Sample records for nasa world wind

  1. NASA World Wind: A New Mission

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Gaskins, T.; Bailey, J. E.

    2008-12-01

    Virtual Globes are well into their first generation, providing increasingly rich and beautiful visualization of more types and quantities of information. However, they are still mostly single and proprietary programs, akin to a web browser whose content and functionality are controlled and constrained largely by the browser's manufacturer. Today Google and Microsoft determine what we can and cannot see and do in these programs. NASA World Wind started out in nearly the same mode, a single program with limited functionality and information content. But as the possibilities of virtual globes became more apparent, we found that while enabling a new class of information visualization, we were also getting in the way. Many users want to provide World Wind functionality and information in their programs, not ours. They want it in their web pages. They want to include their own features. They told us that only with this kind of flexibility, could their objectives and the potential of the technology be truly realized. World Wind therefore changed its mission: from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating one program, we create components to be used in any number of programs. World Wind is NASA open source software. With the source code being fully visible, anyone can readily use it and freely extend it to serve any use. Imagery and other information provided by the World Wind servers is also free and unencumbered, including the server technology to deliver geospatial data. World Wind developers can therefore provide exclusive and custom solutions based on user needs.

  2. NASA World Wind Near Real Time Data for Earth

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2013-12-01

    Innovation requires open standards for data exchange, not to mention ^access to data^ so that value-added, the information intelligence, can be continually created and advanced by the larger community. Likewise, innovation by academia and entrepreneurial enterprise alike, are greatly benefited by an open platform that provides the basic technology for access and visualization of that data. NASA World Wind Java, and now NASA World Wind iOS for the iPhone and iPad, provides that technology. Whether the interest is weather science or climate science, emergency response or supply chain, seeing spatial data in its native context of Earth accelerates understanding and improves decision-making. NASA World Wind open source technology provides the basic elements for 4D visualization, using Open Geospatial Consortium (OGC) protocols, while allowing for customized access to any data, big or small, including support for NetCDF. NASA World Wind includes access to a suite of US Government WMS servers with near real time data. The larger community can readily capitalize on this technology, building their own value-added applications, either open or proprietary. Night lights heat map Glacier National Park

  3. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java*

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Coughlan, J.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  4. NASA World Wind: Infrastructure for Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2011-01-01

    The world has great need for analysis of Earth observation data, be it climate change, carbon monitoring, disaster response, national defense or simply local resource management. To best provide for spatial and time-dependent information analysis, the world benefits from an open standards and open source infrastructure for spatial data. In the spirit of NASA's motto "for the benefit of all" NASA invites the world community to collaboratively advance this core technology. The World Wind infrastructure for spatial data both unites and challenges the world for innovative solutions analyzing spatial data while also allowing absolute command and control over any respective information exchange medium.

  5. NASA World Wind, Open Source 4D Geospatial Visualization Platform: *.NET & Java* for EDUCATION

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kuehnel, F.

    2006-12-01

    NASA World Wind has only one goal, to provide the maximum opportunity for geospatial information to be experienced, be it education, science, research, business, or government. The benefits to understanding for information delivered in the context of its 4D virtual reality are extraordinary. The NASA World Wind visualization platform is open source and therefore lends itself well to being extended to service *any* requirements, be they proprietary and commercial or simply available. Data accessibility is highly optimized using standard formats including internationally certified open standards (W*S). Although proprietary applications can be built based on World Wind, and proprietary data delivered that leverage World Wind, there is nothing proprietary about the visualization platform itself or the multiple planetary data sets readily available, including global animations of live weather. NASA World Wind is being used by NASA research teams as well as being a formal part of high school and university curriculum. The National Guard uses World Wind for emergency response activities and State governments have incorporated high resolution imagery for GIS management as well as for their cross-agency emergency response activities. The U.S. federal government uses NASA World Wind for a myriad of GIS and security-related issues (NSA, NGA, DOE, FAA, etc.).

  6. World Wind: NASA's Virtual Globe

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2007-12-01

    infrastructure. The open-source community plays a crucial role in advancing virtual globe technology. This world community identifies, tracks and resolves technical problems, suggests new features and source code modifications, and often provides high-resolution data sets and other types of user-generated content, all while extending the functionality of virtual globe technology. NASA World Wind is one example of open source virtual globe technology that provides the world with the ability to build any desired functionality and make any desired data accessible.

  7. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  8. World Wind Tools Reveal Environmental Change

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.

  9. Testing a Parachute for Mars in World Largest Wind Tunnel

    NASA Image and Video Library

    2007-12-20

    The team developing the landing system for NASA Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

  10. NASA's Newest SeaWinds Instrument Breezes Into Operation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.

    From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.

    Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.

    'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.'

    'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other

  11. Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.

    2016-06-01

    GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  12. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  13. Mars Parachute Testing in World Largest Wind Tunnel

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA next mission to Mars passed flight-qualification testing in March and April 2009 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. NASA's Mars Science Laboratory mission, to be launched in 2011 and land on Mars in 2012, will use the largest parachute ever built to fly on an extraterrestrial mission. This image shows a duplicate qualification-test parachute inflated in an 80-mile-per-hour (36-meter-per-second) wind inside the test facility. The parachute uses a configuration called disk-gap-band. It has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 16 meters (51 feet). Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. It is designed to survive deployment at Mach 2.2 in the Martian atmosphere, where it will generate up to 65,000 pounds of drag force. The wind tunnel is 24 meters (80 feet) tall and 37 meters (120 feet) wide, big enough to house a Boeing 737. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. http://photojournal.jpl.nasa.gov/catalog/PIA11995

  14. NASA TileWorld manual (system version 2.2)

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Bresina, John L.

    1991-01-01

    The commands are documented of the NASA TileWorld simulator, as well as providing information about how to run it and extend it. The simulator, implemented in Common Lisp with Common Windows, encodes a particular range in a spectrum of domains, for controllable research experiments. TileWorld consists of a two dimensional grid of cells, a set of polygonal tiles, and a single agent which can grasp and move tiles. In addition to agent executable actions, there is an external event over which the agent has not control; this event correspond to a 'gust of wind'.

  15. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  16. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  17. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  18. Bibliography of NASA-related publications on wind turbine technology 1973-1995

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    A major program of research and development projects on wind turbines for generating electricity was conducted at the NASA Lewis Research Center from 1973 to 1988. Most of these projects were sponsored by the U.S. Department of Energy (DOE), as a major element of its Federal Wind Energy Program. One other large-scale wind turbine project was sponsored by the Bureau of Reclamation of the Department of Interior (DOI). The peak years for wind energy work at Lewis were 1979-80, when almost 100 engineers, technicians, and administrative personnel were involved. From 1988 their conclusion in 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. Wind energy activities at NASA can be divided into two broad categories which are closely related and often overlapping: (1) Designing, building, and testing a series of 12 large-scale, experimental, horizontal-axis wind turbines (HAWT's); and (2) conducting supporting research and technology (SR&T) projects. The purpose of this bibliography is to assist those active in the field of wind energy in locating the technical information they need on wind power planning, wind loads, turbine design and analysis, fabrication and installation, laboratory and field testing, and operations and maintenance. This bibliography contains approximately 620 citations of publications by over 520 authors and co-authors. Sources are: (1) NASA reports authored by government grantee, and contractor personnel, (2) papers presented by attendees at NASA-sponsored workshops and conferences, (3) papers presented by NASA personnel at outside workshops and conferences, and (4) outside publications related to research performed at NASA/ DOE wind turbine sites.

  19. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  20. Altitude Wind Tunnel at NASA Glenn Research Center: An Interactive History

    NASA Technical Reports Server (NTRS)

    2008-01-01

    When constructed in the Early 1940s, the Altitude Wind Tunnel (AWT) at NASA Glenn Research Center was the nation's only wind tunnel capable of studying full scale engines under realistic flight conditions. It played a significant role in the development of the first U.S. jet engines as well as technologies such as the afterburner and variable-area nozzle. In the late 1950s, the tunnels interior components were removed so that hardware for Project Mercury could be tested in altitude conditions. In 1961, a portion of the tunnel was converted into one of the country's first large vacuum tanks and renamed the Space Power Chamber (SPC). SPC was used extensively throughout the 1960s for the Centaur rocket program. This multimedia piece allows one to interactively learn about the Altitude Wind Tunnel facility. and the research performed there. The piece contains: (1) A chronological history of the AWT from its construction during World War II and the testing of early jet engines, through the Mercury and Centaur programs of the 1960s and up to the final use of the building for the Microwave Systems laboratory. (2) Photographic surveys of the facility in it wind tunnel, vacuum tank and final configurations. (3) Browsable gallery of over 200 captioned photographs and video clips.(4) A nine minute documentary of the AWT produced by NASA in 1961 (5) Links to over 70 reports and publications related to AWT research and the history of the NACA.

  1. A design rationale for NASA TileWorld

    NASA Technical Reports Server (NTRS)

    Philips, Andrew B.; Swanson, Keith J.; Drummond, Mark E.; Bresina, John L.

    1991-01-01

    Automated systems that can operate in unrestricted real-world domains are still well beyond current computational capabilities. This paper argues that isolating essential problem characteristics found in real-world domains allows for a careful study of how particular control systems operate. By isolating essential problem characteristics and studying their impact on autonomous system performance, we should be able to more quickly deliver systems for practical real-world problems. For our research on planning, scheduling, and control, we have selected three particular domain attributes to study: exogenous events, uncertain action outcome, and metric time. We are not suggesting that studies of these attributes in isolation are sufficient to guarantee the obvious goals of good methodology, brilliant architectures, or first-class results; however, we are suggesting that such isolation facilitates the achievement of these goals. To study these attributes, we have developed the NASA TileWorld. We describe the NASA TileWorld simulator in general terms, present an example NASA TileWorld problem, and discuss some of our motivations and concerns for NASA TileWorld.

  2. DOE/NASA wind turbine data acquisition. Part 1: Equipment

    NASA Technical Reports Server (NTRS)

    Strock, O. J.

    1980-01-01

    Large quantities of data were collected, stored, and analyzed in connection with research and development programs on wind turbines. The hardware configuration of the wind energy remote data acquisition system is described along with its use on the NASA/DOE Wind Energy Program.

