.

    2015-01-01

    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.

  11. 2004 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.

  12. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  13. The NASA Scientific and Technical Information Program: Exploring challenges, creating opportunities

    NASA Technical Reports Server (NTRS)

    Sepic, Ronald P.

    1993-01-01

    The NASA Scientific and Technical Information (STI) Program offers researchers access to the world's largest collection of aerospace information. An overview of Program activities, products and services, and new directions is presented. The R&D information cycle is outlined and specific examples of the NASA STI Program in practice are given. Domestic and international operations and technology transfer activities are reviewed and an agenda for the STI Program NASA-wide is presented. Finally, the incorporation of Total Quality Management and evaluation metrics into the STI Program is discussed.

  14. KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  15. KSC-2011-6950

    NASA Image and Video Library

    2011-09-13

    CAPE CANAVERAL, Fla. -- NASA and Alliant Techsystems (ATK) managers announce an agreement that could accelerate the availability of U.S. commercial crew transportation capabilities in the Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Candrea Thomas, NASA Public Affairs; Ed Mango, Commercial Crew Program manager, NASA; Kent Rominger, vice president, Strategy and Business Development, ATK Aerospace; and John Schumacher, vice president, Space Programs, EADS North America. The unfunded Space Act Agreement (SAA) through NASA's Commercial Crew Program will allow the agency and ATK to review and discuss Liberty system requirements, safety and certification plans, computational models of rocket stage performance, and avionics architecture designs. The agreement outlines key milestones including an Initial System Design review, during which ATK will present to NASA officials the Liberty systems level requirements, preliminary design, and certification process development. For more information about NASA's Commercial Crew Program, visit http://www.nasa.gov/exploration/commercial. Photo credit: NASA/Jim Grossmann

  16. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  17. Planning an Effective Speakers Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) and, in particular, the Marshall Space Flight Center (MSFC) have played pivotal roles in the advancement of space exploration and space-related science and discovery since the early 1960's. Many of the extraordinary accomplishments and advancements of NASA and MSFC have gone largely unheralded to the general public, though they often border on the miraculous. This lack of suitable and deserved announcement of these "miracles" seems to have occurred because NASA engineers and scientists are inclined to regard extraordinary accomplishment as a normal course of events. The goal in this project has been to determine an effective structure and mechanism for communicating to the general public the extent to which our investment in our US civilian space program, NASA, is, in fact, a very wise investment. The project has involved discerning important messages of truth which beg to be conveyed to the public. It also sought to identify MSFC personnel who are particularly effective as messengers or communicators. A third aspect of the project was to identify particular target audiences who would appreciate knowing the facts about their NASA investment. The intent is to incorporate the results into the formation of an effective, proactive MSFC speakers bureau. A corollary accomplishment for the summer was participation in the formation of an educational outreach program known as Nasa Ambassadors. Nasa Ambassadors are chosen from the participants in the various MSFC summer programs including: Summer Faculty Fellowship Program (SFFP), Science Teacher Enrichment Program (STEP), Community College Enrichment Program (CCEP), Joint Venture (JOVE) program, and the NASA Academy program. NASA Ambassadors agree to make pre-packaged NASA-related presentations to non-academic audiences in their home communities. The packaged presentations were created by a small cadre of participants from the 1996 MSFC summer programs, volunteering their time beyond their normal NASA summer research commitment. A total of eight presentations were created and made available for use by NASA Ambassadors. A major segment of the research effort during the summer has been devoted to verifying and documenting certain "spinoff' contributions of NASA technology and in determining their relevance and impact to our society and our nation's economy. The purpose behind the verification/documentation research has been to shed light on the question of whether or not our NASA investment is a wise investment. It has revealed that NASA is a wise investment.

  18. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  19. Government-Industry Data Exchange Program (GIDEP) and NASA Advisories

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2010-01-01

    This viewgraph presentation reviews the Government-Industry Data Exchange Program (GIDEP) and NASA Advisories policy to practice. The contents include: 1) Purpose of the Government-Industry Data Exchange Program (GIDEP); 2) NASA and GSFC Documentation; 3) NASA Advisories, differences from GIDEP; 4) GIDEP Distribution by Originator; 5) New Interim GIDEP Policy for Suspect Counterfeits; 6) NASA and Suspect Counterfeits; 7) Threats to GIDEP; and 8) Conclusions and Contact Information.

  20. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and Update FY15 and Beyond

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    The NASA Electronic Parts and Packaging (NEPP) program, and its subset the NASA Electronic Parts Assurance Group (NEPAG), are NASA's point-of-contacts for reliability and radiation tolerance of electrical, electronic, and electromechanical (EEE) parts and their packages. This presentation includes a Fiscal Year 2015 program overview.

