Science.gov

Sample records for nasa terra eos

  1. Scaling the Pipe: NASA EOS Terra Data Systems at 10

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ramapriyan, Hampapuram K.

    2010-01-01

    Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.

  2. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    1999-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program

  3. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  4. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    NASA Technical Reports Server (NTRS)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  5. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    NASA Technical Reports Server (NTRS)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  6. EOS Terra: Mission Status Constellation MOWG

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Mission Status Constellation MOWG will discuss mission summary; spacecraft subsystems summary, recent and planned activities; inclination adjust maneuvers, conjunction history, propellant usage and lifetime estimate; and end of mission plan.

  7. EOS Terra Terra Constellation Exit/Future Maneuver Plans Update

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Constellation Exit/Future Maneuver Plans Update presentation will discuss brief history of Terra EOM work; lifetime fuel estimates; baseline vs. proposed plan origin; resultant exit orbit; baseline vs. proposed exit plan; long term orbit altitude; revised lifetime proposal and fallback options.

  8. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km

  9. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  10. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  11. NASA budget, EOS face cuts

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    The hefty FY 1992 increase for the National Aeronautics and Space Administration proposed by President George Bush has begun to attract Congressional budget-cutting axes, as predicted. The first cuts, however, have come from an unexpected ax-wielder—the space subcommittee of the House Committee on Space, Science, and Technology—normally a cheerleader for NASA in recent years.The subcommittee trimmed $488 million from NASA's budget request of $15.8 billion on April 11, according to a staff member of the space subcommittee. Notably, the panel did not touch the allotment for Space Station Freedom. The subcommittee has submitted the NASA authorization bill to the full committee, which is slated to act on it by the end of April, according to the Congressional Quarterly Weekly Report.

  12. NASA Terra Spacecraft Images Russian Volcanic Eruption

    NASA Image and Video Library

    2013-01-16

    Plosky Tolbachik volcano in Russia far eastern Kamchatka peninsula erupted on Nov. 27, 2012, for the first time in 35 years, sending clouds of ash to the height of more than 9,800 feet 3,000 meters in this image from NASA Terra spacecraft.

  13. NASA Terra Spacecraft Captures Russian Volcano Eruption

    NASA Image and Video Library

    2012-12-03

    Plosky Tolbachik volcano, in Russia far eastern Kamchatka peninsula, erupted on Nov. 27, 2012 for the first time in 35 years, sending clouds of ash almost 10,000 feet into the sky. This image was acquired by NASA Terra spacecraft.

  14. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  15. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  16. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  17. Interactively Browsing NASA's EOS Imagery in Full Resolution

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Joshi, T.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.; Murphy, K. J.

    2012-12-01

    Worldview is a new tool designed to interactively browse full-resolution imagery from NASA's fleet of Earth Observing System (EOS) satellites. It is web-based and developed using open standards (JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage, no artificial boundaries, and views in geographic and polar projections. Currently tailored to the near real-time community, Worldview enables the rapid evaluation and comparison of imagery related to such application areas as fires, floods, and air quality. It is supported by the Global Imagery Browse Services (GIBS), a system that continuously ingests, mosaics, and serves approximately 21GB of imagery daily. This imagery spans over 50 data products that are available within three hours of observation from instruments aboard Terra, Aqua, and Aura. The GIBS image archive began in May 2012 and will have published approximately 4.4TB of imagery as of December 2012. Worldview facilitates rapid access to this archive and is supplemented by socioeconomic data layers from the Socioeconomic Data and Applications Center (SEDAC), including products such as population density and economic risk from cyclones. Future plans include the accessibility of additional products that cover the entire Terra/MODIS and Aqua/MODIS missions (>150TB) and the ability to download the underlying science data of the onscreen imagery.

  18. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  19. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  20. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  1. NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite

    Atmospheric Science Data Center

    2014-05-15

    article title:  NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite ... August 27, 2013 - NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite project:  ...

  2. NASA EO-1 Spacecraft Images Chile Volcanic Eruption

    NASA Image and Video Library

    2011-06-17

    On June 14, 2011, NASA Earth Observing-1 EO-1 spacecraft obtained this image showing ash-rich volcanic plume billowing out of the vent, punching through a low cloud layer. The plume grey color is a reflection of its ash content.

  3. NASA SNPP SIPS - Following in the Path of EOS

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Hall, Alfreda; Ho, Evelyn

    2016-01-01

    NASA's Earth Science Data Information System (ESDIS) Project has been operating NASA's Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. At launch, the SDS focused primarily on the evaluation of Sensor Data Records (SDRs) and Environmental Data Records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program, as to their suitability for Earth system science. During the summer of 2014, NASA transitioned to the production of standard Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean, Atmosphere, Ozone, and Sounder were established to produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products developed by the SNPP Science Teams and to provide the products to NASA's Distributed Active Archive Centers (DAACs) for archive and distribution to the user community. The processing, archiving and distribution of data from NASA's Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments will continue. With the implementation of the JPSS Block 2 architecture and the launch of JPSS-1, the SDS will receive SNPP data in near real-time via the JPSS Stored Mission Data Hub (JSH), as well as JPSS-1 and future JPSS-2 data. The SNPP SIPS will ingest EOS compatible Level 0 data from the EOS Data Operations System (EDOS) element for their data processing, enabling the continuous EOS-SNPP-JPSS Satellite Data Record.

  4. Idaho Wildfire Imaged by NASA's Terra Spacecraft

    NASA Image and Video Library

    2017-08-14

    A wildfire burned 46,000 acres southwest of Pocatello, Idaho, threatening homes and filling the area with smoke. The human-caused fire was 85 percent contained by Aug. 10, 2017. The extent of the burned area is evident in this image as the dark gray area. The image was acquired Aug. 13, 2017, covers an area of 22 by 28 miles (36 by 45 kilometers), and is located at 42.7 degrees north, 112.6 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21875

  5. Improving the Interoperability of NASA HDF and HDF-EOS data

    NASA Astrophysics Data System (ADS)

    Yang, M.

    2010-12-01

    HDF is a set of data formats and software libraries for storing scientific data with an emphasis on standards, storage, and I/O efficiency. The HDF-EOS version 2 (HDF-EOS2) profile and library, built on top of HDF version 4 (HDF4), define and implement the standard data format for the NASA Earth Science Data and Information System (ESDIS). Since the launch of Terra in 1999, the EOS Data and Information System (EOSDIS) has produced more than three terabytes of EOS earth science data daily. More than five hundred data products in NASA data centers are stored in HDF. HDF5 is a newer data format. It has been embraced as an important data format for Earth science. HDF-EOS5, which is built on top of HDF5, is the primary data format for data from the Aura satellite. The new version of netCDF, netCDF-4, is built on top of HDF5. The OPeNDAP Data Access Protocol and its related software have emerged as important components of the earth science data system infrastructure. The OPeNDAP protocol is widely used to remotely access earth science data. Several third-party visualization and analysis tools that can read data from OPeNDAP servers, such as IDV, Panoply, GrADS, Ferret, NCL, MATLAB, and IDL, are widely used by many earth scientists and educators to access HDF earth science data. Ensuring easy access to HDF4, HDF5 and HDF-EOS data via OPeNDAP client tools will reduce the time for HDF users to visualize the data in their favorite way and accordingly improve their working efficiencies. In the past three years, under the support of NASA ESDIS and ACCESS projects, The HDF Group implemented the HDF4-OPeNDAP and HDF5-OPeNDAP data handlers so that many NASA HDF and HDF-EOS Swath and Grid data can be accessed by widely used visualization and analysis tools such as IDV, Panoply, GrADS, Ferret, NCL and IDL via OPeNDAP. We will share the challenges we have encountered and the solutions on how to address these challenges in the process of implementing the HDF OPeNDAP handlers. We also

  6. The NASA EOS User Services Offices: Supporting Earth Science Data

    NASA Astrophysics Data System (ADS)

    Sheffield, E.; Schumacher, J.; Harrison, S.; Jones, C.; Klaassen, A.; Morris, K.; Sandoval, M.; Scott, D.; Wolf, V.; Farnham, J.

    2004-12-01

    The primary goal for NASA's Sun-Earth System Division is to use satellite remote sensing to examine the Sun and Earth as a single connected system. Within the Sun-Earth System Division, the Earth Observing System (EOS) is composed of a series of satellites, scientific research, and a data collection and management system known as EOS Data and Information System (EOSDIS). EOSDIS has nine discipline-specific data centers that manage, document, archive, and distribute a variety of Earth system science data. The data centers provide an assortment of services to their data users via their User Services Offices (USO). The nine USOs communicate regularly by email, phone, and teleconference, and have meetings twice a year during which they analyze, discuss, and determine how to better serve the Earth science community. The sharing of information among USO representatives within the User Services Working Group (USWG) results in an understanding of user needs and problems with data sets within EOS. By identifying these needs, we can improve our services and data distribution methods for users, and advocate solutions on behalf of the user community to the EOS project. Each User Services Office provides timely assistance answering a variety of user questions about its data and services, assists users with their data orders, provides referrals to other data centers, and establishes data subscriptions when applicable. USO troubleshoots problems with data sets and data distribution, recommends and supports tools for data subsetting, searching and ordering, handling, and manipulation, and communicates user needs to data and software developers. The USO is each data center's interface to the public, and has many resources available to assist the user, including data set guide documents, science team members, and programmers. Additionally, the USWG represents the nine data centers in the OneNASA outreach effort. Users will always find ready support for NASA Earth science data

  7. NASA's Terra Satellite Sees Shadows of Solar Eclipse

    NASA Image and Video Library

    2017-09-28

    During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  9. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  10. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  11. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  12. Enhancements to NASA's Land Atmosphere Near Real-Time Capability for Eos (LANCE)

    NASA Astrophysics Data System (ADS)

    Davies, D.; Murphy, K. J.; Schmaltz, J. E.; Boller, R. A.; Cechini, M. F.; Mauoka, E.; Ye, G.; Conover, H.; Regner, K. J.; Harrison, S.

    2014-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes LANCE and enhancements made to LANCE over the last year. These enhancements include: 3 new NRT products, additional search and download data capability through Worldview, and a greater selection of NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS). LANCE is also working to ingest and process AMSR2 data in NRT. This presentation describes the enhancements, and the potential uses for the new products, which include daily NRT 8-day rolling Vegetation Indices (VI) and Land Surface Reflectance (LSR) products and a 16-day rolling Bidirectional Reflectance Distribution Function (BRDF) product.

  13. TERRA Spacecraft

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Earth Observing System (EOS) is managed by NASA's Goddard Space Flight Center (GSFC), Greenbelt, MD, is the centerpiece of the Earth Science Enterprise (formerly called 'Mission to Planet Earth'), a long-term coordinated research effort to study the Earth as a global system. Terra was launched on December 18, 1999 aboard an ATLAS-IIAS launch vehicle from Vandenberg Air Force Base, CA. Terra is a near-polar orbiting spacecraft that will cross the equator at 10:30 am local time. Terra will collect data simultaneously from a complement of five instruments: CERES, MISR, and MODIS are proved by the US; MOPITT by Canada; and ASTER by Japan. Researchers around the world will use data from these instruments to study how the atmosphere, land, ocean, and life interact with each other on a global scale.

  14. Applications of NASA EOS Data in Policy Development

    NASA Astrophysics Data System (ADS)

    Gilruth, P.; Kalluri, S.; Bergman, R.; Plante, R.

    2002-05-01

    Under a contract with NASA, Raytheon and its university partners are exploring policy relevant applications of the NASA Earth Observing System (EOS) data. Two case studies of these applications are presented, along with a summary of lessons learned with the goal of improving program administration. Two of 11 Synergy projects, or InfoMarts, are presented. The first deals with the use of Landsat data for estimating evapotranspiration within the Snake River Basin, and the second addresses applications in range management in the Southwest using Landsat and MODIS data. All eleven InfoMarts are developing and implementing self-sustainability plans. The objective is to formulate a strategy for achieving sustainability in 5 years or less. Self-sustainability models proposed by our partners vary widely and are influenced by several factors, including the institutional linkage to the university system where they are based, whether the university is a land-grant institution, etc. In any institutional setting, a good understanding of user needs tends to shorten the cycle of the sustainability model development. We suggest that it is possible to further accelerate the time frame for establishing sustainable use of NASA products by encouraging our InfoMart partners to adapt to a rigorous schedule of contract deliverables and reporting. For example, the Idaho Department of Water Resources (IDWR) has the responsibility of monitoring water usage in order to sustain the availability of water in a dry climate. IDWR has accelerated the conversion from traditional, labor-intensive field data collection to a more efficient monitoring program through the use of NASA data, based on a water balance model Surface Energy Balance Algorithm for Land (SEBAL). Project authorities claim that the normal time for introduction and adoption of new technology at IDWR is at least 5 years. During the Synergy program, the time to adoption has been reduced to about 3-4 years due to project authorities

  15. TERRA Spacecraft

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Earth Observing System (EOS), managed by NASA's Goddard Space Flight Center (GSFC), Greenbelt, Maryland, is the centerpiece of the Earth Science Enterprise (formerly called "Mission to Planet Earth"), a long-term coordinated research effort to study the Earth as a global system. Terra was launched on December 18, 1999 aboard an ATLAS-IIAS launch vehicle from Vandenberg Air Force Base, California. Terra is a near-polar orbiting spacecraft that will cross the equator at 10:30 AM local time. Terra will collect data simultaneously from a complement of five instruments: CERES (Clouds and the Earth's Radiant Energy System), MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate-resolution Imaging Spectroradiometer) are provided by the United States; MOPITT (Measurements Of Pollution In The Troposphere) by Canada; and ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) by Japan. Researchers around the world will use data from these instruments to study how the atmosphere, land, ocean, and life interact with each other on a global scale. This interactive CD introduces Terra's overall objectives and its instruments, the new technologies developed for Terra, the launch of Terra, and its flight dynamics.

  16. Terra and Aqua MODIS Products and Data Tools Available From NASA GES DAAC

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Savtchenko, A.; Leptoukh, G.; Zhou, B.; Nickless, D.; Ostrenga, D.; Gopalan, A.; Yuan, D.; Shen, S.

    2003-04-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major NASA Earth Observing System (EOS) instrument, was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator crossing time, descending) for global monitoring of the atmosphere, the terrestrial ecosystems and oceans. On May 4, 2002, a similar instrument was launched on the EOS-Aqua Satellite (1:30 pm equator crossing time, ascending). Thus MODIS, flying in a formation of two satellites, will enable scientists to study diurnal variation of the rapidly varying systems and will provide a long term data set for the same geophysical parameters for the study of climate and global change studies. MODIS, with its 2330 km viewing swath width, provides almost daily Global coverage. It acquires data in 36 high spectral resolution bands between 0.415 and 14.235 micron with spatial resolutions of 250m (2 bands), 500 (5 bands), and 1000m (29 bands). The radiance data measured by MODIS at high spatial resolution with some new channels (never used before for the remote sensing) provides improved and valuable information about the physical structure of the Earth's atmosphere and surface. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Archive Center (DAAC), seen as GSFC-ECS in the Earth Observing System Data Gateway, distributes three major groups of MODIS data: Level 1 Radiometric and Geolocations, and all levels of Atmosphere and Ocean. The Atmosphere data types are: Aerosol, Water Vapor, Cloud, Profiles, and Cloud Mask. The 107 (at present) Ocean data types contain Normalized Water Leaving Radiances, Ocean Color, Sea Surface Temperatures, and Ocean Primary Productivity (OPP). To facilitate users navigate through the complex structure of MODIS information, the MODIS Data Support Team (MDST) was established at the GES DISC DAAC. The Team provides a broad spectrum of services covering: data access, visualization tools, tools for search and order of the

  17. NASA's Eos ClearingHOuse: Integrating Access to Data Services

    NASA Astrophysics Data System (ADS)

    Burnett, M. T.; Pfister, R.; Wichman, K.

    2002-12-01

    ECHO (The Earth Observing System (EOS) ClearingHOuse) is being developed to provide flexibility to NASA's EOS to better meet the needs of the science community. ECHO is a clearinghouse of metadata, representing the data offerings of participating data providers. ECHO is being built with the goal of being an enabling system: Enabling a variety of Data Providers to participate. Enabling access to an ever-changing variety of Earth Science Data. Enabling access to an ever-growing suite of services, provided by the Science Community, which improves the usefulness of this data, including the binding of those services to the data represented in the clearinghouse. The purpose of this enabling philosophy is to support current Science efforts, but also to give the opportunity for creative organizations and individuals to break the traditional paradigm for discovering and leveraging Earth Science Data and Services in completely new ways. This presentation will focus on ECHO's approach to integrating Data Services from varied Service Providers, and facilitating access to those services by the user community. ECHO can be viewed as a typical Service oriented architecture. The fundamental interactions that it supports are (abstractly) Publish, Find and Bind. ECHO provides interfaces and mechanisms that allow organizations to publish their services. Using these interfaces, Service Providers can effectively "plug-in" their capabilities. There are mechanisms that allow the correlation of their service to the data types in the clearinghouse. ECHO's user community can find, or discover, services through a separate set of interfaces. Bindings are the mechanisms that support the invocation of services by ECHO's user community. ECHO supports binding either directly between the user and the service provider, or indirectly by using ECHO as a Service Broker. ECHO is supporting all of these Service capabilities by leveraging the contemporary (and evolving) "standards" of Web Services. Web

  18. Fifteen Years of ASTER Data on NASA's Terra Platform

    NASA Astrophysics Data System (ADS)

    Abrams, M.; Tsu, H.

    2014-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five instruments operating on NASA's Terra platform. Launched in 1999, ASTER has been acquiring data for 15 years. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and US NASA. Data processing and distribution are done by both organizations; a joint science team helps to define mission priorities. ASTER acquires ~550 images per day, with a 60 km swath width. A daytime acquisition is three visible bands and a backward-looking stereo band with 15 m resolution, six SWIR bands with 30 m resolution, and 5 TIR bands with 90 m resolution. Nighttime TIR-only data are routinely collected. The stereo capability has allowed the ASTER project to produce a global Digital Elevation Model (GDEM) data set, covering the earth's land surfaces from 83 degrees north to 83 degrees south, with 30 m data postings. This is the only (near-) global DEM available to all users at no charge; to date, over 28 million 1-by-1 degree DEM tiles have been distributed. As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific disciplines, including: land use/land cover, urban monitoring, urban heat island studies, wetlands studies, agriculture monitoring, forestry, etc. Of particular emphasis has been the acquisition and analysis of data for natural hazard and disaster applications. We have been systematically acquiring images for 15,000 valley glaciers through the USGS Global Land Ice Monitoring from Space Project. The recently published Randolph Glacier Inventory, and the GLIMS book, both relied heavily on ASTER data as the basis for glaciological and climatological studies. The ASTER Volcano Archive is a unique on-line archive of thousands of daytime and nighttime ASTER images of ~1500 active glaciers, along with a growing archive of Landsat images. ASTER was scheduled to target active volcanoes at least 4 times per year, and more frequently for

  19. Progress of Icelandic Lava Flows Charted by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2014-09-09

    On the night of Sept. 6, 2014 NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. Partially covered by clouds, this scene shows the extent of the lava flows that have been erupting.

  20. EOS

    NASA Astrophysics Data System (ADS)

    Asrar, Ghassem; Dozier, Jeff

    Market: Students and researchers in geophysics, astronomy, and astrophysics. This book reports on the timely Earth Observing System (EOS) Program's wide range of scientific investigations, observational capabilities, vast data and information system, and educational activities. Because its primary goal is to determine the extent, causes, and regional consequences of global climate change, this program provides the scientific knowledge needed by world leaders to formulate sound and equitable environmental policies.

  1. Recent Results From The Nasa Earth Science Terra Mission and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2000-01-01

    The NASA Earth Sciences Enterprise has made some remarkable strides in recent times in using developing, implementing, and utilizing spaceborne observations to better understand how the Earth works as a coupled, interactive system of the land, ocean, and atmosphere. Notable examples include the Upper Atmosphere Research (UARS) Satellite, the Topology Ocean Experiment (TOPEX) mission, Landsat-7, SeaWiFS, the Tropical Rainfall Monitoring Mission (TRMM), Quickscatt, the Shuttle Radar Topography Mission (SRTM), and, quite recently, the Terra'/Earth Observing System-1 mission. The Terra mission, for example, represents a major step forward in providing sensors that offer considerable advantages and progress over heritage instruments. The Moderate Resolution Imaging Spectrometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Measurements of Pollution in the Troposphere (MOPITT), the Advanced Spaceborne Thermal Emissions and Reflections (ASTER) radiometer, and the Clouds and Earth's Radiant Energy System (CERES) radiometer are the instruments involved. Early indications in March indicate that each of these instruments are working well and will be augmenting data bases from heritage instruments as well as producing new, unprecedented observations of land, ocean, and atmosphere features. Several missions will follow the Terra mission as the Earth Observing mission systems complete development and go into operation. These missions include EOS PM-1/'Aqua', Icesat, Vegetation Canopy Lidar (VCL), Jason/TOPEX Follow-on, the Chemistry mission, etc. As the Earth Observing systems completes its first phase in about 2004 a wealth of data enabling better understanding of the Earth and the management of its resources will have been provided. Considerable thought is beginning to be placed on what advances in technology can be implemented that will enable further advances in the early part of the 21st century; e.g., in the time from of 2020. Concepts such as

  2. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  3. Enhancement to Hitran to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1998-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  4. Enhancement to HITRAN to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1999-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  5. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and

  6. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and

  7. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.

  8. A Spacebird-eye View of the Grand Canyon from NASA Terra Spacecraft

    NASA Image and Video Library

    2011-10-14

    NASA Terra spacecraft provided this view of the eastern part of Grand Canyon National Park in northern Arizona in this image on July 14, 2011. This view looks to the west, with tourist facilities of Grand Canyon Village visible in the upper left.

  9. NASA Terra Spacecraft Views Mt. Whitney, the Highest Point in the Contiguous United States

    NASA Image and Video Library

    2011-10-13

    At 14,505 feet high, Mt. Whitney, the highest point in the contiguous U.S., is located in California Sierra Nevada Mountains, on the west side of Owens Valley. The Alabama Hills appear in the foreground of this image from NASA Terra spacecraft.

  10. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  11. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  12. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  13. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    NASA Astrophysics Data System (ADS)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red

  14. Eos Chasma

    NASA Image and Video Library

    2010-06-08

    At eastern end of Valles Marineris is Eos Chasma. In Eos, the canyon system transitions into a region of chaos and then into major outflow channels. This image from NASA 2001 Mars Odyssey shows the transition into chaos.

  15. Nicaragua Eruption Lava Threat Closely Monitored by NASA EO-1 Spacecraft

    NASA Image and Video Library

    2015-12-07

    Momotombo volcano, Nicaragua, began erupting on Dec. 1, 2015, after more than a century of inactivity. On Dec. 4, 2015, the Advanced Land Imager (ALI) on NASA's Earth Observing 1 (EO-1) spacecraft observed the new eruption. This image is created from infrared data, and shows the incandescent active vent at the summit of the volcano and lava flowing down the side of the volcano. These data are being examined by scientists to determine where lava will flow, allowing assessment of possible threats to local infrastructure. The EO-1 data were obtained at an altitude of 438 miles (705 kilometers) and at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths. The ALI image is 23 miles (37 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20203

  16. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Chander, Gyanesh; Mishra, N.; Helder, Dennis L.; Aaron, D.; Choi, T.; Angal, A.; Xiong, X.

    2010-01-01

    Different applications and technology developments in Earth observations necessarily require different spectral coverage. Thus, even for the spectral bands designed to look at the same region of the electromagnetic spectrum, the relative spectral responses (RSR) of different sensors may be different. In this study, spectral band adjustment factors (SBAF) are derived using hyperspectral Earth Observing-1 (EO-1) Hyperion measurements to adjust for the spectral band differences between the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance measurements from 2000 to 2009 over the pseudo-invariant Libya 4 reference standard test site.

  17. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  18. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  19. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  20. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  1. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  2. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  3. Radiometric cross-calibration of EO-1 ALI with L7 ETM+ and Terra MODIS sensors using near-simultaneous desert observations

    USGS Publications Warehouse

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung; Xiong, Xiaoxiong

    2013-01-01

    The Earth Observing-1 (EO-1) satellite was launched on November 21, 2000, as part of a one-year technology demonstration mission. The mission was extended because of the value it continued to add to the scientific community. EO-1 has now been operational for more than a decade, providing both multispectral and hyperspectral measurements. As part of the EO-1 mission, the Advanced Land Imager (ALI) sensor demonstrates a potential technological direction for the next generation of Landsat sensors. To evaluate the ALI sensor capabilities as a precursor to the Operational Land Imager (OLI) onboard the Landsat Data Continuity Mission (LDCM, or Landsat 8 after launch), its measured top-of-atmosphere (TOA) reflectances were compared to the well-calibrated Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors in the reflective solar bands (RSB). These three satellites operate in a near-polar, sun-synchronous orbit 705 km above the Earth's surface. EO-1 was designed to fly one minute behind L7 and approximately 30 minutes in front of Terra. In this configuration, all the three sensors can view near-identical ground targets with similar atmospheric, solar, and viewing conditions. However, because of the differences in the relative spectral response (RSR), the measured physical quantities can be significantly different while observing the same target. The cross-calibration of ALI with ETM+ and MODIS was performed using near-simultaneous surface observations based on image statistics from areas observed by these sensors over four desert sites (Libya 4, Mauritania 2, Arabia 1, and Sudan 1). The differences in the measured TOA reflectances due to RSR mismatches were compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of each sensor. For this study, the spectral profile of the target comes from the near-simultaneous EO-1

  4. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  5. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  6. Growing Wildfire Near Big Sur, California Imaged by NASA Terra Spacecraft

    NASA Image and Video Library

    2016-08-09

    The Soberanes fire, in Central California near Big Sur, had grown to more than 67,000 acres when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft captured this image on Aug. 6, 2016. More than 4,800 personnel are battling the blaze, which is now 50 percent contained. The fire has destroyed 57 homes and 11 outbuildings and caused one fatality. Evacuation orders are still in effect for a number of nearby communities. The fire was caused by an illegal unattended campfire. Vegetation is depicted in red colors; burned areas are dark grey; clouds are white; smoke and ash are light grey. Yellow indicates active fires, detected on ASTER's thermal infrared channels. The image covers an area of 19 by 26 miles (30 by 42 kilometers), and is located at 36.4 degrees north, 121.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20725

  7. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.

  8. Terra mission operations: Launch to the present (and beyond)

    NASA Astrophysics Data System (ADS)

    Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-09-01

    The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.

  9. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  10. Tracking and Data Relay Satellite (TDRS-3) Range Biases and Momentum Unload Modeling for Terra (EOS-AMI)

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.

    2001-01-01

    The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a

  11. Overview of NASA Earth Observing Systems Terra and Aqua Moderate Resolution Imaging Spectroradiometer Instrument Calibration Algorithms and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wenny, Brian N.; Barnes, William L.

    2009-01-01

    Since launch, the Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) instruments have successfully operated on-orbit for more than 9 and 6.5 years, respectively. Iv1ODIS, a key instrument for the NASA's Earth Observing System (EOS) missions, was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage earth-observing sensors. In addition to frequent global coverage, MODIS observations are made in 36 spectral bands, covering both solar reflective and thermal emissive spectral regions. Nearly 40 data products are routinely generated from MODIS' observations and publicly distributed for a broad range of applications. Both instruments have produced an unprecedented amount of data in support of the science community. As a general reference for understanding sensor operation and calibration, and thus science data quality, we ;provide an overview of the MODIS instruments and their pre-launch calibration and characterization, and describe their on-orbit calibration algorithms and performance. On-orbit results from both Terra and Aqua MODIS radiometric, spectral, and "spatial calibration are discussed. Currently, both instruments, including their on-board calibration devices, are healthy and are expected to continue operation for several }rears to come.

  12. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  13. Enhancements to NASA's Land Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Technical Reports Server (NTRS)

    Davies, Diane; Michael, Karen; Schmaltz, Jeffrey; Boller, Ryan A.; Masuoka, Ed; Ye, Gang; Roman, Miguel; Vermote, Eric; Harrison, Sherry; Rinsland, Pamela; hide

    2016-01-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) supports application users interested in monitoring a wide variety of natural and man-made phenomena. Near Real- Time (NRT) data and imagery from the AIRS, AMSR2, MISR, MLS, MODIS, OMPS, OMI and VIIRS instruments are available much quicker than routine processing allows. Most data products are available within 3 hours from satellite observation. NRT imagery are generally available 3-5 hours after observation. This article describes the LANCE and the enhancements made to the LANCE over the last year. These enhancements include the addition of NRT products from AMSR2, MISR, OMPS and VIIRS. In addition, the selection of LANCE NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS) has been expanded. Next year, data from the MOPITT will be added to the LANCE.

  14. HgCdTe for NASA EOS missions and detector uniformity benchmarks

    NASA Technical Reports Server (NTRS)

    Norton, Paul R.

    1990-01-01

    Important NASA Earth Observing System (EOS) missions, Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectrometer (MODIS-N), which require detector spectral response in the range of 14 to 17 microns at medium background flux levels and operation in the range of temperatures between 65 to 95 K, will be flown beginning in the next few years. Currently, a prime candidate detector technology for these missions is trapping-mode photoconductive HgCdTe devices. These devices can be tailored to the exact cutoff wavelengths required by those missions, and thus offer the performance advantages of an intrinsic detector which is ideally matched to the mission wavelength. Under the long wavelength-background-temperature conditions of these EOS missions, any detector will at best be thermal generation-recombination noise limited. Photoconductive devices are generally preferred under these circumstances, since at elevated temperatures their performance degrades with n(sub i) while for photovoltaic detectors performance degrades as n sub i(exp 2) n sub i is the intrinsic carrier concentration which is a function of alloy composition and temperature, but not doping. Very high performance trapping-mode photoconductive HgCdTe detectors have been developed which can be reproducibly fabricated. Detectivity (D asterisk) at 80K and 16 micron cutoff wavelength in excess of 10(exp 11) Jones has been measured for these devices. Power dissipation is at least two orders of magnitude less than conventional HgCdTe photoconductors - on the order of 0.12 W/cm(exp 2) compared with 12 W/cm(exp 2). EOS missions define thermal noise limited conditions for the long wavelength operating bands. Trapping-mode photoconductive HgCdTe detectors are linear under such conditions and responsivity is independent of background flux. At lower temperatures or high flux conditions in which background flux limits detector performance, trapping-mode detectors have a responsivity which varies with

  15. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  16. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  17. MODIS Terra and Aqua Products and Data Tools Available from the NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Savtchenko, A.; Yuan, D.; Leptoukh, G.; Acker, J.; McManus, J.; Nickless, D.; Ostrenga, D.; Gopalan, A.; Shen, S.; Liu, Z.; Rui, H.; Teng, B.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), which includes the GES Distributed Active Archive Center (DAAC), distributes three major groups of MODIS products: Level 1 Radiometric and Geolocation data, and Level 2 and higher levels of Atmosphere and Ocean products. The GES DISC provides a broad spectrum of MODIS support for the Earth Observing System (EOS) Project, covering data access, visualization tools, tools for data search and order, documentation, data content, and science and software support. To optimize data access and usage, the MODIS Support Team (MDST) at the GES DISC has developed a variety of tools. The MODIS Multiple Data Ordering Page (MDOP) provides a convenient way to order several MODIS data sets simultaneously, including Level 1, Level 2, and Level 3 products. The MODIS Ocean On-demand Spatial Subsetting tool enables the parameter and spatial subsetting of all MODIS Ocean mapped data products from the GES DAAC Search and Order System. The MODIS L3 Atmospheric products Online Visualization and Analysis System (MOVAS)addresses the "HDF-data-order-free" desire of science users for the on-line study of aerosols, water vapor, and clouds on a large regional to global basis, without downloading huge amounts of data. To increase the distribution capacity of the EOS Core System (ECS), the so-called Data Pool has been added, providing a very large (50 TB) anonymous FTP area for users to directly download data of interest, without having to submit orders to the main tape archive. New information about MODIS data products, tools, and services can be found on the Web gateway for MODIS information at http://daac.gsfc.nasa.gov/MODIS/

  18. Enhancements to NASA's Land Atmosphere Near real-time Capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Michael, K.; Davies, D. K.; Schmaltz, J. E.; Boller, R. A.; Mauoka, E.; Ye, G.; Vermote, E.; Harrison, S.; Rinsland, P. L.; Protack, S.; Durbin, P. B.; Justice, C. O.