  3. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  4. Hurricane Harvey's Rapid Wind Intensification seen by NASA's SMAP

    NASA Image and Video Library

    2017-08-28

    The rapid intensification of Hurricane Harvey is seen in this pair of images of ocean surface wind speeds as observed by the radiometer instrument aboard NASA's Soil Moisture Active Passive (SMAP) satellite at 7:29 a.m. CDT Aug. 24th, 2017 (left) and at 7 p.m. CDT Aug. 26th (right). Color indicates wind speed, with red being highest and blue lowest. The images show Harvey's maximum wind speeds increased from approximately 56 miles per hour (25 meters per second) to about 107 miles per hour (47.8 meters per second) in the 36 hours just before landfall. The higher wind speeds estimated near the mouth of the Mississippi River are erroneous and are due to errors in the ancillary sea-surface-salinity data product used by SMAP to estimate extreme wind speeds. https://photojournal.jpl.nasa.gov/catalog/PIA21884

  5. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  6. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  7. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  8. Hurricane Maria's Strengthening Winds Seen in NASA SMAP Image

    NASA Image and Video Library

    2017-09-19

    The radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) spacecraft captured this image of Hurricane Maria at 6:27 a.m. EDT on Sept. 19, 2017 (10:27 UTC), showing an estimated maximum surface wind speed of 126.6 miles per hour (56.6 meters per second). While Maria was already a Category 5 hurricane at the time of this observation, it is an extremely tightly organized hurricane and SMAP cannot fully resolve its highest winds due to the 25-mile (40-kilometer) resolution of SMAP. https://photojournal.jpl.nasa.gov/catalog/PIA21960

  9. Testing a Parachute for Mars in World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, two engineers are dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  10. ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Richards, T. R.

    1977-01-01

    The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

  11. NASA Celebrates the World Year of Physics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2005-01-01

    Celebrating the World Year of Physics presents NASA with an opportunity to inform educators of the importance of physics in our everyday lives. indeed, almost all NASA programs fake advantage of physical concepts in some fashion. Special programs throughout the year, affiliated with the World Year of Physics, are identifed to inform and inspire educators, students, and the general public. We will discuss these programs in detail and outline how educators may become more involved.

  12. NASA Newest SeaWinds Instrument Breezes Into Operation

    NASA Image and Video Library

    2003-02-24

    One of NASA newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan Advanced Earth Observing Satellite Adeos 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet.

  13. NASA NASA CONNECT: Special World Space Congress. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. This video presents the World Space Congress 2002, the meeting of the decade for space professionals. Topics discussed range from the discovery of distant planets to medical advancements,…

  14. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  15. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  16. Wind Tunnel Testing Underway for Next, More Powerful Version of NASA SLS Rocket

    NASA Image and Video Library

    2017-01-24

    Engineers at NASA's Langley Research Center and Ames Research Center are running tests in supersonic wind tunnels to develop the next, more powerful version of the world's most advanced launch vehicle, the Space Launch System -- capable of carrying humans to deep space destinations. The new wind tunnel tests are for the second generation of SLS. It will deliver a 105-metric-ton (115-ton) lift capacity and will be 364 feet tall in the crew configuration -- taller than the Saturn V that launched astronauts on missions to the moon. The rocket's core stage will be the same, but the newer rocket will feature a powerful exploration upper stage. On SLS’s second flight with Orion, the rocket will carry up to four astronauts on a mission around the moon, in the deep-space proving ground for the technologies and capabilities needed on NASA’s Journey to Mars.

  17. NASA Glenn Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Roeder, James W.; Stark, David E.; Linne, Alan A.

    2004-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models that are to be tested in the wind tunnel facilities at the NASA Glenn Research Center. This report presents two methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it defines project procedures to test models in the NASA Glenn aeropropulsion facilities. Both customer-furnished and in-house model systems are discussed. The functions of the facility personnel and customers are defined. The format for the pretest meetings, safety permit process, and model reviews are outlined. The format for the model systems report (a requirement for each model that is to be tested at NASA Glenn) is described, the engineers responsible for developing the model systems report are listed, and the timetable for its delivery to the project engineer is given.

  18. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Jospeh A.; Carter, Melissa B.; Deere, Karen A.; Stremel, Paul M.; Tompkins, Daniel M.

    2016-01-01

    Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  19. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Joseph A.; Carter, Melissa B.; Deere, Karen A.; Tompkins, Daniel M.; Stremel, Paul M.

    2016-01-01

    Wind tunnel tests of a 5.75 scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14x22 and NASA Ames Research Center (ARC) 40x80 low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  20. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  1. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  2. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  3. The Astrobiology Field Guide in World Wind

    NASA Astrophysics Data System (ADS)

    Scalice, D. M.

    2004-12-01

    In collaboration with the Australian Centre for Astrobiology (ACA), and NASA Learning Technologies (NLT), and utilizing the powerful visualization capabilities of their "World Wind" software, the NASA Astrobiology Institute (NAI) is crafting a prototype "Astrobiology Field Guide" to bring the field experiences and stories of astrobiology science to the public and classrooms around the world. The prototype focuses on one region in particular - The Pilbara in Western Australia. This first Field Guide "hotspot" is an internationally recognized area hosting the best known example of the earliest evidence of life on Earth - a stromatolitic chert precipitation in the 3.45 Ga Warrawoona Group. The goal of the Astrobiology Field Guide is to engage students of all ages with the ongoing field expeditions of today's astrobiologists as they explore the ends of the Earth searching for clues to life's origin, evolution, and distribution in the Universe. The NAI hopes to expand this Field Guide to include many more astrobiologically relevant areas across the globe such as Cuatro Cienegas in Mexico, the Rio Tinto in Spain, Yellowstone National Park in the US, and the Lost City hydrothermal vent field on the mid-Atlantic ridge - and possibly sites on Mars. To that end, we will be conducting feasibility studies and evaluations with informal and formal education contacts. The Astrobiology Field Guide is also serving as a cornerstone to educational materials being developed focused on the Pilbara region for use in classrooms in Australia, the UK, and potentially the US. These materials are being developed by the Australian Centre for Astrobiology, and the ICT Innovations Centre at Macquarie University in Sydney, in collaboration with the NAI and the Centre for Astronomy and Science Education at the University of Glamorgan in the UK.

  4. Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Imprexia, Cliff (Technical Monitor)

    2000-01-01

    The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.

  5. Lidar and Mission Parameter Trade Study of Space-Based Coherent Wind Measurement Centered on NASA's 2006 GWOS Wind Mission Study Parameters

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.

  6. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  7. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    This report describes that portion of the national five-year wind energy program that is being managed by the NASA-Lewis Research Center for the ERDA. The Lewis Research Center's Wind Power Office, its organization and plans and status are briefly described. The three major elements of the wind energy project at Lewis are the experimental 100 kW wind-turbine generator; the first generation industry-built and user-operated wind turbine generators; and the supporting research and technology tasks which are each briefly described.

  8. The NASA-LeRC wind turbine sound prediction code

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1981-01-01

    Since regular operation of the DOE/NASA MOD-1 wind turbine began in October 1979 about 10 nearby households have complained of noise from the machine. Development of the NASA-LeRC with turbine sound prediction code began in May 1980 as part of an effort to understand and reduce the noise generated by MOD-1. Tone sound levels predicted with this code are in generally good agreement with measured data taken in the vicinity MOD-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may be amplifying the actual sound levels by about 6 dB. Parametric analysis using the code has shown that the predominant contributions to MOD-1 rotor noise are: (1) the velocity deficit in the wake of the support tower; (2) the high rotor speed; and (3) off column operation.

  9. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  10. NASA Celebrates the World Year of Physics

    NASA Technical Reports Server (NTRS)

    Szofran, Frank; Schneider, Twila

    2004-01-01

    One of the goals of NASA's Exploration Systems Education and Outreach team is to provide educators and students authentic, relevant opportunities and activities. In celebration of the World Year of Physics 2005, there will be several NASA-sponsored events and classroom activities geared to the teaching and learning of physics. Proposed events and activities include a contest for high school classes to design a reduced gravity experiment or demonstration for flight on an aircraft executing a parabolic flight path, amusement park activities with a NASA twist, and a symposium bringing together prominent leaders in the diverse areas of physics research.

  11. Fabrication and assembly of the ERDA/NASA 100 kilowatt experimental wind turbine

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1976-01-01

    As part of the Energy Research and Development Administration (ERDA) wind-energy program, NASA Lewis Research Center has designed and built an experimental 100-kW wind turbine. The two-bladed turbines drives a synchronous alternator that generates its maximum output of 100 kW of electrical power in a 29-km/hr (18-mph) wind. The design and assembly of the wind turbine were performed at Lewis from components that were procured from industry. The machine was installed atop the tower on September 3, 1975.

  12. Parachute Testing for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    This parachute testing for NASA's InSight mission to Mars was conducted inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California, in February 2015. The wind tunnel is 80 feet (24 meters) tall and 120 feet (37 meters) wide. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19405

  13. Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.

    1996-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  14. NASA RapidScat Observes El Nino Blowing in the Winds

    NASA Image and Video Library

    2016-01-21

    While El Niño events have a significant impact on the entire Earth System, they are most easily visible in measurements of sea surface temperature (SST), sea surface height (SSH) and ocean winds near the surface. In fact, the precursor and the main driver of El Niño events is manifested in the weakening of the normally westward blowing trade winds, or even their complete reversal to blow from west to east, in the Western and Central tropical Pacific. http://photojournal.jpl.nasa.gov/catalog/PIA20365

  15. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurtis R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project explored enabling technologies to reduce impact of aviation on the environment. One project research challenge area was the study of advanced airframe and engine integration concepts to reduce community noise and fuel burn. To address this challenge, complex wind tunnel experiments at both the NASA Langley Research Center's (LaRC) 14'x22' and the Ames Research Center's 40'x80' low-speed wind tunnel facilities were conducted on a BOEING Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion-airframe interference effects, including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on vehicle aerodynamics. This paper presents a high-level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as the development of some CFD simulation guidelines based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  16. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  17. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  18. Cold Weather Wind Turbines: A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Bubenheim, David; Chiang, Erick; Goldman, Peter; Kohout, Lisa; Norton, Gary; Kliss, Mark (Technical Monitor)

    1997-01-01

    Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The National Science Foundation (NSF), NASA, and the Department of Energy (DOE) have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIRs independently managed by each agency but coordinated by NASA. The NSF grant addressed issues associated with the South Pole application and a 3 kW direct drive unit is being tested there in anticipation of the 100 kW unit operation. The DOE-NREL contract focused on development of the 100 kW direct drive generator. The NASA SBIR focused on the development of the 100 kW direct drive wind turbine. The success of this effort has required coordination and team involvement of federal agencies and the industrial partners. Designs of the wind turbine and component performance testing results will be presented. Plans for field testing of wind turbines, based on this design, in village energy systems in Alaska and in energy production at the South Pole Station will be discussed. Also included will be a discussion of terrestrial and space use of hybrid energy systems, including renewable energy sources, such as the wind turbine, to support remote communities.

  19. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  20. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  1. Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.

    2004-01-01

    State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.

  2. Fifteen Years of Operation at NASA's National Transonic Facility with the World's Largest Adjustable Speed Drive

    NASA Technical Reports Server (NTRS)

    Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.

    2012-01-01

    In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.