  1. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  2. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  3. 48 CFR 1819.7203 - Mentor approval process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by NASA OSBP. (f) A template of the mentor application is available at: http://www.osbp.nasa.gov. ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7203 Mentor approval process. (a) An entity seeking to participate as a mentor must apply to the NASA Headquarters...

  4. 48 CFR 1819.7203 - Mentor approval process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... by NASA OSBP. (f) A template of the mentor application is available at: http://www.osbp.nasa.gov. ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7203 Mentor approval process. (a) An entity seeking to participate as a mentor must apply to the NASA Headquarters...

  5. 48 CFR 1819.7203 - Mentor approval process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by NASA OSBP. (f) A template of the mentor application is available at: http://www.osbp.nasa.gov. ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7203 Mentor approval process. (a) An entity seeking to participate as a mentor must apply to the NASA Headquarters...

  6. 48 CFR 1819.7203 - Mentor approval process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... by NASA OSBP. (f) A template of the mentor application is available at: http://www.osbp.nasa.gov. ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7203 Mentor approval process. (a) An entity seeking to participate as a mentor must apply to the NASA Headquarters...

  7. 48 CFR 1819.7203 - Mentor approval process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... by NASA OSBP. (f) A template of the mentor application is available at: http://www.osbp.nasa.gov. ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7203 Mentor approval process. (a) An entity seeking to participate as a mentor must apply to the NASA Headquarters...

  8. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  9. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  10. 14 CFR 1203.101 - Other applicable NASA regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Other applicable NASA regulations. 1203.101... PROGRAM Scope § 1203.101 Other applicable NASA regulations. (a) Subpart H of this part, “Delegation of..., “NASA Information Security Program Committee.” (c) NASA Handbook 1620.3, “NASA Physical Security...

  11. 14 CFR 1203.101 - Other applicable NASA regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Other applicable NASA regulations. 1203.101... PROGRAM Scope § 1203.101 Other applicable NASA regulations. (a) Subpart H of this part, “Delegation of..., “NASA Information Security Program Committee.” (c) NASA Handbook 1620.3, “NASA Physical Security...

  12. 14 CFR 1203.101 - Other applicable NASA regulations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Other applicable NASA regulations. 1203.101... PROGRAM Scope § 1203.101 Other applicable NASA regulations. (a) Subpart H of this part, “Delegation of..., “NASA Information Security Program Committee.” (c) NASA Handbook 1620.3, “NASA Physical Security...

  13. 14 CFR 1203.101 - Other applicable NASA regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Other applicable NASA regulations. 1203.101... PROGRAM Scope § 1203.101 Other applicable NASA regulations. (a) Subpart H of this part, “Delegation of..., “NASA Information Security Program Committee.” (c) NASA Handbook 1620.3, “NASA Physical Security...

  14. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  15. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  16. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  17. 14 CFR 1221.112 - Use of the NASA Program Identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of the NASA Program Identifiers. 1221.112 Section 1221.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION THE NASA SEAL AND OTHER DEVICES, AND THE CONGRESSIONAL SPACE MEDAL OF HONOR NASA Seal, NASA Insignia, NASA Logotype...

  18. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  19. Indexing NASA programs for technology transfer methods development and feasibility

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1972-01-01

    This project was undertaken to evaluate the application of a previously developed indexing methodology to ongoing NASA programs. These programs are comprehended by the NASA Program Approval Documents (PADS). Each PAD contains a technical plan for the area it covers. It was proposed that these could be used to generate an index to the complete NASA program. To test this hypothesis two PADS were selected by the NASA Technology Utilization Office for trial indexing. Twenty-five individuals indexed the two PADS using NASA Thesaurus terms. The results demonstrated the feasibility of indexing ongoing NASA programs using PADS as the source of information. The same indexing methodology could be applied to other documents containing a brief description of the technical plan. Results of this project showed that over 85% of the concepts in the technology should be covered by the indexing. Also over 85% of the descriptors chosen would be accurate. This completeness and accuracy for the indexing is considered satisfactory for application in technology transfer.

  20. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  1. The repository-based software engineering program: Redefining AdaNET as a mainstream NASA source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Repository-based Software Engineering Program (RBSE) is described to inform and update senior NASA managers about the program. Background and historical perspective on software reuse and RBSE for NASA managers who may not be familiar with these topics are provided. The paper draws upon and updates information from the RBSE Concept Document, baselined by NASA Headquarters, Johnson Space Center, and the University of Houston - Clear Lake in April 1992. Several of NASA's software problems and what RBSE is now doing to address those problems are described. Also, next steps to be taken to derive greater benefit from this Congressionally-mandated program are provided. The section on next steps describes the need to work closely with other NASA software quality, technology transfer, and reuse activities and focuses on goals and objectives relative to this need. RBSE's role within NASA is addressed; however, there is also the potential for systematic transfer of technology outside of NASA in later stages of the RBSE program. This technology transfer is discussed briefly.