    2016-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) supports application users interested in monitoring a wide variety of natural and man-made phenomena. Near Real-Time (NRT) data and imagery from the AIRS, AMSR2, MISR, MLS, MODIS, OMI and VIIRS instruments are available much quicker than routine processing allows. Most data products are available within 3 hours from satellite observation. NRT imagery are generally available 3-5 hours after observation. This article describes LANCE and enhancements made to LANCE over the last year. These enhancements include: the addition of MISR L1 Georeferenced Radiance and L2 Cloud Motion Vector products, AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture products and VIIRS VIIRS Day/Night Band, Land Surface Reflectance and Corrected Surface reflectance products. In addition, the selection of LANCE NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS) has been expanded. LANCE is also working to ingest and process data from OMPS.

  19. Science Writers' Guide to TERRA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The launch of NASA's Terra spacecraft marks a new era of comprehensive monitoring of the Earth's atmosphere, oceans, and continents from a single space-based platform. Data from the five Terra instruments will create continuous, long-term records of the state of the land, oceans, and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. The science objectives of NASAs Earth Observing System (EOS) program are to provide global observations and scientific understanding of land cover change and global productivity, climate variability and change, natural hazards, and atmospheric ozone. Observations by the Terra instruments will: provide the first global and seasonal measurements of the Earth system, including such critical functions as biological productivity of the land and oceans, snow and ice, surface temperature, clouds, water vapor, and land cover; improve our ability to detect human impacts on the Earth system and climate, identify the "fingerprint" of human activity on climate, and predict climate change by using the new global observations in climate models; help develop technologies for disaster prediction, characterization, and risk reduction from wildfires, volcanoes, floods, and droughts, and start long-term monitoring of global climate change and environmental change.

  20. NASA A-Train and Terra Observations of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Douglass, A. R.; DaSilva, A.; Torres, O.; Levy, R.; Duncan, B. N.

    2011-01-01

    Wildfires raged throughout western Russia and parts of Eastern Europe during a persistent heat wave in the summer of 2010. Anomalously high surface temperatures (35 - 41 C) and low relative humidity (9 - 25 %) from mid- June to mid-August 2010 shown by analysis of radiosonde data from multiple sites in western Russia were ideal conditions for the wildfires to thrive. Measurements of outgoing longwave radiation (OLR) from the Atmospheric Infrared Sounder (AIRS) over western Russian indicate persistent subsidence during the heat wave. Daily three-day back-trajectories initiated over Moscow reveal a persistent anticyclonic circulation for 18 days in August, coincident with the most intense period of fire activity observed by Moderate Resolution Imaging Spectroradiometer (MODIS). This unfortunate meteorological coincidence allowed transport of polluted air from the region of intense fires to Moscow and the surrounding area. We demonstrate that the 2010 Russian wildfires are unique in the record of observations obtained by remote-sensing instruments on-board NASA satellites: Aura and Aqua (part of the A-Train Constellation) and Terra. Analysis of the distribution of MODIS fire products and aerosol optical thickness (AOT), UV aerosol index (AI) and single-scattering albedo (SSA) from Aura's Ozone Monitoring Instrument (OMI), and total column carbon monoxide (CO) from Aqua s Atmospheric Infrared Sounder (AIRS) show that the region in the center of western Russia surrounding Moscow (52-58 deg N, 33 -43 deg E) is most severely impacted by wildfire emissions. Over this area, AIRS CO, OMI AI, and MODIS AOT are significantly enhanced relative to the historical satellite record during the first 18 days in August when the anti-cyclonic circulation persisted. By mid-August, the anti-cyclonic circulation was replaced with westerly transport over Moscow and vicinity. The heat wave

  1. Overview of Terra

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2002-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, seven EOS science missions were launched, representing observations of (i) total solar irradiance, (ii) Earth radiation budget, (iii) land cover & land use change, (iv) ocean processes (vector wind, sea surface temperature, ocean topography, and ocean color), (v) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), (v) tropospheric chemistry, (vi) sea ice concentration, and (viii) precipitation. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this lecture I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and tropospheric chemistry. This lecture will describe the Terra satellite, launched in December 1999 and still operating, and each of the five sensors onboard the spacecraft. This overview will highlight the goals and objectives of this mission, and describe the contributions and unique datasets provided by each sensor. This lecture will form the background for an extensive weeklong course on Terra and all the algorithms that have been developed and implemented to process the data from this spacecraft. This lecture will include a description of the Terra orbit, launch, data communication with the spacecraft, and data processing and archival of the data.

  2. ISO 19115 Experiences in NASA's Earth Observing System (EOS) ClearingHOuse (ECHO)

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Mitchell, A.

    2011-12-01

    Metadata is an important entity in the process of cataloging, discovering, and describing earth science data. As science research and the gathered data increases in complexity, so does the complexity and importance of descriptive metadata. To meet these growing needs, the metadata models required utilize richer and more mature metadata attributes. Categorizing, standardizing, and promulgating these metadata models to a politically, geographically, and scientifically diverse community is a difficult process. An integral component of metadata management within NASA's Earth Observing System Data and Information System (EOSDIS) is the Earth Observing System (EOS) ClearingHOuse (ECHO). ECHO is the core metadata repository for the EOSDIS data centers providing a centralized mechanism for metadata and data discovery and retrieval. ECHO has undertaken an internal restructuring to meet the changing needs of scientists, the consistent advancement in technology, and the advent of new standards such as ISO 19115. These improvements were based on the following tenets for data discovery and retrieval: + There exists a set of 'core' metadata fields recommended for data discovery. + There exists a set of users who will require the entire metadata record for advanced analysis. + There exists a set of users who will require a 'core' set metadata fields for discovery only. + There will never be a cessation of new formats or a total retirement of all old formats. + Users should be presented metadata in a consistent format of their choosing. In order to address the previously listed items, ECHO's new metadata processing paradigm utilizes the following approach: + Identify a cross-format set of 'core' metadata fields necessary for discovery. + Implement format-specific indexers to extract the 'core' metadata fields into an optimized query capability. + Archive the original metadata in its entirety for presentation to users requiring the full record. + Provide on-demand translation of

  3. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; hide

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres

  4. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.

    2012-12-01

    In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables

  5. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  6. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  7. A Summary of NASA Summer Faculty Fellowship Work in the E.O. Office and in the Educator Resources Center

    NASA Technical Reports Server (NTRS)

    Thompson, H. Wendell, Sr.

    2005-01-01

    The Office of Equal Opportunity supports a number of summer programs which are designed to: 1.) Increase the number of elementary and secondary students and teachers who are involved in NASA-related education opportunities; and 2.) Support higher education research capability and opportunities that attract and prepare increasing numbers of students and faculty for NASA-related careers. A part of my work in the E.O. office involved the evaluation of several of the programs in order to determine their level of success and to make recommendations for the improvement of those programs where necessary. As a part of the involvement with one of the programs, the PSTI, I had the great opportunity to interact with the students in a number of their sessions which involved problem-based learning in science, mathematics and technology. A summary of the evaluation of those programs is included in this report. The second part of my work involved assisting the coordinator of the Educator Resource Center at the Space and Rocket Center. I participated in space science workshops for in-service and pre-service teachers. There educational resources were made available to the participants including many hands-on activities that hey could take back to their classes. I participated in the three hour workshops that were offered on Tuesdays and Thursdays of each week, although there were workshops on other days. On Mondays, Wednesdays, and Fridays, I worked in the E.O. office. As a result of my work in the ERC, I developed a Directed Reading PowerPoint Lesson Plan Guide involving remote sensing entitled, Echo the Bat. This was based on a NASA published children's book entitled Echo The Bat, written by Ginger Butcher. I have included a description of the lesson in this report. A summary of the evaluations of several of the summer programs supported by the Equal Opportunity office are included in this report.

  8. Arctic Diurnal Land-Surface Temperature Range Changes Derived by NASA MODIS-Terra and -Aqua 2000 through 2012

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2014-12-01

    The diurnal variation of surface temperature is a fundamental parameter as it is a driver of physical processes of atmosphere-land and -ocean energy and mass cycles playing a key role in meteorology and climatology. Our investigation focus is on the diurnal variation of land-surface temperature derived by the Moderate Resolution Imaging Spectroradiometer (MODIS) deployed on the NASA Terra and Aqua satellites. We key our investigation on the ascending and descending mode equator crossing times for daytime and nighttime land-surface temperature variations from March 2000 through 2010 (MODIS-Terra) and July 2002 through 2012 (MODIS-Aqua) and assess the diurnal land-surface temperature range changes at those sampling times. Our investigation shows non-stationary changes in the trends of land-surface temperature diurnal range. We identify changes in the diurnal range trends linked to increase of daytime and nighttime land-surface temperatures from March 2000 through 2010 and decrease in daytime and nighttime land-surface temperatures from July 2002 through 2012. The most recent decrease in daytime and nighttime land-surface temperatures and diurnal range will affect Arctic and other associated energy and mass cycles. Reference: Muskett, R., Atmospheric and Climate Sciences, vol. 4, pp. 231-240, 2014. http://dx.doi.org/10.4236/acs.2014.42026, http://www.scirp.org/journal/PaperDownload.aspx?paperID=44731

  9. Changes in Arctic Diurnal Range Land-Surface Temperature Derived by NASA MODIS-Terra and -Aqua 2000 through 2012

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2015-04-01

    The diurnal variation of surface temperature is a fundamental parameter as it is a driver of physical processes of atmosphere-land and -ocean energy and mass cycles playing a key role in meteorology and climatology. Our investigation focus is on the diurnal variation of land-surface temperature derived by the Moderate Resolution Imaging Spectroradiometer (MODIS) deployed on the NASA Terra and Aqua satellites. We key our investigation on the ascending and descending mode equator crossing times for daytime and nighttime land-surface temperature variations from March 2000 through 2010 (MODIS-Terra) and July 2002 through 2012 (MODIS-Aqua) and assess the diurnal land-surface temperature range changes at those sampling times. Our investigation shows non-stationary changes in land-surface temperature diurnal range. We identify changes in the diurnal range linked to increase of daytime and nighttime land-surface temperatures from March 2000 through 2010 and decrease in daytime and nighttime land-surface temperatures from July 2002 through 2012. The most recent decrease in daytime and nighttime land-surface temperatures and diurnal range will affect Arctic and other associated energy and mass cycles. Ref.: http://www.scirp.org/journal/PaperDownload.aspx?paperID=44731

  10. The State of Scientific Visualization with Regard to the NASA EOS Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Botts, Michael E.; Newchurch, Michael; McNider, Richard T.

    1996-01-01

    In support of the mission to better understand the dynamics of the global atmosphere, John R. Christy and Nathaniel D. Reynolds investigated a wide range of topics. Christy worked closely with NASA scientist Roy Spencer to develop a data set of precision temperature measurements using the NASA built Microwave Sounding Unit. The data from this effort has received international recognition as they provide a source of precise information for the most difficult of environmental issues in the global climate change arena. In addition, Christy coordinated modeling research with NASA scientist Franklin Robertson with research focusing on the validation of global model output using various satellite data with sophisticated statistical techniques. Reynolds worked with NASA scientist Timothy Miller on idealized flows in a rotating annulus and the application of the results to the general circulation of the atmosphere. Additional work was carried out in investigation of stratospheric ozone fluctuations due to dynamical causes.

  11. The State of Scientific Visualization with Regard to the NASA EOS Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Botts, Michael E.; Newchurch, Michael; McNider, Richard T.

    1996-01-01

    In support of the mission to better understand the dynamics of the global atmosphere, John R. Christy and Nathaniel D. Reynolds investigated a wide range of topics. Christy worked closely with NASA scientist Roy Spencer to develop a data set of precision temperature measurements using the NASA built Microwave Sounding Unit. The data from this effort has received international recognition as they provide a source of precise information for the most difficult of environmental issues in the global climate change arena. In addition, Christy coordinated modeling research with NASA scientist Franklin Robertson with research focusing on the validation of global model output using various satellite data with sophisticated statistical techniques. Reynolds worked with NASA scientist Timothy Miller on idealized flows in a rotating annulus and the application of the results to the general circulation of the atmosphere. Additional work was carried out in investigation of stratospheric ozone fluctuations due to dynamical causes.

  12. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.

    2012-12-01

    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  13. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  14. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  15. Using Ncl to Visualize and Analyse of NASA/NOAA Satellite Data in Format of Netcdf, Hdf, Hdf-Eos

    NASA Astrophysics Data System (ADS)

    Huang, W.

    2014-12-01

    The NCAR Command Language (NCL, http://www.ncl.ucar.edu), a product of National Center for Atmospheric Research (NCAR) and sponsored by the National Science Foundation, is a free interpreted language designed specifically for scientific data processing and visualization. NCL has robust file input of NetCDF, HDF, HDF-EOS, and can be OPenDAP-enabled. NCL team has developed examples to handle some of NASA data and posted at: http://www.ncl.ucar.edu/Applications/HDF.shtml. The HDF group has used developed more examples at:http://hdfeos.org/zoo. In order to serve the community better, and to handle future NASA/NOAA data, such as: AIRS, TRMM, MERRA, TOMS, OMI, HIRDLS, BUV, SWDB, GSSTF, GOSAT/ACOS, MOD, MYD, NPP, VIIRS, MCD, VIP, WELD, GED, CALIPSO, CERES, MISR, MOPITT, etc., better, the NCL team is willing to share source code, and examples used to visualize and analyze the above data, and want to hear from the community to improve our work.

  16. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's EOS-AMI Platform

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1999-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (EOS AM-1) in mid-1999.

  17. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's EOS-AMI Platform

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1999-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (EOS AM-1) in mid-1999.

  18. NASA's Terra Spacecraft Measures Height of California Rim Fire Smoke Plumes

    Atmospheric Science Data Center

    2014-05-15

    ... kilometers). These heights have not been corrected for the effects of wind, but have an uncertainty of less than 0.6 mile (1 kilometer). ... Center. JPL is a division of the California Institute of Technology. Image Credit: NASA/GSFC/LaRC/JPL, MISR Team ...

  19. Using NASA EOS to Assess Burn Severity and Perform Fire Risk Mapping of the 2011 North Carolina Wildfire Season

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Ehlen, A.

    2012-12-01

    Since the beginning of 2011 North Carolina has experienced dry conditions and high winds, which has increased the fuel load on the ground. This extreme weather led to several periods of severe wildfires which burned nearly 100,000 acres, caused significant damage to the Coastal Plains region's ecosystem, and greatly affected the livelihoods of many North Carolinians. Utilizing NASA's Earth Observing Systems (EOS), burn severity, real-time drought severity, and fire- risk mapping were conducted on the two largest fires in North Carolina during the 2011 wildfire season, the Pains Bay Fire in Dare County and the Juniper Road Fire in Pender County. In order to show the impact of fires on the ecosystem and the extent of ecological change the fires caused, burn severity maps were created using Landsat 5 TM and the Relative difference Normalized Burn Ratio (RdNBR). To assess drought conditions, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) were derived from Landsat 5TM data to show changes in vegetation cover and moisture. In addition, MODIS Daily Surface Reflectance product (MOD09GA/MYD09GA) with the Normalized Multi-band Drought Index (NMDI) was utilized to estimate real-time drought severity of vegetation and soil moisture. Finally, Landsat 5 TM and various ancillary sources were used to create a fire risk map utilizing a Multi-criteria Evaluation (MCE) method with the new Fuzzification method in ArcGIS. Multiple variables were inserted into the MCE including soil survey data, Normalized Difference Moisture Index (NDMI), slope data obtained from ASTER Global DEM, land cover/fuel data, and proximity to roads. Methodologies using NASA EOS to acquire all end products were provided to project partners, the Alligator River National Wildlife Refuge (ARNWR) and the North Carolina Forest Service (NCFS), in the form of a user tutorial to allow for a better understanding of how remote sensing can be applied to analyze wildfires

  20. Delta in Terra Cimmeria

    NASA Image and Video Library

    2011-02-18

    This unnamed crater in northern Terra Cimmeria has a small channel that created a delta feature. Such features are important indicators of liquid water in Mars past as shown in this image from NASA Mars Odyssey.

  1. EOSDIS Terra Data Sampler #1: Western US Wildfires 2000. 1.1

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C. (Technical Monitor)

    2000-01-01

    This CD-ROM contains sample data in HDF-EOS format from the instruments on board the Earth Observing System (EOS) Terra satellite: (1) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); (2) Clouds and the Earth's Radiant Energy System (CERES); (3) Multi-angle Imaging Spectroradiometer (MISR); and (4) Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the Measurements of Pollution in the Troposphere (MOPITT) instrument were not available for distribution (as of October 17, 2000). The remotely sensed, coincident data for the Western US wildfires were acquired August 30, 2000. This CD-ROM provides information about the Terra mission, instruments, data, and viewing tools. It also provides the Collage tool for viewing data, and links to Web sites containing other digital data processing software. Full granules of the data on this CD-ROM and other EOS Data and Information System (EOSDIS) data products are available from the NASA Distributed Active Archive Centers (DAACs).

  2. EOSDIS Terra Data Sampler #1: Western US Wildfires 2000. 1.1

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C. (Technical Monitor)

    2000-01-01

    This CD-ROM contains sample data in HDF-EOS format from the instruments on board the Earth Observing System (EOS) Terra satellite: (1) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); (2) Clouds and the Earth's Radiant Energy System (CERES); (3) Multi-angle Imaging Spectroradiometer (MISR); and (4) Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the Measurements of Pollution in the Troposphere (MOPITT) instrument were not available for distribution (as of October 17, 2000). The remotely sensed, coincident data for the Western US wildfires were acquired August 30, 2000. This CD-ROM provides information about the Terra mission, instruments, data, and viewing tools. It also provides the Collage tool for viewing data, and links to Web sites containing other digital data processing software. Full granules of the data on this CD-ROM and other EOS Data and Information System (EOSDIS) data products are available from the NASA Distributed Active Archive Centers (DAACs).

  3. Eos Chasma - False Color

    NASA Image and Video Library

    2014-12-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Eos Chasma.

  4. The EOS polar platform

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald; Hobish, Mitchell K.

    1990-01-01

    An overview of NASA's Earth Observing System (EOS) is presented. The EOS will be part of the Mission to Planet Earth that will include a series of flight and scientific experiments. The initial polar-orbiting platform, EOS-A, will carry a suite of instruments designed to examine earth system processes at and near the planet's surface, and the interactions between various subsystems. Some of the instruments that will provide specialized data for geologists, meteorologists, biochemists, biologists, and physicists are described. Thus, EOS will provide an opportunity for technologists and scientists to examine the earth to a level of detail not previously attainable.

  5. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    USGS Publications Warehouse

    Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.

    2007-01-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  6. Venus - Lada Terra Region

    NASA Image and Video Library

    1996-02-01

    This NASA Magellan radar image mosaic is of part of Venus, centered at 51 degrees south latitude, 21 degrees east longitude. Running from west to east across the center of the image is part of a wide lava channel in the Lada Terra region of Venus. http://photojournal.jpl.nasa.gov/catalog/PIA00219

  7. Using Microwave and Infrared Radiances from Off-Nadir Pixels: Application of Radiative Transfer to Slanted Line-of-Sight and Comparisons with NASA EOS Aqua Data

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Joiner, Joanna

    2005-01-01

    The passive infrared and microwave nadir sounders such as (A)TOVS observe the atmosphere from a polar orbit by directing their scan pointed at the ground up to about 49 degrees from nadir. Except for the pixels located right on the satellite ground track, the radiance measurements collected by these instruments characterize hence atmospheric emission paths which are slanted with respect to the zenithal direction at the ground. At the outer swath edges, the deviations from nadir reach about 60 degrees in terms of Satellite Zenith Angle (SZA). The radiative transfer codes used in operational Numerical Weather Prediction applications make the appropriate corrections to account for the extra path induced by the non-zero SZA. However, no corrections are made to account for the fact that the atmospheric profiles along the slanted line-of-sight (LOS) are different from the vertical because of horizontal gradients in the atmosphere. Using NASA EOS Aqua satellite's orbits, zenith and azimuth angles, as well as three-dimensional fields of temperature, water vapor, and ozone produced by the NASA Global Modeling and Assimilation Office, we extracted slanted atmospheric profiles for actual soundings performed by the AIRS and AMSU-A instruments onboard EOS Aqua. We will present the results of our study comparing the calculated brightness temperatures along slanted LOS and vertical LOS with AIRS and AMSU-A observations.

  8. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  9. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  10. Towards Long-Term Archiving of NASA HDF-EOS and HDF Data - Data Maps and the Use of Mark-Up language

    NASA Astrophysics Data System (ADS)

    Duerr, R.; Folk, M.; Yang, M.; Lynnes, C.; Cao, P.

    2007-12-01

    The Hierarchical Data Format (HDF) has been a data format standard in NASA's Earth Observing System Data and Information System (EOSDIS) since the 1990s. Its rich structure, platform independence, full-featured Application Programming Interface (API), and internal compression make it very useful for archiving science data and utilizing them with a rich set of software tools. However, a key drawback for long-term archiving is the complex internal byte layout of HDF files, requiring one to use the API to access HDF data. This makes the long-term readability of HDF data for a given version dependent on long-term allocation of resources to support that version. The majority of the data from NASA's Earth Observing System (EOS) have been archived in HDF Version 4 (HDF4) format. To address the long-term archival issues for these data a collaborative study between The HDF Group and NASAs EOSDIS data centers is underway. One of the first activities undertaken has been an assessment of the range of HDF4 formatted data held by NASA to determine the capabilities inherent in the HDF format that have been used in practice. Based on the results of this assessment, methods for producing a map of the layout of the HDF Version 4 files held by NASA will be prototyped using a markup-language-based HDF tool to map the layout of the HDF Version 4 files. The resulting maps should allow a separate program to read the file without recourse to the HDF API. To verify this, two independent tools based solely on the map files will be developed and tested with a variety of data products archived by NASA.

  11. Western Arabia Terra

    NASA Image and Video Library

    2002-12-19

    This image from NASA Mars Odyssey covers a region in western Arabia Terra, which contains two interesting craters. The eastern floor of the largest crater seen in most of this image is bumpy and ridged in places and relatively smooth in regions.

  12. Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is from a region called Terra Sirenum in Mars' southern hemisphere. This region was named in 1958 for the Sea of the Sirens from Greek Mythology. This is not a sea, however, but a relatively dusty, high albedo region of Mars. There are numerous dust devil tracks that are apparent in the center- left of the image. The dust devils act like vacuum cleaners and lift dust off of the surface leaving a less dusty and relatively lower albedo surface behind. Dust devils are very common on Mars and are thought to be the primary mechanism for constantly lifting the dust into the atmosphere. Dust is constantly present in the Martian atmosphere in greater abundances than typically seen on Earth. The Martian dust is one of the main factors that affect the present Martian climate and clearly displays the relationship between Mars' geology and atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California

  13. Arabia Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image shows deposits in a crater located in Arabia Terra. Arabia is generally dust covered and dark streaks or dust avalanches are present in the crater walls. The dominant geologic process acting in this crater interior is wind erosion. The central crater deposits are eroded to form yardangs, or linear wind-sculpted hills that resemble an inverted boat hull. Deflation and abrasion are capable of eroding rock structures that are aligned parallel to wind direction. In the lower right hand side of the crater, a dark deposit has formed barchan dunes. These crescent shaped dunes have 'horns' that point downwind indicating general northwest to southeast wind direction. These dark sands probably played a role in the erosion and formation of the yardangs.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is from a region called Terra Sirenum in Mars' southern hemisphere. This region was named in 1958 for the Sea of the Sirens from Greek Mythology. This is not a sea, however, but a relatively dusty, high albedo region of Mars. There are numerous dust devil tracks that are apparent in the center- left of the image. The dust devils act like vacuum cleaners and lift dust off of the surface leaving a less dusty and relatively lower albedo surface behind. Dust devils are very common on Mars and are thought to be the primary mechanism for constantly lifting the dust into the atmosphere. Dust is constantly present in the Martian atmosphere in greater abundances than typically seen on Earth. The Martian dust is one of the main factors that affect the present Martian climate and clearly displays the relationship between Mars' geology and atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California

  15. Utilizing NASA Earth Observing System (EOS) Data to Determine Ideal Planting Locations for Wetland Tree Species in St. Bernard Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Arguelles, Maria; Strong, Emma; Ewing, Michael; Kelly, Chelsey

    2012-01-01

    St. Bernard Parish, in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a combination of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have worked not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for coastal forests. Using NASA EOS, NRCS soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of wetland trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using LIDAR data and classifying existing land cover in the study area from ASTER multispectral satellite data. Low altitude AVIRIS hyperspectral imagery was used to assess the health of vegetation over an area near the intersection of the Mississippi River Gulf Outlet Canal (MRGO) and Bayou la Loutre. Historic extent of coastal forests was mapped using aerial photos from USGS collected between 1952 and 1956. The final products demonstrated the utility of combining NASA EOS with other geospatial data in assessing, monitoring, and restoring of coastal ecosystems in Louisiana. This methodology also provides a useful template for other ecological forecasting and coastal restoration applications.

  16. Successful Detection of Floods in Real Time Onboard EO1 Through NASA's ST6 Autonomous Sciencecraft Experiment (ASE)

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Doggett, T.; Greeley, R.

    2004-12-01

    For the first time, a spacecraft has the ability to autonomously detect and react to flood events. Flood detection and the investigation of flooding dynamics in real time from space have never been done before at least not until now. Part of the challenge for the hydrological community has been the difficulty of obtaining cloud-free scenes from orbit at sufficient temporal and spatial resolutions to accurately assess flooding. In addition, the large spatial extent of drainage networks coupled with the size of the data sets necessary to be downlinked from satellites add to the difficulty of monitoring flooding from space. Technology developed as part of the Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, and react to dynamic events, thereby enabling the monitoring of transient processes such as flooding in real time. In addition to being able to autonomously process the imaged data onboard the spacecraft for the first time and search the data for specific spectral features, the ASE Science Team has developed and tested change detection algorithms for the Hyperion spectrometer on EO-1. For flood events, if a change is detected in the onboard processed image (i.e. an increase in the number of ¡wet¡" pixels relative to a baseline image where the system is in normal flow condition or relatively dry), the spacecraft is autonomously retasked to obtain additional scenes. For instance, in February 2004 a rare flooding of the Australian Diamantina River was captured by EO-1. In addition, in August during ASE onboard testing a Zambezi River scene in Central Africa was successfully triggered by the classifier to autonomously take another observation. Yet another successful trigger-response flooding test scenario of the Yellow River in China was captured by ASE on 8/18/04. These exciting results pave the way for future smart reconnaissance missions of transient processes on Earth and beyond. Acknowledgments: We are grateful

  17. EOS standards

    SciTech Connect

    Greeff, Carl W

    2011-01-12

    An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.

  18. Asian Dust Storm Monitoring Using EOS Measurements

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J.; Wang, W.; Kafatos, M.

    2004-12-01

    Dust storm is a severe environmental problem in eastern Asia, especially in Mongolia and northern China. Strong dust storms often occur during spring and earlier summer in this region because of desertification, windy conditions, and drought. To study the dust source, mechanism of dust transport, and effect to weather and environment, efficient approaches for dust storm detection and monitoring are critical, many efforts have been taken with ground measurements and satellite remote sensing. Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) are two of the key instruments for Earth observation of NASA EOS Aqua (EOS PM) satellite, MODIS covers the entire earth surface every 1 to 2 days and acquiring data in 36 spectral bands with spectral coverage from visible bands to thermal infra-red bands and spatial resolution of 250m, 500m, and 1km, it¡_s very suitable for dust storm detection and monitoring while AIRS provide high spectral thermal measurements. We already investigated the spectral features of Asian dust storms, identified MODIS sensitive bands to dust and designed spectral indices with infra-red band and thermal band measurements from MODIS and AIRS in our previous studies. With four overpasses (two daytime and two nighttime) of MODIS (Terra and Aqua MODIS) each day and two overpasses of AIRS, we can detect Asian dust storm, and monitor the movement and transport of dust. We demonstrated our approaches with comprehensive analysis of dust storms in Mongolia and eastern China. Key words: Dust storm monitoring, remote sensing, MODIS and AIRS

  19. Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is located near the equator and the prime meridian of Mars in a region called Terra Meridiani. This is a unique area of Mars that displays layers of material that appear to be in the process of being stripped away. This exposing another layer of material directly underneath that is visible in the central portion of the image. Measurements from another instrument in orbit around Mars, the Thermal Emission Spectrometer on the Mars Global Surveyor, indicate that this region has a high concentration of a mineral called hematite. Grey hematite can form in both volcanic and water rich environments. It is not certain exactly how this mineral formed on Mars, but its presence along with the layering seen in this region makes this region of Mars particularly interesting. Among other possibilities, these layers could be volcanic ash deposits or plausibly sediments deposited in water. This region of Mars is very old and whatever process took place here, it happened long ago. This is one of the principal candidate sites for the next rover mission that will be sent to Mars in 2003.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University

  20. Using NASA EOS to Assess Air Quality and Health Risks Associated with the Virginia Dismal Swamp Fires of 2011 for Improved Decision Making

    NASA Astrophysics Data System (ADS)

    Hebbar, V.

    2012-12-01

    The Great Dismal Swamp has always experienced recurring wildfires that are part of a natural cycle of ecological growth and succession. However, the Lateral West Fire in 2011 was the product of two factors; an ongoing regional drought and a lightning strike. The fire burned from August to late November and was a challenge to extinguish because of the highly organic peat ecosystem. The fire released smoke that was reported over 200 miles north of the origin. The combustion of organic peat content augmented PM2.5, PM10, and carbon monoxide levels enough to exceed federal air quality limits. In order to analyze the effects, MODIS (Moderate-resolution Imaging Spectroradiometer) aboard Aqua and Terra and Aqua's AIRS (Atmospheric Infrared Sounder) were used. The satellites were used to discern aerosol distribution and chemical content of the fire's smoke plumes. In addition, data taken from NASA Langley's High Spectral Resolution LiDAR from flights conducted during the time period in conjunction with CALIPSO's CALIOP (Cloud-Aerosol LiDAR with Orthogonal Polarization) sensor offered vertical cross sections of aerosol tracking and air quality analysis. Finally, Meteorology-based trajectories and concentration plots from NOAA's HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model added theoretical smoke plume direction and distribution information to compare with observed data. With the utilization of NASA Earth and airborne observing systems in conjunction with models were able to analyze the spread of smoke, aerosols, and its effects on air quality to provide a method that can be used by concerned agencies in an effort to protect regional environment and public health in the case of future exceptional and wildfire events.; MODIS AOD and CALIPSO 532nm attenuated backscatter along with NOAA HYSPLIT Frequency model on August 22nd, indicating smoke direction and particles in the atmosphere.

  1. 15 Years of Terra, 14 Years of Application Usage

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Alarcon, C.; Boller, R. A.; Cechini, M. F.; Davies, D.; Fu, G.; Gunnoe, T.; Hall, J. R.; Huang, T.; Ilavajhala, S.; Jackson, M.; King, J.; McGann, M.; Murphy, K. J.; Roberts, J. T.; Thompson, C. K.; Ye, G.

    2014-12-01

    The instruments onboard the Terra spacecraft were designed for long-term Earth science research but not long after launch it became apparent that this data and imagery could be made available in near real-time for applications users. During the year 2000 fire season in the western United States, the US Forest Service approached NASA with a request to expedite MODIS fire detections. The Rapid Response system was created to generate fire detections as well as true color imagery in both swath and geo-referenced formats. This imagery was used by a wide variety of applications, such as NASA's AERONET program, the USDA Foreign Agricultural Service, Antarctic resupply shipping, flood mapping for relief agencies, Deepwater Horizon monitoring, volcanic ash monitoring, as well as print, televised, and Internet media. From 2004, the University of Maryland's Web Fire Mapper helped distribute fire detection information in a variety of formats. However, the applications community expressed the need for near-real time access to the underlying data. This requirement led to the development of the Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) in 2009. To achieve the latency requirements, many components of the EOS satellite operations, ground and science processing systems had to be made more efficient. In addition, products that require ancillary data were modified to use alternate inputs. Forty Terra MODIS data products are currently available from LANCE. LANCE also includes data from other instruments including AIRS, AMSR-E, MLS, and OMI. To help near-real time users navigate this large data offering, a new imagery service was begun in 2011 - Global Imagery Browse Services (GIBS). This service provides very responsive viewing using the Web Map Tile Service protocol. These programs will continue to support and expand the use of Terra data for near-real time applications well into the future.