  3. DARPA/ARFL/NASA Smart Wing second wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    1999-07-01

    To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  4. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  5. Summary of NASA/DOE Aileron-Control Development Program for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1986-01-01

    The development of aileron-control for wind turbines is discussed. Selected wind tunnel test results and full-scale rotor test results are presented for various types of ailerons. Finally, the current status of aileron-control development is discussed. Aileron-control was considered as a method of rotor control for use on wind turbines based on its potential to reduce rotor weight and cost. Following an initial feasibility study, a 20 percent chord aileron-control rotor was fabricated and tested on the NASA/DOE Mod-0 experimental wind turbine. Results from these tests indicated that the 20 percent chord ailerons regulated power and provided overspeed protection, but only over a very limited windspeed range. The next aileron-control rotor to be tested on the Mod-0 had 38 percent chord ailerons and test results showed these ailerons provided overspeed protection and power regulation over the Mod-0's entire operational windspeed range.

  6. Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, I.; Doggett, R. V.; Newsom, J. R.; Sandford, M.

    1984-01-01

    Dynamic wind-tunnel testing of active controls by the NASA Langley Research Center is presented. Seven experimental studies that were accomplished to date are described. Six of the studies focus on active flutter suppression. The other focuses on active load alleviation. In addition to presenting basic results for these experimental studies, topics including model design and construction, control law synthesis, active control system implementation, and wind-tunnel test techniques are discussed.

  7. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  8. Research at NASA's NFAC wind tunnels

    NASA Technical Reports Server (NTRS)

    Edenborough, H. Kipling

    1990-01-01

    The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.

  9. NASA Engineer Jerry Elliott: Drawing from Two Worlds.

    ERIC Educational Resources Information Center

    Larson, Arwen

    1994-01-01

    Profiles Jerry Elliott, an American Indian who has taken advantage of both Native American and white cultures to become a successful engineer at NASA. He believes that Native Americans can meet the challenges of a modern world by studying science and engineering without losing their cultural identity and values. (LP)

  10. Utility operational experience on the NASA/DOE Mod-OA 200 kW Wind Turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Robbins, W. H.

    1979-01-01

    The Mod-OA 200 kW Wind Turbine was designed and fabricated by the Lewis Research Center of the NASA under the direction of the U.S. Department of Energy. The project is a part of the Federal Wind Energy Program and is designed to obtain early wind turbine operation and performance data while gaining initial experience in the operation of large, horizontal axis wind turbines in typical utility environments. On March 6, 1978, the Mod-OA wind turbine was turned over to the Town of Clayton Light and Water Plant, Clayton, NM, for utility operation and on December 31, 1978 the machine had completed ten months of utility operation. This paper describes the machine and documents the recent operational experience at Clayton, NM.

  11. An evaluation and assessment of flow quality in selected NASA wind tunnels

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1983-01-01

    Tests have been conducted in a number of NASA wind tunnels to measure disturbance levels and spectra in their respective settling chambers, test sections, and diffusers to determine the sources of their disturbances. The present data supplements previous results in other NASA tunnels and adds to the ongoing acquisition of a disturbance level data base. The present results also serve to explain flow related sources which cause relatively large disturbance amplitudes at discrete frequencies. The installation of honeycomb, screens, and acoustic baffles in or upstream of the settling chamber can significantly reduce the disturbance levels.

  12. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  13. Low-Pressure Capability of NASA Glenn's 10- by 10-Foot Supersonic Wind Tunnel Expanded

    NASA Technical Reports Server (NTRS)

    Roeder, James W.

    2004-01-01

    Extremely low dynamic pressure Q conditions are desired for space-related research including the testing of parachute designs and other decelerator concepts for future vehicles landing on Mars. Therefore, the low-pressure operating capability of the Abe Silverstein 10- by 10-foot Supersonic Wind Tunnel (10 10 SWT) at NASA Glenn Research Center was recently increased. Successful checkout tests performed in the fall of 2002 showed significantly reduced minimum operating pressures in the wind tunnel.

  14. Accessing NASA Technology with the World Wide Web

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Bianco, David J.

    1995-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer and technology awareness applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology OPportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. The NASA Technical Report Server (NTRS) provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people.

  15. 75 FR 76453 - Top of the World Wind Energy, LLC; Kit Carson Windpower, LLC; Chestnut Flats Wind, LLC; Minco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG10-65-000; EG10-66-000; EG10-67-000; EG10-68-000; EG10- 69-000; EG10-70-000; EG10-71-000] Top of the World Wind Energy, LLC; Kit Carson Windpower, LLC; Chestnut Flats Wind, LLC; Minco Wind, LLC; Arizona Solar One LLC; Criterion...

  16. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  17. DAWN Coherent Wind Profiling Lidar Flights on NASA's DC-8 During GRIP

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Beyon, Jeffrey Y.; Creary, Garfield A.; Koch, Grady J.; Petros, Mulugeta; Petzar, Paul J.; Singh, Upendra N.; Trieu, Bo C.; Yu, Jirong

    2011-01-01

    Almost from their invention, lasers have been used to measure the velocity of wind and objects; over distances of cm to 10s of km. Long distance (remote) sensing of wind has been accomplished with continuous-wave (CW), focused pulsed, and collimated pulsed lasers; with direct and coherent (heterodyne) optical detection; and with a multitude of laser wavelengths. Airborne measurement of wind with pulsed, coherent-detection lidar was first performed in 1971 with a CW CO2 laser1, in 1972 with a pulsed CO2 laser2, in 1993 with a pulsed 2-micron laser3, and in 1999 with a pulsed CO2 laser and nadir-centered conical scanning4. Of course there were many other firsts and many other groups doing lidar wind remote sensing with coherent and direct detection. A very large FOM coherent wind lidar has been built by LaRC and flown on a DC-8. However a burn on the telescope secondary mirror prevented the full demonstration of high FOM. Both the GRIP science product and the technology and technique demonstration from aircraft are important to NASA. The technology and technique demonstrations contribute to our readiness for the 3D Winds space mission. The data analysis is beginning and we hope to present results at the conference.

  18. Wind Tunnel and Propulsion Test Facilities: An Assessment of NASA's Capabilities to Serve National Needs

    NASA Technical Reports Server (NTRS)

    Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.

    2004-01-01

    This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.

  19. Modeling of Women's 100-m Dash World Record: Wind-Aided or Not?

    NASA Astrophysics Data System (ADS)

    Hazelrigg, Conner; Waibel, Bryson; Baker, Blane

    2015-11-01

    On July 16, 1988, Florence Griffith Joyner (FGJ) shattered the women's 100-m dash world record (WR) with a time of 10.49 s, breaking the previous mark by an astonishing 0.27 s. By all accounts FGJ dominated the race that day, securing her place as the premiere female sprinter of that era, and possibly all time. In the aftermath of such an extraordinary performance, track officials immediately assumed that her posted time was wind aided—that is, attained under tailwind conditions beyond the legal limit of 2.0 m/s for world records. However, wind-measuring devices at the track site showed zero wind conditions during her WR performance. Before and during FGJ's race, other wind-measuring devices indicated speeds exceeding 4.0 m/s at the site of the triple jump runway, located on the same field as the running track. Video clips of flags placed near the starting line of FGJ's race also revealed tailwind conditions. Using available data from that era, the study here incorporates modeling techniques to compute velocity and position as functions of time for no wind and tailwind conditions. Modeling under no wind conditions produces a 100-m time of 10.70 s, a performance clearly attainable by FGJ during this stage of her sprinting career. Incorporating tailwinds of 4.0 m/s into the computations reduces this time by approximately 0.20 s, in close agreement with FGJ's record-breaking performance. These results strongly suggest that tailwinds of order 4 m/s were present during FGJ's world record race even though wind-measuring devices at the track site did not register these speeds. In spite of such strong evidence to support a wind-aided race on July 16, 1988, FGJ remains one of the top female sprinters in history and would likely hold the WR even today, given that she attained a non-wind-aided 100-m time of 10.61 s on the day following her WR performance.

  20. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  1. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  2. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  3. Installation and checkout of the DOE/NASA Mod-1 2000-kW wind turbine generator

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Collins, J. L.; Wolf, R. A.

    1980-01-01

    The paper describes the DOE/NASA Mod-1 wind turbine generator, its assembly and testing, and its installation at Boone, North Carolina. The paper concludes with performance data taken during the initial tests conducted on the machine. The successful installation and initial operation of the Mod-1 wind turbine generator has had the following results: (1) megawatt-size wind turbines can be operated satisfactorily on utility grids; (2) the structural loads can be predicted by existing codes; (3) assembly of the machine on top of the tower presents no major problem; (4) large blades 100 ft long can be transported long distances and over mountain roads; and (5) operating experience and performance data will contribute substantially to the design of future low-cost wind turbines.

  4. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    NASA Astrophysics Data System (ADS)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  5. Aerial View Of The Site From The 40x80 Foot Wind Tunnel At Nasa Ames Research Center.

    NASA Image and Video Library

    1943-03-12

    (03/12/1943) Aerial view of the site from the 40x80 wind tunnel At NASA Ames Research Center. Site includes the 16 foot and 7x10 wind tunnels in the background. Building 200 also under construction. Framing for the drive fans of the 40x80 in scene.

  6. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  7. Drive System Enhancement in the NASA Lewis Research Center Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.

    1998-01-01

    An overview of NASA Lewis' Aeropropulsion Wind Tunnel Productivity Improvements was presented at the 19th AIAA Advanced Measurement & Ground Testing Technology Conference. Since that time Lewis has implemented subsonic operation in their 10- by 10-Foot Supersonic Wind Tunnel as had been proven viable in the 8- by 6 and 9- by 15-Foot Wind Tunnel Complex and discussed at the aforementioned conference. In addition, two more years of data have been gathered to help quantify the true productivity increases in these facilities attributable to the drive system and operational improvements. This paper was invited for presentation at the 20th Advanced Measurement and Ground Testing Conference to discuss and quantify the productivity improvements in the 10- by 10 SWT since the implementation of less than full complement motor operation. An update on the increased productivity at the 8- by 6 and 9- by 15-Foot facility due to drive system enhancements will also be presented.