  2. NASA University Program Management Information System

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA:s objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well-being. NASA field codes and certain Headquarters program offices provide funds for those activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA:s Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data.* This report was prepared by the Education Division/FE, Office of Human Resources and Education, using a management information system which was modernized during FY 1993.

  3. National Aeronautics and Space Administration: 1998 Accountability Report

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Accountability Report summarizes NASA's program accomplishments and its stewardship over budget and financial resources. The report is the culmination of NASA's management process, which begins with mission definition and program planning, continues with formulation and justification of NASA's budgets for the President and Congress, and ends with NASA scientific and engineering program accomplishments. This report covers NASA's activities from October 1, 1997, through September 30, 1998, with discussion of some subsequent events.

  4. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, center, listens as NASA astronaut Leland Melvin welcomes teachers and middle school students to the kick off of NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  5. Evaluating the Effectiveness of the 1999-2000 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou

    2002-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 6-8. Each of the five programs in the 1999-2000 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 2000, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 336 surveys (269 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 73% of the respondents were female, about 92% identified "classroom teacher" as their present professional duty, about 90% worked in a public school, and about 62% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that (1) they used the five programs in the 1999-2000 NASA CONNECT series; (2) the stated objectives for each program were met (4.54); (3) the programs were aligned with the national mathematics, science, and technology standards (4.57); (4) program content was developmentally appropriate for grade level (4.17); and (5) the programs in the 1999-2000 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.51).

  6. Evaluating the Effectiveness of the 1998-1999 NASA CONNECT Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Frank, Kari Lou; House, Patricia L.

    2000-01-01

    NASA CONNECT is a standards-based, integrated mathematics, science, and technology series of 30-minute instructional distance learning (satellite and television) programs for students in grades 5-8. Each of the five programs in the 1998-1999 NASA CONNECT series included a lesson, an educator guide, a student activity or experiment, and a web-based component. In March 1999, a mail (self-reported) survey (booklet) was sent to a randomly selected sample of 1,000 NASA CONNECT registrants. A total of 401 surveys (351 usable) were received by the established cut-off date. Most survey questions employed a 5-point Likert-type response scale. Survey topics included: (1) instructional technology and teaching, (2) instructional programming and technology in the classroom, (3) the NASA CONNECT program, (4) classroom use of computer technology, and (5) demographics. About 68% of the respondents were female, about 88% identified "classroom teacher" as their present professional duty, about 75% worked in a public school, and about 67% held a master's degree or master's equivalency. Regarding NASA CONNECT, respondents reported that: (1) they used the five programs in the 1998-1999 NASA CONNECT series; (2) the stated objectives for each program were met (4.49); (3) the programs were aligned with the national mathematics, science, and technology standards (4.61); (4) program content was developmentally appropriate for grade level (4.25); and (5) the programs in the 1998-1999 NASA CONNECT series enhanced/enriched the teaching of mathematics, science, and technology (4.45).

  7. The NASA Geodynamics Program: An overview

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This NASA Geodynamics Program overview collectively examines the history, scientific basis, status, and results of the NASA Program and outlines plans for the next five to eight years. It is intended as an informative nontechnical discussion of geodynamics research.

  8. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  9. KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  10. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  11. KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  12. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  15. Issues in NASA Program and Project Management:: A Collection of Papers on Aerospace Management Issues (Supplement 11)

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1996-01-01

    Papers address the following topics: NASA's project management development process; Better decisions through structural analysis; NASA's commercial technology management system; Today's management techniques and tools; Program control in NASA - needs and opportunities; and Resources for NASA managers.

  16. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  17. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  18. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  19. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, C.; Coe, L.; Rask, Jon; Paradise, Jim; Wynne, J.J.

    2008-01-01

    Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Methods: The investigation further provides a detailed overview of the structure of these two NASA education outreach programs, while providing information regarding selection criteria and program developments over time. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  20. Review of NASA's Exploration Technology Development Program: An Interim Report. [ISBN 0-309-11944-8 (place in D020A)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA requested that a committee under the auspices of the National Research Council's Aeronautics and Space Engineering Board carry out an assessment of NASA's Exploration Technology Development Program (ETDP). Organizationally, this program functions under the direction of NASA's Exploration Systems Mission Directorate and is charged with developing new technologies that will enable NASA to conduct future human and robotic exploration missions, while reducing mission risk and cost. The Committee to Review NASA's Exploration Technology Development Program has been tasked to examine how well the program is aligned with the stated objectives of the President's Vision for Space Exploration (VSE), to identify gaps in the program, and to assess the quality of the research. The full statement of task is given in Appendix A. The committee consists of 25 members and includes a cross section of senior executives, engineers, researchers, and other aerospace professionals drawn from industry, universities, and government agencies with expertise in virtually all the technical fields represented within the program.

Top