  2. Hard Knocks in Tyrrhena Terra

    NASA Image and Video Library

    2017-02-02

    NASA Mars Reconnaissance Orbiter observed a small portion of a dark crater floor in the Tyrrhena Terra region of Mars. This is largely ancient hard bedrock that has been cratered by numerous impacts over the eons. http://photojournal.jpl.nasa.gov/catalog/PIA11179

  3. EOS Directory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.

  4. EOS-WEBSTER - Providing Satellite Imagery for Everyone

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Moore, B.; Braswell, R.; Hurtt, G.; Armstrong, W.; Blaha, D.; Carmell, T.; Freuder, R.; Routhier, M.; Spencer, S.

    2002-12-01

    The University of New Hampshire's WEB-based System for Terrestrial Ecosystem Research (EOS-WEBSTER) distributes a special collection of data and imagery products for the Earth Science community. This collection includes satellite imagery from several sensors including the MODIS instrument aboard TERRA. Our services have been designed so that different types of users can access and use only the data that they want. Users can search EOS-WEBSTER's collections, create spatial and temporal subsets, and order data in ASCII or binary formats. We have developed a suite of MODIS products covering Amazonia. These products serve the Large Scale Biosphere-Atmosphere Project in Amazonia (LBA), a joint project of the Brazilian government and NASA. Products include 8-day reflectances (MOD09A1), daily fire potential (MOD14A1), and 16-day NDVIs (MOD13Q1), starting in January 2001. EOS-WEBSTER takes care of obtaining the 14 MODIS tiles that cover Amazonia and stitching them together into a seamless regional coverage. Users can cookie-cut the regional data into smaller areas of interest, such as a field site, a political boundary, or a watershed, then choose an output format such as GrADS and retrieve their order by ftp or on CD-ROM. EOS-WEBSTER delivers MODIS to users whether or not they can manipulate the HDF-EOS format. These regional data sets were developed in cooperation with Eros Data Center to facilitate use of MODIS products by the LBA community. Other products and regions can be developed for other user communities if there is enough interest. Please contact us at support@eos-webster.sr.unh.edu for more information. MODIS is only one of a variety of imagery products available from EOS-WEBSTER. Other platforms include Landsat, SPOT-VEGETATION and IKONOS. We provide Landsat imagery data access to educators by supporting the Forest Watch program, an educational project that includes K-12 teachers and students in UNH research activities that assess the state-of-health of local

  5. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  6. Eos Chasma - False Color

    NASA Image and Video Library

    2016-01-01

    Context image The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Eos Chasma. Orbit Number: 18300 Latitude: -14.9443 Longitude: 312.7 Instrument: VIS Captured: 2006-01-29 02:31. http://photojournal.jpl.nasa.gov/catalog/PIA20227

  7. EOS workstation

    NASA Technical Reports Server (NTRS)

    Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt

    1992-01-01

    This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.

  8. Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] (Released 28 June 2002) The Science This THEMIS visible image illustrates the complex terrains within Terra Meridiani. This general region is one of the more complex on Mars, with a rich array of sedimentary, volcanic, and impact surfaces that span a wide range of martian history. This image lies at the eastern edge of a unique geologic unit that was discovered by the Mars Global Surveyor Thermal Emission Spectrometer (TES) Science Team to have high concentrations of a unique mineral called grey (crystalline) hematite. As discussed by the TES Science Team, this mineral typically forms by processes associated with water, and this region appears to have undergone alteration by hydrothermal (hot water) or other water-related processes. As a result of this evidence for water activity, this region is a leading candidate for further exploration by one of NASA's upcoming Mars Exploration Rovers. The brightness and texture of the surface varies remarkably throughout this image. These differences are associated with different rock layers or ?units?, and can be used to map the occurrence of these layers. The number of layers indicates that extensive deposition by volcanic and sedimentary processes has occurred in this region. Since that time, however, extensive erosion has occurred to produce the patchwork of different layers exposed across the surface. Several distinct layers can be seen within the 20 km diameter crater at the bottom (south) of the image, indicating that this crater once contained layers of sedimentary material that has since been removed. THEMIS infrared images of this region show that many of these rock layers have distinctly different temperatures, indicating that the physical properties vary from layer to layer. These differences suggest that the environment and the conditions under which these layers were deposited or solidified varied through time as these layers were formed. The Story Mars exploration

  9. Earth System Science Research Using Datra and Products from Terra, Aqua, and ACRIM Satellites

    NASA Technical Reports Server (NTRS)

    Hutchison, Keith D.

    2007-01-01

    The report describes the research conducted at CSR to extend MODIS data and products to the applications required by users in the State of Texas. This research presented in this report was completed during the timeframe of August 2004 - December 31, 2007. However, since annual reports were filed in December 2005 and 2006, results obtained during calendar year 2007 are emphasized in the report. The stated goals of the project were to complete the fundamental research needed to create two types of new, Level 3 products for the air quality community in Texas from data collected by NASA s EOS Terra and Aqua missions.

  10. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  11. Inter-Comparison of Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Wu, A.; Barnes, W.; Guenther, B.

    2004-01-01

    Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Each MODIS has 20 reflective solar bands (RSB) with center wavelengths ranging from 0.41 to 2.1 micrometers and 16 thermal emissive bands (TEB) from 3.7 to 14.4 micrometers. The absolute radiometric accuracy requirements (1 sigma) at the typical spectral radiance levels are plus or minus 2% for the RSB for the RSB reflectance factors and plus or minus 5% for the RSB radiance products. With few exceptions, the TEB requirements are plus or minus 1%. The sensor's on-orbit radiometric calibration is performed by the on-board calibrators, including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a V-groove flat panel blackbody (BB) for the TEB. In addition, the Moon has been extensively used by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. This paper presents MODIS lunar calibration methodology and inter-comparison of Terra and Aqua MODIS in the VIS/NIR spectral regions. Current results from lunar observations show that the calibration difference between the two sensors is less than plus or minus 1%. Also discussed in this paper are the approaches and results of inter-comparison of Terra and Aqua MODIS in the TEB using closely matched thermal infrared (TIR) channels on the Advanced Very High Resolution Radiometer (AVHRR) at 11 and 12 micrometers.

  12. Noachis Terra - False Color

    NASA Image and Video Library

    2015-12-30

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color images shows an unnamed crater in Noachis Terra. The "dark blue" material is probably basaltic sands. Orbit Number: 17811 Latitude: -77.9919 Longitude: 0.491743 Instrument: VIS Captured: 2005-12-19 20:35. http://photojournal.jpl.nasa.gov/catalog/PIA20225

  13. Arabia Terra - False Color

    NASA Image and Video Library

    2015-10-09

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Arabia Terra. A dark blue tone in this false color image is often associated with basaltic sand. Orbit Number: 12307 Latitude: 3.44332 Longitude: 5.97644 Instrument: VIS Captured: 2004-09-22 18:11 http://photojournal.jpl.nasa.gov/catalog/PIA19794

  14. Margaritifer Terra - False Color

    NASA Image and Video Library

    2016-06-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal variations of the surface not easily identified in a single band image. Today's false color image shows part of Margaritifer Terra. Dark blue in this band configuration often equates with sand or basaltic materials. Orbit Number: 37552 Latitude: 6.87548 Longitude: 345.994 Instrument: VIS Captured: 2010-06-02 09:07 http://photojournal.jpl.nasa.gov/catalog/PIA20767

  15. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  16. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  17. Electronic crosstalk in Terra MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Xiong, Xiaoxiong; Wang, Menghua

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a legacy Earth remote sensing instrument in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on board the Terra spacecraft. MODIS has 36 bands, among which bands 20-25 and bands 27-36 are thermal emissive bands covering a wavelength range from 3.7μm to 14.2μm. It has been found that there are severe contaminations in Terra bands 27-30 (6.7 μm - 9.73 μm) due to crosstalk of signals among themselves. The crosstalk effect induces strong striping artifacts in the Earth View (EV) images and causes large long-term drifts in the EV brightness temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect for them. It was demonstrated that the crosstalk correction can substantially reduce the striping noise in the EV images and significantly remove the long-term drifts in the EV BT in the Long Wave InfraRed (LWIR) water vapor channels (bands 27-28). In this paper, the crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in the remaining LWIR bands 29 and 30. The crosstalk correction successfully reduces the striping artifact in the EV images and removes long-term drifts in the EV BT in bands 29-30 as was done similarly for bands 27-28. The crosstalk correction algorithm can thus substantially improve both the image quality and the radiometric accuracy of the Level 1B (L1B) products of the LWIR PV bands, bands 27-30. From this study it is also understood that other Terra MODIS thermal emissive bands are contaminated by the crosstalk effect and that the algorithm can be applied to these bands for crosstalk correction.

  18. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  19. HDF-EOS 5 Validator

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program partly automates the task of determining whether an HDF-EOS 5 file is valid in that it conforms to specifications for such characteristics as attribute names, dimensionality of data products, and ranges of legal data values. ["HDF-EOS" and variants thereof are defined in "Converting EOS Data From HDF-EOS to netCDF" (GSC-15007-1), which is the first of several preceding articles in this issue of NASA Tech Briefs.] Previously, validity of a file was determined in a tedious and error-prone process in which a person examined human-readable dumps of data-file-format information. The present software helps a user to encode the specifications for an HDFEOS 5 file, and then inspects the file for conformity with the specifications: First, the user writes the specifications in Extensible Markup Language (XML) by use of a document type definition (DTD) that is part of the program. Next, the portion of the program (denoted the validator) that performs the inspection is executed, using, as inputs, the specifications in XML and the HDF-EOS 5 file to be validated. Finally, the user examines the output of the validator.

  20. NASA Remote Sensing Validation Data: Saudi Arabia

    DOE Data Explorer

    Myers, Daryl R. [NREL; Al-Abbadi, Naif [King Abdulaziz City for Science and Technology, Energy Research Institite; Wilcox, Steve [NREL

    Since 1995, the King Abdulaziz City for Science and Technology (KACST) and the National Renewable Energy Laboratory (NREL) have co-operated to establish a 12 station network of high quality solar radiation monitoring installations across the Kingdom of Saudi Arabia. NREL and KACST realized the value of accurate surface solar radiation flux measurements for validation of satellite derived surface and atmospheric solar radiation flux measurements, and is making this data available to support validation of satellite data products related to the NASA Mission to Planet Earth component of the Earth Science Enterprise Earth Observing System (EOS) project to evaluate long term climate trends based on measuements from EOS Terra Platforms. A CIMEL 8 channel sunphotometer for measuring aerosol optical depth at 6 wavelengths and total column water has been deployed at the Solar Village station since February 24, 1999. [Taken from http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/

  1. Vector Data Model: A New Model of HDF-EOS to Support GIS Applications in EOS

    NASA Astrophysics Data System (ADS)

    Chi, E.; Edmonds, R d

    2001-05-01

    NASA's Earth Science Data Information System (ESDIS) project has an active program of research and development of systems for the storage and management of Earth science data for Earth Observation System (EOS) mission, a key program of NASA Earth Science Enterprise. EOS has adopted an extension of the Hierarchical Data Format (HDF) as the format of choice for standard product distribution. Three new EOS specific datatypes - point, swath and grid - have been defined within the HDF framework. The enhanced data format is named HDF-EOS. Geographic Information Systems (GIS) are used by Earth scientists in EOS data product generation, visualization, and analysis. There are two major data types in GIS applications, raster and vector. The current HDF-EOS handles only raster type in the swath data model. The vector data model is identified and developed as a new HDFEOS format to meet the requirements of scientists working with EOS data products in vector format. The vector model is designed using a topological data structure, which defines the spatial relationships among points, lines, and polygons. The three major topological concepts that the vector model adopts are: a) lines connect to each other at nodes (connectivity), b) lines that connect to surround an area define a polygon (area definition), and c) lines have direction and left and right sides (contiguity). The vector model is implemented in HDF by mapping the conceptual model to HDF internal data models and structures, viz. Vdata, Vgroup, and their associated attribute structures. The point, line, and polygon geometry and attribute data are stored in similar tables. Further, the vector model utilizes the structure and product metadata, which characterize the HDF-EOS. Both types of metadata are stored as attributes in HDF-EOS files, and are encoded in text format by using Object Description Language (ODL) and stored as global attributes in HDF-EOS files. EOS has developed a series of routines for storing

  2. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  3. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Implementing Land and Atmosphere Near Real-Time Capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Thanvi, V.; Michael, K.; Murphy, K. J.; Masuoka, E.; Vollmer, B.; Tilmes, C.; Conover, H.; Teague, M.; Durbin, P.; Regner, K.

    2010-12-01

    The past decade has seen a rapid increase in availability and usage of near real-time data from sensors on board the earth observing satellites. NASA’s Earth Observing System Data and Information System (EOSDIS) provides a wealth of data and products supporting scientific research of the atmosphere, oceans, and land. The Earth Observing System (EOS) instruments onboard Terra, Aqua and Aura satellites make global measurements daily which are processed into higher-level “standard” products within 8 to 40 hours of observation and then made available to users, primarily earth science researchers. However applications users, operational agencies, and even researchers desire EOS products in near real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users usually need data within 3 hours, and are willing to trade science product quality for timely access. In response to this need, NASA developed the Land, Atmosphere Near Real-time Capability for EOS (LANCE) that provides land and atmosphere data acquired by AIRS, AMSR-E, MLS, MODIS, and OMI instruments.

  6. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Arabia Terra Streaks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Accumulations of thick dust give way down slopes, crater walls, and other steep terrain, leaving the dark streaks that are common in the dusty region of Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 14.7, Longitude 20.3 East (339.7 West). 19 meter/pixel resolution.

  8. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  10. Detector stability of the Terra MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Chen, Na; Xiong, S.; Wu, Aisheng; Adimi, Farida; Barnes, William L.

    2003-11-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for the NASA"s Earth Observing System (EOS). The MODIS ProtoFlight Model (PFM) was launched on-board the EOS Terra spacecraft on December 18, 1999. The science data acquisition started on February 24, 2000. Since then it has been providing the science community and public users unprecedented amount of data sets for the global monitoring of the Earth"s land, oceans, and atmosphere. MODIS has 36 spectral bands with wavelengths ranging from 0.41 micrometer to 14.5 micrometers. Its 16 thermal emissive bands (TEB) range from 3.7 to 14.2 micrometers and have a total of 160 individual detectors (10 detectors per band). The thermal emissive bands are calibrated on-orbit by an on-board calibrator blackbody (OBC BB) on a scan by scan basis. The detectors responses to the BB source track their operational stability and therefore their noise characteristics as well. In this paper, we provide a brief review of the MODIS TEB on-orbit calibration algorithm with a focus on detector stability using over three years of on-orbit calibration data sets. The on-orbit changes in detectors responses from one operational configuration to another, the changes within the same operational condition, and the impact of these changes on the calibration and on the Earth scene observations are carefully examined. Except for a few detectors that were identified from pre-launch or became noisy on-orbit, the overall performance of MODIS TEB detectors is very satisfactory according to the design specifications.

  11. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  12. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  13. The EOS-Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2005-01-01

    The EOS-Aura atmospheric chemistry mission is scheduled for launch in June 2004. Aura is the third of the large EOS observatories. The spacecraft carries an international instrument payload that has a planned six year lifetime. The Aura mission will collect data to help answer stratospheric and tropospheric atmospheric chemistry questions. The mission has the following four major objectives: 1) Track the ozone layer to determine if it is recovering as predicted. The four Aura instruments, HIRDLS, OMI, MLS, and TES will measure ozone, key source, radical, reservoir, tracer gases, and aerosols. Aura's unique design allows for major ozone controlling gases to be measured within the same air mass within a few minutes. The OMI instrument will continue the trends from NASA's TOMS series. 2) Track tropospheric pollutant sources and measure tropospheric ozone precursors. Major pollution sources include urban, industrial and biomass burning regions. Tropospheric trace gases will be measured, using TES and OMI, at an average spatial resolution of about approx. 15 km with near global coverage. 3) Measure key upper tropospheric atmospheric constituents that influence climate. The Aura instruments will monitor O3, H2O, CO, cirrus ice, and aerosols. EOS-Aura will fly in a sun-synchronous polar orbit about 15 minutes behind Aqua and make near coincident and synergistic measurements with the EOS-Aqua, Cloudsat, OCO, PARASOL and Calipso missions. Aura launched July 15,2004.

  14. Summary of EOS flight dynamics analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.

    1995-01-01

    From a flight dynamics perspective, the Earth Observing System (EOS) spacecraft present a number of challenges to mission designers. The Flight Dynamics Support Branch of NASA GSFC has examined a number of these challenges, including managing the EOS constellation, disposing of the spacecraft at the end-of-life (EOL), and achieving the appropriate mission orbit given launch vehicle and ascent propulsion constraints. The EOS program consists of a number of spacecraft including EOS-AM, an ascending node spacecraft, EOS-PM, a descending node spacecraft, the EOS Chemistry mission (EOS-CHEM), the EOS Altimetry Laser (EOS-LALT), and the EOS-Altimetry Radar (EOS-RALT). The orbit characteristics of these missions are presented. In order to assure that downlinking data from each spacecraft will be possible without interference between any two spacecraft, a careful examination of the relationships between spacecraft and how to maintain the spacecraft in a configuration which would minimize these communications problems must be made. The FDSB has performed various analyses to determine whether the spacecraft will be in a position to interfere with each other, how the orbit dynamics will change the relative positioning of the spacecraft over their lifetimes, and how maintenance maneuvers could be performed, if needed, to minimize communications problems. Prompted by an activity at NASA HQ to set guidelines for spacecraft regarding their end-of-life dispositions, much analysis has also been performed to determine the spacecraft lifetime of EOS-AM1 under various conditions, and to make suggestions regarding the spacecraft disposal. In performing this analysis, some general trends have been observed in lifetime calculations. The paper will present the EOS-AM1 lifetime results, comment on general reentry conclusions, and discuss how these analyses reflect on the HQ NMI. Placing the EOS spacecraft into their respective mission orbits involves some intricate maneuver planning to

  15. Sensor to User - NASA/EOS Data for Coastal Zone Management Applications Developed from Integrated Analyses: Verification, Validation and Benchmark Report

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Arnone, Robert

    2006-01-01

    The NASA Applied Sciences Program seeks to transfer NASA data, models, and knowledge into the hands of end-users by forming links with partner agencies and associated decision support tools (DSTs). Through the NASA REASoN (Research, Education and Applications Solutions Network) Cooperative Agreement, the Oceanography Division of the Naval Research Laboratory (NRLSSC) is developing new products through the integration of data from NASA Earth-Sun System assets with coastal ocean forecast models and other available data to enhance coastal management in the Gulf of Mexico. The recipient federal agency for this research effort is the National Oceanic and Atmospheric Administration (NOAA). The contents of this report detail the effort to further the goals of the NASA Applied Sciences Program by demonstrating the use of NASA satellite products combined with data-assimilating ocean models to provide near real-time information to maritime users and coastal managers of the Gulf of Mexico. This effort provides new and improved capabilities for monitoring, assessing, and predicting the coastal environment. Coastal managers can exploit these capabilities through enhanced DSTs at federal, state and local agencies. The project addresses three major issues facing coastal managers: 1) Harmful Algal Blooms (HABs); 2) hypoxia; and 3) freshwater fluxes to the coastal ocean. A suite of ocean products capable of describing Ocean Weather is assembled on a daily basis as the foundation for this semi-operational multiyear effort. This continuous realtime capability brings decision makers a new ability to monitor both normal and anomalous coastal ocean conditions with a steady flow of satellite and ocean model conditions. Furthermore, as the baseline data sets are used more extensively and the customer list increased, customer feedback is obtained and additional customized products are developed and provided to decision makers. Continual customer feedback and response with new improved

  16. Terra in K-16 formal education settings

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Fischer, J. D.; Lewis, P. M.; Moore, S. W.; Oots, P. C.; Rogerson, T. M.; Hitke, K. M.; Riebeek, H.

    2009-12-01

    Since it began, the Terra mission has had an active presence in formal education at the K-16 level. This educational presence was provided through the S’COOL project for the first five years of the mission, joined by the MY NASA DATA project for the second five years. The Students’ Cloud Observations On-Line (S’COOL) Project, begun in 1997 under the auspices of the Clouds and the Earth’s Radiant Energy System (CERES) project, seeks to motivate students across the entire K-12 spectrum to learn science basics and how they tie in to a larger picture. Beginning early on, college level participants have also participated in the project, both in science classes and in science education coursework. The project uses the connection to an on-going NASA science investigation as a powerful motivator for student observations, analysis and learning, and has reached around the globe as shown in the world map. This poster will review the impact that Terra, through S’COOL, has made in formal education over the last decade. The MY NASA DATA Project began in 2004 under the NASA Research, Education and Applications Solutions Network (REASoN). A 5-year REASoN grant enabled the creation of an extensive website which wraps easily accessible Earth science data - including Terra parameters from CERES (involving MODIS data fusion), MISR, and MOPITT (an example for carbon monoxide is given in the graph, with dark areas indicating high CO levels) - with explanatory material written at the middle school level, and an extensive collection of peer-reviewed lesson plans. The MY NASA DATA site has a rapidly growing user-base and was recently adopted by a number of NASA Earth Science missions, in addition to Terra, as a formal education arm of their Education and Public Outreach efforts. This poster will summarize the contributions that Terra, through MY NASA DATA, has made to formal education since 2004.

  17. Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia

    2010-01-01

    The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.

  18. Wonders of Eos Chasma

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 October 2003

    The slopes and floor of Eos Chasma, a portion of the vast Valles Marineris canyon complex, are located near an early landing site for the MER rovers. Sadly, this site was eliminated due to serious concerns about winds. Nevertheless, this site contains some marvelous geology. Layered rocks abound in the walls of the canyon as well as in the large streamlined material on the floor. The streamlined island appears to have been formed in a massive flood episode. Alluvial fans can also be seen at the base of the slopes. One fan has a deeply entrenched channel that was most likely carved out by water; however, it may be possible that dry avalanches created this channel.

    Image information: VIS instrument. Latitude -13.5, Longitude 317.8 East (42.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Wonders of Eos Chasma

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 16 October 2003

    The slopes and floor of Eos Chasma, a portion of the vast Valles Marineris canyon complex, are located near an early landing site for the MER rovers. Sadly, this site was eliminated due to serious concerns about winds. Nevertheless, this site contains some marvelous geology. Layered rocks abound in the walls of the canyon as well as in the large streamlined material on the floor. The streamlined island appears to have been formed in a massive flood episode. Alluvial fans can also be seen at the base of the slopes. One fan has a deeply entrenched channel that was most likely carved out by water; however, it may be possible that dry avalanches created this channel.

    Image information: VIS instrument. Latitude -13.5, Longitude 317.8 East (42.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Heart-Shaped Feature in Arabia Terra

    NASA Image and Video Library

    2011-02-14

    This picture of a heart-shaped feature in Arabia Terra on Mars was taken on May 23, 2010, by NASA Mars Reconnaissance Orbiter. A small impact crater near the tip of the heart is responsible for the formation of the bright, heart-shaped feature.

  1. Terra Cimmeria Crater - False Color

    NASA Image and Video Library

    2015-07-28

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows a unique, resistant material on the floor of an unnamed crater in Terra Cimmeria. Orbit Number: 8547 Latitude: -23.784 Longitude: 135.545 Instrument: VIS Captured: 2003-11-18 02:35 http://photojournal.jpl.nasa.gov/catalog/PIA19736

  2. EOS Data Products Latency and Reprocessing Evaluation

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Wanchoo, L.

    2012-12-01

    NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) program has been processing, archiving, and distributing EOS data since the launch of Terra platform in 1999. The EOSDIS Distributed Active Archive Centers (DAACs) and Science-Investigator-led Processing Systems (SIPSs) are generating over 5000 unique products with a daily average volume of 1.7 Petabytes. Initially EOSDIS had requirements to make process data products within 24 hours of receiving all inputs needed for generating them. Thus, generally, the latency would be slightly over 24 and 48 hours after satellite data acquisition, respectively, for Level 1 and Level 2 products. Due to budgetary constraints these requirements were relaxed, with the requirement being to avoid a growing backlog of unprocessed data. However, the data providers have been generating these products in as timely a manner as possible. The reduction in costs of computing hardware has helped considerably. It is of interest to analyze the actual latencies achieved over the past several years in processing and inserting the data products into the EOSDIS archives for the users to support various scientific studies such as land processes, oceanography, hydrology, atmospheric science, cryospheric science, etc. The instrument science teams have continuously evaluated the data products since the launches of EOS satellites and improved the science algorithms to provide high quality products. Data providers have periodically reprocessed the previously acquired data with these improved algorithms. The reprocessing campaigns run for an extended time period in parallel with forward processing, since all data starting from the beginning of the mission need to be reprocessed. Each reprocessing activity involves more data than the previous reprocessing. The historical record of the reprocessing times would be of interest to future missions, especially those involving large volumes of data and/or computational loads due to

  3. Visualization, Analysis and Subsetting Tools for EOS Aura Data Products in HDF-EOS5

    NASA Technical Reports Server (NTRS)

    Johnson, J.; Ahmad, S.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    Aura data products are among the first to use the new version 5 of the Hierarchical Data Format for the Earth Observing System, or HDF-EOS5. This presentation discusses the common HDF-EOS5 file layout that is adopted for most of the EOS Aura standard data products. Details of the various tools that can be used to access, visualize and subset these data will also be provided. Aura, the NASA Earth Observing System's atmospheric chemistry mission, was successfully launched July 15, 2004. The Aura spacecraft includes four instruments: the High Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), and the Tropospheric Emission Spectrometer (TES). Data from the HIRDLS, MLS and OMI will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while TES data will be archived at the NASA Langley Research Center DAAC. For more information see http://daac.gsfc.nasa.gov/.

  4. 15 Years of Terra MODIS Instrument on-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Salomonson, V.

    2014-12-01

    The first MODIS instrument, launched on-board the NASA EOS Terra spacecraft in December 1999, has successfully operated for nearly 15 years. MODIS observations have significantly contributed to the studies of many geophysical parameters of the earth's system and its changes over time. Dedicated effort made by the MODIS Characterization Support Team (MCST) to constantly monitor instrument operation, to calibrate changes in sensor response, to derive and update sensor calibration parameters, and to maintain and improve calibration algorithms has played an extremely important role to assure the quality of MODIS data products. MODIS was developed with overall improvements over its heritage sensors. Its observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are calibrated on-orbit by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27-36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are tracked by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities implemented from launch to present and the status of instrument health and functions. It demonstrates sensor on-orbit performance derived from its telemetry, on-board calibrators (OBC), and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain level 1B data quality, various challenging issues, and future improvements.

  5. EOS Data Products Handbook. Volume 2

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L. (Editor); Greenstone, Reynold (Editor); Closs, James (Technical Monitor)

    2000-01-01

    The EOS Data Products Handbook provides brief descriptions of the data products that will be produced from a range of missions of the Earth Observing System (EOS) and associated projects. Volume 1, originally published in 1997, covers the Tropical Rainfall Measuring Mission (TRMM), the Terra mission (formerly named EOS AM-1), and the Data Assimilation System, while this volume, Volume 2, covers the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIMSAT), Aqua, Jason-1, Landsat 7, Meteor 3M/Stratospheric Aerosol and Gas Experiment III (SAGE III). the Quick Scatterometer (QuikScat), the Quick Total Ozone Mapping Spectrometer (Quik-TOMS), and the Vegetation Canopy Lidar (VCL) missions. Volume 2 follows closely the format of Volume 1, providing a list of products and an introduction and overview descriptions of the instruments and data processing, all introductory to the core of the book, which presents the individual data product descriptions, organized into 11 topical chapters. The product descriptions are followed by five appendices, which provide contact information for the EOS data centers that will be archiving and distributing the data sets, contact information for the science points of contact for the data products, references, acronyms and abbreviations, and a data products index.

  6. Lessons Leaned from Terra and Aqua MODIS SWIR Bands On-orbit Performance

    NASA Astrophysics Data System (ADS)

    Oudrari, H.; Xiong, J.; Chiang, V.; Moeller, C.; Vermote, E.; Chu, A.; Guenther, B.

    2005-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is currently operating on both the Terra and Aqua spacecrafts. As a major instrument for NASA's Earth Observing System (EOS) missions, the MODIS was designed to make continuous global observations using 36 spectral bands with wavelengths from visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) at three spatial (nadir) resolutions: 0.25km (bands 1-2), 0.5km (bands 3-7), and 1km (bands 8-36). Together the Terra and Aqua MODIS have accumulated nearly 10 years of science data sets, enabling a broad range of studies and research activities to be performed for the environment and climate changes. The MODIS has four SWIR bands with wavelengths centered at 1.24mm (band 5), 1.38mm (band 26), 1.62mm (band 6), and 2.1mm (band 7) with primary applications for the land/cloud and aerosol properties. They are located with six MWIR bands (20-25) on the same focal plane assembly, called the SMIR FPA. For Terra MODIS SWIR bands, large thermal leak (0.5-3 percent)and electronic crosstalk problems were identified from pre-launch calibration and characterization. Although a number of efforts have been made since then, including pre-launch hardware fix, on-orbit FPA configuration optimization, and the correction algorithms implemented in the Level 1B retrieval algorithm, remaining SWIR crosstalk effects still exist in a number of Terra MODIS science products. On the other hand, the Aqua MODIS SWIR bands have much smaller thermal leak and electronic crosstalk. Their on-orbit performance has been much better than that from Terra MODIS. In this paper we provide a description of MODIS SWIR bands thermal leak and crosstalk characterization, made at pre-launch and on-orbit, for both Terra and Aqua MODIS. We illustrate examples of the improvements made by the correction algorithms in the L1B, assess the effectiveness of the crosstalk reduction, and estimate the

  7. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  8. Web-based Hierarchical Ordering Mechanism (WHOM) tool for MODIS data from Terra

    NASA Astrophysics Data System (ADS)

    Sikder, M. S.; Eaton, P.; Leptoukh, G.; McCrimmon, N.; Zhou, B.

    2001-05-01

    At the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), we have substantially enhanced the popular Web-based Hierarchical Ordering Mechanism (WHOM) to include data from the Earth Observing System (EOS). The GES DAAC archives unprecedented volumes of remotely sensed data and large number of geophysical products derived from the MODIS instrument on board Terra satellite, and distributes them to the world scientific and applications user community. These products are currently divided into three groups: Radiometric and Geolocation, Atmosphere, and Ocean data products. The so-called Terra-WHOM (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/index.html) is a GES DAAC developed search and order user interface which is a smaller segment of the WHOM interface that provides access to all other GES DAAC data holdings. Terra-WHOM specifically provides user access to MODIS data archived at the GES DAAC. It allows users to navigate through all the available data products and submit a data request with minimal effort. The WHOM modular design and hierarchical architecture makes this tool unique, user-friendly, and very efficient to complete the search and order. The main principle of WHOM is that it advertises the available data products, so, users always know what they can get. The WHOM design includes: simple point & click, flexible, web pages generated from templates, consistent look and feel throughout interface, and easy configuration management due to contents being encapsulated and separated from software. Modular search algorithms provide dynamic Spatial and Temporal search capability and return the search results as html pages using CGI scripts. In Terra-WHOM, calendar pages show the actual number of data granules archived for each day for high-resolution local scenes, and from there the user can go to a page showing the geo-coverage for every granule for a given day. This feature significantly optimizes user's effort for selecting data. The

  9. ASPEN: EO-1 Mission Activity Planning Made Easy

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Govindjee, Anita; Yan, David; Rabideau, Gregg; Chien, Steve; Fukunaga, Alex

    1997-01-01

    This paper describes the application of an automated planning and scheduling system to the NASA Earth Orbitin 1 (EO-1) missions. The planning system, ASPEN, is used to autonomously schedule the daily activites of the satellite.

  10. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; hide

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.

  11. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  12. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; hide

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  13. Early-EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ludwig, George H.; Hunolt, Gregory W.

    1991-01-01

    NASA's Earth Observing System (EOS), an integral part of the U.S. Global Change Research Program, will provide simultaneous observations from a suite of instruments in low-earth orbit. The EOS Data and Information System (EOSDIS) will handle the data from those instruments, as well as provide access to observations and related information from other earth science missions. The Early-EOSDIS Program will provide initial improved support for global change research by building upon present capabilities and data, and will establish a working prototype EOSDIS for selected archiving, distribution, and information management functions by mid-1994.

  14. Early-EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ludwig, George H.; Hunolt, Gregory W.

    1991-01-01

    NASA's Earth Observing System (EOS), an integral part of the U.S. Global Change Research Program, will provide simultaneous observations from a suite of instruments in low-earth orbit. The EOS Data and Information System (EOSDIS) will handle the data from those instruments, as well as provide access to observations and related information from other earth science missions. The Early-EOSDIS Program will provide initial improved support for global change research by building upon present capabilities and data, and will establish a working prototype EOSDIS for selected archiving, distribution, and information management functions by mid-1994.

  15. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    Emmitt, George D.