  8. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  9. Overview of US AID-World Bank-NASA Collaboration to Address Water Management Issues in the MENA Region

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    The World Bank, USAID and NASA have recently established a joint project to study multiple issues pertaining to water related applications in the Middle East North Africa (MENA) region. The main concentration of the project is on utilization of remote sensing data and hydrological models to address crop irrigation and mapping, flood mapping and forecasting, evapotranspiration and drought problems prevalent in this large geographic area. Additional emphases are placed on understanding the climate impact on these areas as well. Per IPCC 2007 report, by the end of this century MENA region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. These observations generate multiple products such as soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gases, ice and snow measurements, and many more. All of the data products, models and research results are distributed-via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products will then be further compared with other NASA satellite observations (MODIS, VIIRS, TRMM, etc.) and other discrete models to compare and optimize

  10. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  11. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    NASA Technical Reports Server (NTRS)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  12. NASA Sees Typhoon Chan-Hom's Strongest Winds in Northern and Eastern Quadrants

    NASA Image and Video Library

    2015-07-09

    On July 9 at 02:05 UTC (July 8 at 10:05 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite captured an image of Typhoon Chan-Hom east of Taiwan. The image clearly showed an eye with powerful bands of thunderstorms spiraling into the center of circulation. At 1500 UTC (11 a.m. EDT) on July 9, Typhoon Chan-Hom's maximum sustained winds were near 100 knots (115.1 mph/185.2 kph) and the storm continued to strengthen. Chan-Hom was centered near 24.2 North latitude and 127.6 East longitude, about 138 nautical miles (158.8 miles/255.6 km) southwest of Kadena Air Force Base, Iwo to, and has tracked westward at 13 knots (15 mph/24 kph). Read more: go.nasa.gov/1LYNdr0 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Survey Of Wind Tunnels At Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bower, Robert E.

    1989-01-01

    Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.

  14. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  15. The revolution in data gathering systems. [mini and microcomputers in NASA wind tunnels

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Trover, W. F.

    1975-01-01

    This paper gives a review of the data-acquisition systems used in NASA's wind tunnels from the 1950's to the present as a basis for assessing the impact of minicomputers and microcomputers on data acquisition and processing. The operation and disadvantages of wind-tunnel data systems are summarized for the period before 1950, the early 1950's, the early and late 1960's, and the early 1970's. Some significant advances discussed include the use or development of solid-state components, minicomputer systems, large central computers, on-line data processing, autoranging DC amplifiers, MOS-FET multiplexers, MSI and LSI logic, computer-controlled programmable amplifiers, solid-state remote multiplexing, integrated circuits, and microprocessors. The distributed system currently in use with the 40-ft by 80-ft wind tunnel at Ames Research Center is described in detail. The expected employment of distributed systems and microprocessors in the next decade is noted.

  16. SeaWinds Wind-Ice Interaction

    NASA Image and Video Library

    2000-05-07

    The figure demonstrates of the capability of the SeaWinds instrument on NASA QuikScat satellite in monitoring both sea ice and ocean surface wind, thus helping to further our knowledge in wind-ice interaction and its effect on climate change.

  17. Historical Overview and Recent Improvements at the NASA Glenn Research Center 8x6 9x15 Wind Tunnel Complex

    NASA Technical Reports Server (NTRS)

    Dussling, Joseph John

    2015-01-01

    A brief history of the 8x6 Supersonic Wind Tunnel (SWT) and 9x15 Low Speed Wind Tunnel (LSWT) at NASA Glenn Research Center, Cleveland, Ohio is presented along with current capabilities and plans for future upgrades within the facility.

  18. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  19. Comparison of the 10x10 and the 8x6 Supersonic Wind Tunnels at the NASA Glenn Research Center for Low-Speed (Subsonic) Operation

    NASA Technical Reports Server (NTRS)

    Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.

    2002-01-01

    NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.

  20. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  1. Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver; and Plans for Flights on NASA's DC-8 and WB-57 Aircraft

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Petzar, Paul J.

    2009-01-01

    We present results of a recently completed effort to design, fabricate, and demonstrate a compact lidar transceiver for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to permit study of the laser technology currently envisioned by NASA for global coherent Doppler lidar measurement of winds in the future. The 250 mJ, 10 Hz compact transceiver was also designed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. We will attempt to co-fly on both aircraft with a direct-detection Doppler wind lidar system being prepared by NASA Goddard Space Flight Center.

  2. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  3. NASA's GMAO Atmospheric Motion Vectors Simulator: Description and Application to the MISTiC Winds Concept

    NASA Technical Reports Server (NTRS)

    Carvalho, David; McCarty, Will; Errico, Ron; Prive, Nikki

    2018-01-01

    An atmospheric wind vectors (AMVs) simulator was developed by NASA's GMAO to simulate observations from future satellite constellation concepts. The synthetic AMVs can then be used in OSSEs to estimate and quantify the potential added value of new observations to the present Earth observing system and, ultimately, the expected impact on the current weather forecasting skill. The GMAO AMV simulator is a tunable and flexible computer code that is able to simulate AMVs expected to be derived from different instruments and satellite orbit configurations. As a case study and example of the usefulness of this tool, the GMAO AMV simulator was used to simulate AMVs envisioned to be provided by the MISTiC Winds, a NASA mission concept consisting of a constellation of satellites equipped with infrared spectral midwave spectrometers, expected to provide high spatial and temporal resolution temperature and humidity soundings of the troposphere that can be used to derive AMVs from the tracking of clouds and water vapor features. The GMAO AMV simulator identifies trackable clouds and water vapor features in the G5NR and employs a probabilistic function to draw a subset of the identified trackable features. Before the simulator is applied to the MISTiC Winds concept, the simulator was calibrated to yield realistic observations counts and spatial distributions and validated considering as a proxy instrument to the MISTiC Winds the Himawari-8 Advanced Imager (AHI). The simulated AHI AMVs showed a close match with the real AHI AMVs in terms of observation counts and spatial distributions, showing that the GMAO AMVs simulator synthesizes AMVs observations with enough quality and realism to produce a response from the DAS equivalent to the one produced with real observations. When applied to the MISTiC Winds scanning points, it can be expected that the MISTiC Winds will be able to collect approximately 60,000 wind observations every 6 hours, if considering a constellation composed of

  4. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  5. Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Carlson, J.-R.; Hannon, J. A.; Jenkins, L. N.; Bartram, S. M.; Pulliam, T. H.; Lee, H. C.

    2017-01-01

    Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.

  6. A Space-Based Point Design for Global Coherent Doppler Wind Lidar Profiling Matched to the Recent NASA/NOAA Draft Science Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.

    2002-01-01

    An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

  7. Wind tunnel wall interference investigations in NAE/NRC High Reynolds Number 2D Facility and NASA Langley 0.3m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Chan, Y. Y.; Nishimura, Y.; Mineck, R. E.

    1989-01-01

    Results are reported from a NAE/NRC and NASA cooperative program on two-dimensional wind-tunnel wall-interference research, aimed at developing the technology for correcting or eliminating wall interference effects in two-dimensional transonic wind-tunnel investigations. Both NASA Langley and NAE facilities are described, along with a NASA-designed and fabricated airfoil model. It is shown that data from the NAE facility, corrected for wall interference, agree with those obtained from the NASA tunnel, which has adaptive walls; the comparison of surface pressure data shows that the flowfield conditions in which the model is investigated appear to be nearly identical under most conditions. It is concluded that both approaches, posttest correction and an adaptive wall, adequately eliminate the tunnel-wall interference effects.

  8. Synchronization of the DOE/NASA 100-kilowatt wind turbine generator with a large utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.

    1977-01-01

    The DOE/NASA 100 kilowatt wind turbine generator system was synchronized with a large utility network. The system equipments and procedures associated with the synchronization process were described. Time history traces of typical synchronizations were presented indicating that power and current transients resulting from the synchronizing procedure are limited to acceptable magnitudes.

  9. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  10. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected

  11. Raptor interactions with wind energy: Case studies from around the world

    USGS Publications Warehouse

    Watson, Richard T.; Kolar, Patrick S.; Ferrer, Miguel; Nygård, Torgeir; Johnston, Naira; Hunt, W. Grainger; Smit-Robinson, Hanneline A.; Farmer, Christopher J; Huso, Manuela; Katzner, Todd

    2018-01-01

    The global potential for wind power generation is vast, and the number of installations is increasing rapidly. We review case studies from around the world of the effects on raptors of wind-energy development. Collision mortality, displacement, and habitat loss have the potential to cause population-level effects, especially for species that are rare or endangered. The impact on raptors has much to do with their behavior, so careful siting of wind-energy developments to avoid areas suited to raptor breeding, foraging, or migration would reduce these effects. At established wind farms that already conflict with raptors, reduction of fatalities may be feasible by curtailment of turbines as raptors approach, and offset through mitigation of other human causes of mortality such as electrocution and poisoning, provided the relative effects can be quantified. Measurement of raptor mortality at wind farms is the subject of intense effort and study, especially where mitigation is required by law, with novel statistical approaches recently made available to improve the notoriously difficult-to-estimate mortality rates of rare and hard-to-detect species. Global standards for wind farm placement, monitoring, and effects mitigation would be a valuable contribution to raptor conservation worldwide.

  12. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  13. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Barbre, Robert; Huddleston, Lisa; Wilfong, Tim; Brauer, Tom

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 100 miles to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population. This paper will describe the characteristics of the tropospheric wind observations from the TDRWP during Irma, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and discuss lessons learned regarding dissemination of TDRWP data during the event.

  14. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  15. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  16. NASA presentation. [wind energy conversion systems planning

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.

  17. Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.

    2007-01-01

    As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.

  18. Winds Near Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Time Sequence of a belt-zone boundary near Jupiter's equator. These mosaics show Jupiter's appearance at 757 nanometers (near-infrared) and were taken nine hours apart. Images at 757 nanometers show features of Jupiter's primary visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. A strong eastward jet is made visible as it stretches the clouds just below the center of this mosaic. The maximum wind speed of this jet is 128 meters per second (286 miles per hour). Features on this jet move about one quarter of the width of the mosaic. All the features visible in these mosaics are moving eastward (right).

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  20. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  1. 75 FR 57016 - Top of the World Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2522-000] Top of the World Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization September 10, 2010. This is a supplemental notice in the above-referenced proceeding of Top of the World Wind...

  2. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  3. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  4. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  5. Uncertainty Analysis of NASA Glenn's 8- by 6-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia E.; Hubbard, Erin P.; Walter, Joel A.; McElroy, Tyler

    2016-01-01

    An analysis was performed to determine the measurement uncertainty of the Mach Number of the 8- by 6-foot Supersonic Wind Tunnel at the NASA Glenn Research Center. This paper details the analysis process used, including methods for handling limited data and complicated data correlations. Due to the complexity of the equations used, a Monte Carlo Method was utilized for this uncertainty analysis. A summary of the findings are presented as pertains to understanding what the uncertainties are, how they impact various research tests in the facility, and methods of reducing the uncertainties in the future.

  6. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  7. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center during Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km (approximately 6.6-62.3 kft) in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 160 km (87 nmi) to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population (Stein, 2017). This paper will provide an overview of the TDRWP system, describe the characteristics of the wind observations from the TDRWP during Irma passage, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and provide the location where TDRWP data is available to the meteorological community.

  8. Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1989-01-01

    An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.

  9. Wind Profiling from a New Compact, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar Transceiver during Wind Measurement Intercomparison

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.

    2009-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.

  10. Facility Upgrade/Replacement Tasks ('planned') at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Giriunas, Julius A.

    2012-01-01

    Facility upgrades and large maintenance tasks needed at the NASA Glenn 10x10 Supersonic Wind Tunnel requires significant planning to make sure implementation proceeds in an efficiently and cost effective manner. Advanced planning to secure the funding, complete design efforts and schedule the installation needs to be thought out years in advance to avoid interference with wind tunnel testing. This presentation describes five facility tasks planned for implementation over the next few years. The main focus of the presentation highlights the efforts on possible replacement of the diesel generator and the rationale behind the effort.

  11. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  12. WIND-TUNNEL SIMULATIONS TO ASSESS DISPERSION AROUND THE WORLD TRADE CENTER SITE

    EPA Science Inventory

    A wind-tunnel study was conducted of dispersion from the site of the destroyed World Trade Center (WTC) in New York City. A scale model of lower Manhattan, including a scaled representation of the rubble pile, was constructed. The first phases of the study involved smoke visua...

  13. Dynamic response of NASA Rotor Test Apparatus and Sikorsky S-76 hub mounted in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Hoque, Muhammed S.

    1994-01-01

    A shake test was conducted in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center, using the NASA Ames Rotor Test Apparatus (RTA) and the Sikorsky S-76 rotor hub. The primary objective of this shake test was to determine the modal properties of the RTA, the S-76 rotor hub, and the model support system installed in the wind tunnel. Random excitation was applied at the rotor hub, and vibration responses were measured using accelerometers mounted at various critical locations on the model and the model support system. Transfer functions were computed using the load cell data and the accelerometer responses. The transfer function data were used to compute the system modal parameters with the aid of modal analysis software.

  14. Pressure-Sensitive Paint Measurements on the NASA Common Research Model in the NASA 11-ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.

    2011-01-01

    The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.

  15. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  16. Wind Texture

    NASA Image and Video Library

    2011-03-23

    On Earth, these wind-derived features are called blowouts, where the force of the wind has carved out a crescent-shaped depression in soft, uncemented material like glacial loess. This image is from NASA Mars Odyssey.

  17. Aerodynamic characteristics of the 40- by 80/80- by 120-foot wind tunnel at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Olson, L. E.; Falarski, M. D.

    1984-01-01

    The design and testing of vane sets and air-exchange inlet for the 40 x 80/80 x 120-ft wind tunnel at NASA Ames are reported. Boundary-layer analysis and 2D and 3D inviscid panel codes are employed in computer models of the system, and a 1/10-scale 2D facility and a 1/50-scale 3D model of the entire wind tunnel are used in experimental testing of the vane sets. The results are presented in graphs, photographs, drawings, and diagrams are discussed. Generally good agreement is found between the predicted and measured performance.

  18. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  19. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  20. Turbofan Noise Studied in Unique Model Research Program in NASA Glenn's 9- by 15-Foot Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    A comprehensive aeroacoustic research program called the Source Diagnostic Test was recently concluded in NASA Glenn Research Center's 9- by 15-Foot Low Speed Wind Tunnel. The testing involved representatives from Glenn, NASA Langley Research Center, GE Aircraft Engines, and the Boeing Company. The technical objectives of this research were to identify the different source mechanisms of noise in a modern, high-bypass turbofan aircraft engine through scale-model testing and to make detailed acoustic and aerodynamic measurements to more fully understand the physics of how turbofan noise is generated.

  1. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  2. Changes in European wind energy generation potential within a 1.5 °C warmer world

    NASA Astrophysics Data System (ADS)

    Hosking, J. Scott; MacLeod, D.; Phillips, T.; Holmes, C. R.; Watson, P.; Shuckburgh, E. F.; Mitchell, D.

    2018-05-01

    Global climate model simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project were used to assess how wind power generation over Europe would change in a future world where global temperatures reach 1.5 °C above pre-industrial levels. Comparing recent historical (2006–2015) and future 1.5 °C forcing experiments highlights that the climate models demonstrate a northward shift in the Atlantic jet, leading to a significant (p < 0.01) increase in surface winds over the UK and Northern Europe and a significant (p < 0.05) reduction over Southern Europe. We use a wind turbine power model to transform daily near-surface (10 m) wind speeds into daily wind power output, accounting for sub-daily variability, the height of the turbine, and power losses due to transmission and distribution of electricity. To reduce regional model biases we use bias-corrected 10 m wind speeds. We see an increase in power generation potential over much of Europe, with the greatest increase in load factor over the UK of around four percentage points. Increases in variability are seen over much of central and northern Europe with the largest seasonal change in summer. Focusing on the UK, we find that wind energy production during spring and autumn under 1.5 °C forcing would become as productive as it is currently during the peak winter season. Similarly, summer winds would increase driving up wind generation to resemble levels currently seen in spring and autumn. We conclude that the potential for wind energy in Northern Europe may be greater than has been previously assumed, with likely increases even in a 1.5 °C warmer world. While there is the potential for Southern Europe to see a reduction in their wind resource, these decreases are likely to be negligible.

  3. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  4. Wind Texture

    NASA Image and Video Library

    2010-11-10

    One of the most active agent of erosion on Mars today is the wind. This region, near Nicholson crater, has been sculpted by untold years of blowing grit and wind, as shown in this image captured by NASA Mars Odyssey.

  5. An evaluation of proposed acoustic treatments for the NASA LaRC 4 x 7 meter wind tunnel

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1985-01-01

    The NASA LaRC 4 x 7 Meter Wind Tunnel is an existing facility specially designed for powered low speed (V/STOL) testing of large scale fixed wing and rotorcraft models. The enhancement of the facility for scale model acoustic testing is examined. The results are critically reviewed and comparisons are drawn with a similar wind tunnel (the DNW Facility in the Netherlands). Discrepancies observed in the comparison stimulated a theoretical investigation using the acoustic finite element ADAM System, of the ways in which noise propagating around the tunnel circuit radiates into the open test section. The reasons for the discrepancies noted above are clarified and assists in the selection of acoustic treatment options for the facility.

  6. NASA Webworldwind: Multidimensional Virtual Globe for Geo Big Data Visualization

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Hogan, P.; Prestifilippo, G.; Zamboni, G.

    2016-06-01

    In this paper, we presented a web application created using the NASA WebWorldWind framework. The application is capable of visualizing n-dimensional data using a Voxel model. In this case study, we handled social media data and Call Detailed Records (CDR) of telecommunication networks. These were retrieved from the "BigData Challenge 2015" of Telecom Italia. We focused on the visualization process for a suitable way to show this geo-data in a 3D environment, incorporating more than three dimensions. This engenders an interactive way to browse the data in their real context and understand them quickly. Users will be able to handle several varieties of data, import their dataset using a particular data structure, and then mash them up in the WebWorldWind virtual globe. A broad range of public use this tool for diverse purposes is possible, without much experience in the field, thanks to the intuitive user-interface of this web app.

  7. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  8. Overview of Supersonic Aerodynamics Measurement Techniques in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    An overview is given of selected measurement techniques used in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the aerodynamic characteristics of aerospace vehicles operating at supersonic speeds. A broad definition of a measurement technique is adopted in this paper and is any qualitative or quantitative experimental approach that provides information leading to the improved understanding of the supersonic aerodynamic characteristics. On-surface and off-surface measurement techniques used to obtain discrete (point) and global (field) measurements and planar and global flow visualizations are described, and examples of all methods are included. The discussion is limited to recent experiences in the UPWT and is, therefore, not an exhaustive review of existing experimental techniques. The diversity and high quality of the measurement techniques and the resultant data illustrate the capabilities of a ground-based experimental facility and the key role that it plays in the advancement of our understanding, prediction, and control of supersonic aerodynamics.

  9. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    NASA Technical Reports Server (NTRS)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  10. Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1972-01-01

    Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.

  11. Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil

    NASA Technical Reports Server (NTRS)

    Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.

    1987-01-01

    A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.

  12. NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual

    NASA Technical Reports Server (NTRS)

    Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.

    1999-01-01

    This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.

  13. Wind Engineering

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dr. Jack Cermak, Director of Fluid Dynamics and Diffusion Laboratory, developed the first wind tunnel to simulate the changing temperatures, directions and velocities of natural winds. In this work, Cermak benefited from NASA technology related to what is known as the atmospheric boundary layer (ABL).

  14. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  15. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  16. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  17. The World Wide Web and Technology Transfer at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  18. Overview of the 1989 Wind Tunnel Calibration Workshop

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur, Jr.; Mckinney, L. Wayne

    1993-01-01

    An overview of the 1989 Wind Tunnel Calibration Workshop held at NASA LaRC in Hampton, VA on 19-20 Apr. 1989 is presented. The purpose of the Workshop was to explore wind tunnel calibration requirements as they relate to test quality and data accuracy, with the ultimate goal of developing wind tunnel calibration requirements for the major NASA wind tunnels at ARC, LaRC, and LeRC. The two sessions addressed the following topics: (1) what constitutes a properly calibrated wind tunnel; and (2) the status of calibration of NASA's major wind tunnels. The most significant contributions to the stated goals are highlighted, and the consensus of the Workshop's conclusions and recommendations regarding formulation and implementation of that goal are presented.

  19. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  20. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  1. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  2. Wind and Rock

    NASA Image and Video Library

    2011-03-09

    This image from NASA Mars Odyssey is located west of Zephyria Planum. Surfaces in this region have undergone extensive erosion by the wind. Wind is one of the most active processes of erosion on the surface of Mars today.

  3. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  4. Polar Winds

    NASA Image and Video Library

    2018-04-05

    This VIS image shows 'streamers' of clouds created by katabatic winds at the north polar cap. Katabatic winds are created by cold air sinking at the pole and then speeding along the ice surface towards the edge of the polar cap. When the winds enter troughs the wind regime changes from laminar flow to choatic and clouds of ice particles and/or dust are visible. This wind activity peaks at the start of northern hemisphere summer. Orbit Number: 53942 Latitude: 86.8433 Longitude: 99.3149 Instrument: VIS Captured: 2014-02-10 10:50 https://photojournal.jpl.nasa.gov/catalog/PIA22362

  5. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  6. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  7. The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Shaw, R. J.

    1985-01-01

    Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.