    1991-01-01

    The related activities of the contract are outlined for the first year. These include: (1) attend team member meetings; (2) support EOS Project with science related activities; (3) prepare and Execution Phase plan; and (4) support LAWS and EOSDIS related work. Attached to the report is an appendix, 'LAWS Algorithm Development and Evaluation Laboratory (LADEL)'. Also attached is a copy of a proposal to the NASA EOS for 'LAWS Sampling Strategies and Wind Computation Algorithms -- Storm-Top Divergence Studies. Volume I: Investigation and Technical Plan, Data Plan, Computer Facilities Plan, Management Plan.'

  16. Validating the autonomous EO-1 science agent

    NASA Technical Reports Server (NTRS)

    Cichy, Benjamin; Chien, Steve; Rabideau, Gregg; Tran, Daniel

    2004-01-01

    This paper describes the validation process for the Autonomous Science Agent, a software agent that is currently flying onboard NASA EO-1 spacecraft. The agent autonomously collects, analyzes, and reacts to onboard science data. The Autonomous Science Agent has been designed using a layered architectural approach with specific redundant safeguards to reduce the risk of an agent malfunction to the EO-1 spacecraft. This safe design has been thoroughly validated by informal validation methods supplemented by sub-system and system-level testing. This paper describes the analysis used to define agent safety, elements of the design that increase the safety of the agent, and the process used to validate agent safety.

  17. Terra Nova Bay Polynya, Antarctica

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Terra Nova Bay, off the Scott Coast of Victoria Land, Antarctica, a large pocket of open water persists throughout most of the Southern Hemisphere winter, even while most of the rest of the Antarctic coastline is firmly embraced by the frozen Southern Ocean. This pocket of open water--a polynya--results from exceptionally strong winds that blow downslope from the Trans-Antarctic Mountains. These fierce katabatic winds drive the sea ice eastward. Since the dominant ice drift pattern in the area is northward, the Drygalski Ice Tongue prevents the bay from being re-populated with sea ice. This image of the Terra Nova Bay polynya was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite on October 16, 2007. Sea ice sits over the Ross Sea like a cracked and crumbling windshield. Blue-tinged glaciers flow down from the Trans-Antarctic Mountains. Although glaciers can appear blue because of melt water, they can also get that tint when the wind scours and polishes the ice surface. Given the strength of the katabatic winds along this part of the Antarctic coast, it is likely that the blue color of these glaciers is a result of their having been swept clean of snow. The large image has a spatial resolution (level of detail) of 250 meters per pixel.

  18. Terra Nova Bay Polynya, Antarctica

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Terra Nova Bay, off the Scott Coast of Victoria Land, Antarctica, a large pocket of open water persists throughout most of the Southern Hemisphere winter, even while most of the rest of the Antarctic coastline is firmly embraced by the frozen Southern Ocean. This pocket of open water--a polynya--results from exceptionally strong winds that blow downslope from the Trans-Antarctic Mountains. These fierce katabatic winds drive the sea ice eastward. Since the dominant ice drift pattern in the area is northward, the Drygalski Ice Tongue prevents the bay from being re-populated with sea ice. This image of the Terra Nova Bay polynya was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite on October 16, 2007. Sea ice sits over the Ross Sea like a cracked and crumbling windshield. Blue-tinged glaciers flow down from the Trans-Antarctic Mountains. Although glaciers can appear blue because of melt water, they can also get that tint when the wind scours and polishes the ice surface. Given the strength of the katabatic winds along this part of the Antarctic coast, it is likely that the blue color of these glaciers is a result of their having been swept clean of snow. The large image has a spatial resolution (level of detail) of 250 meters per pixel.

  19. MOPITT Mechanisms 16 Years In-Orbit Operation on TERRA

    NASA Technical Reports Server (NTRS)

    Gibson, Andrew S.; Nichitiu, Florian; Caldwell, Dwight

    2016-01-01

    The 16th anniversary of the launch of NASA's Terra Spacecraft was marked on December 18, 2015, with the Measurements of Pollution in the Troposphere (MOPITT) instrument being a successful contributor to the NASA EOS flagship. MOPITT has been enabled by a large suite of mechanisms, allowing the instrument to perform long-duration monitoring of atmospheric carbon monoxide, providing global measurements of this important greenhouse gas for 16 years. Mechanisms have been successfully employed for scanning, cooling of detectors, and to optically modulate the gas path length within the instrument by means of pressure and gas cell length variation. The instrument utilizes these devices to perform correlation spectroscopy, enabling measurements with vertical resolution from the nadir view, and has thereby furthered understanding of source and global transport effects of carbon monoxide. Given the design requirement for a 5.25-year lifetime, the stability and performance of the majority of mechanisms have far surpassed design goals. With 16 continuously operating mechanisms in service on MOPITT, including 12 rotating mechanisms and 4 with linear drive elements, the instrument was an ambitious undertaking. The long life requirements combined with demands for cleanliness and optical stability made for difficult design choices including that of the selection of new lubrication processes. Observations and lessons learned with regards to many aspects of the mechanisms and associated monitoring devices are discussed here. Mechanism behaviors are described, including anomalies, long-term drive current/power, fill pressure, vibration and cold-tip temperature trends. The effectiveness of particular lubrication formulations and the screening method implemented is discussed in relation to continuous rotating mechanisms and stepper motors, which have exceeded 15 billon rotations and 2.5 billion steps respectively. Aspects of gas cell hermeticity, optical cleanliness, heater problems

  20. MOPITT Mechanisms 16 Years In-Orbit Operation on TERRA

    NASA Technical Reports Server (NTRS)

    Gibson, Andrew S.; Nichitiu, Florian; Caldwell, Dwight

    2016-01-01

    The 16th anniversary of the launch of NASA's Terra Spacecraft was marked on December 18, 2015, with the Measurements of Pollution in the Troposphere (MOPITT) instrument being a successful contributor to the NASA EOS flagship. MOPITT has been enabled by a large suite of mechanisms, allowing the instrument to perform long-duration monitoring of atmospheric carbon monoxide, providing global measurements of this important greenhouse gas for 16 years. Mechanisms have been successfully employed for scanning, cooling of detectors, and to optically modulate the gas path length within the instrument by means of pressure and gas cell length variation. The instrument utilizes these devices to perform correlation spectroscopy, enabling measurements with vertical resolution from the nadir view, and has thereby furthered understanding of source and global transport effects of carbon monoxide. Given the design requirement for a 5.25-year lifetime, the stability and performance of the majority of mechanisms have far surpassed design goals. With 16 continuously operating mechanisms in service on MOPITT, including 12 rotating mechanisms and 4 with linear drive elements, the instrument was an ambitious undertaking. The long life requirements combined with demands for cleanliness and optical stability made for difficult design choices including that of the selection of new lubrication processes. Observations and lessons learned with regards to many aspects of the mechanisms and associated monitoring devices are discussed here. Mechanism behaviors are described, including anomalies, long-term drive current/power, fill pressure, vibration and cold-tip temperature trends. The effectiveness of particular lubrication formulations and the screening method implemented is discussed in relation to continuous rotating mechanisms and stepper motors, which have exceeded 15 billon rotations and 2.5 billion steps respectively. Aspects of gas cell hermeticity, optical cleanliness, heater problems

  1. The EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1990-01-01

    The Earth Observing System (EOS) is proposed as a 1991 new initiative by NASA as part of the Mission to Planet Earth. One of the key components of the EOS program is the EOS Data and Information System (EOSDIS). Two independent Phase B studies of EOSDIS were conducted from January 1989 through April 1990. Some of the key challenges faced by EOSDIS are: satisfying the data and information needs of a diverse multidisciplinary scientific community integrating product generation algorithms for over two dozen instruments, keeping up with an orbital average data rate of over 50 Mb/sec and assuring prompt generation of standard products, reprocessing data as product generation algorithms change, and storing, and managing information about tens of Petabytes of data over the 15-year life of the mission.

  2. The EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1990-01-01

    The Earth Observing System (EOS) is proposed as a 1991 new initiative by NASA as part of the Mission to Planet Earth. One of the key components of the EOS program is the EOS Data and Information System (EOSDIS). Two independent Phase B studies of EOSDIS were conducted from January 1989 through April 1990. Some of the key challenges faced by EOSDIS are: satisfying the data and information needs of a diverse multidisciplinary scientific community integrating product generation algorithms for over two dozen instruments, keeping up with an orbital average data rate of over 50 Mb/sec and assuring prompt generation of standard products, reprocessing data as product generation algorithms change, and storing, and managing information about tens of Petabytes of data over the 15-year life of the mission.

  3. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  4. The EOS Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1992-01-01

    The Earth Observing System (EOS) is the centerpiece of NASA's Mission to Planet Earth initiative. It is a pivotal part of the U.S. Global Change Research Program and hence of the international effort to understand global change and the increasing demands of human activity. EOS consists of a space-based observing system, a Data and Information System (EOSDIS) and a scientific research program. The space component consists of two series of polar-orbiting spacecraft, the first scheduled for launch in 1998, that will collect data for 15 years. EOS is completing its conceptual design phase and is preparing to enter the design phase with the selection and construction of the instruments for the first platform. EOSDIS will allow researchers to quickly and easily access data about the Earth system. Development of EOSDIS has already begun; it will support research and analysis with existing data. Geophysical and biological products will be created from the satellite data to be used to a broad range of the scientific community. NASA has also committed to providing smaller missions - called Earth Probes - dedicated to near-term observations of specific Earth processes. The scientific research program was initiated in 1990, with funding for 28 interdisciplinary teams, to begin development of models that will use EOS data and define the data requirements from the instruments, nine facility instruments and their science teams, 23 instrument investigations and definition studies for a synthetic-aperture radar.

  5. Terra Incognita I

    NASA Astrophysics Data System (ADS)

    Lindner, M.; Schönert, S.

    2005-08-01

    The topics discussed in the workshop session "Terra Incognita I" included a wide range of science. Central to the discussion however was the study of sub-leading neutrino oscillations driven by Θ 13 and the possibility to observe CP-violation in the leptonic sector. Furthermore, the long-standing problem of sterile neutrinos was addressed, as well as the scenario that UHECR could be produced via so called Z-bursts. To employ neutrinos in the literal meaning of the workshop session title "Terra Incognita", namely to explore the unknown earth with neutrinos from geo-chemical origin, completed the session.

  6. Enabling data access and interoperability at the EOS Land Processes Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Gallo, K. P.

    2009-12-01

    The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental

  7. Eos visible imagers

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1990-01-01

    Some of the proposed Earth Observing System (Eos) optical imagers are examined. These imagers include: moderate resolution imaging spectrometer (MODIS); geoscience laser ranging system (GLRS); high resolution imaging spectrometer (HIRIS); the intermediate thermal infrared spectrometer (ITIR); multi-angle imaging spectrometer (MISR); earth observing scanning polarimeter (EOSP); and the lightening imaging sensor (LIS).

  8. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  9. The 1991 EOS reference handbook

    NASA Technical Reports Server (NTRS)

    Dokken, David (Editor)

    1991-01-01

    The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.

  10. EOS integrated payload articulation and identification system

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark; Bayard, David S.

    1988-01-01

    This paper describes an autonomous control concept for pointing and articulation of science instruments on the EOS NASA/NOAA platforms intended to be operational by the late 1990s. Key features of this concept include advanced control adaptation and tuning strategies which provide performance robustness over a wide range of system uncertainties and mission time criticality. System identification-control modification paradigms are synthesized to form an adaptation continuum over this extended regime of autonomous operations.

  11. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  12. The development of the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas D.; Ramapriyan, H. K.; Dozier, Jeffrey C.

    1991-01-01

    The architecture of the Earth Observing System (EOS), a major component of NASA's contribution to the U.S. Global Change Research Program, is described with emphasis on its development strategy. It is noted that the EOS is comprised of a scientific research program, a space measurement system, and an EOS Data and Information System (EOSDIS). Details are presented concerning the EOS program and its candidate instruments. Major components of EOS include Version 0 (V0) built on existing Distributed Active Archive Centers (DAACs), the EOSDIS core system (ECS), DAAC-unique functions, science computing facilities (SCF), and independent verification validation of the ECS. Requirements for EODIS are also reviewed noting that, among other requirements, it must keep up with an orbital average data rate of more than 30 Mbps as well as store, distribute, and manage information about tens of Petabytes of data during and after the 15-year mission.

  13. The development of the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas D.; Ramapriyan, H. K.; Dozier, Jeffrey C.

    1991-01-01

    The architecture of the Earth Observing System (EOS), a major component of NASA's contribution to the U.S. Global Change Research Program, is described with emphasis on its development strategy. It is noted that the EOS is comprised of a scientific research program, a space measurement system, and an EOS Data and Information System (EOSDIS). Details are presented concerning the EOS program and its candidate instruments. Major components of EOS include Version 0 (V0) built on existing Distributed Active Archive Centers (DAACs), the EOSDIS core system (ECS), DAAC-unique functions, science computing facilities (SCF), and independent verification validation of the ECS. Requirements for EODIS are also reviewed noting that, among other requirements, it must keep up with an orbital average data rate of more than 30 Mbps as well as store, distribute, and manage information about tens of Petabytes of data during and after the 15-year mission.

  14. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Archiving tools for EOS

    NASA Astrophysics Data System (ADS)

    Sindrilaru, Elvin-Alin; Peters, Andreas-Joachim; Duellmann, Dirk

    2015-12-01

    Archiving data to tape is a critical operation for any storage system, especially for the EOS system at CERN which holds production data for all major LHC experiments. Each collaboration has an allocated quota it can use at any given time therefore, a mechanism for archiving "stale" data is needed so that storage space is reclaimed for online analysis operations. The archiving tool that we propose for EOS aims to provide a robust client interface for moving data between EOS and CASTOR (tape backed storage system) while enforcing best practices when it comes to data integrity and verification. All data transfers are done using a third-party copy mechanism which ensures point-to- point communication between the source and destination, thus providing maximum aggregate throughput. Using ZMQ message-passing paradigm and a process-based approach enabled us to achieve optimal utilisation of the resources and a stateless architecture which can easily be tuned during operation. The modular design and the implementation done in a high-level language like Python, has enabled us to easily extended the code base to address new demands like offering full and incremental backup capabilities.

  17. Toward a complete EOS data and information system

    NASA Technical Reports Server (NTRS)

    Chase, Robert R. P.

    1989-01-01

    Based on NASA EOS data panel analyses, an architectural concept is described in terms of elemental composition, top-level functions, and external and internal interfaces. This concept has been evaluated through the use of realistic user-generated scenarios consistent with existing plans for the 1990s and the Space Station. Developmental approaches for the requisite EOS data and information system are presented and a hybrid methodology for implementing this system is discussed.

  18. Toward a complete EOS data and information system

    NASA Technical Reports Server (NTRS)

    Chase, Robert R. P.

    1989-01-01

    Based on NASA EOS data panel analyses, an architectural concept is described in terms of elemental composition, top-level functions, and external and internal interfaces. This concept has been evaluated through the use of realistic user-generated scenarios consistent with existing plans for the 1990s and the Space Station. Developmental approaches for the requisite EOS data and information system are presented and a hybrid methodology for implementing this system is discussed.

  19. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  20. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  1. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoebert, Mark R.; Douglass, A. R.; Hilsenrath, E.; Bhartia, P. K.; Barnett, J.; Gille, J.; Beer, R.; Gunson, M.; Waters, J.; Levelt, P. F.

    2004-01-01

    The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.

  2. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2012-05-15

    The Livermore and Spring Ranch fires near the Davis Mountain Resort, Texas, burned 13,000 and 11,000 acres respectively. When NASA Terra spacecraft acquired this image on May 12, 2012, both fires had been contained.

  3. NASA Flyover of Oahu, Hawaii

    NASA Image and Video Library

    2011-10-17

    Sometimes called The Gathering Place, Oahu is the third largest of the Hawaiian Islands. This image was captured by NASA Terra spacecraft. A flyover was created by draping ASTER image data acquired January 13, 2010.

  4. NASA Spacecraft Spots Florida Wildfire

    NASA Image and Video Library

    2011-06-16

    The Espanola wildfire had consumed more than 4,300 acres when the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument aboard NASA Terra spacecraft acquired this image on June 16, 2011, over Flagler County, Fla.

  5. Terra Sirenum Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the layered rocks and boulders exposed on the wall of a trough in the Terra Sirenum region. The layers that erode to produce large boulders are harder and more resistant to weathering and erosion than those that do not. The slope is located near 25.8oS, 139.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  6. Heart-Shaped Feature in Arabia Terra Wide View

    NASA Image and Video Library

    2011-02-14

    This wide-view picture of a heart-shaped feature in Arabia Terra on Mars was taken on May 23, 2010, by NASA Mars Reconnaissance Orbiter. A small impact crater near the tip of the heart is responsible for the formation of the bright, heart-shaped feature

  7. Porous carbon EOS: numerical analysis

    NASA Astrophysics Data System (ADS)

    Aliverdiev, A.; Batani, D.; Dezulian, R.; Vinci, T.

    2010-10-01

    In this paper, we address the problem of direct simulation of laser-driven shock experiments aiming at determining the equation of state (EOS) of carbon using the "relative" impedance mismatch method. In particular, using tabulated carbon EOS (SESAME library, material number 7830), we have found some difficulties in reducing the initial density of the material in simulations with porous carbon. We have therefore calculated a new EOS for porous carbon with a reduced bulk modulus.

  8. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  9. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  10. GDAL Enhancements for Interoperability with EOS Data

    NASA Astrophysics Data System (ADS)

    Tisdale, M.; Mathews, T. J.; Tisdale, B.; Sun, M.; Yang, C. P.; Lee, H.; Habermann, T.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and to make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting the

  11. Comparing Crustal Magnetism of Terra Meridiani and Terra Cimmeria, Mars

    NASA Astrophysics Data System (ADS)

    French, R. A.; Jurdy, D. M.

    2014-12-01

    Terra Meridiani displays remanent crustal magnetization, roughly symmetric and coherent over long distances, that has been interpreted by some workers as resulting from seafloor spreading. A detailed magnetization map of this region, located at 0º, 0º ±20º, will be compared with that of Terra Cimmeria (-40º, 180º) which hosts Mars' most intense and continuous magnetization. Mars Global Surveyor magnetometer (MGS MAG) data from mapping altitude (~400km) was downward continued to the surface. Data from the MGS aerobraking phase contains tracks in Terra Meridiani at altitudes between 110-190 km, revealing localized persistent Br signatures between -268 and 278 nT, with standard deviations of 24 and 17 nT, respectively. These signatures coincide with areas of strongest magnetization on the downward continued map at corresponding altitudes. However, several uncorrelated small-scale pockets of magnetization that appear in the aerobraking dataset may be attributed to shorter wavelength signals or noise. Positive and negative sources in Terra Meridiani show comparable decay with altitude. Similarly, sources in Terra Cimmeria resemble this decay. By extrapolating into the subsurface, we estimate the source depths for both regions and observe that Terra Meridiani has shallower sources than Terra Cimmeria. The strongest magnetization in Terra Meridiani lies along the 4,600 km diameter outer ring of the Chryse basin. A similar association occurs in Terra Cimmeria along the outer rings of the Sirenum basin. The decay of magnetization intensity with altitude, crustal composition, and crustal thickness estimates will be used to create simple models of magnetic sources for Terra Meridiani.

  12. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  13. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  14. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  15. EoE (Eosinophilic Esophagitis)

    MedlinePlus

    ... 15 or more eosinophils per high-powered microscopic field warrants a diagnosis of EoE. A patient may ... Eosinophilic Esophagitis EoE- How do we diagnose? APFED’s Educational Webinar Series © American Partnership for Eosinophilic Disorders (APFED) ...

  16. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  17. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; hide

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.

  18. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  19. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  20. GES DAAC tools for accessing TERRA and AQUA MODIS data

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Ahmad, S.; Eaton, ..; Koziana, J.; Leptoukh, G.; Nickless, D.; Ostrenga, D.; Savtchenko, A.; Serafino, G.; Sharma, A.; Zhou, B.

    The unique position of the NASA Goddard Earth Sciences Distributed Active Archive Center (GES DAAC) as an intermediary between users and TERRA and AQUA/MODIS data led us to explore and develop tools that could help users access and manipulate data. Some tools are DAAC unique extensions like search and order web pages or channel subsetting programs. Other data access and simple visualization tools were developed as MODIS Data Support Team (MDST) work aids.Alistofthesuggestedtoolsisavailableat http://daac.gsfc.nasa.gov/MODIS/software.html The key features of some of the improved tools available from GES DAAC are described below: WHOM: The Web-based Hierarchical Ordering Mechanism (WHOM) is a customized version of the larger GES DAAC web-based data gateway to MODIS data. WHOM offers enhanced graphic interfaces to identify temporal and spatial data coverage while searching and ordering MODIS data archived at the GES DAAC. Calendar page showing dates with available data, visual inspection of the spatial data distribution for the selected region, filtering granules by Day/Night flag, single point and click navigational protocols, and recursive web page generation using templates make this tool unique and positive step to address the needs of the user community. The WHOM for Terra has been operational since February 2000. The same approach is being used to provide a gateway to MODIS data from the AQUA platform starting late summer 2002. Subsetting Tools: Calibrated radiance (Level 1B, 1km) channel subsetting was developed as a DAAC unique extension to the EOS Core System (ECS). The front end, a graphic user interface, is an added feature of the WHOM system. The back end is driven by the new Simple Scalable Script-Based Science Processor (S4P) that interacts with ECS for data retrieval, archiving and distribution of the subsetted data. All three resolutions of MODIS Level 1B data will be available for channel subsetting in the future. Visualization Tools: The GES DAAC MDST

  1. Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane

    2004-01-01

    The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.

  2. Collection of LAI and FPAR Data Over The Terra Core Sites

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Knjazihhin, J.; Tian, Y.; Wang, Y.

    2001-01-01

    The objective of our effort was to collect and archive data on LAI (leaf area index) and FPAR (Fraction of Photosynthetically active Radiation absorbed by vegetation) at the EOS Core validation sites as well as to validate and evaluate global fields of LAI and FPAR derived from atmospherically corrected MODIS (Moderate Resolution Imaging Spectrometer) surface reflectance data by comparing these fields with the EOS Core validation data set. The above has been accomplished by: (a) the participation in selected field campaigns within the EOS Validation Program; (b) the processing of the collected data so that suitable comparison between field measurements and the MODIS LAI/FPAR fields can be made; (c) the comparison of the MODAS LAI/FRAM fields with the EOS Terra Core validation data set.

  3. The Polar HDF-EOS Data Imaging and Subsetting Tool

    NASA Astrophysics Data System (ADS)

    Khalsa, S. S.; Weaver, R. L.

    2001-05-01

    The Polar HDF-EOS Data Imaging and Subsetting (PHDIS) Tool realizes the promise of HDF-EOS, the standard data format selected by NASA for its EOS data products. Focused especially on the needs of the polar research community, the PHDIS Tool can open any HDF-EOS gridded data product that is in the Lambert Azimuthal Equal Area (LAMAZ) projection, the basis of the Equal-Area Scalable Earth Grid (EASE-Grid) widely used for polar data products. The PHDIS Tool can also open and grid in LAMAZ any HDF-EOS swath data product. A simple and easy-to-use graphical user interface is used to open, geolocate, and visualize any number of swath or grid products in separate but dynamically linked windows. The products do not need to be at the same resolution. A box drawn in one window is simultaneously displayed in the other windows. Data in the selected region can be displayed in a new window, viewed in table format, or written to a file, for any of the data sets currently displayed. This tool provides an easy way for researchers to compare and analyze data from a variety of polar data sets. The National Snow and Ice Data Center is planning on making available the PHDIS Tool, which is written in IDL, to assist its users working with polar gridded data sets in HDF-EOS, including the MODIS Level 3 sea ice product. This presentation is the debut of the first public release of this tool.

  4. Observational constraints on EoS parameters of emergent universe

    NASA Astrophysics Data System (ADS)

    Paul, Bikash Chandra; Thakur, Prasenjit

    2017-04-01

    We investigate emergent universe model using recent observational data of the background as well as the growth tests. The flat emergent universe model obtained by Mukherjee et al. is permitted with a non-linear equation of state (in short, EoS) (p=Aρ -B ρ^{1/2}), where A and B are constants (here in our analysis A=0 is considered). We carried out analysis considering the Wang-Steinhardt ansatz for growth index (γ ) and growth function (f defined as f=Ωm^{γ } (a)). The best-fit values of the EoS and growth parameters are determined making use of chi-square minimization technique. Here we specifically determined the best-fit value and the range of value of the present matter density (Ω m) and Hubble parameter (H0). The best-fit values of the EoS parameters are used to study the evolution of the growth function f, growth index γ , state parameter ω and deceleration parameter (q) for different red shift parameter z. The late accelerating phase of the universe in the EU model is accommodated satisfactorily.

  5. Bilateral symmetry across Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Campbell, D. B.

    1987-01-01

    There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.

  6. On-Orbit Performance and Calibration Improvements For the Reflective Solar Bands of Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper

  7. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  8. 10 years of Terra Outreach over the Internet

    NASA Astrophysics Data System (ADS)

    Yuen, K.; Riebeek, H.; Chambers, L. H.

    2009-12-01

    1 Author Yuen, Karen JPL (818) 393-7716 2 Author Riebeek, Holli Sigma Space Corporation (department) at NASA Goddard Space Flight Center (Institution), Greenbelt, Maryland 3 Author Chambers, Lin NASA Abstract: Since launch, Terra has returned about 195 gigabytes (level 0) of data per day or 1 terabyte every 5 days. Few outlets were able to accommodate and quickly share that amount of information as well as the Internet. To honor the 10-year anniversary of the launch of Terra, we would like to highlight the education and outreach efforts of the Terra mission on the Internet and its reach to the science attentive public. The Internet or web has been the primary way of delivering Terra content to different groups- from formal and informal education to general public outreach. Through the years, many different web-based projects have been developed, and they were of service to a growing population of the science attentive public. One of Terra’s original EPO activities was the Earth Observatory. It was initially dedicated to telling the remote sensing story of Terra, but quickly grew to include science and imagery from other sensors. The web site allowed for collaboration across NASA centers, universities and other organizations by exchanging and sharing of story ideas, news and images. The award winning Earth Observatory helped pave the way for the more recently funded development of the Climate Change website. With its specific focus on climate change studies, once again, Terra stories and images are shared with an even more specific audience base. During the last 10 years, Terra as a mission has captured the imagination of the public through its visually stunning and artistically arresting images. With its five instruments of complementary but unique capabilities, the mission gave the world not just pretty pictures, but scientific data-based images. The world was able to see from space everything from calving icebergs to volcanic eruption plumes and the eye of a

  9. Complete EOS for PBX 9502

    SciTech Connect

    Menikoff, Ralph S

    2009-10-08

    PBX 9502 is an insensitive plastic-bonded explosive based on triamino-trinitrobenzene (TATB). A complete equation of state (EOS) is constructed for unreacted PBX 9502 suitable for reactive burn models, i.e., high pressure regime in which material strength is unimportant. The PBX EOS is composed of two parts: a complete EOS for TATB and a porosity model which allows for variations in the initial PBX density. The TATB EOS is based on a cold curve and a thermal model for lattice vibrations. The heat capacity, and hence thermal model, is determined by the vibrational spectrum from Raman scattering. The cold curve is calibrated to diamond anvil cell data for isothermal compression using a two-piece Keane fitting form. Hugoniot data for PBX 9502 is used as a consistency check.

  10. An Overview of the EOS Data Dissemination Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth

    2008-01-01

    The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.

  11. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  12. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  13. New Millennium EO3

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    The New Millennium Program (NMP) is a NASA technology program that focuses on the validation of advanced spacecraft and instrumentation technologies in space. This program specifically seeks technologies that could significantly benefit future space and Earth science missions by enabling new science capabilities and reducing life cycle costs. These technologies must also require a validation in space to mitigate risks to the first science users, and provide cross-cutting benefits to both NASA's Earth and Space Science enterprises. The NASA Office of Earth Science (OES) directed the NMP to focus the third Earth Observing mission, E03, on innovative measurement concepts that would facilitate remote sensing observations from orbits beyond conventional low-Earth orbit (LEO). These orbits include geosynchronous orbits, highly elliptical orbits, mid-Earth and high-Earth orbits, and other unique vantage points such as L1 and L2. To maximize the input from the Earth science community, a NASA Research Announcement (NRA) was released to solicit innovative measurement concepts for this NMP flight. Because the NMP is a technology validation program, rather than a conventional science program, the NRA required that these measurement concepts employ revolutionary technologies and/or measurement strategies that will enable future science missions from orbits beyond LEO. Another requirement was that a validation in space was needed to reduce real or perceived risks of this concept to future science users. The proposals submitted in response to this NRA were peer reviewed by the NASA OES. The measurement concepts selected through this process will be summarized in this presentation. The E03 measurement concept NRA did not solicit complete mission concepts or flight hardware. Instead, the selected investigators will join integrated project formulation teams to define the mission for the demonstration of the measurement technique and participate in mission design trades and

  14. Venus - Aphrodite Terra

    NASA Image and Video Library

    1996-03-14

    Landslides on Venus! The image on the left was taken in late November of 1990 during Magellan first trip around Venus. The image on the right was taken July 23, as the Magellan spacecraft passed over the region for the second time. http://photojournal.jpl.nasa.gov/catalog/PIA00248

  15. Follow That Satellite: EO-1 Maneuvers Into Close Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert L.; Owens, Skip; Good, Susan; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 (LS-7) spacecraft continued NASA's historic program of earth imaging begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of LS instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind LS-7 on the same World Reference System (WRS) path. From that formation hundreds of near-coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with LS-7 where instrument validation was to occur plus a summary of completing the formation acquisition. Each EO-1 launch opportunity that occurred on a different day of a LS-7 16-day repeat cycle required a separate and distinct maneuver profile.

  16. Hurricane Matthew over Haiti seen by NASA's MISR

    Atmospheric Science Data Center

    2017-04-18

    ... title:  Hurricane Matthew over Haiti seen by NASA's MISR     View MISR High-Res ... Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over Hurricane Matthew. This animation was made ...

  17. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  18. EO-1 analysis applicable to coastal characterization

    NASA Astrophysics Data System (ADS)

    Burke, Hsiao-hua K.; Misra, Bijoy; Hsu, Su May; Griffin, Michael K.; Upham, Carolyn; Farrar, Kris

    2003-09-01

    The EO-1 satellite is part of NASA's New Millennium Program (NMP). It consists of three imaging sensors: the multi-spectral Advanced Land Imager (ALI), Hyperion and Atmospheric Corrector. Hyperion provides a high-resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 micron) with a 30 m resolution. The instrument images a 7.5 km by 100 km land area per image. Hyperion is currently the only space-borne HSI data source since the launch of EO-1 in late 2000. The discussion begins with the unique capability of hyperspectral sensing to coastal characterization: (1) most ocean feature algorithms are semi-empirical retrievals and HSI has all spectral bands to provide legacy with previous sensors and to explore new information, (2) coastal features are more complex than those of deep ocean that coupled effects are best resolved with HSI, and (3) with contiguous spectral coverage, atmospheric compensation can be done with more accuracy and confidence, especially since atmospheric aerosol effects are the most pronounced in the visible region where coastal feature lie. EO-1 data from Chesapeake Bay from 19 February 2002 are analyzed. In this presentation, it is first illustrated that hyperspectral data inherently provide more information for feature extraction than multispectral data despite Hyperion has lower SNR than ALI. Chlorophyll retrievals are also shown. The results compare favorably with data from other sources. The analysis illustrates the potential value of Hyperion (and HSI in general) data to coastal characterization. Future measurement requirements (air borne and space borne) are also discussed.

  19. HDF-EOS Web Server

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.

  20. TerraSAR-X for Oceanography- Mission Overview

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Horstmann, J.; Schulz-Stellenfleth, J.; Roth, A.; Eineder, M.