  8. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  9. Wind Erosion

    NASA Image and Video Library

    2015-07-02

    Long term winds have etched the surface in Memnonia Sulci. Partial cemented surface materials are easily eroded by the wind, forming linear ridges called yardangs. The multiple direction of yardangs in this VIS image indicate that there were at least two different wind directions in this area. Orbit Number: 59217 Latitude: -8.33112 Longitude: 186.506 Instrument: VIS Captured: 2015-04-20 15:12 http://photojournal.jpl.nasa.gov/catalog/PIA19502

  10. Wind Etching

    NASA Image and Video Library

    2016-08-09

    Today's VIS image is located in a region that has been heavily modified by wind action. The narrow ridge/valley system seen in this image are a feature called yardangs. Yardangs form when unidirectional winds blow across poorly cemented materials. Multiple yardang directions can indicate changes in regional wind regimes. Orbit Number: 64188 Latitude: -0.629314 Longitude: 206.572 Instrument: VIS Captured: 2016-06-03 01:20 http://photojournal.jpl.nasa.gov/catalog/PIA20799

  11. NWTC Helps Chart the World's Wind Resource Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  12. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  13. Dedication of the Mod-0 Wind Turbine at Plum Brook Station

    NASA Image and Video Library

    1975-10-21

    Energy Research and Development Administration (ERDA) Administrator Robert Seamans addresses the crowd at the dedication ceremony for the Mod-0 100-kilowatt wind turbine at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. The wind turbine program was a joint NASA/ERDA effort to develop less expensive forms of energy during the 1970s. NASA Lewis was able to use its experience with aerodynamics, powerplants, and energy transfer to develop efficient and cost-effective wind energy systems. The Plum Brook wind turbine was the first of a series of increasingly powerful NASA-ERDA wind turbines built around the nation. From left to right: Congressional Committee aide John Dugan, retired S. Morgan Smith Company chief engineer Carl Wilcox, windmill pioneer Beauchamp Smith, NASA Administrator James Fletcher, Seamans, and Lewis Center Director Bruce Lundin. The three men to the right are unidentified.

  14. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  15. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.

  16. Mod-1 Wind Turbine at Boone, North Carolina

    NASA Image and Video Library

    1979-06-21

    A Mod-1 2000-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Boone, North Carolina. The wind turbine program was a joint program between NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed at NASA’s Plum Brook Station. There were four Mod-0A 200-kilowatt turbines built in New Mexico, Hawaii, Puerto Rico, and Rhode Island. The 2000-kilowatt wind turbine in North Carolina, seen here, was the only Mod-1 machine constructed. The two-bladed, 200-foot diameter device was built in May 1979 and began operation that September. The Mod-1 turbine performed exceedingly well and was fully integrated into the local power grid. NASA researchers also used the North Carolina device to study its effect on noise and television transmission.

  17. NASA Hubble Finds a True Blue Planet

    NASA Image and Video Library

    2017-12-08

    This illustration shows HD 189733b, a huge gas giant that orbits very close to its host star HD 189733. The planet's atmosphere is scorching with a temperature of over 1000 degrees Celsius, and it rains glass, sideways, in howling 7000 kilometre-per-hour winds. At a distance of 63 light-years from us, this turbulent alien world is one of the nearest exoplanets to Earth that can be seen crossing the face of its star. By observing this planet before, during, and after it disappeared behind its host star during orbit, astronomers were able to deduce that HD 189733b is a deep, azure blue — reminiscent of Earth's colour as seen from space. Credit: NASA, ESA, M. Kornmesser Read more: 1.usa.gov/1dnDZPu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  19. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  20. Wind-US Users Guide Version 4.0

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/.

  1. NASA-ESA Joint Mission to Explore Two Worlds of Great Astrobiological Interest - Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, K.; Coustenis, A.; Lunine, J.; Matson, D.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.

    2009-04-01

    Rugged shorelines, laced with canyons, leading to ethane/methane seas glimpsed through an organic haze, vast fields of dunes shaped by alien sciroccos… An icy moon festooned with plumes of water-ice and organics, whose warm watery source might be glimpsed through surface cracks that glow in the infrared… The revelations by Cassini-Huygens about Saturn's crown jewels, Titan and Enceladus, have rocked the public with glimpses of new worlds unimagined a decade before. The time is at hand to capitalize on those discoveries with a broad mission of exploration that combines the widest range of planetary science disciplines—Geology, Geophysics, Atmospheres, Astrobiology,Chemistry, Magnetospheres—in a single NASA/ESA collaboration. The Titan Saturn System Mission will explore these exciting new environments, flying through Enceladus' plumes and plunging deep into Titan's atmosphere with instruments tuned to find what Cassini could only hint at. Exploring Titan with an international fleet of vehicles; from orbit, from the surface of a great polar sea, and from the air with the first hot air balloon to ride an extraterrestrial breeze, TSSM will turn our snapshot gaze of these worlds into an epic film. This paper will describe a collaborative NASA-ESA Titan Saturn System Mission that will open a new phase of planetary exploration by projecting robotic presence on the land, on the sea, and in the air of an active, organic-rich world.

  2. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  3. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  4. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  5. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema

    None

    2017-12-09

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  6. Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler

    2016-01-01

    This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.

  7. Space Launch System Liftoff and Transition Aerodynamic Characterization in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Erickson, Gary E.; Paulson, John W.; Tomek, William G.; Bennett, David W.; Blevins, John A.

    2015-01-01

    A 1.75% scale force and moment model of the Space Launch System was tested in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel to quantify the aerodynamic forces that will be experienced by the launch vehicle during its liftoff and transition to ascent flight. The test consisted of two parts: the first was dedicated to measuring forces and moments for the entire range of angles of attack (0deg to 90deg) and roll angles (0 deg. to 360 deg.). The second was designed to measure the aerodynamic effects of the liftoff tower on the launch vehicle for ground winds from all azimuthal directions (0 deg. to 360 deg.), and vehicle liftoff height ratios from 0 to 0.94. This wind tunnel model also included a set of 154 surface static pressure ports. Details on the experimental setup, and results from both parts of testing are presented, along with a description of how the wind tunnel data was analyzed and post-processed in order to develop an aerodynamic database. Finally, lessons learned from experiencing significant dynamics in the mid-range angles of attack due to steady asymmetric vortex shedding are presented.

  8. Research in NASA History: A Guide to the NASA History Program

    NASA Technical Reports Server (NTRS)

    Garber, Stephen J. (Compiler)

    1997-01-01

    This monograph details the archival and other related resources held by the NASA History Office at Headquarters, and at NASA's Field Centers and other related government agencies. It also gives information on the NASA History publications, World Wide Web pages and the like.

  9. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    NASA Astrophysics Data System (ADS)

    Decarolis, Joseph Frank

    Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may

  10. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype: A New NASA Instrument Incubator Program Project

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Singh, Upendra N.; Amzajerdian, Farzin; Wang, Jinxue; Petros, Mulugeta

    2005-01-01

    A new project, selected in 2005 by NASA s Science Mission Directorate (SMD) under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The packaged DWL will utilize the numerous advances in pulsed, solid-state, 2-micron laser technology at NASA s Langley Research Center (LaRC) in such areas as crystal composition, architecture, efficiency, cooling techniques, pulse energy, and beam quality. The extensive experience of Raytheon Space and Airborne Systems (RSAS) in coherent lidar systems, in spacebased sensors, and in packaging rugged lidar systems will be applied to this project. The packaged transceiver will be as close to an envisioned space-based DWL system as the resources and technology readiness allow. We will attempt to facilitate a future upgrade to a coherent lidar system capable of simultaneous wind and CO2 concentration profile measurements. Since aerosol and dust concentration is also available from the lidar signal, the potential for a triple measurement lidar system is attractive for both Earth and Mars remote sensing. A key follow on step after the IIP will be to add a telescope, scanner, and software for aircraft validation. This IIP should also put us in a position to begin a parallel formulation study in the 2006-2007 timeframe for a space-based DWL demonstration mission early next decade.

  11. Comet Borrelly Slows Solar Wind

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Over 1300 energy spectra taken on September 22, 2001 from the ion and electron instruments on NASA's Deep Space 1 span a region of 1,400,000 kilometers (870,000 miles) centered on the closest approach to the nucleus of comet Borrelly. A very strong interaction occurs between the solar wind (horizontal red bands to left and right in figure) and the comet's surrounding cloud of dust and gas, the coma. Near Deep Space 1's closest approach to the nucleus, the solar wind picked up charged water molecules from the coma (upper green band near the center), slowing the wind sharply and creating the V-shaped energy structure at the center.

    Deep Space 1 completed its primary mission testing ion propulsion and 11 other advanced, high-risk technologies in September 1999. NASA extended the mission, taking advantage of the ion propulsion and other systems to undertake this chancy but exciting, and ultimately successful, encounter with the comet. More information can be found on the Deep Space 1 home page at http://nmp.jpl.nasa.gov/ds1/ .

    Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, D.C. The California Institute of Technology manages JPL for NASA.

  12. NASA's Planetary Aeolian Laboratory: Status and Update

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Smith, J. K.

    2017-05-01

    This presentation provides a status update on the operational capabilities and funding plans by NASA for the Planetary Aeolian Laboratory located at NASA Ames Research Center, including details for those proposing future wind tunnel experiments.

  13. WIND Spacecraft Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An international effort to learn more about the complex interaction between the Earth and Sun took another step forward with the launch of WIND spacecraft from Kennedy Space Center (KSC). WIND spacecraft is studded with eight scientific instruments - six US, one French, and one - the first Russian instrument to fly on a US spacecraft - that collected data about the influence of the solar wind on the Earth and its atmosphere. WIND is part of the Global Geospace Science (GGS) initiative, the US contribution to NASA's International Solar Terrestrial Physics (ISTP) program.

  14. NASA and energy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.

  15. Large wind turbine generators. [NASA program status and potential costs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The large wind turbine portion of the Federal Wind Energy Program consists of two major project efforts: (1) the Mod-0 test bed project for supporting research technology, and (2) the large experimental wind turbines for electric utility applications. The Mod-0 has met its primary objective of providing the entire wind energy program with early operations and performance data. The large experimental wind turbines to be tested in utility applications include three of the Mod-0A (200 kW) type, one Mod-1 (2000 kW), and possibly several of the Mod-2 (2500 kW) designs. This paper presents a description of these wind turbine systems, their programmatic status, and a summary of their potential costs.

  16. Solar Panel Buffeted by Wind at Phoenix Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing.

    The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site.

    These conditions were anticipated and the wind is not expected to do any harm to the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  18. Santa Ana Winds Over Los Angeles

    NASA Image and Video Library

    2003-01-08

    High-resolution ocean surface wind data from NASA's Quick Scatterometer (QuikScat) illustrate the strength of Santa Ana winds that pounded Southern California this week, causing damage and spreading brush fires. The colored arrows represent various ranges of wind speed, which were still well in excess of 30 knots (34 miles per hour), even after reaching the ocean and weakening. Santa Ana winds are offshore and down-slope winds unique to Southern California that are usually channeled through mountain gaps. These Santa Ana winds extend more than 500 kilometers (310 miles) offshore before changing direction to flow along the shore. The wind speeds and directions are retrieved from range-compressed backscatter data measured by QuikScat that has much higher spatial resolution than QuikScat's standard data products. Useful applications of high-resolution science-quality wind products derived from range-compressed backscatter have been demonstrated in two scientific papers: one on Hurricane Floyd and the other on Catalina Eddies. This is the first demonstration on near-real-time retrieval applications. http://photojournal.jpl.nasa.gov/catalog/PIA03892

  19. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  20. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  1. Wind Patterns in Jupiter's Equatorial Region (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wind patterns of Jupiter's equatorial region. This mosaic covers an area of 34,000 kilometers by 22,000 kilometers and was taken using the 756 nanometer (nm) near-infrared continuum filter. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. The near-infrared continuum filter shows the features of Jupiter's main visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. The top half of these mosaics lies within Jupiter's North Equatorial Belt, a westward (left) current. The bottom half shows part of the Equatorial Zone, a fast moving eastward current. The clouds near the hotspot are the fastest moving features in these mosaics, moving at about 100 meters per second, or 224 miles per hour.

    Superimposed on the zonal wind currents is the Jovian 'weather'. The arrows show the winds measured by an observer moving eastward (right) at the speed of the hotspot. (The observer's perspective is that the hotspot is 'still' while the rest of the planet moves around it.) Clouds south of the hotspot appear to be moving towards it, as seen in the flow aligned with cloud streaks to the southwest and in the clockwise flow to the southeast. Interestingly, there is little cloud motion away from the hotspot in any direction. This is consistent with the idea that dry air is converging over this region and sinking, maintaining the cloud-free nature of the hotspot.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA

  2. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  3. Mountain Winds at Gale Crater

    NASA Image and Video Library

    2012-11-15

    This graphic shows the pattern of winds predicted to be swirling around and inside Gale Crater, where NASA Curiosity rover landed on Mars. Modeling the winds gives scientists a context for the data from Curiosity Rover Environmental Monitoring Station

  4. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of

  5. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  6. Wind Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Wind mission is the first mission of the Global Geospace Science (GGS) initiative. The Wind laboratory will study the properties of particles and waves in the region between the Earth and the Sun. Using the Moon s gravity to save fuel, dual lunar swing-by orbits enable the spacecraft to sample regions close to and far from the Earth. During the three year mission, Wind will pass through the bow shock of Earth's magnetosphere to begin a thorough investigation of the solar wind. Mission objectives require spacecraft measurements in two orbits: lunar swing- by ellipses out to distances of 250 Earth radii (RE) and a small orbit around the Lagrangian point L-l that remains between the Earth and the Sun. Wind will be placed into an initial orbit for approximately 2 years. It will then be maneuvered into a transition orbit and ultimately into a halo orbit at the Earth-Sun L-l point where it will operate for the remainder of its lifetime. The Wind satellite development was managed by NASA's Goddard Space Flight Center with the Martin Marietta Corporation, Astro-Space Division serving as the prime contractor. Overall programmatic direction was provided by NASA Headquarters, Office of Space Science. The spacecraft will be launched under a launch service contract with the McDonnell Douglas Corporation on a Delta II Expendable Launch Vehicle (ELV) within a November l-l4, 1994 launch window. The Wind spacecraft carries six U.S. instruments, one French instrument, and the first Russian instrument ever to fly on an American satellite. The Wind and Polar missions are the two components of the GGS Program. Wind is also the second mission of the International Solar Terrestrial Physics (ISTP) Program. The first ISTP mission, Geotail, is a joint project of the Institute of Space and Astronautical Science of Japan and NASA which launched in 1992. The Wind mission is planned to overlap Geotail by six months and Polar by one year

  7. SeaWinds Global Coverage with Detail of Hurricane Floyd

    NASA Image and Video Library

    2000-05-07

    The distribution of ocean surface winds over the Atlantic Ocean, based on September 1999 data from NASA SeaWinds instrument on the QuikScat satellite, shows wind direction, superimposed on the color image indicating wind speed.

  8. Sources, paths, and concepts for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Wilby, J. F.

    1984-01-01

    NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths.

  9. Wind and solar energy resources on the 'Roof of the World'

    NASA Astrophysics Data System (ADS)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  10. DOE/NASA Mod-0 100KW wind turbine test results

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.

    1978-01-01

    The Wind Turbine demonstrates the capability of automatic unattended operation, including startup, achieving synchronism, and shutdown as dictated by wind conditions. During the course of these operations, a wealth of engineering data was generated. Some of the data which is associated with rotor and machine dynamics problems encountered, and the machine modifications incorporated as a solution are presented. These include high blade loads due to tower shadow, excessive nacelle yawing motion, and power oscillations. The results of efforts to correlate measured wind velocity with power output and wind turbine loads are also discussed.

  11. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    NASA Technical Reports Server (NTRS)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  12. Large wind turbines: A utility option for the generation of electricity

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.; Baldwin, D. H.

    1980-01-01

    The wind resource is such that wind energy generation has the potential to save 6-7 quads of energy nationally. Thus, the Federal Government is sponsoring and encouraging the development of cost effective and reliable wind turbines. One element of the Federal Wind Energy Programs, Large Horizontal Axis Wind Turbine Development, is managed by the NASA Lewis Research Center for the Department of Energy. There are several ongoing wind system development projects oriented primarily toward utility application within this program element. In addition, a comprehensive technology program supporting the wind turbine development projects is being conducted. An overview is presented of the NASA activities with emphasis on application of large wind turbines for generation of electricity by utility systems.

  13. Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.

    1985-01-01

    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.

  14. Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the rock 'Chimp' was taken by the Sojourner rover's right front camera on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  15. Some lessons from NACA/NASA aerodynamic studies following World War II

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.

  16. Hardwall acoustical characteristics and measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Rentz, P. E.

    1976-01-01

    Experimental evaluations of the acoustical characteristics and source sound power and directionality measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel in the untreated or hardwall configuration were performed. The results indicate that source sound power estimates can be made using only settling chamber sound pressure measurements. The accuracy of these estimates, expressed as one standard deviation, can be improved from + or - 4 db to + or - 1 db if sound pressure measurements in the preparation room and diffuser are also used and source directivity information is utilized. A simple procedure is presented. Acceptably accurate measurements of source direct field acoustic radiation were found to be limited by the test section reverberant characteristics to 3.0 feet for omni-directional and highly directional sources. Wind-on noise measurements in the test section, settling chamber and preparation room were found to depend on the sixth power of tunnel velocity. The levels were compared with various analytic models. Results are presented and discussed.

  17. Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool |

    Science.gov Websites

    News | NREL Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool April 1, 2016 Before the Energy Department's that researchers all over the world could embrace. Now, the winds of change are blowing. SOWFA is a

  18. Parameter Trade Studies For Coherent Lidar Wind Measurements of Wind from Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The design of an orbiting wind profiling lidar requires selection of dozens of lidar, measurement scenario, and mission geometry parameters; in addition to prediction of atmospheric parameters. Typical mission designs do not include a thorough trade optimization of all of these parameters. We report here the integration of a recently published parameterization of coherent lidar wind velocity measurement performance with an orbiting coherent wind lidar computer simulation; and the use of these combined tools to perform some preliminary parameter trades. We use the 2006 NASA Global Wind Observing Sounder mission design as the starting point for the trades.

  19. SeaWinds Radar Clocks Hurricane Dora Wind Speeds

    NASA Image and Video Library

    1999-08-25

    The SeaWinds instrument onboard NASA new QuikScat ocean-viewing satellite captured this image of Hurricane Dora in the eastern tropical Pacific Ocean on August 10, as it was blowing at speeds of nearly 40 meters per second 90 miles per hour.

  20. SMAP Takes a New Measure of Hurricane Matthew Winds

    NASA Image and Video Library

    2016-10-07

    NASA's SMAP radiometer instrument measured Hurricane Matthew's wind speeds at 4:52 a.m. PDT (7:52 a.m. EDT) at up to 132 miles per hour (59 meters per second). SMAP has excellent sensitivity to extreme winds, far beyond that of typical scatterometer instruments now in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA21096

  1. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation.

  2. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The sue of a validated boundary layer refraction model to adjust the data could remove this limitation.

  3. SeaWinds - Greenland

    NASA Image and Video Library

    2000-05-08

    The frequent coverage provided by NASA SeaWinds instrument on the QuikScat satellite in 1999 provided unprecedented capability to monitor daily and seasonal changes in the key melt zones of Greenland.

  4. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  5. Background noise levels measured in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Dittmar, James H.; Hall, David G.; Kee-Bowling, Bonnie

    1994-01-01

    The acoustic capability of the NASA Lewis 9 by 15 Foot Low Speed Wind Tunnel has been significantly improved by reducing the background noise levels measured by in-flow microphones. This was accomplished by incorporating streamlined microphone holders having a profile developed by researchers at the NASA Ames Research Center. These new holders were fabricated for fixed mounting on the tunnel wall and for an axially traversing microphone probe which was mounted to the tunnel floor. Measured in-flow noise levels in the tunnel test section were reduced by about 10 dB with the new microphone holders compared with those measured with the older, less refined microphone holders. Wake interference patterns between fixed wall microphones were measured and resulted in preferred placement patterns for these microphones to minimize these effects. Acoustic data from a model turbofan operating in the tunnel test section showed that results for the fixed and translating microphones were equivalent for common azimuthal angles, suggesting that the translating microphone probe, with its significantly greater angular resolution, is preferred for sideline noise measurements. Fixed microphones can provide a local check on the traversing microphone data quality, and record acoustic performance at other azimuthal angles.

  6. MSL Parachute Flapping in the Wind

    NASA Image and Video Library

    2013-04-03

    This image from NASA Mars Reconnaissance Orbiter shows wind-caused changes in the parachute of NASA Mars Science Laboratory spacecraft as the chute lay on the Martian ground during months after its use in safe landing of the Curiosity rover.

  7. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  8. Status of wind-energy conversion

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Savino, J. M.

    1973-01-01

    The utilization of wind energy is technically feasible as evidenced by the many past demonstrations of wind generators. The cost of energy from the wind has been high compared to fossil fuel systems. A sustained development effort is needed to obtain economical systems. The variability of the wind makes it an unreliable source on a short-term basis. However, the effects of this variability can be reduced by storage systems or connecting wind generators to fossil fuel systems, hydroelectric systems, or dispersing them throughout a large grid network. The NSF and NASA-Lewis Research Center have sponsored programs for the utilization of wind energy.

  9. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1992-01-01

    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).

  10. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  11. Review of Aeronautical Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The nation's aeronautical wind tunnel facilities constitute a valuable technological resource and make a significant contribution to the global supremacy of U.S. aircraft, both civil and military. At the request of NASA, the National Research Council's Aeronautics and Space Engineering Board organized a commitee to review the state of repair, adequacy, and future needs of major aeronautical wind tunnel facilities in meeting national goals. The comittee identified three main areas where actions are needed to sustain the capability of NASA's aeronautical wind tunnel facilities to support the national aeronautical research and development activities: tunnel maintenance and upgrading, productivity enhancement, and accommodation of new requirements (particularly in hypersonics). Each of these areas are addressed and the committee recommendations for appropriate actions presented.