    2004-06-01

    TerraSAR-X is a new generation, high resolution radar satellite to be launched at the end of 2005. The objective of the mission is the setup of an operational spaceborne X-Band synthetic aperture radar (SAR) system in order to produce remote sensing products for commercial and scientific use. TerraSAR-X is the scientific and technological continuation of the highly successful Space Shuttle missions Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) in 1994 (Evans and Plaut, 1996) and Shuttle Radar Topography Mission (SRTM) in 2000 (Werner, 2000). After an in-orbit commissioning period of approximately 5 month, in which the instrument will be calibrated and the system performance will be verified, TerraSAR-X will be fully operational for an active lifetime of 5 years.The German Aerospace Center (DLR) and the ASTRIUM GmbH have agreed on an innovative co- operation scheme for the implementation of Earth observation satellites by realizing Germany's first Earth observation space project based on public-private partnership with considerable contributions from industry.The TerraSAR-X mission will serve two main objectives:• to provide the scientific community with high-quality, multi-mode X-band SAR-data forscientific research and applications• to support the establishment of a commercial EO-market; and• to develop a sustainable EO-service business inEurope, based on TerraSAR-X derivedinformation products.The broad spectrum of scientific applications, include: Hydrology, Geology, Climatology, Oceanography, Environmental- and Disaster Monitoring as well as Cartography. The scientific potential of TerraSAR-X is based on a combination of unprecedented features of the SAR instrument, which have never before been operational in space (Roth et al., 2002, Suess et al., 2002, Mittermayer et al., 2003). • High geometric and radiometric resolution with an experimental very high resolution ( 1 m) in 300 MHz mode• Single-, Dual- and Full

  1. NASA Spacecraft Shows Location of China Quake

    NASA Image and Video Library

    2013-04-22

    This image from NASA Terra spacecraft highlights the epicenter of a powerful magnitude 6.6 earthquake which struck Sichuan Province in southwest China on April 20, 2013. Vegetation is displayed in red; clouds and snow are in white.

  2. NASA MISR Views Kruger National Park

    NASA Image and Video Library

    2010-10-06

    This nadir camera view was captured by NASA Terra spacecraft around Kruger National Park in NE South Africa. The bright white feature is the Palabora Copper Mine, and the water body near upper right is Lake Massingir in Mozambique.

  3. Angry Ecuadorian Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2015-08-25

    After lying dormant for 70 years, Cotopaxi volcano in Ecuador started erupting the week of Aug. 17, 2015. NASA Terra spacecraft acquired this image on August 22, showing huge columns of ash that affected towns in the region.

  4. NASA Spacecraft Images Mexican Volcanic Eruption

    NASA Image and Video Library

    2012-04-24

    NASA Terra spacecraft shows Mexico active Popocatepetl volcano, located about 40 miles southeast of Mexico City, spewing water vapor, gas, ashes and glowing rocks since its most recent eruption period began in April 2012.

  5. Angry Indonesian Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-02-11

    This image acquired by NASA Terra spacecraft is of Mount Sinabung, a stratovolcano located in Indonesia. In late 2013, a lava dome formed on the summit. In early January 2014, the volcano erupted, and it erupted again in early February.

  6. NASA Satellite Images Flooding Near Brisbane, Australia

    NASA Image and Video Library

    2011-01-18

    On January 17, 2011, the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument on NASA Terra spacecraft captured this image of the inundation west of Brisbane, Queensland, Australia.

  7. NASA Spacecraft Images Continued Thailand Flooding

    NASA Image and Video Library

    2011-10-28

    On Oct. 25, 2011, the Chao Phraya River was in flood stage as NASA Terra spacecraft imaged flooded agricultural fields and villages depicted here in dark blue, and the sediment-laden water in shades of tan.

  8. Students and NASA Study Aerosols over Baltimore

    NASA Image and Video Library

    2003-06-11

    During Spring 2003, students, teachers, and scientists worked side-by-side, measuring the properties of aerosols fine particulate matter suspended in the air over Baltimore, Maryland using hand-held instruments shown here by NASA Terra spacecraft.

  9. NASA Satellite Captures New Russian Volcanic Eruption

    NASA Image and Video Library

    2013-02-15

    NASA Terra spacecraft reveals the still-active lava flows in the snowy winter landscape of Plosky Tolbachik volcano, which erupted for the first time in 35 years on Nov. 27, 2012, in Russia far eastern Kamchatka Peninsula.

  10. NASA Spacecraft Eyes Severe Flooding in Argentina

    NASA Image and Video Library

    2013-04-05

    NASA Terra spacecraft captured this view of severe flooding in La Plata, Argentina, on April 4, 2013. Torrential rains and record flash flooding has killed more than 50 and left thousands homeless, according to news reports.

  11. NASA MISR Tracks Massive Flooding in Pakistan

    NASA Image and Video Library

    2010-08-18

    In late July 2010, flooding caused by heavy monsoon rains began in several regions of Pakistan, including the Khyber Pakhtunkhwa, Sindh, Punjab and parts of Baluchistan. This image was acquired by NASA Terra spacecraft on August 11, 2010.

  12. NASA Surfs the Skies Above Oahu, Hawaii

    NASA Image and Video Library

    This flyover of the Hawaiian island of Oahu was made by draping Jan. 13, 2010, image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra ...

  13. NASA Spacecraft Captures Fury of Russian Volcano

    NASA Image and Video Library

    2011-01-27

    This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.

  14. Geological Time on Display in Arabia Terra

    NASA Image and Video Library

    2002-12-16

    This scene from the dust covered plains of eastern Arabia Terra portrays a range of geological time. Three craters at the center of the image capture some of this range. Two have the classic bowl-shape of small, relatively recent craters while the one just to the north has seen much more history. Its rim has been scoured away by erosion and its floor has been filled in by material likely of a sedimentary nature. The channels that wind through the scene may be the oldest features present while the relatively dark streaks scattered about could have been produced in the past few years or even months as winds remove a layer of dust to reveal darker material below. http://photojournal.jpl.nasa.gov/catalog/PIA04033

  15. Discoveries from EOS Aura

    NASA Technical Reports Server (NTRS)

    Douglass, Anne

    2006-01-01

    Aura, the third and final of three large observatories that are part of NASA s Earth Observing System, was launched July 15,2004. Aura carries four instruments - the Microwave Limb Sounder (MLS), the Tropospheric Emission Spectrometer (TES), the Ozone Monitoring Instrument (OMI) and the High Resolution Dynamics Limb Sounder (HIRDLS), all of which measure atmospheric constituents. Aura measurements provide information to address broad questions about the Earth atmosphere, particularly concerning the recovery of the stratospheric ozone layer, tropospheric air quality, and climate change. TES has made the simultaneous measurements of carbon monoxide and ozone in the lower and upper troposphere. OM1 continues to observe the total ozone column and measures columns of important pollutants like NO2 at unprecedented horizontal resolution and coverage. MLS measures profiles of stratospheric ozone and constituents that affect ozone from the mesosphere into the upper troposphere. This talk will highlight results from Aura s first years in orbit, and will emphasize the way information from Aura and other satellites has contributed to the development, evaluation, and application of global chemistry climate models.

  16. Discoveries from EOS Aura

    NASA Technical Reports Server (NTRS)

    Douglass, Anne

    2006-01-01

    Aura, the third and final of three large observatories that are part of NASA s Earth Observing System, was launched July 15,2004. Aura carries four instruments - the Microwave Limb Sounder (MLS), the Tropospheric Emission Spectrometer (TES), the Ozone Monitoring Instrument (OMI) and the High Resolution Dynamics Limb Sounder (HIRDLS), all of which measure atmospheric constituents. Aura measurements provide information to address broad questions about the Earth atmosphere, particularly concerning the recovery of the stratospheric ozone layer, tropospheric air quality, and climate change. TES has made the simultaneous measurements of carbon monoxide and ozone in the lower and upper troposphere. OM1 continues to observe the total ozone column and measures columns of important pollutants like NO2 at unprecedented horizontal resolution and coverage. MLS measures profiles of stratospheric ozone and constituents that affect ozone from the mesosphere into the upper troposphere. This talk will highlight results from Aura s first years in orbit, and will emphasize the way information from Aura and other satellites has contributed to the development, evaluation, and application of global chemistry climate models.

  17. Assessment of the Collection 6 Terra and Aqua MODIS bands 1 and 2 calibration performance

    NASA Astrophysics Data System (ADS)

    Wu, A.; Chen, X.; Angal, A.; Li, Y.; Xiong, X.

    2015-09-01

    MODIS (Moderate Resolution Imaging Spectroradiometer) is a key sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. MODIS collects data in 36 spectral bands and generates over 40 data products for land, atmosphere, cryosphere and oceans. MODIS bands 1 and 2 have nadir spatial resolution of 250 m, compared with 500 m for bands 3 to 7 and 1000 m for all the remaining bands, and their measurements are crucial to derive key land surface products. This study evaluates the calibration performance of the Collection-6 L1B for both Terra and Aqua MODIS bands 1 and 2 using three vicarious approaches. The first and second approaches focus on stability assessment using data collected from two pseudo-invariant sites, Libya 4 desert and Antarctic Dome C snow surface. The third approach examines the relative stability between Terra and Aqua in reference to a third sensor from a series of NOAA 15-19 Advanced Very High Resolution Radiometer (AVHRR). The comparison is based on measurements from MODIS and AVHRR Simultaneous Nadir Overpasses (SNO) over a thirteen-year period from 2002 to 2015. Results from this study provide a quantitative assessment of Terra and Aqua MODIS bands 1 and 2 calibration stability and the relative calibration differences between the two sensors.

  18. Point Response Characteristics for the CERES/EOS-PM, FM3 & FM4 instruments.

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Smith, G. Louis; Lee, Robert B., III; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1999-01-01

    This paper describes the point source functions (PSF s) of the Clouds and the Earth s Radiant Energy System (CERES,) Earth Observing System (EOS,) afternoon platform (PM,) Flight Model 3 (FM3,) and Flight Model 4 (FM4) scanning instruments. The PSF (also known as the Point Response Function, or PRF) is vital to the accurate geo-location of the remotely sensed radiance measurements acquired by the instrument. This paper compares the characteristics of the FM3 and FM4 instruments with the earlier Proto Flight Model (PFM) on the Tropical Rainfall Measuring Mission (TRMM) platform, and the FM1 and FM2 Models on the EOS morning orbiting (AM) platform, which has recently been renamed "Terra". All of the PSF s were found to be quite comparable, and the previously noted "spreading" characteristic of the window (water vapor) channel PSF is analyzed Keywords: PSF, PRF, CERES, TRMM, EOS, Earth Radiation Budget

  19. Compact star matter: EoS with new scaling law

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Lee, Hyun Kyu; Lee, Jaehyun

    In this paper, we present a simple discussion on the properties of compact stars using an EoS obtained in effective field theory anchored on scale and hidden-local symmetric Lagrangian endowed with topology change and a unequivocal prediction on the deformation of the compact star, that could be measured in gravitational waves. The objective is not to offer a superior or improved EoS for compact stars but to confront with a forthcoming astrophysical observable, the given model formulated in what is considered to be consistent with the premise of quantum chromodynamics (QCD). The model so obtained is found to satisfactorily describe the observation of a two-solar mass neutron star [P. B. Demorest et al., Nature 467 (2010) 1081, J. Antoniadis et al., Science 340 (2013) 1233232] with a minimum number of parameters. Specifically, the observable we are considering in this paper is the tidal deformability parameter λ (equivalently the Love number k2), which affects gravitational wave forms at the late period of inspiral stage. The forthcoming aLIGO and aVirgo observations of gravitational waves from binary neutron star system will provide a valuable guidance for arriving at a better understanding of highly compressed baryonic matter.

  20. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  1. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  2. Slope Streaks in Terra Sabaea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars.

    The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material.

    Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity.

    Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material.

    In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface.

    Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km

  3. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  4. Assessing Terra Disposal Orbit Candidates from an Orbital Debris Perspective

    NASA Technical Reports Server (NTRS)

    Abraham, Andrew J.; Thompson, Roger C.; Mantziaras, Dimitrios C.

    2016-01-01

    The NASA Terra satellite is reaching the end of its mission life. Because the satellite resides in the 705 km Earth Science Constellation, disposal strategies need to be considered to remove it from this densely populated operational orbit. Of critical importance was the need to examine the future potential risk to other satellite residents of the 705 km constellation due to an unexpected breakup event of the Terra satellite post-disposal. This study quantifies the comparative risk of debris impacts associated with the two leading candidate disposal orbits (701 km vs. 686 km) and characterizes the suitability of each orbit for the purpose of long-term spacecraft disposal. The increase in collision risk to any member of the 705 km Earth Science Constellation is very modest. The long-term, average, total risk (including the ambient background risk) due to a Terra breakup at a disposal of -19 km (i.e., 686 km) relative to the 705 km constellation is 9.7 × 10(exp -6) impacts/day versus 1.0 × 10(exp -5) impacts/day for a disposal of only -4 km (i.e., 701 km). For perspective, note that the nominal space background risk to the 705 km constellation is 9.2 × 10(exp -6) impacts/day which implies a very modest increase in risk (approximately 3% difference between the two cases) due to a Terra breakup in either disposal orbit.

  5. The EducEO project

    NASA Astrophysics Data System (ADS)

    Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise

    2015-04-01

    The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.

  6. Microscopic EoS for High Density Matter

    SciTech Connect

    Stone, J. R.

    2009-05-07

    The density and temperature dependence of energy per particle of a system (the Equation of State--EoS) is a fundamental ingredient of all models of nuclear matter and stars. As baryons and leptons form the main components of all stars, knowledge of nuclear physics and weak interactions is essential for correct understanding of the birth, life and death of stars. We compare results obtained with EOS's based on a selection of well established nucleon-nucleon effective interactions with new results from the quark-meson coupling model and the Oxford quark model based effective potential. Properties of cold non-rotating neutron stars, calculated on the basis of the models, are presented and discussed.

  7. Utilizing NASA EOS, European Remote Sensing Satellites (ERS-1 & 2), and ENVISAT (Environmental Satellite) to Create a Methodology for Monitoring Marine Debris Dispersal to Coastal Areas by Examining the Gulf of Mexico Loop Current

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Albin, A.; Barrett, S.; Brooks, C.; Lee, L.; Mallett, C.; Pezold, B.

    2011-12-01

    The goal of this project is to apply satellite data to model surface circulation in the Gulf of Mexico as a means to aid in the monitoring of marine debris dispersal and the regulation of marine debris practices. Marine debris is a persistent problem for coastal areas throughout the world. In the Gulf of Mexico, the Loop Current flows north through the Yucatan Channel, loops east, then south, exiting through the Florida Straits. Clockwise-rotating areas of warm water, known as eddies, periodically separate from the Loop Current. These eddies have the potential to trap and transport debris onto shores, such as the Padre Island National Seashore. The latter is a 68 mile long barrier island beach in southeastern Texas, and is the longest undeveloped beach in the world. This naturally formed beach can accumulate up to one ton of marine debris per linear mile. This project used sea surface height and height anomaly data based on NASA RADAR altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2; as well as European RADAR altimeters onboard ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). This project also employed MODIS sea surface temperature (SST) data to aid in monitoring and visualizing the Loop Current. The sea surface height and height anomaly data were processed to calculate geostrophic flow velocities and predict particle paths. This research provided NOAA's Marine Debris Program and the Padre Island National Seashore with a better understanding of how the Loop Current and surface circulation patterns disperse marine debris to the region. A methodology to monitor Gulf of Mexico surface circulation and predict particle paths by using RADAR altimeter data were provided to partnering agencies. The project provided maps of debris trajectories and geostrophic currents that demonstrate the usefulness of satellite altimetry data to monitor oceanographic processes which in turn affect the distribution of marine debris.

  8. Topographic data requirements for EOS global change research

    USGS Publications Warehouse

    Gesch, Dean B.

    1994-01-01

    This document is a result of Earth Observing System Data and Information System (EOSDIS) Version 0 activities of the Land Processes Distributed Active Archive Center at the U.S. Geological Survey's EROS Data Center. A relatively small part of the Version 0 funding provided by NASA is used to address topographic data issues related to EOS. These issues include identifying and improving access to existing sources of topographic data, data generation, facilitating the use of topographic data in global change research by demonstrating derivative products, and inventorying the specific topographic data requirements of EOS investigators. There is a clear need for global topographic data in EOSDIS. Only 10 percent of the global land surface is covered by high-resolution data that are available to the global change science community. Alternative sources for new data exist or have been proposed; however, none of them alone can fulfill the data requirements by the launch of the first EOS platform in 4 years. There is no operational provider of all the source data that are required. Even if appropriate global source data existed, a concerted production effort would be necessary to ensure the existence of the requisite topographic data before EOS launch. Additionally, no funding from NASA or any other agency has been appropriated for a new mapping mission or for other means of data acquisition. This effort to document requirements is an initial step toward understanding the severity of the data shortage. It is well beyond the scope of Version 0 funding and capabilities to provide the required data in the proper timeframe. The shortage of data and the lack of a plan for providing the necessary topographic data through EOSDIS in time for launch are issues that must be addressed by the EOS program.

  9. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  10. Seasonal Frost in Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Terra Sirenum region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0918 UTC (4:18 a.m. EST) on Nov. 25, 2006, near 38.9 degrees south latitude, 195.9 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across.

    At this time, Mars' southern hemisphere was experiencing mid-winter. During Martian southern winter, the southern polar cap is covered and surrounded by carbon dioxide frost and water frost. This is unlike Earth, whose frozen winter precipitation is made up of only one volatile -- water. The carbon dioxide frost evaporates, or sublimates, at a lower temperature than water frost. So, during spring, the carbon dioxide ice evaporates first and leaves a residue of water frost, which later sublimates as well.

    The image shown here covers part of a crater rim, which is illuminated from the upper left. North is at the top. The topography creates a cold microenvironment on the south side of the rim that is partially protected from solar illumination. That cold surface contains an outlier of the southern seasonal frost about 15 degrees of latitude closer to the equator than the average edge of the frost at this season.

    The top image was constructed from three infrared wavelengths that highlight the bluer color of frost than the background rock and soil. Note that the frost occurs both on sunlit and shaded surfaces on the south side of the rim. The shaded areas are still visible because they are illuminated indirectly by the Martian sky.

    The bottom image was constructed by measuring the depths of spectral absorption bands due to water frost and carbon dioxide frost, and displaying the results in image form. Blue shows strength of an absorption due to water frost near 1.50 micrometers, and green shows strength of an absorption due to carbon dioxide frost near 1.45 micrometers. Red shows

  11. Seasonal Frost in Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Terra Sirenum region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0918 UTC (4:18 a.m. EST) on Nov. 25, 2006, near 38.9 degrees south latitude, 195.9 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across.

    At this time, Mars' southern hemisphere was experiencing mid-winter. During Martian southern winter, the southern polar cap is covered and surrounded by carbon dioxide frost and water frost. This is unlike Earth, whose frozen winter precipitation is made up of only one volatile -- water. The carbon dioxide frost evaporates, or sublimates, at a lower temperature than water frost. So, during spring, the carbon dioxide ice evaporates first and leaves a residue of water frost, which later sublimates as well.

    The image shown here covers part of a crater rim, which is illuminated from the upper left. North is at the top. The topography creates a cold microenvironment on the south side of the rim that is partially protected from solar illumination. That cold surface contains an outlier of the southern seasonal frost about 15 degrees of latitude closer to the equator than the average edge of the frost at this season.

    The top image was constructed from three infrared wavelengths that highlight the bluer color of frost than the background rock and soil. Note that the frost occurs both on sunlit and shaded surfaces on the south side of the rim. The shaded areas are still visible because they are illuminated indirectly by the Martian sky.

    The bottom image was constructed by measuring the depths of spectral absorption bands due to water frost and carbon dioxide frost, and displaying the results in image form. Blue shows strength of an absorption due to water frost near 1.50 micrometers, and green shows strength of an absorption due to carbon dioxide frost near 1.45 micrometers. Red shows

  12. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    NASA Astrophysics Data System (ADS)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  13. Investigation of EO transition rates

    NASA Astrophysics Data System (ADS)

    Colvin, G. G.; Schreckenbach, K.

    1985-01-01

    Basic ideas on the nature of electric monopole transitions and their experimental realisation are presented. Some feeling for the sensitivity obtainable for X=B(EO)/B(E2) ratios are discussed. Examples of measurements performed using the electron spectrometer BILL are described to demonstrate their relevance in testing nuclei models. These include even-even and odd-even nuclei such as nuclei close to Z=50, rare-earth nuclei, Pt-Os isotopes and the actinides.

  14. Bringing Terra Science to the People: 10 years of education and public outreach

    NASA Astrophysics Data System (ADS)

    Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.

    2009-12-01

    The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have

  15. Terra firma-forme dermatosis.

    PubMed

    Erkek, Emel; Sahin, Sedef; Çetin, Emel Dikicioglu; Sezer, Engin

    2012-01-01

    Terra firma-forme dermatosis is characterized by 'dirty' brown-grey cutaneous patches and plaques that can simply be eradicated by forceful swabbing with alcohol pads. The pathogenesis has been attributed to abnormal and delayed keratinization. Although affected patients present with typical lesions, the disorder is not well-known by dermatologists. In this report, we describe two patients with terra firma-forme dermatosis in the setting of xerosis cutis and atopic dermatitis. From a clinical point of view, we lay emphasis on its unique expression and diagnosis/treatment. From a histological perspective, we highlight its resemblance to dermatosis neglecta and speculate on the role of 'neglect' in a patient with seemingly adequate hygiene. The role of urea containing emollients in the development of this disorder remains to be determined.

  16. Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Flynn, Luke P.

    2004-07-01

    In 1991, the U.S. National Aeronautics and Space Administration (NASA) launched a comprehensive program to study the Earth as one environmental system. Now called the Earth Science Enterprise (ESE), this coordinated monitoring effort was initially comprised of free-flying satellites and Space Shuttle missions, as well as airborne and ground-based studies. The satellite component of the ESE is known as the Earth Observing System (EOS), which has now entered a planned long-term global monitoring phase. The first EOS satellite, Terra, was launched in December of 1999 and offers integrated measurements of numerous solid earth and atmospheric processes, including volcanic activity. There are currently 10 NASA EOS-designated satellites carrying over thirty instruments, all of which are providing integrated measurements of the interactions between the Earth's global cycles. Included in this effort are science investigations that examine the solid earth cycle and the natural hazards that are an inevitable result of that cycle. For volcanologists, the new higher spatial, spectral, and temporal resolution EOS data have spawned a variety of new algorithms and methodologies to monitor changes in volcanic activity, map volcanic surfaces, and investigate volcanic processes. Thermal anomaly detection, plume chemistry and mass flux, lava composition and textural properties, interaction of ash with the natural and human environment, and mitigation of hazards are but a few of the topics being addressed with these data sets. In this paper, we summarize the current state of volcanic remote sensing in the new EOS era and introduce the more detailed papers that follow in this special issue. This work stems from a special session at the Fall 2001 American Geophysical Union (AGU) meeting that was convened to showcase the current research in volcanic systems and processes using the new EOS satellite data sets. That session was also intended to provide a forum for field, aircraft, and other

  17. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  18. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  19. Determining the Equation of State (EoS) Parameters for Ballistic Gelatin

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7467 ● SEP 2015 US Army Research Laboratory Determining the Equation of State (EoS) Parameters for Ballistic Gelatin...EoS) Parameters for Ballistic Gelatin by Yolin Huang Weapons and Materials Research Directorate, ARL Approved for...State (EoS) Parameters for Ballistic Gelatin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yolin Huang 5d

  20. HDF-EOS 2 and HDF-EOS 5 Compatibility Library

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    The HDF-EOS 2 and HDF-EOS 5 Compatibility Library contains C-language functions that provide uniform access to HDF-EOS 2 and HDF-EOS 5 files through one set of application programming interface (API) calls. ("HDFEOS 2" and "HDF-EOS 5" are defined in the immediately preceding article.) Without this library, differences between the APIs of HDF-EOS 2 and HDF-EOS 5 would necessitate writing of different programs to cover HDF-EOS 2 and HDF-EOS 5. The API associated with this library is denoted "he25." For nearly every HDF-EOS 5 API call, there is a corresponding he25 API call. If a file in question is in the HDF-EOS 5 format, the code reverts to the corresponding HDF-EOS 5 call; if the file is in the HDF-EOS 2 format, the code translates the arguments to HDF-EOS 2 equivalents (if necessary), calls the HDFEOS 2 call, and retranslates the results back to HDF-EOS 5 (if necessary).

  1. Snow and Ice Products from the Aqua, Terra, and ICESat Satellites at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Meier, W. N.; Marquis, M.; Kaminski, M.; Armstrong, R.; Brodzik, M.

    2004-05-01

    The National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder - one of eight NASA Distributed Active Archive Centers (DAACs) - archives and distributes several products from sensors on the suite of NASA Earth Observing System (EOS) satellites. These include the sun-synchronous polar-orbiting Aqua (launched 4 May 2002) and Terra (launched 18 December 1999) platforms and the Ice, Cloud, and land Elevation Satellite (ICESat) (launched 12 January 2003). The Advanced Microwave Scanning Radiometer-EOS (AMSR-E) is a multi-channel passive microwave radiometer on Aqua (http://nsidc.org/daac/amsr/). AMSR-E Level 3 snow products are produced in EASE-Grid format for both the Northern and Southern Hemisphere and are available as daily, 5-day, and monthly fields. Daily AMSR-E Level 3 sea ice products are produced on a polar stereographic projection at gridded spatial resolutions of 6.25 km, 12.5 km and 25 km. Since April 2004, these products have been available for public distribution from NSIDC. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua is a 36-channel visible/infrared sensor that produces a consistent long-term time series of fully-automated, quality-controlled data. Level 2 swath products are available for both snow cover and sea ice. Daily and 8-day Level 3 gridded snow cover products are available with estimates of snow extent and albedo at 500m resolution, along with daily Level 3 gridded sea ice products with estimates for sea ice extent and ice surface temperature at 1 km resolution. These products are currently available from NSIDC (http://nsidc.org/daac/modis/). The Geoscience Laser Altimeter System (GLAS) is the sole instrument on ICESat. The standard GLAS Level 2 ice sheet altimetry product contains the ice sheet elevation and elevation distribution calculated from algorithms fine-tuned for ice sheet returns. The standard GLAS Level 2 sea ice altimetry product contains the sea ice freeboard and sea ice

  2. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  3. NASA Satellite Eyes Iceland Volcano Cauldron

    NASA Image and Video Library

    2010-04-18

    On Saturday, April 17, 2010, NASA Earth Observing-1 EO-1 spacecraft obtained this pair of images of the continuing eruption of Iceland Eyjafjallajökull volcano. On the left, new black ash deposits are visible on the ground.

  4. NASA Spacecraft Eyes Iceland Volcanic Eruption

    NASA Image and Video Library

    2014-09-03

    On the night of Sept. 1, 2014, NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. This false-color image that emphasizes the hottest areas of the vent and resulting lava flows.

  5. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2011-09-13

    The tri-county Riley Road wildfire burning in Texas north of Houston was 85 percent contained when NASA Terra spacecraft acquired this image on Sept. 12, 2011. Burned areas are dark gray and black; vegetation red; and bare ground and roads light gray.

  6. NASA Spacecraft Images Oregon Wildfire

    NASA Image and Video Library

    2012-09-21

    This image, acquired by NASA Terra spacecraft, is of the Pole Creek fire southwest of Sisters, Ore., which had grown to 24,000 acres as of Sept. 20, 2012. No structures have been destroyed, and the fire is mostly confined to the national forest.

  7. NASA Spacecraft Eyes Mississippi Flooding

    NASA Image and Video Library

    2011-05-16

    At the time NASA Terra spacecraft acquired this image, the Mississippi River had reached a level of 53 feet 16.2 meters, 3 feet 1 meter above the major flood stage. Flood water had already inundated parts of Vicksburg, Mississippi.

  8. NASA Spacecraft Images Cambodian Flooding

    NASA Image and Video Library

    2011-08-29

    This image acquired by NASA Terra spacecraft shows unusually heavy rains over the upper Mekong River in Laos and Thailand that led to severe flooding in Cambodia in mid-August 2011. The city of Phnom Penh is at the bottom center of the image.

  9. NASA Spacecraft Images Fiji Flooding

    NASA Image and Video Library

    2012-04-10

    This image, acquired by NASA Terra spacecraft, shows Fiji, hard hit by heavy rains in early 2012, causing flooding and landslides. Hardest hit was the western part of the main Island of Viti Levu, Fiji, and the principal city of Nadi.

  10. MODIS Ocean Color, SST and Primary Productivity Products at the NASA Goddard Earth Sciences DAAC

    NASA Astrophysics Data System (ADS)

    Koziana, J.; Leptoukh, G.; Savtchenko, A.; Serafino, G.; Sharma, A. K.

    2001-12-01

    The Goddard Earth Science (GES) Distributed Active Archive Center (DAAC) plays a major role in enabling basic scientific research and providing access to scientific data for the user community through the ingest, processing, archive and distribution of MODIS data. MODIS is part of the instrument package on the Terra (formally AM-1) satellite that was launched on December 18. 1999. Global scale ocean products are derived from many of the 36 different wavelengths measured by the MODIS/Terra instrument and are archived at a rate of about 230 GB/day. This paper will provide a description of the MODIS Ocean data products and associated geophysical parameters, data access, data availability and tools. The full suite of ocean products is grouped into three categories: ocean color, SST and primary productivity. The amount of MODIS ocean data being archived at the DAAC will increase dramatically in the near future when the data from the MODIS instrument onboard the Aqua (formally PM-1) spacecraft begins transmission. This will result in a significant increase in the volume of ocean data being ingested, archived and distributed at the GES DAAC. The current suite of products will be generated for both Terra and Aqua. In addition, joint Terra/Aqua ocean products will be derived. The challenge, to distribute such large volumes of data to the ocean community, is achieved through a combination of GES DAAC Hierarchical Search and Order Tool known as, WHOM, and EOS Data Gateway (EDG) World Wide Web (WWW) interfaces and an FTP site that contains samples of MODIS data. The MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from CZCS and SeaWiFS by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (HDF-EOS), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html

  11. Libraries and Tools for Efficiently Computing and Analyzing NASA Earth Science Data With HDF and HDF5

    NASA Astrophysics Data System (ADS)

    YANG, M.; McGrath, R. E.; Folk, M. J.

    2002-05-01

    The Hierarchical Data Format (HDF) developed at the National Center for Supercomputing Application (NCSA) at University of Illinois at Urbana-Champaign has become the primary standard file format for storing data from NASA's Earth Observing System (EOS). Data from Landsat 7 and Terra (including the CERES, MODIS and MISR instruments) are all stored in HDF and/or HDF-EOS. The original HDF format and library had inherent limitations. For example HDF Version 4 has difficulty supporting huge datasets and does not support parallel computing environments. Since 1999, NCSA has developed a more general and robust data format, called HDF 5, which will support the future demands of Earth Science HDF5 is a new format and library which can support files larger than 2 Gigabytes and a much larger number of number of objects in one file. Moreover, HDF5 supports the Message Passing Interface (MPI-I/O) standard, which is capable of performing I/O efficiently in parallel computing environments. Future NASA EOS missions, beginning with the Aura platform (to be launched in 2003) will use HDF5 and HDF-EOS5. HDF5 is a new data format and is not compatible with earlier versions of HDF. To help smooth transition from HDF to HDF5, NCSA provides a freely distributed toolkit for converting data from HDF4 into HDF5. Users can choose to convert one object or even one attribute of this object to a new HDF5 file. This library is designed to be easily understood and used. The primary language is chosen to be C while Fortran 90 and other APIs will be added. Several experiments with the h4toh5 utility show the conversion time is very minimal, even for realistic NASA datasets. NCSA is also developing a Java tool called HDF View to help users to browse and edit both HDF and HDF5 file in a user-friendly visualization environment. This poster will emphasize on introduction of HDF5 and the conversion and visualization tools from HDF4 to HDF5. NCSA seeks to get feedback from Earth Scientists, especially

  12. Geologic Validation of EO-1 Hyperion using AVIRIS

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Boardman, J. W.; Huntington, J. H.

    2001-01-01

    Over the last few years, the field of imaging spectrometry has grown rapidly as new instruments and analysis techniques have been developed. The launch of Hyperion as part of NASA's EO-1 program represents a significant landmark in the progression of the technology; the first spaceborne imaging spectrometry system. AIG, in cooperation with CSIRO, is evaluating, validating, and demonstrating use of EO-1 Hyperion hyperspectral data for geologic applications. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) plays a pivotal role in this effort. This manuscript describes the geologic test sites being used and progress on preparing 'ground truth' for anticipated Hyperion data collects using AVIRIS data. Preliminary findings are extrapolated to predict the effect of instrument characteristics and performance on geologic mapping using Hyperion.

  13. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of

  14. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of

  15. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2009-01-01

    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  16. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2009-01-01

    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  17. NASA`s ECS Data Pool: OGC Compliant Web Services for Every User and Every Pocket

    NASA Astrophysics Data System (ADS)

    Bories, C.; Marley, S. R.

    2005-12-01

    The NASA Earth Observing System (EOS), supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States whose combined holdings now exceed 3.5 petabytes, with a daily distribution of 3.5TB. In response to evolutionary changes in technology, the user access services have been moving a substantial part of its distribution capability away from distribution from near-line tape archives to large on-line disk caches that hold several 10's of terabytes of high-value data that allow users to obtain products via electronic download using a web or ftp clients. Although these basic access services are valuable, the need for more advanced services such as data reformatting and subsetting was seen as key to the interoperability and broader adoption of NASA's data with current Decision Support and Geographical Information Systems. Therefore, in 2003, Raytheon was funded to initiate the development of an in-house demonstration prototype that integrated OGC web services (Mapping and Coverage) with reformatting capability (HDF-EOS to GeoTIFF). The experience obtained from that first prototype, led to the formulation of a generalized interoperable architecture, which incorporated a catalog service. Two operational prototypes are now deployed for NASA. The first, utilizing IONIC Software's OGC services is designed to serve large data volumes (up to 50000 pieces of inventory of 10 MODIS data types), and to offer faster access performance. The second prototype was developed from a combination of open-source web services, freeware, and hosted in commodity platforms (Linux based PCs), and had as a main objective to provide a low entry cost services, for potential new data providers. For example, a small University research team, which could find difficult to afford the elevated cost of COTS licenses or

  18. Geological Time on Display in Arabia Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This scene from the dust covered plains of eastern Arabia Terra portrays a range of geological time. Three craters at the center of the image capture some of this range. Two have the classic bowl-shape of small, relatively recent craters while the one just to the north has seen much more history. Its rim has been scoured away by erosion and its floor has been filled in by material likely of a sedimentary nature. The channels that wind through the scene may be the oldest features present while the relatively dark streaks scattered about could have been produced in the past few years or even months as winds remove a layer of dust to reveal darker material below.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. GDAL Enhancements for Interoperability with EOS Data (GEE)

    NASA Astrophysics Data System (ADS)

    Tisdale, B.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying[MI1] an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting

  20. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  1. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  2. NASA Spacecraft Captures Swath of Destruction from Deadly Oklahoma Tornado

    NASA Image and Video Library

    2013-06-05

    The Newcastle-Moore EF-5 tornado ripped through central Oklahoma on May 20, 2013, killing 24 people and leaving behind more than billion in damage. This image was acquired NASA Terra spacecraft on June 2, 2013.

  3. Site of Destructive China Temblor Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-08-05

    The star on this image from the NASA Terra spacecraft indicates the eipcenter of a magnitude 6.1 earthquake which truck in southern China Yunnan province, toppling thousands of homes and causing numerous casualties.

  4. NASA Spacecraft Captures 3-D View of Massive Australian Wildfire

    NASA Image and Video Library

    2013-02-05

    This 3-D view was created from data acquired Feb. 4, 2013 by NASA Terra spacecraft showing a massive wildfire which damaged Australia largest optical astronomy facility, the Siding Spring Observatory.

  5. NASA Spacecraft Images Wildfire Near Yosemite National Park

    NASA Image and Video Library

    2013-06-21

    This image, acquired by NASA Terra spacecraft, is of the Carstens, Calif. wildfire which continues to burn in the foothills west of Yosemite National Park. Vegetation is displayed in green and burned and bare areas are dark to light gray.

  6. Ashy Aftermath of Indonesian Volcano Eruption seen by NASA Spacecraft

    NASA Image and Video Library

    2014-02-23

    On Feb. 13, 2014, violent eruption of Kelud stratovolcano in Java, Indonesia sent volcanic ash covering an area of 70,000 square miles, prompting the evacuation of tens of thousands of people. This image is from NASA Terra spacecraft.

  7. NASA Spacecraft Spots Fury of Disruptive Chilean Volcano

    NASA Image and Video Library

    2011-06-14

    Southern Chile Puyehue volcano came to life on June 4, 2011, after decades of dormancy. Winds spread the ash column eastward over neighboring Argentina, leading to the evacuation of thousands of residents. This image is from NASA Terra spacecraft.

  8. NASA Satellite Images Provide Insights Into Iceland Volcanic Plume

    NASA Image and Video Library

    2010-04-16

    On April 15, 2010, NASA Terra spacecraft captured these images of the ongoing eruption of Iceland Eyjafjallajökull Volcano, which continues to spew ash into the atmosphere and impact air travel worldwide.

  9. NASA Spacecraft Spots Signs of Erupting Russian Volcano

    NASA Image and Video Library

    2014-05-20

    Winter still grips the volcanoes on Russia Kamchatka peninsula. NASA Terra spacecraft acquired this image showing the mantle of white, disturbed by dark ash entirely covering Sheveluch volcano from recent eruptions.

  10. NASA Spacecraft Images Colorado Most Destructive Wildfire to Date

    NASA Image and Video Library

    2012-06-25

    Acquired by NASA Terra spacecraft on June 25, 2012, this image shows the High Park fire west of Fort Collins, Colo. More than 83,000 acres have been burned and approximately 250 homes, the most in Colorado history.

  11. NASA Satellite Reveals Grandeur of Arizona Grand Canyon

    NASA Image and Video Library

    2011-10-14

    Arguably one of America most magnificent national parks is the Grand Canyon in northern Arizona. NASA Terra spacecraft captured this image looking to the northeast, the buildings and roads in the center foreground are Grand Canyon Village.

  12. NASA Satellite Tracks Underwater Volcanic Eruption in Canary Islands

    NASA Image and Video Library

    2011-11-02

    In July 2011, volcanic tremors began on the Island of El Hierro in the Canary Islands; by September, many tourists evacuated the resort island, fearing a volcanic eruption. This image is from NASA Terra spacecraft.

  13. Progress of Hawaii Lava Flow Tracked by NASA Spacecraft

    NASA Image and Video Library

    2014-09-24

    On June 27, 2014, a new vent opened on Hawaii Puu Oo vent, on the eastern flank of Kilauea volcano. NASA Terra spacecraft shows the hot lava flow in white, extending about 11 miles 17 kilometers from the vent.

  14. NASA Spacecraft Images Some of Earth Newest Real

    NASA Image and Video Library

    2012-01-20

    In December, 2011, NASA Terra spacecraft captured this image of a new volcanic island forming in the Red Sea. This region is part of the Red Sea Rift where the African and Arabian tectonic plates are pulling apart.

  15. NASA Satellite Tracks Continued Eruption of Iceland Volcano

    NASA Image and Video Library

    2010-04-19

    On Monday, April 19, 2010, the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument onboard NASA Terra spacecraft obtained this image of the continuing eruption of Iceland Eyjafjallajökull volcano.

  16. NASA Spacecraft Spots Large Eruption of Russian Volcano

    NASA Image and Video Library

    2012-06-07

    NASA Terra spacecraft acquired this image on June 2, 2012 of Sheveluch, one of the most active volcanoes on the Kamchatka peninsula, with frequent explosive events that can disrupt air traffic over the northern Pacific.

  17. NASA Spacecraft Images Severe Flooding in South Asia

    NASA Image and Video Library

    2011-09-27

    NASA Terra spacecraft captured this image of the city of Jhudo, Pakistan, and surrounding countryside on Sept. 24, 2011. Torrential monsoon rains in south Asia have displaced hundreds of thousands of residents in India, Pakistan and Thailand.

  18. U.K. Flooding Captured by NASA Spacecraft

    NASA Image and Video Library

    2014-02-19

    This image acquired by NASA Terra spacecraft depicts the high water levels and flooding along the Thames River west of London as record-breaking rains covered the United Kingdom in January and February.

  19. NASA MISR Sees Wind-Whipped Fires in East Texas

    NASA Image and Video Library

    2011-09-07

    As the remains of Tropical Storm Lee passed over Louisiana on Monday, Sept. 5, 2011, strong, gusty winds on the western side of the storm stoked fires throughout eastern Texas as seen in this image from NASA Terra spacecraft.

  20. NASA Spacecraft Images Massive Crack in Antarctica Pine Island Glacier

    NASA Image and Video Library

    2011-11-15

    This image from NASA Terra spacecraft shows a massive crack across the Pine Island Glacier, a major ice stream that drains the West Antarctic Ice Sheet. Eventually, the crack will extend all the way across the glacier.

  1. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  2. NASA Spacecraft Images Drought Impacts on the Mighty Mississippi

    NASA Image and Video Library

    2012-08-25

    NASA Terra spacecraft acquired this image on Aug. 24, 2012, 13 miles 20 kilometers north of Vicksburg, Miss., as drought continued to afflict the U.S. Midwest, water levels of the Mississippi River approached historic lows.

  3. NASA Spacecraft Captures Effects of U.S. Drought

    NASA Image and Video Library

    2012-09-06

    Two satellite images acquired by NASA Terra spacecraft, obtained about 10 years apart, clearly illustrate the effects of the near-historic drought conditions in southwestern Kansas. Farmers are among the hardest hit.

  4. The EOS TPC analysis shell

    SciTech Connect

    Olson, D.L.

    1991-03-01

    Key features of the general purpose event-based-data analysis shell (TAS) for the EOS TPC at LBL are described including the code development/code management procedures used. The architecture is designed with a view towards a distributed and multi-processing environment. TAS is interfaced seamlessly with the CERN PAW program and provides a consistent environment for both on-line and off-line analysis. The data model used is relational tables and the data structure definitions are maintained in a commercial database (INFORMIX). The interface for analysis modules is specified and enhances group participation in the development process. The use of commercial database as a data dictionary for both the table definitions and parameters used in the TAS kernel is extremely useful and productive. 6 refs., 4 figs.

  5. NASA Spacecraft Tracks Argentine Flooding

    NASA Image and Video Library

    2015-08-19

    Northwest of Buenos Aires, Argentina, seven straight days of torrential rains of up to 16 inches 40 centimeters in August 2015 resulted in flooding between the cities of Escobar and Campana as seen by NASA Terra spacecraft. The flooding has since eased, allowing some evacuated residents of the 39 affected municipalities to return to their homes. The flooding was captured in this satellite image acquired Aug. 16, 2015, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The image covers an area of 16.7 by 17.4 miles (26.9 by 28 kilometers), and is located at 34.2 degrees south, 58.6 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19871

  6. Converting from XML to HDF-EOS

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program recreates an HDF-EOS file from an Extensible Markup Language (XML) representation of the contents of that file. This program is one of two programs written to enable testing of the schemas described in the immediately preceding article to determine whether the schemas capture all details of HDF-EOS files.

  7. Observations of Active Volcanoes Using the EO-1 Satellite

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Wright, R.; Oppenheimer, C.; Geschwind, L. R.; Donegan, S.; Garbeil, H.

    2001-12-01

    Previous satellite observations of active volcanoes have been hampered by instruments that are primarily designed to measure surface reflectance of the Earth's vegetation. Sensors detecting radiation in the near-IR and IR are frequently saturated by highly radiant active volcanic features. Two satellite instruments, Hyperion and the Advanced Land Imager (ALI) on the Earth Observing -1 (EO-1) offer a means to circumvent saturation issues. Hyperion is a hyperspectral instrument that collects data in 242 narrow spectral bands between 0.4 and 2.5 microns and produces images that are 7.5 km x 100 km. For each 30m x 30m pixel, accurate atmospheric corrections and multiple component thermal models for lava flows can be generated. ALI is a Landsat-like instrument having 10 spectral bands at 0.4 - 2.35 microns. One of these, the 1.2 micron band, is sensitive to high temperature thermal anomalies such as overturning lava lakes and open lava channels. ALI also has a 10-m panchromtic band that allows for greater detailed mapping of volcanic features. ALI and Hyperion analyses for Erta Ale (Ethiopia), Mt. Etna (Sicily), Santiaguito (Guatemala), Popocatepetl (Mexico), and Mayon (Philippines) will be presented. While distribution of these data sets is limited to the EO-1 Science Team, the future of NASA's high spatial resolution terrestrial observation program will likely be based on a hybrid of these EO-1 sensors.

  8. 78 FR 23199 - NASA FAR Supplement Regulatory Review No. 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... SPACE ADMINISTRATION 48 CFR Parts 1834, 1841, 1846, 1851 and 1852 RIN 2700-AE01 NASA FAR Supplement...: NASA is updating the NASA FAR Supplement (NFS) with the goal of eliminating unnecessary regulation... this rule are part of NASA's retrospective plan under EO 13563 completed in August 2011. DATES...

  9. Project to Interface Climate Modeling on Global and Regional Scales with Earth Observing (EOS) Observations

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    2002-01-01

    This ten-year NASA IDS project began in 1990. Its initial work plan adopted the NASA provided timeline that data would become available for new Earth Observing System (EOS) platforms beginning in 1995. Over its first phase, it was based at NCAR, which had submitted the original proposal and involved activities of a substantial number of co-investigators at NCAR who engaged in research over several areas related to the observations expected to be received from the EOS platforms. Their focus was the theme of use of EOS data for improving climate models for projecting global change. From the climate system viewpoint, the IDS addressed land, clouds-hydrological cycle, radiative fluxes and especially aerosol impacts, ocean and sea-ice, and stratosphere. Other research addressed issues of data assimilation, diagnostic analyses, and data set development from current satellite systems, especially use of SAR data for climate models.

  10. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  11. TERRA: Building New Communities for Advanced Biofuels

    SciTech Connect

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    2016-03-01

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  12. Experiences with Testing the Largest Ground System NASA Has Ever Built

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken; Messerly, Robert

    2003-01-01

    In the 1980s, the National Aeronautics and Space Administration (NASA) embarked upon a major Earth-focused program called Mission to Planet Earth. The Goddard Space Flight Center (GSFC) was selected to manage and develop a key component - the Earth Observing System (EOS). The EOS consisted of four major missions designed to monitor the Earth. The missions included 4 spacecraft. Terra (launched December 1999), Aqua (launched May 2002), ICESat (Ice, Cloud, and Land Elevation Satellite, launched January 2003), and Aura (scheduled for launch January 2004). The purpose of these missions was to provide support for NASA s long-term research effort for determining how human-induced and natural changes affect our global environment. The EOS Data and Information System (EOSDIS), a globally distributed, large-scale scientific system, was built to support EOS. Its primary function is to capture, collect, process, and distribute the most voluminous set of remotely sensed scientific data to date estimated to be 350 Gbytes per day. The EOSDIS is composed of a diverse set of elements with functional capabilities that require the implementation of a complex set of computers, high-speed networks, mission-unique equipment, and associated Information Technology (IT) software along with mission-specific software. All missions are constrained by schedule, budget, and staffing resources, and rigorous testing has been shown to be critical to the success of each mission. This paper addresses the challenges associated with the planning, test definition. resource scheduling, execution, and discrepancy reporting involved in the mission readiness testing of a ground system on the scale of EOSDIS. The size and complexity of the mission systems supporting the Aqua flight operations, for example, combined with the limited resources available, prompted the project to challenge the prevailing testing culture. The resulting success of the Aqua Mission Readiness Testing (MRT) program was due in no

  13. Flooded Crater in Terra Sirenum

    NASA Image and Video Library

    2003-03-22

    The floor of the crater in this NASA Mars Odyssey image displays interesting textures and it appears to have been flooded by some type of material. It is unclear if this material was fluvially emplaced mud hyperconcentrated flows or lava.

  14. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    ,

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  15. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  16. Terra MODIS band 27 electronic crosstalk: cause, impact, and mitigation

    NASA Astrophysics Data System (ADS)

    Sun, J.; Madhavan, S.; Wenny, B. N.; Xiong, X.

    2011-11-01

    MODIS-Terra is one of the key sensors in the suite of remote sensing instruments in the Earth Observing System (EOS). MODIS on the Terra platform was launched into orbit in December of 1999 and has successfully completed eleven plus years of operation. MODIS has 36 spectral channels with wavelengths varying from 0.4 μm to 14.4 μm. The native spatial resolutions for the reflective channels are 2 bands at 0.25 km, 5 bands at 0.5 km and 29 bands at 1km. However, the MODIS L1B product allows the high spatial resolution bands to be aggregated into 1km resolution. All the thermal channels in MODIS (i.e. 3.75μm - 14.24μm) have a native spatial resolution of 1 km. Over the eleven plus years of mission lifetime, the sensor degradation has been carefully monitored using various On-Board Calibrators (OBC). In particular, the thermal channels are monitored using the on-board Black-Body (BB) which is traceable to NIST standards. MODIS also has a unique feature for calibration reference in terms of lunar irradiance. The lunar observations are scheduled for MODIS periodically (at least 9 observations in a calendar year). Based on the lunar observations, it was found that there was a possible signal leak for band 27 from its neighboring bands located on the Long-Wave Infrared (LWIR) focal plane. Further investigations revealed a possible leak from bands 28, 29 and 30. The magnitude of the leak was trended and correction coefficients were derived. In this paper, we demonstrate the across-band signal leak in MODIS band 27, its potential impact on the retrieved Brightness temperature (B.T.). Also, the paper explores a correction methodology to relieve the artifacts due to the across-band signal leak. Finally, the improvement in the band 27 image quality is quantified.

  17. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; hide

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  18. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; Giles, David; Holben, Brent; Welton, Ellsworth; Eck, Thomas; Remer, Lorraine

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  19. Philosophy and Architecture of the EOS Data and Information System

    NASA Astrophysics Data System (ADS)

    Maiden, Martha

    In 2009, NASA's EOS Data and Information System (EOSDIS) is the world's largest distributed data and information system infrastructure principally supporting science, a coupled, complex network of production capabilities and data systems. Data and information are easily available through the World Wide Web from searchable, on-line data stores with sophisticated metadata schema, data dictionaries, and comprehensive scientific and technical documentation of its holdings. NASA is moving towards adoption of a service-oriented approach deploying Web services, which enable users to make connections between distributed and heterogeneous elements of environmental data and services internal to and external from EOSDIS as needed. Pertinent Web services are accessible via EOSDIS. Examples of data services include subsetting, data reformatting, and search services such as a thesaurus. The principal subject matter of this book, the MODIS and ASTER instruments, and their derived data, products and applications owe their existence and success to EOSDIS.

  20. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  1. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  3. EOS Aqua AMSR-E Arctic Sea Ice Validation Program

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus, T.; Gasiewski, A.; Klein, M.; Maslanik, J.; Sturm, M.; Stroeve, J.; Heinrichs, J.

    2004-01-01

    A coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed in March 2003. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4,2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products include sea ice concentration, sea ice temperature, and snow depth on sea ice. The primary instrument on the P-3B aircraft was the NOAA ETL Polarimetric Scanning Radiometer (PSR) covering the same frequencies and polarizations as the AMSR-E. This paper describes the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound. Comparisons among the satellite and aircraft PSR data sets are presented.

  4. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  5. Day And Night In Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 11 June 2004 This pair of images shows part of the Terra Meridiani region.

    Day/Night Infrared Pairs

    The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top.

    Infrared image interpretation

    Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images.

    Image information: IR instrument. Latitude 1.3, Longitude 0.5 East (359.5 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released

  6. Perspective View of Ishtar Terra

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This perspective view of Ishtar Terra was derived from data obtained by the Pioneer Venus spacecraft's altimetry radar instrument. Ishtar viewed from the west (bottom of image) is centered at about 65 degrees north latitude and 0 degrees longitude. Ishtar (approximately equal in size to Australia) is a large plateau standing 3.3 km above the surrounding lowlands, bounded by relatively steep slopes. Rising above this plateau are three massifs: Akna Montes and Freyja Montes along the western and northwestern edge of Lakshmi Planum, and Maxwell Montes along its eastern edge. The eastern part of Ishtar, east of Maxwell, is a complex hilly terrain 1 km lower than Lakshmi Planum that lacks the steep well-defined boundary slopes that characterize the plateau. Maxwell Montes, highest point on the planet is elevated more than 10 km (32,000 ft) above the surrounding lowlands. Color-coded altimetry shows elevations in .5 and 1 km intervals. Cool colors mark low elevations and warm colors mark high elevations

  7. Terra Data Confirm Warm, Dry U.S. Winter

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  8. Terra Data Confirm Warm, Dry U.S. Winter

    NASA Technical Reports Server (NTRS)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  9. EOS ASTER thermal infrared band vicarious calibration

    NASA Technical Reports Server (NTRS)

    Palluconi, F.; Tonooka, H.; Hook, S.; Abtahi, A.; Alley, R.; Thompson, T.; Hoover, G.; Zadourian, S.

    2001-01-01

    Calibration of the 5 EOS ASTER instrument emission bands (90 m pixels at surface) is being checked during the operational life of the mission using field measurements simultaneous with the image acquisition.

  10. EOS ASTER thermal infrared band vicarious calibration

    NASA Technical Reports Server (NTRS)

    Palluconi, F.; Tonooka, H.; Hook, S.; Abtahi, A.; Alley, R.; Thompson, T.; Hoover, G.; Zadourian, S.

    2001-01-01

    Calibration of the 5 EOS ASTER instrument emission bands (90 m pixels at surface) is being checked during the operational life of the mission using field measurements simultaneous with the image acquisition.

  11. NASA scientific integrity policy

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    On 16 December, NASA became the latest U.S. federal agency to issue a scientific integrity policy. It was issued less than 10 days after the U.S. National Oceanic and Atmospheric Administration (NOAA) issued its policy on the same topic (see "NOAA issues scientific integrity policy," Eos Trans. AGU, 92(50), 467, doi:10.1029/2011EO500004, 2011). The agency policies respond to earlier White House memos on the topic issued in 2009 and 2010. NASA is the fifth federal department or agency that has finalized a scientific integrity policy; the Department of the Interior and the National Science Foundation also have finalized their policies. As Eos went to press, 13 other policies were in near-final draft form, including those from the departments of Agriculture and Energy; the Environmental Protection Agency and the Department of Labor had indicated that they expected to submit their policies to the White House Office of Science and Technology Policy (OSTP) soon, OSTP director John Holdren wrote in a 21 December note on the office's Web site.

  12. Building EOS capability for Malaysia - the options

    NASA Astrophysics Data System (ADS)

    Subari, M. D.; Hassan, A.

    2014-06-01

    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.

  13. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  14. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  15. EOS-AM1 Nickel Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Bennett, Charles W.; Keys, Denney J.; Rao, Gopalakrishna M.; Wannemacher, Hari E.; Vaidyanathan, Harry

    1997-01-01

    This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missile and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of die tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18,202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 18

  16. Small Volcano in Terra Cimmeria

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 26 June 2002) The Science This positive relief feature (see MOLA context) in the ancient highlands of Mars appears to be a heavily eroded volcanic center. The top of this feature appears to be under attack by the erosive forces of the martian wind. Light-toned streaks are visible, trending northeast to southwest, and may be caused by scouring of the terrain, or they may be dune forms moving sand. The northeast portion of the caldera area looks as though a layer of material is being removed to expose a slightly lighter-toned surface underneath. The flanks of this feature are slightly less cratered than the surrounding terrain, which could be explained in two ways: 1) this feature may be younger than the surrounding area, and has had less time to accumulate meteorite impacts, or 2) the slopes that are observed today may be so heavily eroded that the original, cratered surfaces are now gone, exposing relatively uncratered rocks. Although most of Terra Cimmeria has low albedo, some eastern portions, such as shown in this image, demonstrate an overall lack of contrast that attests to the presence of a layer of dust mantling the surface. This dust, in part, is responsible for the muted appearance and infill of many of the craters at the northern and southern ends of this image The Story This flat-topped volcano pops out from the surface, the swirls of its ancient lava flows running down onto the ancient highlands of Mars. Its smooth top appears to be under attack by the erosive forces of the martian wind. How can you tell? Click on the image above for a close-up look. You'll see some light-toned streaks that run in a northeast-southwest direction. They are caused either by the scouring of the terrain or dunes of moving sand. Either way, the wind likely plays upon the volcano's surface. Look also for the subtle, nearly crescent shaped feature at the northeast portion of the volcano's cap. It looks as if a layer of material has been removed by the wind, exposing

  17. Small Volcano in Terra Cimmeria

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 26 June 2002) The Science This positive relief feature (see MOLA context) in the ancient highlands of Mars appears to be a heavily eroded volcanic center. The top of this feature appears to be under attack by the erosive forces of the martian wind. Light-toned streaks are visible, trending northeast to southwest, and may be caused by scouring of the terrain, or they may be dune forms moving sand. The northeast portion of the caldera area looks as though a layer of material is being removed to expose a slightly lighter-toned surface underneath. The flanks of this feature are slightly less cratered than the surrounding terrain, which could be explained in two ways: 1) this feature may be younger than the surrounding area, and has had less time to accumulate meteorite impacts, or 2) the slopes that are observed today may be so heavily eroded that the original, cratered surfaces are now gone, exposing relatively uncratered rocks. Although most of Terra Cimmeria has low albedo, some eastern portions, such as shown in this image, demonstrate an overall lack of contrast that attests to the presence of a layer of dust mantling the surface. This dust, in part, is responsible for the muted appearance and infill of many of the craters at the northern and southern ends of this image The Story This flat-topped volcano pops out from the surface, the swirls of its ancient lava flows running down onto the ancient highlands of Mars. Its smooth top appears to be under attack by the erosive forces of the martian wind. How can you tell? Click on the image above for a close-up look. You'll see some light-toned streaks that run in a northeast-southwest direction. They are caused either by the scouring of the terrain or dunes of moving sand. Either way, the wind likely plays upon the volcano's surface. Look also for the subtle, nearly crescent shaped feature at the northeast portion of the volcano's cap. It looks as if a layer of material has been removed by the wind, exposing

  18. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  19. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  20. Monitoring Volcanic Plumes and Clouds with the NASA Earth Observing System

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.

    2005-12-01

    The NASA series of Earth Observing System satellites present volcanologists with a new set of tools for the study of volcanic plumes and clouds. This presentation will focus on the analyses of data acquired with the first two EOS platforms. The Terra platform, launched in December 1999, carries the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Multiangle Imaging SpectroRadiometer (MISR), and Moderate-Resolution Imaging Spectrometer (MODIS). The Aqua platform, launched in May 2002, carries a second MODIS instrument together with the Atmospheric Infrared Sounder (AIRS). The centerpiece of this study is a time-series of data acquired during the 2002-2003 eruption of Mount Etna. Time-series measurements are the only means of recording dynamic phenomena and characterizing the processes that generate such phenomena. In an effort to evaluate the effects of atmospheric conditions on our plume mapping techniques we are also analyzing data acquired over the Kamchatka Penninsula (Russia) and Anatahan Volcano (Mariana Islands) during periods of eruption in 2004 and 2005. When combined with the Etna data, this suite of measurements spans the range of climatic conditions from sub-Arctic through Mediterranean to Tropical. The ASTER, MODIS, AIRS, and MISR measurements are complimentary, providing information on sulfur dioxide, silicate ash, and sulfate aerosols. In addition, MISR data are used to derive estimates of cloud-top altitude, wind direction, and wind speed. The suite of EOS measurements span spatial resolutions from 15 m, for ASTER in the VNIR, to ~17 km, at nadir, for AIRS. These differences in the spatial resolution allow us to evaluate the uniformity of the mixing of plume constituents. In addition, the multi-resolution data set is an analog for future NASA missions that will feature a network of satellites flying at low, medium, and geostationary earth orbits.

  1. EOS for critical slurry and solution systems

    SciTech Connect

    DiPeso, G; Peterson, P

    1998-10-27

    In a fire involving fissile material, the mixture of the fissile material ash with fire fighting water may lead to a criticality excursion if there are nearby sumps that permit a critical geometry. The severity of the resulting energy release and pressure pulse is dependent on the rate at which the mixing occurs. To calculate these excursions, a non-equilibrium equation of state for the water ash mixture or slurry is needed that accounts for the thermal non-equilibrium that occurs due to finite heat transfer rates. We are developing the slurry EOS as well as a lumped neutronic and hydrodynamic model to serve as a testing ground for the non-equilibrium EOS before its incorporation into more sophisticated neutronic-hydrodynamics codes. Though the model lacks spatial dependence, it provides estimates of energy release and pressure pulses for various mixture assembly rates. We are also developing a non-equilibrium EOS for critical solution systems in which the fissile material is dissolved in water, which accounts for chemical non-equilibrium due to finite mass transfer rates. In contrast to previously published solution EOS, our solution EOS specifically accounts for mass diffusion of dissolved radiolytic gas to bubble nucleation sites. This EOS was developed to check our overall modeling against published solution excursion experiments and to compare solution excursions with slurry excursions initiated under the same conditions. Preliminary results indicate a good match between solution EOS calculations and experiments involving premixed 60-80 g U/l solutions for both low rate and high rate reactivity insertions. Comparison between slurry and solution calculations for the same composition show comparable energy release and pressure peaks for both low and high rate reactivity insertions with the slurry releasing less energy but generating more pressure than the solution for the amount of energy released. Calculations more appropriate to actual fire fighting scenarios

  2. NASA and SEEP

    NASA Astrophysics Data System (ADS)

    Lynch, John T.

    In the recent news note by R. E. Hartle entitled ‘Detecting Electron Precipitation’ (Eos, March 22, 1983, p. 114), it is staled that NASA performed an experiment ‘similar’ to the Navy's Stimulated Emission of Energetic Particles (SEEP) satellite program using sounding rocket X ray detectors. The NASA effort was actually a cooperative part of the SEEP program that was, with the exception of the two small NASA rockets, sponsored entirely by the Office of Naval Research. The SEEP program originated at Lockheed Palo Alto Research Laboratory and Stanford University and was well along before Dr. Goldberg at Goddard Space Flight Center and his coinvestigators at Cornell and the University of Denver were invited to participate.

  3. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  4. Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activiy

    NASA Technical Reports Server (NTRS)

    Desai, Vishal

    1994-01-01

    This paper describes the Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activity performed by Code 540 in support of the Ecom project. Ecom is the ground-to-ground data transport system for operational EOS traffic. The National Aeronautic and Space Administration (NASA) Communications (Nascom) Division, Code 540, is responsible for implementing Ecom. Ecom interfaces with various systems to transport EOS forward link commands, return link telemetry, and science payload data. To understand the complexities surrounding the design and implementation of Ecom, it is necessary that sufficient testbedding, modeling, and analysis be conducted prior to the design phase. These activities, when grouped, are referred to as the EMAT activity. This paper describes work accomplished to date in each of the three major EMAT activities: modeling, analysis, and testbedding.

  5. Northern Terra Meridiani's 'Monument Valley'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Northern Terra Meridiani, near the intersection of the martian equator and prime meridian, is a region of vast exposures of layered rock. A thermal image from the Phobos 2 orbiter in 1989 showed these materials to be anomalously cool during the daytime, an observation very suggestive of dense, hardened materials like rock. Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this region show layered material exposed in cliffs, buttes, and mesas that in some ways resemble the rock outcrops of northern Arizona and southeastern Utah in North America (e.g., Monument Valley, Canyonlands, Zion National Park, Four Corners). MGS MOC Extended Mission operations have included several hundred opportunities for the spacecraft to be rolled off-nadir (i.e., at an angle other than 'straight down') to take pictures that repeat earlier MOC coverage. These repeat images, because they are taken from a different angle, can be combined with the original picture to produce a stereoscopic ('3-D') view. The image shown here is a composite of two pictures, the first taken October 23, 2000, the second acquired by pointing the spacecraft off-nadir on May 15, 2001. This view shows four buttes and a pinnacle (near left-center) composed of eroded, layered rock. The four buttes are each capped by the remains of a single layer of rock that is harder than the materials beneath it. It is the presence of this cap rock that has permitted these buttes to remain standing after surrounding materials were eroded away. Like the buttes of Monument Valley in the Navajo Nation on the Arizona/Utah border, these are believed to consist of sedimentary rocks, perhaps deposited in water or by wind, though some scientists have speculated that they could be made of thick accumulations of volcanic ash. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left. To see the image in 3-D, red (left-eye) and blue (right-eye) '3-D' glasses are required.

  6. EOS MLS Level 1B Data Processing Software. Version 3

    NASA Technical Reports Server (NTRS)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  7. Science Requirements Document for OMI-EOS. 2

    NASA Technical Reports Server (NTRS)

    Levelt, P. F.; vanderA, R.; Bhartia, P. K.; Boersma, F.; Brinksma, E.; Carpay, J.; Chance, K.; deHaan, J.; Hilsenrath, E.; Isaksen, I.

    2000-01-01

    A Dutch-Finnish scientific and industrial consortium is supplying the Ozone Monitoring Instrument (OMI) for Earth Observing System-Aura (EOS-Aura). EOS-Aura is the next NASA mission to study the Earth's atmosphere extensively, and successor to the highly successful UARS (Upper Atmospheric Research Satellite) mission. The 'Science Requirements Document for OMI-EOS' presents an overview of the Aura and OMI mission objectives. It describes how OMI fits into the Aura mission and it reviews the synergy with the other instruments onboard Aura to fulfill the mission. This evolves in the Scientific Requirements for OMI (Chapter 3), stating which trace gases have to be measured with what necessary accuracy, in order for OMI to meet Aura's objectives. The most important data product of OMI, the ozone vertical column, densities shall have a better accuracy and an improved global coverage than the predecessor instruments TOMS (Total Ozone Monitoring Spectrometer) and GOME (Global Ozone Monitoring Experiment), which is a.o. achieved by a better signal to noise ratio, improved calibration and a wide field-of-view. Moreover, in order to meet its role on Aura, OMI shall measure trace gases, such as NO2, OClO, BrO, HCHO and SO2, aerosols, cloud top height and cloud coverage. Improved accuracy, better coverage, and finer ground grid than has been done in the past are goals for OMI. After the scientific requirements are defined, three sets of subordinate requirements are derived. These are: the algorithm requirements, i.e. what do the algorithms need in order to meet the scientific requirements; the instrument and calibration requirements, i.e. what has to be measured and how accurately in order to provide the quality of data necessary for deriving the data products; and the validation requirements, i.e. a strategy of how the OMI program will assure that its data products are valid in the atmosphere, at least to the required accuracy.

  8. NASA Spacecraft Images New Mexico Wildfire

    NASA Image and Video Library

    2013-07-02

    NASA Terra spacecraft passed over the Silver Fire in western New Mexico on June 7, 2013. It has since consumed more than 137,000 acres of timber in a rugged area of the Gila National Forest that has not seen large fires for nearly a century.

  9. Australian Wildfire, NASA Spacecraft Image Aftermath

    NASA Image and Video Library

    2013-11-22

    On Nov. 14, 2013, NASA Terra spacecraft spied a fire scar west of Wollongong, New South Wales, from the Hall Road fire in New South Wales, Australia. October 2013 brought the worst fires seen in Australia New South Wales in many decades.

  10. NASA Images Mississippi River Flooding in Louisiana

    NASA Image and Video Library

    2011-05-19

    NASA Terra spacecraft shows the water flow after the U.S. Army Corps of Engineers opened the Morganza Spillway, a flood control structure along the western bank of the Mississippi River in Louisiana, to ease flooding along levee systems on May 14, 2011.

  11. NASA Satellite Continues to Monitor Thailand Floods

    NASA Image and Video Library

    2011-11-02

    Flooding from the Chao Phraya River, Thailand, had begun to ebb in this image acquired by NASA Terra spacecraft on Nov. 1, 2011. Here, in blue-gray is the muddy water that had overflowed the banks of the river, flooding agricultural fields and villages.

  12. NASA Spacecraft Depicts More Flooding in Thailand

    NASA Image and Video Library

    2011-11-10

    NASA Terra spacecraft acquired this image of flooding from the Chao Phraya River, Thailand on Nov. 8, 2011. The muddy water that had overflowed the banks of the river, flooding agricultural fields and villages, is seen in dark blue and blue-gray.

  13. NASA Spacecraft Captures Image of Brazil Flooding

    NASA Image and Video Library

    2011-01-19

    On Jan. 18, 2011, NASA Terra spacecraft captured this 3-D perspective image of the city of Nova Friburgo, Brazil. A week of torrential rains triggered a series of deadly mudslides and floods. More details about this image at the Photojournal.

  14. NASA Spacecraft Monitors Flooding in Algeria

    NASA Image and Video Library

    2012-03-09

    Extremely heavy rains fell at the end of February 2012 in the northern Algerian province of El Tarf, near the Tunisian border. The rainfall total was the greatest recorded in the last 30 years. This image is from NASA Terra spacecraft.

  15. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  16. TERRA: Building New Communities for Advanced Biofuels

    ScienceCinema

    Cornelius, Joe; Mockler, Todd; Tuinstra, Mitch

    2016-07-12

    ARPA-E’s Transportation Energy Resources from Renewable Agriculture (TERRA) program is bringing together top experts from different disciplines – agriculture, robotics and data analytics – to rethink the production of advanced biofuel crops. ARPA-E Program Director Dr. Joe Cornelius discusses the TERRA program and explains how ARPA-E’s model enables multidisciplinary collaboration among diverse communities. The video focuses on two TERRA projects—Donald Danforth Center and Purdue University—that are developing and integrating cutting-edge remote sensing platforms, complex data analytics tools and plant breeding technologies to tackle the challenge of sustainably increasing biofuel stocks.

  17. Terra Nova breaks new ground for alliances

    SciTech Connect

    Ghiselin, D.

    1996-08-01

    This paper reviews the development of alliances to help develop the Terra Nova oil and gas field in the offshore Atlantic areas of Canada. Largely attributed to BP, the strategic alliance concept got its start in the North Sea and on the North Slope of Alaska. BP saw it as the best way to take advantage of economy-of-scale, mitigate risk, and achieve outsourcing goals while retaining their core competencies. This paper reviews the methods of developing the alliances, the developing of a development plan for the Terra Nova field, and how the alliance plans to maximize the profittability of the operation for all involved.

  18. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  19. Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Ho, E. L.

    2015-12-01

    Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.

  20. EO-1 Prototyping for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.

    2009-12-01

    The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.

  1. DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND TYPICAL TERRA COTTA WINDOW SILL. CORNER OF CLAY AND 15TH STREETS - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  2. Cratered terrain in Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 30 April 2002) The Science This THEMIS visible image shows a region in Terra Meridiani near -12o S, 358o W (2o E). An old, heavily degraded channel can be seen from the lower (southern) portion of the image toward the top. This channel appears to terminate abruptly at the rim of a 10 km diameter crater. This apparent 'superposition' of the crater on top of the channel suggests that the impact crater was created after the channel was formed. This crater has two 3-km sized blocks of material that have slumped off from the lower left segment of the original crater rim. These immense blocks must have moved as a single unit because the rock layers that can be seen in the original wall of the crater can still be seen in these detached blocks. The walls of several craters in this image show vague hints of possible gully formation at the bottom of pronounced rock layers, with the suggestion of alcoves above the individual gullies. Well-developed gullies that were imaged by the Mars Orbiter Camera (MOC) on Mars Global Surveyor have been suggested to form by seepage and runoff of a fluid. The MOC has observed these gullies in numerous craters and channels further south, but they are uncommon at latitudes this close to the equator. Several sections of the crater walls appear to have ridges and troughs formed by the dry avalanche of loose rock, and a similar process of dry avalanche may account for the gullies seen in this THEMIS image. Patches of lighter material, possibly small dunes ripples, can be seen in several places throughout this image. The Story When the walls come tumbling down! Take a closer look at the bright linear ridges within a deep crater near the center of this image (bottom, left-hand side of the crater). Almost 2 miles long, these chunks of material slumped off the crater side in one fell swoop. Phoozhj! Down they came as one massive unit. You can tell, because the rock layers seen in the original wall of the crater are also still there in the

  3. Eos Interviews John Holdren, President Obama's Science Advisor

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-12-01

    With the Obama administration about to face a Republican-led House of Representatives in January, presidential science advisor John Holdren sat down with Eos for an exclusive and wide-ranging interview following a policy speech he delivered on 13 December at the AGU Fall Meeting in San Francisco. During the interview, Holdren, who also is director of the White House Office of Science and Technology Policy (OSTP), focused on the challenging congressional and budgetary environment, the administration's priorities related to the Earth sciences, and the responsibility of scientists in helping to communicate the societal benefits of science, educate the public, and improve science education and literacy. Holdren said the Obama administration's top priorities related to the Earth sciences include improving observations of the Earth, making progress in dealing with climate change, and rebalancing NASA's focus.

  4. Transformation of HDF-EOS metadata from the ECS model to ISO 19115-based XML

    NASA Astrophysics Data System (ADS)

    Wei, Yaxing; Di, Liping; Zhao, Baohua; Liao, Guangxuan; Chen, Aijun

    2007-02-01

    Nowadays, geographic data, such as NASA's Earth Observation System (EOS) data, are playing an increasing role in many areas, including academic research, government decisions and even in people's every lives. As the quantity of geographic data becomes increasingly large, a major problem is how to fully make use of such data in a distributed, heterogeneous network environment. In order for a user to effectively discover and retrieve the specific information that is useful, the geographic metadata should be described and managed properly. Fortunately, the emergence of XML and Web Services technologies greatly promotes information distribution across the Internet. The research effort discussed in this paper presents a method and its implementation for transforming Hierarchical Data Format (HDF)-EOS metadata from the NASA ECS model to ISO 19115-based XML, which will be managed by the Open Geospatial Consortium (OGC) Catalogue Services—Web Profile (CSW). Using XML and international standards rather than domain-specific models to describe the metadata of those HDF-EOS data, and further using CSW to manage the metadata, can allow metadata information to be searched and interchanged more widely and easily, thus promoting the sharing of HDF-EOS data.

  5. Plans for the development of EOS SAR systems using the Alaska SAR facility. [Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Weeks, W.

    1988-01-01

    The Alaska SAR Facility (ASF) program for the acquisition and processing of data from the ESA ERS-1, the NASDA ERS-1, and Radarsat and to carry out a program of science investigations using the data is introduced. Agreements for data acquisition and analysis are in place except for the agreement between NASA and Radarsat which is in negotiation. The ASF baseline system, consisting of the Receiving Ground System, the SAR Processor System and the Archive and Operations System, passed critical design review and is fully in implementation phase. Augments to the baseline system for systems to perform geophysical processing and for processing of J-ERS-1 optical data are in the design and implementation phase. The ASF provides a very effective vehicle with which to prepare for the Earth Observing System (EOS) in that it will aid the development of systems and technologies for handling the data volumes produced by the systems of the next decades, and it will also supply some of the data types that will be produced by EOS.

  6. Plans for the development of EOS SAR systems using the Alaska SAR facility. [Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Weeks, W.

    1988-01-01

    The Alaska SAR Facility (ASF) program for the acquisition and processing of data from the ESA ERS-1, the NASDA ERS-1, and Radarsat and to carry out a program of science investigations using the data is introduced. Agreements for data acquisition and analysis are in place except for the agreement between NASA and Radarsat which is in negotiation. The ASF baseline system, consisting of the Receiving Ground System, the SAR Processor System and the Archive and Operations System, passed critical design review and is fully in implementation phase. Augments to the baseline system for systems to perform geophysical processing and for processing of J-ERS-1 optical data are in the design and implementation phase. The ASF provides a very effective vehicle with which to prepare for the Earth Observing System (EOS) in that it will aid the development of systems and technologies for handling the data volumes produced by the systems of the next decades, and it will also supply some of the data types that will be produced by EOS.

  7. Raised Bedrock in Terra Cimmeria

    NASA Image and Video Library

    2017-01-05

    Large impact craters have central hills or mountains, because the tremendous shock waves from the impact first compresses the ground, then causes a rebound when it becomes uncompressed. This effectively raises bedrock that was once deeply buried to the surface. Furthermore, some of the most interesting bedrock on Mars is amongst the oldest and deeply buried. Thus, these crater central uplifts act as windows into ancient Mars, and enable us to peer into a time when certain geologic processes were more active than today. The enhanced colors in this image reflect different bedrock compositions. Some of the large blocks are broken up and jumbled by this impact event or were resampled from previous large impacts. http://photojournal.jpl.nasa.gov/catalog/PIA15149

  8. BDS Terra-FM2 Ed4

    Atmospheric Science Data Center

    2017-03-08

    ... Search and Order:  Earthdata Search   Order Data:  Earthdata Search:  Earthdata Search Readme ... :  Read Software R5-890 (C) Related Data:  Note:  The latest CERES data products (Edition4 for Terra ...

  9. ES9 Terra-Xtrk Ed3

    Atmospheric Science Data Center

    2017-04-12

    ... Search and Order:  Earthdata Search   Order Data:  Earthdata Search:  Order Data Guide Documents:  ... for Terra and Aqua; Edition2 for TRMM) are approved for science publications. SCAR-B Block:  ...

  10. ES4 Terra-Xtrk Ed3

    Atmospheric Science Data Center

    2017-04-12

    ... Search and Order:  Earthdata Search   Order Data:  Earthdata Search:  Order Data Guide Documents:  ... for Terra and Aqua; Edition2 for TRMM) are approved for science publications.  Additional Info:  b SCAR-B ...

  11. BDS Terra-FM1 Ed4

    Atmospheric Science Data Center

    2017-04-12

    ... Search and Order:  Earthdata Search   Order Data:  Earthdata Search:  Order Data Guide Documents:  ... Terra and Aqua; Edition1 for NPP and TRMM) are approved for science publications. SCAR-B Block:  ...

  12. Terra--A School's Venture into Interdependence.

    ERIC Educational Resources Information Center

    Tashjian, Michi; And Others

    1979-01-01

    To create a feeling of school unity and to reinforce the concept of human interdependence, the teachers of Friends' Central School planned Project Terra, a six-week school-wide activity. With the school viewed as a mythical planet, classes designed their own cultures and interacted as nations. (SJL)

  13. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  14. Web-based Dissemination of TRMM Data via TerraFly

    NASA Astrophysics Data System (ADS)

    Rishe, N. D.; Teng, B.; Rui, H.; Graham, S. C.; Gutierrez, M. E.

    2004-12-01

    Florida International University's High Performance Database Research Center (FIU HPDRC) is collaborating with the Goddard Earth Sciences Data and Information Service Center's Distributed Active Archive Center (GES DISC DAAC) to provide an easy-to-use and powerful Web-based interface to Tropical Rainfall Measuring Mission (TRMM) and other satellite data from NASA's Earth Science Enterprise (ESE). The collaboration uses FIU's TerraFly data dissemination tools to make TRMM and other data available to a wider audience of users. TerraFly is a Web-enabled system (http://terrafly.fiu.edu) designed to aid in the visualization of spatial and remote sensed imagery. This system allows one to "fly" over the Earth's surface and explore spatial data such as aerial photography, satellite imagery, street maps, and locale information. Internet capability allows the system to access numerous data sets without the installation of any specialized GIS programs. Designed for users of all levels and unlike other geographic information systems, TerraFly runs via standard Web browsers, with no need to download software or data prior to visualization. TerraFly can be delivered as a standalone application or a Web-based tool. FIU's technology of streaming incremental tiles to a Java applet allows the user to "fly" even via modem connections. While "flying" over imagery in TerraFly, the user can see various overlays, such as road names, application-relevant points that are hyperlinked to more information, and shaded zones that depict thematic map layers. The user can also view multi-spectral data by assigning bands to the RGB display and by visualizing the application of various algorithms and filters on multiple spectral bands or multiple data sets. The user can thus compare imagery of the same area acquired at different times or different imagery of the same area acquired concurrently and apply advanced visualization algorithms to the data. The FIU-GES DISC DAAC project aims to make TRMM

  15. Radiometric cross-calibration of Terra ASTER and MODIS

    NASA Astrophysics Data System (ADS)

    Yuan, Karen; Thome, Kurt; McCorkel, Joel

    2015-09-01

    Calibration and validation play an essential role during the acquisition and processing of satellite data for Earth Observing System satellites in addition to being an integral part of maintaining scientific values of archived satellite data. The Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS) are two of five sensors onboard the Terra platform. ASTER has a swath width of 60 km with 8 spectral bands in the visible and near infrared (VNIR) and thermal infrared (TIR) spectral range with a spatial resolution of 15-m (bands 1-3) and 90-m (bands 10-14), respectively while MODIS has a swath width of 2300 km with 36 spectral bands from visible to infrared spectral range with a spatial resolution of 250 m (bands 1-2), 500 m (bands 3-7), and 1 km (bands 8-36). ASTER is the `zoom' lens and MODIS is the `keystone' instrument for Terra; they provide quantitative measurements of various earth system variables to the scientific and to the broader community. The simultaneous view of the sensors simplifies the intercomparison between them and the current work relies on the use of the Railroad Valley Playa test site to reduce uncertainties caused by spatial heterogeneity and spectral differences in the sensors. The fact that Railroad Valley is a calibration test site for ASTER ensures that ASTER was tasked at a higher rate over this area providing more scenes for an intercomparison. The study compares ASTER L1B data for the three VNIR bands reprocessed with recent calibration updates and MODIS 02 Collection 6 data products for the similar bands. No correction for geometry angle is needed and coincident 3-km by 3-km regions are used to reduce the impact of spatial heterogeneity. A correction for spectral differences between the sensors is applied based on seasonal averages of EO-1 Hyperion spectral range. Results indicate that the calibrated radiance products from the two sensors agree to within the

  16. MISR EOS Validation Site Data Ordering

    Atmospheric Science Data Center

    2013-04-02

    ... EOS Validation data files are orderable through the  MISR Order Tool . Log in to the MISR Order Tool Select product(s) ... be subset for the chosen site. You can further customize your files by following instructions in the interface. ...

  17. Data links for the EOS TPC

    SciTech Connect

    Bieser, F.; Jones, R.; McParland, C.

    1990-10-01

    We report on the design and performance of high speed data links and slower configuration control links used between the EOS TPC detector and the data processing electronics. Data rates of 5MBytes/s/link are maintained over 30m with optical isolation. Pedestal subtraction, hit detection, and data reordering are performed online. 3 refs., 1 fig.

  18. NASA Satellite Imagery Shows Sparse Population of Region Near Baja, California Earthquake

    NASA Image and Video Library

    2010-04-09

    This image from NASA Terra spacecraft shows where a magnitude 7.2 earthquake struck in Mexico Baja, California at shallow depth along the principal plate boundary between the North American and Pacific plates on April 4, 2010.

  19. Africa Nabro Volcano Spews a Fiery Brew in NASA Spacecraft Image

    NASA Image and Video Library

    2011-07-07

    This image of Africa Nabro volcano in Eritrea was acquired by NASA Terra spacecraft on July 6, 2011. Ash plumes sent into the stratosphere disrupted air traffic in Sudan, Djibouti, Ethiopia and Sudan.

  20. NASA Spacecraft Sees Dispersion of Smoke and Ash Across LA Basin from Colby Fire

    NASA Image and Video Library

    2014-01-18

    On Jan. 16, 2014, NASA Terra satellite passed over Glendora, Calif., where a large wildfire has claimed several homes, causing mandatory evacuations and prompting an air quality alert by public health officials.

  1. NASA Satellite Scares Up An Eerie Image of Haunted Lakes and Ghost Ships

    NASA Image and Video Library

    2011-10-29

    NASA Terra satellite presents this false color view of portions of Wisconsin and Michigan, including Devil Lake, Druid Lake, Ghost Lake, Spider Lake, and Witches Lake in Wisconsin; and Bat Lake, Corpse Pond and Witch Lake in Michigan.

  2. NASA Spacecraft Peers Into the Mouth of the Galapagos Wolf Volcano

    NASA Image and Video Library

    2015-06-12

    On May 26, 2015, Wolf Volcano on Isabela Island in the Galapagos Islands erupted for the first time in 33 years. This image was acquired by NASA Terra spacecraft on June 11, 2015, after the eruption had quieted.

  3. Terra Populus and DataNet Collaboration

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  4. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  5. Autonomous Volcanic Activity Detection with ASE on EO-1 Hyperion: Applications for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J.; Greeley, R.; Rabideau, G.; Sherwood, R.; Williams, K.; ASE Project Team

    2003-05-01

    The New Millennium Program (NMP) Space Technology 6 (ST-6) Autonomous Sciencecraft Experiment (ASE) will fly two scene classifiers on the Earth Orbiting 1 (EO-1) spacecraft in the fall of 2003, and will demonstrate autonomous, onboard processing of Hyperion imager 0.4-2.4 micron hyperspectral data, and autonomous, science-driven planning and acquisition of subsequent observations. ASE is an experiment to meet NASA's call for systems with reduced downlink and onboard data processing to enable autonomous missions. ASE software is divided into three classes: (1) spacecraft command and control; (2) an onboard planner (CASPER); and (3) modular science algorithms, which are used to process raw data to search out specific features and spectral signatures. The ASE Science Team has developed scene classifiers to detect thermal emission in both day and nighttime Hyperion data, and are continuing to develop other scene classifiers for ice, snow, water and land for future release and flight on EO-1. Once uploaded, the thermal scene classifier effectively turns the EO-1 spacecraft into an autonomously operating and reacting volcanic activity detector. It is possible to envision such a capability on spacecraft observing volcanism on Io and Triton, autonomously identifying and classifying activity, identifying sites deserving of closer scrutiny, and retasking the spacecraft to observe them, thus fulfilling NASA's goal of fully-autonomous, science-driven spacecraft. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  6. Recent observational constraints on EoS parameters of a class of emergent Universe

    NASA Astrophysics Data System (ADS)

    Thakur, P.

    2017-08-01

    Emergent Universe (EU) model is investigated here using the recent observational data of the background tests. The background test data comprise observed Hubble data, baryon acoustic oscillation data, cosmic microwave background shift data and Union compilation(2.1) data. The flat EU model obtained by Mukherjee et al is permitted with a non-linear equation of state (in short, EoS) (p=Aρ -Bρ ^{{1}/{2}}), where A and B are constants. The best-fit values and permitted range of values of the EoS parameters are determined in general EU model and in specific EU model (A=0) by using chi-square minimization technique. The best-fit values of the EoS parameters are used to study the evolution of the squared adiabatic sound speed c^2s, state parameter ω and deceleration parameter q for different red-shifts z. The present age of the Universe t0 has been determined in general EU model as well as for EU model with A=0. The late accelerating phase of the Universe in the EU model is accommodated satisfactorily.

  7. 2016 Mission Operations Working Group: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Frye, Stuart

    2016-01-01

    EO-1 Mission Status for the Constellation Mission Operations Working Group to discuss the EO-1 flight systems, mission enhancements, debris avoidance maneuver, orbital information, 5-year outlook, and new ground stations.

  8. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  9. TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.

  10. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  11. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    NASA Technical Reports Server (NTRS)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  12. Spatial and Temporal Distribution of Clouds as Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, Paul; Ackerman, Steven A.

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24,2000 for Terra and June 24,2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Over the last year, extensive improvements and enhancements in the global cloud products have been implemented, and reprocessing of all MODIS data on Terra has commenced since first light in February 2000. In the cloud mask algorithm, the most extensive improvements were in distinguishing clouds at nighttime, including the challenging polar darkness regions of the world. Additional improvements have been made to properly distinguish sunglint from clouds in the tropical ocean regions, and to improve the identification of clouds from snow during daytime in Polar Regions. We will show global monthly mean cloud fraction for both Terra and Aqua, and show how similar the global daytime cloud fraction is from these morning and afternoon orbits, respectively. We will also show the zonal distribution of cloud fraction over land and ocean regions for both Terra and Aqua, and show the time series of global cloud fraction from July 2002 through June 2006.

  13. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  14. Statistical Analysis of Deflation in Covariance and Resultant Pc Values for AQUA, AURA and TERRA

    NASA Technical Reports Server (NTRS)

    Hasan, Syed O.

    2016-01-01

    This presentation will display statistical analysis performed for raw conjunction CDMs received for the EOS Aqua, Aura and Terra satellites within the period of February 2015 through July 2016. The analysis performed indicates a discernable deflation in covariance calculated at the JSpOC after the utilization of the dynamic drag consider parameter was implemented operationally in May 2015. As a result, the overall diminution in the conjunction plane intersection of the primary and secondary objects appears to be leading to reduced probability of collision (Pc) values for these conjunction events. This presentation also displays evidence for this theory with analysis of Pc trending plots using data calculated by the SpaceNav CRMS system.

  15. 76 FR 31892 - Retrospective Review Under E.O. 13563

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... ADMINISTRATION 20 CFR Chapter III Retrospective Review Under E.O. 13563 AGENCY: Social Security Administration. ACTION: Request for information. SUMMARY: In accordance with Executive Order (E.O.) 13563, ``Improving... . SUPPLEMENTARY INFORMATION: On January 18, 2011, the President issued E.O. 13563, ``Improving Regulation...

  16. Making Debris Avoidance Decisions for ESMO's EOS Mission Set

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    The presentation will cover the aspects of making debris risk decisions from the NASA Mission Director's perspective, specifically for NASA Earth Science Mission Operations (ESMO) Earth Observing System (EOS) mission set. ESMO has been involved in analyzing potential debris risk conjunctions with secondary objects since the inception of this discipline. Through the cumulated years of experience and continued exposure to various debris scenarios, ESMO's understanding of the problem and process to deal with this issue has evolved. The presentation will describe the evolution of the ESMO process, specifically as it relates to the maneuver execution and spacecraft risk management decision process. It will briefly cover the original Drag Make-Up Maneuver, several day, methodical manually intensive, ramp up waive off approach, to the present day more automated, pre-canned onboard command, tools based approach. The presentation will also cover the key information needed to make debris decisions and challenges in doing so while still trying to meet science goals, constellation constraints and manage resources. A slide or two at the end of the presentation, will be devoted to discussing what further improvements could be helpful to improve decision making and future process improvement plans challenges.

  17. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  18. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver listens as NASA Administrator Charles Bolden answers a question during a NASA Update on Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  20. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, and Deputy Administrator Lori Garver are seen during their first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., and Deputy Administrator Lori Garver deliver a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Associate Administrator for the Office of Communications Bob Jacobs moderates the NASA Update program, Tuesday, Feb. 15, 2011 at NASA Headquarters in Washington. NASA's 12th Administrator Charles Bolden and Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  5. Geologic Mapping in Southern Margaritifer Terra

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2010-01-01

    Margaritifer Terra records a complex geologic history [1-5], and the area from Holden crater through Ladon Valles, Ladon basin, and up to Morava Valles is no exception [e.g., 6-13]. The 1:500,000 geologic map of MTM quadrangles -15027, -20027, -25027, and -25032 (Figs. 1 and 2 [14]) identifies a range of units that delineate the history of water-related activity and regional geologic context.

  6. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; hide

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  7. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; Frye, S.; Hengemihle, J.; Agostino, J. D.; Bote, R.; Trout, B.; Shulman, S.; Ungar, S.; Gaasbeck, J. Van; Boyer, D.; Griffin, M.; Burke, H.; Greeley, R.; Doggett, T.; Williams, K.; Baker, V.

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  8. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  9. GMRT-EoR Project Update

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; GMRT-EoR Team

    2013-01-01

    The GMRT-EoR project has continued the multi-year campaign to measure the neutral hydrogen 21cm fluctuations at z=8.5, probing the reionization epoch using the Giant Metrewave Radio Telescope (GMRT) in India. We have acquired new data and continued to improve our analysis strategy and process. To cope with the stringent foreground subtraction requirement, our team has developed a new method for component separation; I will present updates on the latest analysis and future prospects.

  10. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Seefeldt, Mark W.; Palo, Scott; Knuth, Shelley L.; Bradley, Alice C.; Herrman, Paul D.; Kernebone, Peter A.; Logan, Nick J.

    2016-03-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air-sea ice-ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (nasa.gov/getdif.htm?NSF-ANT10-43657" target="_blank">http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  11. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica using unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Seefeldt, M. W.; Palo, S.; Knuth, S. L.; Bradley, A. C.; Herrman, P. D.; Kernebone, P. A.; Logan, N. J.

    2015-12-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air - sea ice - ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aircraft systems (UAS) sampling the atmosphere over Terra Nova Bay on five different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A dataset containing the atmospheric and surface data as well as operational aircraft data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (nasa.gov/getdif.htm?NSF-ANT10-43657" target="_blank">http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  12. Is Ishtar Terra a thickened basaltic crust?

    NASA Technical Reports Server (NTRS)

    Arkani-Hamed, Jafar

    1992-01-01

    The mountain belts of Ishtar Terra and the surrounding tesserae are interpreted as compressional regions. The gravity and surface topography of western Ishtar Terra suggest a thick crust of 60-110 km that results from crustal thickening through tectonic processes. Underthrusting was proposed for the regions along Danu Montes and Itzpapalotl Tessera. Crustal thickening was suggested for the entire Ishtar Terra. In this study, three lithospheric models with total thicknesses of 40.75 and 120 km and initial crustal thicknesses of 3.9 and 18 km are examined. These models could be produced by partial melting and chemical differentiation in the upper mantle of a colder, an Earth-like, and a hotter Venus having temperatures of respectively 1300 C, 1400 C, and 1500 C at the base of their thermal boundary layers associated with mantle convection. The effects of basalt-granulite-eclogite transformation (BGET) on the surface topography of a thickening basaltic crust is investigated adopting the experimental phase diagram and density variations through the phase transformation.

  13. EOS situational data shared service mechanism

    NASA Astrophysics Data System (ADS)

    Lv, L.; Xu, Q.; Lan, C. Z.; Shi, Q. S.; Lu, W. J.; Wu, W. Q.

    2016-11-01

    With the rapid development of aerospace and remote sensing technology, various high-resolution Earth Observation Systems (EOS) are widely used in economic, social, military and other fields and playing an increasingly prominent role in the construction of Digital Earth and national strategic planning. The normal operation of the system is the premise of high quality data acquisition. Compared with the ground observation mode, EOS itself and the surrounding environment are more complex, and its operation control mainly depends on all kinds of Space Situational Awareness (SSA) data acquisition and analysis. SSA data has more extensive sources, larger volume, stronger time-effectiveness and more complicated structure than traditional geographical spatial data. For effective data sharing and utilization, combined with the analysis of data types and structures, a SSA data sharing identity language SSDSML is designed based on the extensible mark-up language XML, which realizes a comprehensive description of satellites and their attributes, space environment, ground stations, etc. Then EOS situational data shared service mechanism is established and provides a powerful data support for the normal operation of the system.

  14. 78 FR 5116 - NASA Information Security Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... makes nonsubstantive changes to align with and implement the provisions of Executive Order (E.O.) 13526... the proper implementation and management of a uniform system for classifying, accounting, safeguarding.... Additional provisions of part 1203 are implemented in NASA Procedural Requirements (NPR) 1600.2,...

  15. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  16. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  17. Early Instrument Performance Results from the Terra/Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Guenther, B. W.; Barnes, W. L.; Murphy, R. E.

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a major observational capability flying on the Earth Observing System (EOS) AM-1 "Terra" mission. This mission is to go into orbit in late 1999 or very early 2000. The MODIS was developed to provide improved observations of land, ocean, and atmosphere features relative to "heritage instruments" such as the NOAA Advanced Very High Resolution Radiometer (AVHRR), the Nimbus Coastal Zone Color Scanner (CZCS)and the SeaStar/SeaWiFS instruments, in particular. In addition the MODIS should provide complementary observations to the Landsat-7 Thematic Mapper and the NOAA HIRS instrument. There has been considerable effort to include capabilities or plans to characterize and assure calibration of the instrument data. These efforts include on on-board blackbody (BB), a solar diffuser (SID), a solar diffuser stability monitor (SDSM), and a spectral radiometric calibration assembly (SDSM). These devices, along with careful analyses of scenes acquired during orbit, are expected to allow comparisons with pre-launch expectations regarding spatial performance, spectral performance, and radiometric performance. In addition deep space observations and observations of the moon are to be used to characterize instrument performance. The purpose of this paper is to provide quantitative comparisons, as results become available from the Terra MODIS, to heritage instruments, pre-launch expectations and specifications.

  18. EOS ODL Metadata On-line Viewer

    NASA Astrophysics Data System (ADS)

    Yang, J.; Rabi, M.; Bane, B.; Ullman, R.

    2002-12-01

    We have recently developed and deployed an EOS ODL metadata on-line viewer. The EOS ODL metadata viewer is a web server that takes: 1) an EOS metadata file in Object Description Language (ODL), 2) parameters, such as which metadata to view and what style of display to use, and returns an HTML or XML document displaying the requested metadata in the requested style. This tool is developed to address widespread complaints by science community that the EOS Data and Information System (EOSDIS) metadata files in ODL are difficult to read by allowing users to upload and view an ODL metadata file in different styles using a web browser. Users have the selection to view all the metadata or part of the metadata, such as Collection metadata, Granule metadata, or Unsupported Metadata. Choices of display styles include 1) Web: a mouseable display with tabs and turn-down menus, 2) Outline: Formatted and colored text, suitable for printing, 3) Generic: Simple indented text, a direct representation of the underlying ODL metadata, and 4) None: No stylesheet is applied and the XML generated by the converter is returned directly. Not all display styles are implemented for all the metadata choices. For example, Web style is only implemented for Collection and Granule metadata groups with known attribute fields, but not for Unsupported, Other, and All metadata. The overall strategy of the ODL viewer is to transform an ODL metadata file to a viewable HTML in two steps. The first step is to convert the ODL metadata file to an XML using a Java-based parser/translator called ODL2XML. The second step is to transform the XML to an HTML using stylesheets. Both operations are done on the server side. This allows a lot of flexibility in the final result, and is very portable cross-platform. Perl CGI behind the Apache web server is used to run the Java ODL2XML, and then run the results through an XSLT processor. The EOS ODL viewer can be accessed from either a PC or a Mac using Internet

  19. Bridging EO Research, Operations and Collaborative Learning

    NASA Astrophysics Data System (ADS)

    Scarth, Peter

    2016-04-01

    Building flexible and responsive processing and delivery systems is key to getting EO information used by researchers, policy agents and the public. There are typically three distinct processes we tackle to get product uptake: undertake research, operationalise the validated research, and deliver information and garner feedback in an appropriate way. In many cases however, the gaps between these process elements are large and lead to poor outcomes. Good research may be "lost" and not adopted, there may be resistance to uptake by government or NGOs of significantly better operational products based on EO data, and lack of accessibility means that there is no use of interactive science outputs to improve cross disciplinary science or to start a dialog with citizens. So one of the the most important tasks, if we wish to have broad uptake of EO information and accelerate further research, is to link these processes together in a formal but flexible way. One of the ways to operationalize research output is by building a platform that can take research code and scale it across much larger areas. In remote sensing, this is typically a system that has access to current and historical corrected imagery with a processing pipeline built over the top. To reduce the demand on high level scientific programmers and allowing cross disciplinary researchers to hack and play and refine, this pipeline needs to be easy to use, collaborative and link to existing tools to encourage code experimentation and reuse. It is also critical to have efficient, tight integration with information delivery and extension components so that the science relevant to your user is available quickly and efficiently. The rapid expansion of open data licensing has helped this process, but building top-down web portals and tools without flexibility and regard for end user needs has limited the use of EO information in many areas. This research reports on the operalization of a scale independent time series

  20. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  1. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  4. The Spaceborne Imaging Radar program: SIR-C - The next step toward EOS

    NASA Technical Reports Server (NTRS)

    Evans, Diane; Elachi, Charles; Cimino, Jobea

    1987-01-01

    The NASA Shuttle Imaging Radar SIR-C experiments will investigate earth surface and environment phenomena to deepen understanding of terra firma, biosphere, hydrosphere, cryosphere, and atmosphere components of the earth system, capitalizing on the observational capabilities of orbiting multiparameter radar sensors alone or in combination with other sensors. The SIR-C sensor encompasses an antenna array, an exciter, receivers, a data-handling network, and the ground SAR processor. It will be possible to steer the antenna beam electronically, so that the radar look angle can be varied.

  5. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  6. Reuse of the NASA LP DAAC MODIS Reprojection Tool (MRT) and the USGS Global Visualization Viewer (GloVis) for the Development of the LP DAAC Web-Based MODIS Reprojection Tool (MRTWeb)

    NASA Astrophysics Data System (ADS)

    Sohre, T.; Sauer, B.; Maiersperger, T.; Macie, M.; Miller, W.

    2007-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) was established as part of NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) initiative to process, archive, and distribute land-related data collected by EOS sensors, thereby promoting the inter-disciplinary study and understanding of the integrated Earth system. The role of the LP DAAC includes the higher-level processing and distribution of ASTER data, and the distribution of MODIS land products derived from data acquired by the Terra and Aqua satellites. The LP DAAC anticipated that the community of land data users would need special software tools for handling the Level-3 MODIS land data products that would be distributed in HDF-EOS format and in the ISIN projection. The development of the MODIS Reprojection Tool (MRT) enabled users to read data files in HDF-EOS format (MODIS Level-2G, Level-3, and Level-4 land data products), specify a geographic subset or specific science data sets as input to processing, perform geographic transformation to a different coordinate system/cartographic projection, write the output to file formats other than HDF-EOS. Additional information regarding the MRT including links to download the software can be found at: http://lpdaac.usgs.gov/landdaac/tools/modis/index.asp. The LP DAAC has utilized the USGS Global Visualization Viewer (GloVis) as one method of data search and order. GloVis is a quick and easy online search and order tool for selected satellite data. The viewer allows user- friendly access to all available browse images from a number of Landsat data collections as well as ASTER, MODIS, and EO-1 data. Through a graphic map display, the user can select any area of interest and quickly view all available browse images within the USGS inventory for the specified location. GloVis can be run online at http://glovis.usgs.gov/ and the source code and be downloaded from: https://glovis.usgs.gov/distribution/. The LP DAAC saw an opportunity to

  7. Bigplate: an oblique angle explosive EOS test

    SciTech Connect

    Anderson, S; Avara, R; Fried, L; Janzen, J; McGuire, E; Souers, P C; Wu, B

    1998-04-16

    Bigplate is an advanced explosive equation of state (EOS) test. It consists of a point detonator driving a large disc (100 mm radius) of explosive, which pushes a 0.5 mm thick copper or tantalum plate. The plate is observed by a five-beam Fabry-Perot interferometer, which has beams at 0, 10, 20,40 and 80 mm on the plate. A short Fabry gives the jump-off to high accuracy; a long Fabry runs out to I0-15 microsec. A detailed error analysis is given, with the final velocity measurements considered good to ±0.066 mm/microsec. Jump-offs are measured to 0.01-0.02 microsec. Spall is seen in all shots, which creates a time delay on both the first and second velocity plateaus. A 0.1 microsec delay in jump-off of unknown origin is also seen at 80 mm. In order of decreasing explosive ideality, the explosives tired have been LX-14, LX-04 and LX-17. To partially negate the time delays, the data and code runs are overlaid at each radial position between the first and second plateaus. Traditional JWL's model LX-14 and LX-04 within accuracy, but not so for LX-17. The spall may be partly modeled using the pmin model but high resolution zoning is required. At longer times, spall does not appear to affect the explosive energetics. Because it includes diagonal zone crossing, Bigplate occupies a location between simple plate and cylinder tests and truly complex geometries. Hence, an EOS that fails Bigplate is not likely to move on to more complex issues. Bigplate is an excellent test bed for radically new EOS's, and the initial LX-17 runs done with Equilibrium and KINETIC CHEETAH are promising.

  8. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    2004-01-01

    This report summarizes the accomplishments made by the MODIS LST (Land-Surface Temperature) group at University of California, Santa Barbara, under NASA Contract. Version 1 of the MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (ATBD) was reviewed in June 1994, version 2 reviewed in November 1994, version 3.1 in August 1996, and version 3.3 updated in April 1999. Based on the ATBD, two LST algorithms were developed, one is the generalized split-window algorithm and another is the physics-based day/night LST algorithm. These two LST algorithms were implemented into the production generation executive code (PGE 16) for the daily standard MODIS LST products at level-2 (MODII-L2) and level-3 (MODIIA1 at 1 km resolution and MODIIB1 at 5km resolution). PGE codes for 8-day 1 km LST product (MODIIA2) and the daily, 8-day and monthly LST products at 0.05 degree latitude/longitude climate model grids (CMG) were also delivered. Four to six field campaigns were conducted each year since 2000 to validate the daily LST products generated by PGE16 and the calibration accuracies of the MODIS TIR bands used for the LST/emissivity retrieval from versions 2-4 of Terra MODIS data and versions 3-4 of Aqua MODIS data. Validation results from temperature-based and radiance-based methods indicate that the MODIS LST accuracy is better than 1 C in most clear-sky cases in the range from -10 to 58 C. One of the major lessons learn from multi- year temporal analysis of the consistent V4 daily Terra MODIS LST products in 2000-2003 over some selected target areas including lakes, snow/ice fields, and semi-arid sites is that there are variable numbers of cloud-contaminated LSTs in the MODIS LST products depending on surface elevation, land cover types, and atmospheric conditions. A cloud-screen scheme with constraints on spatial and temporal variations in LSTs was developed to remove cloud-contaminated LSTs. The 5km LST product was indirectly validated through comparisons to

  9. Earth Observatory Satellite (EOS) system definition study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An executive summary of a study on the Earth Observatory Satellite (EOS) was presented. It was concluded that the overall costs of space systems could be reduced significantly by the development of a modular shuttle compatible standard spacecraft, and the use of that spacecraft with the Shuttle Transportation System. It was also demonstrated that the development of the standard spacecraft is feasible, desirable, and cost effective if applied to a series of missions. The ability to initially retrieve, refurbish, and reuse the spacecraft and its payload, and ultimately to perform in-orbit servicing, would result in significant cost savings. A number of specific conclusions and recommendations were also suggested.

  10. Share Your Opinion With Other Eos Readers

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2006-11-01

    Earlier this year, Robert Kitchen (Eos, 87(24), 235, 2006) drew attention to declining interest in Earth science education in public schools. The reason for a lack of interest in teaching Earth sciences in public schools may involve more than just the attitudes of parents who may wish for their children a better preparation for advanced placement courses later on. Part of the problem may lie with our present mind-set that technology can solve all the world's problems, from poverty, to better health, and to prosperity.

  11. The Wisconsin Snow and Cloud-Terra 2000 Experiment (WISC-T2000)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Atmospheric scientists take to the skies this winter for the Wisconsin Snow and Cloud-Terra 2000 experiment, Feb. 25 through March 13. Scientists in WISC-T2000 will use instruments on board NASA's ER-2, a high-altitude research plane, to validate new science products from NASA's earth-observing satellite Terra, which began its five-year mission on Dec. 18, 1999. Contact Terri Gregory Public Information Coordinator Space Science and Engineering Center University of Wisconsin-Madison (608) 263-3373; fax (608) 262-5974 terri.gregory@ssec.wisc.edu Science Goals: WISC-T2000 is the third in a series of field experiments sponsored by the University of Wisconsin-Madison's Space Science and Engineering Center. The center helped develop one of the five science instruments on Terra, the Moderate-Resolution Imaging Spectroradiometer (MODIS). MODIS will make global measurements of clouds, oceans, land, and atmospheric properties in an effort to monitor and predict global climate change. Infrastructure: The ER-2 will be based at Madison's Truax Field and will fly over the upper Midwest and Oklahoma. ER-2 measurements will be coordinated with observations at the Department of Energy's Cloud and Radiation Testbed site in Oklahoma (http://www.arm.gov/), which will be engaged in a complementary cloud experiment. The center will work closely with NASA's Goddard Space Flight Center, which will collect and distribute MODIS data and science products. Additional information on the WISC-T2000 field campaign is available at the project's Web site http://cimss.ssec.wisc.edu/wisct2000/

  12. Measuring femoral and rotational alignment: EOS system versus computed tomography.

    PubMed

    Folinais, D; Thelen, P; Delin, C; Radier, C; Catonne, Y; Lazennec, J Y

    2013-09-01

    Computed tomography (CT) is currently the reference standard for measuring femoral and tibial rotational alignment. The EOS System is a new biplanar low-dose radiographic device that allows 3-dimensional lower-limb modelling with automated measurements of femoral and tibial rotational alignment (torsion). Femoral and tibial torsion measurements provided by the EOS System are equivalent to those obtained using CT. In a retrospective analysis of 43 lower limbs in 30 patients, three senior radiologists measured femoral and tibial torsion on both CT and EOS images. Agreement between CT and EOS values was assessed by computing Pearson's correlation coefficient and interobserver reproducibility by computing the intraclass correlation coefficient (ICC). Femoral torsion was 13.4° by EOS vs. 13.7° by CT (P=0.5) and tibial torsion was 30.8° by EOS vs. 30.3° by CT (P=0.4). Strong associations were found between EOS and CT values for both femoral torsion (P=0.93) and tibial torsion (P=0.89). With EOS, the ICC was 0.93 for femoral torsion and 0.86 for tibial torsion; corresponding values with CT were 0.90 and 0.92. The EOS system is a valid alternative to CT for lower-limb torsion measurement. EOS imaging allows a comprehensive evaluation in all three planes while substantially decreasing patient radiation exposure. Level III, case-control. Copyright © 2013. Published by Elsevier Masson SAS.

  13. NASA Blue Marble 2007 East

    NASA Image and Video Library

    2017-09-27

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  14. Mars Express OMEGA Observations over Terra Meridiani

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Poulet, F.; Bibring, J.-P.; Wolff, M.; Gendrin, A.; Morris, R. V.; Freeman, J. J.; Bellucci, G.

    2005-01-01

    The OMEGA hyperspectral imager (0.35 to 5.08 micrometers) covered the hematite-bearing plains and underlying etched terrains of Terra Meridiani during several orbits with spatial resolutions ranging from several hundred meters to approximately 2 km. We extracted and analyzed surface reflectance spectra from OMEGA data for the approximately 864,000 square kilometers surrounding the Opportunity site. In this paper we focus on analysis of OMEGA orbit 485 data for the plains and etched terrains located to the northeast of the Opportunity landing site.

  15. Volcanism in Northwest Ishtar Terra, Venus

    SciTech Connect

    Gaddis, L.R.; Greeley, R. )

    1990-10-01

    Evidence is presented for a previously undocumented volcanic complex in the highlands of NW Ishtar Terra (74 deg N, 313 deg E). The proposed valcanic center is in mountainous banded terrain thought to have been formed by regional compression. Data used include Soviet Venera 15/16 radar images and topography (Fotokarta Veneri B-4, 1987). An attempt is made to assess the place of this feature in the framework of known volcanic landforms of the Lakshmi Planum and to examine the relationships between volcanism and tectonism in this region. 38 refs.

  16. Radar Scattering Properties of Terra Meridiani, Mars

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; Haldemann, A. F.; Jurgens, R. F.; Slade, M. A.; Arvidson, R. E.

    2002-12-01

    A series of fourteen radar observations of Mars were made during the 2001 opposition. Four of these observation tracks passed over Terra Meridiani, a prime candidate landing site for one of the 2003 Mars Exploration Rover missions. Observations were conducted using X-band (3.5 centimeter wavelength) radar transmitted with a pseudo-random binary phase encoding which, combined with the frequency resolution of the processing FFT, yields a maximum spatial resolution of approximately five kilometers. Actual spatial resolution is coarser than this (between five and twenty kilometers) due to signal-to-noise considerations that predicated longer integration times as well as greater planetary ranges for the off-opposition observations. We have processed the Terra Meridiani data in stages, beginning with one-dimensional sub-radar track profiles and culminating with four-station interferometry. Not all observations were amendable to the full four-station interferometry, due to technical issues, but were processed with a minimum of two stations to remove the spatial ambiguities inherent to radar observations. Our processing yields one- and two-dimensional maps of the surface reflectivity along the radar track. We extract scattering data for points along the sub-radar track, where the angle in incidence varies most, and model the scattering function. The multi-station reflectivity data is also modeled according to the Hagfors scattering model to extract two-dimensional maps of RMS roughness and dielectric constant. The RMS roughness data for the Terra Meridiani landing sites shows the local surface slopes to be less than 3 degrees, on the scale of tens of wavelengths. An enhanced dielectric constant is apparent over Terra Meridiani that is spatially correlated with the MGS detected hematite deposits. The level of the enhancement is consistent with the inclusion of 10-15 percent hematite, according to a weighted dielectric or PVL model. Integral to our processing, and new to

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen through a television camera monitor during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  20. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver makes a point as she speaks during a NASA Update with Administrator Charles F. Bolden Jr.,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen on a television camera monitor while speaking at his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  4. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  5. Ten Years of MISR Observations from Terra: Looking Back, Ahead, and in Between

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Ackerman, Thomas P.; Braverman, Amy J.; Bruegge, Carol J.; Chopping, Mark J.; Clothiaux, Eugene E.; Davies, Roger; Di Girolamo, Larry; Kahn, Ralph A.; Knyazikhin, Yuri; hide

    2010-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space. The more than 10-year (and counting) MISR data record provides unprecedented opportunities for characterizing long-term trends in aerosol, cloud, and surface properties, and includes 3-D textural information conventionally thought to be accessible only to active sensors.

  6. Ten Years of MISR Observations from Terra: Looking Back, Ahead, and in Between

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Ackerman, Thomas P.; Braverman, Amy J.; Bruegge, Carol J.; Chopping, Mark J.; Clothiaux, Eugene E.; Davies, Roger; Di Girolamo, Larry; Kahn, Ralph A.; Knyazikhin, Yuri; Liu, Yang; Marchand, Roger; Martonchik, John V.; Muller, Jan-Peter; Nolin, Anne W.; Pinty, Bernard; Verstraete, Michel M.; Wu, Dong L.; Garay, Michael J.; Kalashnikova, Olga V.; Davis, Anthony B.; Davis, Edgar S.; Chipman, Russell A.

    2010-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space. The more than 10-year (and counting) MISR data record provides unprecedented opportunities for characterizing long-term trends in aerosol, cloud, and surface properties, and includes 3-D textural information conventionally thought to be accessible only to active sensors.

  7. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  8. Multispectral Cloud Retrievals from MODIS on Terra and Aqua

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Ackerman, Steven A.; Menzel, W. Paul; Gray, Mark A.; Moody, Eric G.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18, 1999 and the Aqua spacecraft on April 26, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of cloud optical properties, especially cloud optical thickness and effective radius of water drops and ice crystals. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Results will be presented of MODIS cloud properties both over the land and over the ocean, showing the consistency in cloud retrievals over various ecosystems used in the retrievals. The implications of this new observing system on global analysis of the Earth's environment will be discussed.

  9. P(DMS-co-EO)/P(EPI-co-EO) blend as a polymeric electrolyte

    NASA Astrophysics Data System (ADS)

    Polo Fonseca, C.; Cezare, T. T.; Neves, S.

    A new polymer electrolyte comprising the blend of poly(dimethylsiloxane-co-ethylene oxide) (P(DMS-co-EO)), and poly(epichlorohydrin-co-ethylene oxide) (P(EPI-co-EO)), with different concentrations of LiClO 4 is described. The polymer electrolyte was prepared by a solution-cast technique. The electrochemical properties were studied by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry techniques. The maximum ionic conductivity ( σ=1.2×10 -4 S cm -1) was obtained for the P(DMS-co-EO)/P(EPI-co-EO) 15/85 and 20/80 blends with 6 wt.% LiClO 4. These same films had a wide electrochemical stability, higher than 5 V at room temperature. A stable passive layer at the interface between the polymer electrolyte and lithium metal was formed within the first few days and maintained during the follow storage period. UV-Vis absorption spectra of the blends showed a transparent polymer electrolyte in the visible region.

  10. New RADIOM algorithm using inverse EOS

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Sokolov, Igor; Klapisch, Marcel

    2012-10-01

    The RADIOM model, [1-2], allows one to implement non-LTE atomic physics with a very low extra CPU cost. Although originally heuristic, RADIOM has been physically justified [3] and some accounting for auto-ionization has been included [2]. RADIOM defines an ionization temperature Tz derived from electronic density and actual electronic temperature Te. LTE databases are then queried for properties at Tz and NLTE values are derived from them. Some hydro-codes (like FAST at NRL, Ramis' MULTI, or the CRASH code at U.Mich) use inverse EOS starting from the total internal energy Etot and returning the temperature. In the NLTE case, inverse EOS requires to solve implicit relations between Te, Tz, and Etot. We shall describe these relations and an efficient solver successively implemented in some of our codes. [4pt] [1] M. Busquet, Radiation dependent ionization model for laser-created plasmas, Ph. Fluids B 5, 4191 (1993).[0pt] [2] M. Busquet, D. Colombant, M. Klapisch, D. Fyfe, J. Gardner. Improvements to the RADIOM non-LTE model, HEDP 5, 270 (2009).[0pt] [3] M.Busquet, Onset of pseudo-thermal equilibrium within configurations and super-configurations, JQSRT 99, 131 (2006)

  11. What We Have Learned with 16 Years of EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    Ungar, S.

    2016-12-01

    The Earth Observing-One (EO-1) satellite, launched in November of 2000, will complete its sixteenth and final year of operation at the end of calendar year 2016. Observations from the Hyperion Imaging Spectrometer on board EO-1 have contributed to hundreds of papers in refereed journals, conference proceeds and other presentations. The EO-1 Hyperion imaging spectrometer is the first and longest operating instrument that provides visible to shortwave infrared science-grade data from orbit. Hyperion has been used to study a variety of natural and anthropogenic phenomena including hazards and catastrophes, agricultural health and productivity, ecological disturbance/development, and land use/land cover change. As an example, Hyperion has been used in hazard and catastrophe studies to monitor and assess effects of tsunamis, earthquakes, volcanic eruptions, mudslides, tornadoes, hurricanes, wild-fires (natural and human ignited), oil spills, and the aftermath of world trade center bombing. This presentation summarizes the current status of EO-1 Hyperion in terms of key scientific findings to date and presents future plans for exploiting the upward of 90,000 scenes expected to be archived at USGS EROS by the end of the mission. Hyperion serves as the heritage orbital spectrometer for future global platforms, including the proposed NASA Hyperspectral Infrared Imager (HyspIRI) and the forthcoming German satellite, EnMAP. A key EO-1 mission goal was to evaluate the ability of satellite high spectral resolution imaging to characterize terrestrial surface state and processes at 30 m resolution. Researchers engaged in NASA's Terrestrial Ecology, Carbon Science, Land Use Change and other programs using the EO-1 Hyperion imaging spectrometer have achieved results with accuracies far exceeding those reached with the current spaceborne fleet of multispectral sensors. Hyperion data provide several advantages over data from multispectral satellite systems: they inherently provide

  12. Spectral Evidence for Silica in Eos Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.

    2006-12-01

    Thermal Emission Imaging System (THEMIS) data in Eos Chasma have revealed spatially small areas, typically mounds or knobs, with materials having significant (>~35%) fractions of silica in one or more as-of-yet unidentified phases [1]. Silica, SiO2, occurs geologically in both crystalline (e.g., quartz) and amorphous (e.g., opal, glass) forms. The identification of associated minerals and the specific silica phase(s) observed in the thermal infrared data is critical to constraining the abundance estimate further. New results from THEMIS multispectral data show that if the silica is present as quartz or one of its polymorphs (e.g., tridymite, cristobalite, coesite), it is probably equal to or less than ~35% of the modal mineralogy. If the silica is present in an amorphous form with different spectral character, such as opal, this number could increase by several tens of percent. Cherts, which are quartz in rock form, exhibit a variety of microscopic textures (e.g., microcrystalline, fibrous, and "megaquartz") [2] and contain contaminating phases that produce variations in their spectra; we have identified several chert samples that also are candidate components and could be present at abundances of several tens of percent or greater. Primary and secondary silica phases are formed by a wide array of geologic processes, many of which include interactions with ambient or hydrothermal fluids and some of which are well-known preservers of biomarkers on Earth. Thus, silica enrichments on the Martian surface are likely to be important recorders of aqueous processes, and possibly biomarkers as well. As such, an area in Eos Chasma adjacent to silica-bearing deposits has been proposed as a landing site for NASA's 2009 Mars Science Laboratory rover [3]. The majority of silica-bearing deposits are a few hundred m2 in size, and there is a paucity of high- resolution visible images with which they can be investigated. A 3-m/pixel Mars Orbiter Camera (MOC) image of a relatively

  13. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  14. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  15. Sizing the science data processing requirements for EOS

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.; Chang, Hyo D.; Krupp, Brian; Lu, Yun-Chi

    1991-01-01

    The methodology used in the compilation and synthesis of baseline science requirements associated with the 30 + EOS (Earth Observing System) instruments and over 2,400 EOS data products (both output and required input) proposed by EOS investigators is discussed. A brief background on EOS and the EOS Data and Information System (EOSDIS) is presented, and the approach is outlined in terms of a multilayer model. The methodology used to compile, synthesize, and tabulate requirements within the model is described. The principal benefit of this approach is the reduction of effort needed to update the analysis and maintain the accuracy of the science data processing requirements in response to changes in EOS platforms, instruments, data products, processing center allocations, or other model input parameters. The spreadsheets used in the model provide a compact representation, thereby facilitating review and presentation of the information content.

  16. SAR Interferometry with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Eineder, M.; Runge, H.; Boerner, E.; Bamler, R.; Adam, N.; Schättler, B.; Breit, H.; Suchandt, S.

    2004-06-01

    The TerraSAR-X project is a public private partnership between Astrium GmbH and the German Aerospace Center DLR. Astrium will launch the satellite in late 2005 and holds the rights of commercial data exploitation. DLR is currently developing the ground segment and is responsible for the scientific exploitation of the data. Even if the mission goal is not primarily SAR interferometry, TerraSAR-X offers a number of new perspectives to SAR interferometry when compared to ERS and also ENVISAT: a) High resolution of 3 meters and better in stripmap and spotlight mode. b) The option for a burst synchronized ScanSAR mode. c) The high range bandwidth will allow large baselines and the option for highly precise DEM generation. d) X- Band will show new scattering properties. e) High observation frequency due to the short repeat cycle and variable incidence angles. f) An along track interferometric mode. The available products relevant for interferometry are presented and other relevant topics like orbit control and delta-k interferometry are discussed.

  17. Long-term drift induced by the electronic crosstalk in Terra MODIS Band 29

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Xiong, Xiaoxiong; Wang, Menghua

    2015-10-01

    Terra MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors in the NASA's Earth Observing System, which has successfully completed 15 years of on-orbit operation. Terra MODIS continues to collect valuable information of the Earth's energy radiation from visible to thermal infrared wavelengths. The instrument has been well characterized over its lifetime using onboard calibrators whose calibration references are traceable to the National Institute of Standards and Technology standards. In this paper, we focus on the electronic crosstalk effect of Terra MODIS band 29, a thermal emissive band (TEB) whose center wavelength is 8.55 µm. Previous works have established the mechanism to describe the effect of the electronic crosstalk in the TEB channels of Terra MODIS. This work utilizes the established methodology to apply to band 29. The electronic crosstalk is identified and characterized using the regularly scheduled lunar observations. The moon being a near-pulse-like source allowed easy detection of extraneous signals around the actual Moon surface. First, the crosstalk-transmitting bands are identified along with their amplitudes. The crosstalk effect then is characterized using a moving average mechanism that allows a high fidelity of the magnitude to be corrected. The lunar-based analysis unambiguously shows that the crosstalk contamination is becoming more severe in recent years and should be corrected in order to maintain calibration quality for the affected spectral bands. Finally, two radiometrically well-characterized sites, Pacific Ocean and Libya 1 desert, are used to assess the impact of crosstalk effect. It is shown that the crosstalk contamination induces a long-term upward drift of 1.5 K in band 29 brightness temperature of MODIS Collection 6 L1B, which could significantly impact the science products. The crosstalk effect also induces strong detector-to-detector differences, which result in severe stripping in the Earth view

  18. Design and performance of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Lencioni, Donald E.; Digenis, Constantine J.; Bicknell, William E.; Hearn, David R.; Mendenhall, Jeffrey A.

    1999-12-01

    An Advanced Land Imager (ALI) will be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The ALI contains a number of key NMP technologies. These include a 15 degree wide field-of-view, push-broom instrument architecture with a 12.5 cm aperture diameter, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The focal plane contains multispectral and panchromatic (MS/Pan) detector arrays with a total of 10 spectral bands spanning the 0.4 to 2.5 micrometer wavelength region. Seven of these correspond to the heritage Landsat bands. The instantaneous fields of view of the detectors are 14.2 (mu) rad for the Pan band and 42.6 (mu) rad for the MS bands. The partially populated focal plane provides a 3 degree cross-track coverage corresponding to 37 km on the ground. The focal plane temperature is maintained at 220 K by means of a passive radiator. The instrument environmental and performance testing has been completed. Preliminary data analysis indicates excellent performance. This paper presents an overview of the instrument design, the calibration strategy, and results of the pre-flight performance measurements. It also discusses the potential impact of ALI technologies to future Landsat-like instruments.

  19. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  20. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  1. Realtime Decision Making on EO-1 Using Onboard Science Analysis

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu

    2004-01-01

    Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.

  2. Results of Statewide TerraNova Testing, Fall 1998.

    ERIC Educational Resources Information Center

    La Marca, Paul M.

    This summary provides key findings about state, district, and school level performance on the TerraNova examinations (CTB/McGraw Hill) in Nevada in 1998-1999. The TerraNova tests are used to assess students in grades 4, 8, and 10 as stipulated by Nevada law. Within this summary, a description of performance as measured by national percentile…

  3. NASA Communications Augmentation network

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  4. DEMO: The autonomous sciencecraft experiment onboard the EO-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Tran, Daniel; Chien, Steve; Sherwood, Rob; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), currently flying onboard the Earth Observing-1 (EO-1) spacecraft, integrates several autonomy software technologies enabling autonomous science analysis and mission planning.

  5. NASA Earth Observing-1 Keeps Watchful Eye on South American Volcano Copahue

    NASA Image and Video Library

    2013-06-07

    NASA Earth Observing-1 EO-1 spacecraft observed Copahue volcano, a 2965 meter high volcano on the Chile-Argentina border, on Jun. 4, 2013. Having recently displayed signs of unrest, the volcano is under close scrutiny by local volcanologists.

  6. Nighttime Look at Ambrym Volcano, Vanuatu by NASA Spacecraft

    NASA Image and Video Library

    2014-02-12

    Ambrym volcano in Vanuatu is one of the most active volcanoes in the world. A large summit caldera contains two active vent complexes, Marum and Benbow is seen in this February 12, 2014 nighttime thermal infrared image from NASA Terra spacecraft.

  7. NASA Satellite Images Annual Spring Thaw, Red River, North Dakota

    NASA Image and Video Library

    2011-04-21

    NASA Terra spacecraft shows the annual spring thaw in the upper Midwest is underway. Snow-covered ground contrasts with the dark tones of water under broken cloud cover. Along the Red River in North Dakota, floodwaters are moving northward into Canada.

  8. Activity at Europe Most Active Volcano Eyed by NASA Spacecraft

    NASA Image and Video Library

    2016-05-27

    Mt. Etna, Sicily, Italy, is Europe most active volcano. In mid-May 2016, Mt. Etna put on a display of lava fountaining, ash clouds and lava flows. Three of the four summit craters were active. NASA Terra spacecraft acquired this image on May 26, 2016.

  9. NASA ASTER Images More Effects of Japan Tsunami

    NASA Image and Video Library

    2011-03-15

    This before-and-after image pair acquired by NASA Terra spacecraft of the Japan coastal cities of Ofunato and Kesennuma reveals changes to the landscape that are likely due to the effects of the tsunami on March 11, 2011. The new image is on the left.

  10. NASA MISR Images Tsunami Inundation Along Japan Eastern Coast

    NASA Image and Video Library

    2011-03-12

    The extent of inundation from the destructive and deadly tsunami triggered by the March 11, 2011, magnitude 8.9 earthquake centered off Japan northeastern coast east of the city of Sendai is revealed in this image pair from NASA Terra spacecraft.

  11. Deadly Everest Avalanche Site Spotted by NASA Spacecraft

    NASA Image and Video Library

    2014-04-28

    On Friday, April 26, 2014, an avalanche on Mount Everest killed at least 13 Sherpa guides. NASA Terra spacecraft looked toward the northeast, with Mount Everest center, and Lhotse, the fourth-highest mountain on Earth, on the skyline to right center.

  12. NASA Spacecraft Shows Before/After of Typhoon Haiyan Devastation

    NASA Image and Video Library

    2013-11-20

    On Nov. 8, 2013, NASA Terra spacecraft acquired this image of Super Typhoon Haiyan as it tore across the central Philippines, leaving a trail of destruction in its path. Among the worst-hit areas is eastern Leyte island and the city of Tacloban.

  13. NASA MISR Sees Cloud Heights at Top of Hurricane Irene

    NASA Image and Video Library

    2011-08-27

    NASA Terra spacecraft passed over Hurricane Irene while it was just north of the Bahamas on Aug. 25, 2011. At the time, Irene was a category three hurricane making landfall in North Carolina on the morning of Aug. 27 as a category one hurricane.

  14. NASA Spacecraft Images Hudson River Flooding from Hurricane Irene

    NASA Image and Video Library

    2011-09-09

    Brown and tan muddy water flows down the Hudson River are seen in this image acquired by NASA Terra spacecraft on Sept. 1, 2011. After the torrential rains from Hurricane Irene, many rivers in the eastern United States were filled with sediment.

  15. NASA Spacecraft Image Shows Isaac Inflow and Outflow

    NASA Image and Video Library

    2012-08-29

    NASA Terra spacecraft recorded low-level wind speeds of up to 75 miles per hour 65 knots from cloud motion observed outside Tropical Storm Isaac eye. The spacecraft flew over Isaac a few hours before Isaac was upgraded to a Category 1 hurricane.

  16. NASA MISR Images Gulf of Mexico Oil Slick

    NASA Image and Video Library

    2010-05-06

    This image from NASA Terra satellite was acquired on May 1, 2010. The red symbol indicates the approximate position of the Deepwater Horizon platform and the source of the oil slick which resulted in a significant oil spill in the Gulf of Mexico.

  17. Global Imagery Browse Services (GIBS) - Rapidly Serving NASA Imagery for Applications and Science Users

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.

    2012-12-01

    Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a

  18. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    NASA Technical Reports Server (NTRS)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  19. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, Senior Advisor to the NASA Administrator, introduces Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, the agency's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)