  12. Watercolor World

    NASA Image and Video Library

    2017-04-17

    When imaged by NASA Cassini spacecraft at infrared wavelengths that pierce the planet upper haze layer, the high-speed winds of Saturn atmosphere produce watercolor-like patterns. With no solid surface creating atmospheric drag, winds on Saturn can reach speeds of more than 1,100 miles per hour (1,800 kilometers per hour) -- some of the fastest in the solar system. This view was taken from a vantage point about 28 degrees above Saturn's equator. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016, with a combination of spectral filters which preferentially admits wavelengths of near-infrared light centered at 728 nanometers. The view was acquired at a distance of approximately 592,000 miles (953,000 kilometers) from Saturn. Image scale is 35 miles (57 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA20528

  13. Telltale Instrument Waving in the Martian Wind

    NASA Image and Video Library

    2008-10-16

    This frame from a series of images shows NASA Phoenix Mars Lander telltale instrument waving in the Martian wind. Documenting the telltale movement helps mission scientists and engineers determine what the wind is like on Mars.

  14. Wind-US Users Guide Version 3.0

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/. This manual describes the operation and use of Wind-US, a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Wind-US represents a merger of the capabilities of four CFD codes - NASTD (a structured grid flow solver developed at McDonnell Douglas, now part of Boeing), NPARC (the original NPARC Alliance structured grid flow solver), NXAIR (an AEDC structured grid code used primarily for store separation analysis), and ICAT (an unstructured grid flow solver developed at the Rockwell Science Center and Boeing).

  15. Acoustic noise generation by the DOE/NASA MOD-1 wind turbine

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.

    1981-01-01

    The results of a series of measurements taken over the past year of the acoustic emissions from the DOE/NASA MOD-1 Wind Turbine show the maximum acoustic energy is concentrated in the low frequency range, often below 100 Hz. The temporal as well as the frequency characteristics of the turbine sounds have been shown to be important since the MOD-1 is capable of radiating both coherent and incoherent noise. The coherent sounds are usually impulsive and are manifested in an averaged frequency domain plot as large numbers of discrete energy bands extending from the blade passage frequency to beyond 50 Hz on occasion. It is these impulsive sounds which are identified as the principal source of the annoyance to a dozen families living within 3 km of the turbine. The source of the coherent noise appears to be the rapid, unsteady blade loads encountered as the blade passes through the wake of the tower structure. Annoying levels are occasionally reached at nearby homes due to the interaction of the low frequency, high energy peaks in the acoustic impulses and the structural modes of the homes as well as by direct radiation outdoors. The peak levels of these impulses can be enhanced or subdued through complete propagation.

  16. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Image and Video Library

    2003-09-20

    These two images show Hurricane Isabel as viewed by AIRS and SeaWinds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429

  17. NASA Sees Post-Patricia Moisture, Winds Stalking the Mid-Atlantic

    NASA Image and Video Library

    2017-12-08

    The remnant moisture from what was once Hurricane Patricia and moisture from the Gulf of Mexico were being transported north by a trough of low pressure over Wisconsin. The clouds and moisture were streaming into the Eastern third of the U.S. on October 28, 2015. The hybrid system was generating windy conditions which were seen from NASA's RapidScat instrument, while NOAA's GOES-East satellite captured an image of the impressive and sizeable cloud cover. Read more: www.nasa.gov/feature/goddard/patricia-eastern-pacific-2015 Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Aeroacoustic Characterization of the NASA Ames Experimental Aero-Physics Branch 32- by 48-Inch Subsonic Wind Tunnel with a 24-Element Phased Microphone Array

    NASA Technical Reports Server (NTRS)

    Costanza, Bryan T.; Horne, William C.; Schery, S. D.; Babb, Alex T.

    2011-01-01

    The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic measurements with a phased microphone array was recently explored. Acoustic characterization of the wind tunnel was carried out with a floor-mounted 24-element array and two ceiling-mounted speakers. The minimum speaker level for accurate level measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and streamwise speaker locations. A variety of post-processing procedures, including conventional beamforming and deconvolutional processing such as TIDY, were used. The speaker measurements, with and without flow, were used to compare actual versus simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel background noise were found valuable for predicting sound levels for which the speakers were detectable when the wind was on. Speaker sources were detectable 2 - 10 dB below the peak background noise level with conventional data processing. The effectiveness of background noise cross-spectral matrix subtraction was assessed and found to improve the detectability of test sound sources by approximately 10 dB over a wide frequency range.

  19. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  20. Characteristics and Trade-Offs of Doppler Lidar Global Wind Profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G David

    2004-01-01

    Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.

  1. Seismic Coupling of Short-Period Wind Noise Through Mars' Regolith for NASA's InSight Lander

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; Stevanović, J.; Wookey, J.; Murdoch, N.; Hurley, J.; Myhill, R.; Bowles, N. E.; Calcutt, S. B.; Pike, W. T.

    2017-10-01

    NASA's InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3-1.0 mm, surface densities of 1.3-1.8 g cm^{-3}, and an effective regolith Young's modulus of 2.5^{+1.9}_{-1.4} MPa. At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02-0.04 for the vertical component and 0.01-0.02 for the horizontal component. These values are 3-6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be ˜2×10^{-10} ms^{-2} Hz^{-1/2} with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of 10^{-8} ms^{-2} Hz^{-1/2}.

  2. The Testing Behind the Test Facility: the Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.

  3. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  4. Mod-0A Wind Turbine in Block Island, Rhode Island

    NASA Image and Video Library

    1979-06-21

    A Mod-0A 200-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Block Island, Rhode Island. The wind turbine program was a joint program between NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed at NASA’s Plum Brook Station. This Mod-0A 200-kilowatt turbine, completed in 1977, was the program’s second-generation device. It included a 125-foot diameter blade atop a 100-foot tall tower. This early wind turbine was designed determine its operating problems, integrate with the local utilities, and assess the attitude of the local community. There were additional Mod-0A turbines built in Culebra, Puerto Rico; Clayton, New Mexico; and Oahu, Hawaii. The Mod-0A turbines suffered durability issues with the rotor blade and initially appeared unreliable. NASA engineers addressed the problems, and the turbines proved to be reliable and efficient devices that operated for a number of years. The information gained from these early models was vital to the design and improvement of the later generations.

  5. Application of Pressure-Based Wall Correction Methods to Two NASA Langley Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Everhart, J. L.

    2001-01-01

    This paper is a description and status report on the implementation and application of the WICS wall interference method to the National Transonic Facility (NTF) and the 14 x 22-ft subsonic wind tunnel at the NASA Langley Research Center. The method calculates free-air corrections to the measured parameters and aerodynamic coefficients for full span and semispan models when the tunnels are in the solid-wall configuration. From a data quality point of view, these corrections remove predictable bias errors in the measurement due to the presence of the tunnel walls. At the NTF, the method is operational in the off-line and on-line modes, with three tests already computed for wall corrections. At the 14 x 22-ft tunnel, initial implementation has been done based on a test on a full span wing. This facility is currently scheduled for an upgrade to its wall pressure measurement system. With the addition of new wall orifices and other instrumentation upgrades, a significant improvement in the wall correction accuracy is expected.

  6. Wind Generators

    NASA Technical Reports Server (NTRS)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  7. Wind profiler signal detection improvements

    NASA Technical Reports Server (NTRS)

    Hart, G. F.; Divis, Dale H.

    1992-01-01

    Research is described on potential improvements to the software used with the NASA 49.25 MHz wind profiler located at Kennedy Space Center. In particular, the analysis and results are provided of a study to (1) identify preferred mathematical techniques for the detection of atmospheric signals that provide wind velocities which are obscured by natural and man-made sources, and (2) to analyze one or more preferred techniques to demonstrate proof of the capability to improve the detection of wind velocities.

  8. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  9. NASA's Solar Observing Fleet Watch Comet ISON's Journey Around the Sun

    NASA Image and Video Library

    2013-11-22

    Comet ISON makes its appearance into the higher-resolution HI-1 camera on the STEREO-A spacecraft. The dark "clouds" coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke's tail. These kinds of solar wind interactions give us valuable information about solar wind conditions near the sun. Note: the STEREO-A spacecraft is currently located on the other side of the Sun, so it sees a totally different geometry to what we see from Earth. Credit: Karl Battams/NASA/STEREO/CIOC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Wind energy: Resources, systems, and regional strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grubb, M.J.; Meyer, N.I.

    1993-12-31

    Wind power is already cost competitive with conventional modes of electricity generation under certain conditions and could, if widely exploited, meet 20 percent or more of the world`s electricity needs within the next four to five decades. The greatest wind potential exists in North America, the former Soviet Union, Africa, and (to a lesser extent), South America, Australia, southern Asia, and parts of Europe. In all these areas, wind can make a significant contribution to the energy supply. In regions of the developing world and in island communities, wind can operate with storage and displace diesel fuel. In more developedmore » areas, wind-generated electricity can be channeled directly into the grid, providing an environmentally benign alternative to fossil fuels. Indeed, wind power can contribute as much as 25 to 45 percent of a grid`s energy supply before economic penalties become prohibitive; the presence of storage facilities or hydroelectric power would increase wind`s share still further. Despite a promising future, opportunities for wind power development are probably being missed because too little is known about either the resource or the technology. International efforts are badly needed to obtain better data and to disseminate technological information around the world. Even then, the extent to which wind is exploited will depend on public reaction and on the willingness of governments to embrace the technology. Action that governments might take to promote wind include providing strategic incentives to further its deployment, funding research on wind resources, taxing fossil fuels to reflect their social costs, and allowing independent wind generators adequate access to electricity systems. 74 refs., 15 figs., 10 tabs.« less

  11. NASA Lewis Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Haller, Henry C.

    1994-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.

  12. Wind Profiling from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Koch, G. J.; Kavaya, M. J.; Yu, J.; Beyon, J. Y.; Demoz, B.

    2009-12-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled “Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-μm coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors are currently being analyzed and should be available for presentation at the Conference.

  13. GRC-11-02-17-WindTunnel-9x15-001

    NASA Image and Video Library

    2017-11-02

    The Aerosciences Evaluation and Test Capabilities (AETC) Portfolio implemented the Capability Challenge to “Reduce Background Noise Levels for Engine Efficiency Measurements at the NASA Glenn 9x15 Low Speed Wind Tunnel”. The 9x15 Low Speed Wind Tunnel Acoustic Improvements animation documents the acoustic modifications being made to the 9x15 leg of the wind tunnel to reduce background noise levels. A brief history of the 9x15, research testing performed in the wind tunnel, the need to reduce background noise, and the five state of the art acoustic design modifications are documented in the animation. The expected noise reduction is presented audibly and the resulting benefit to NASA is also defined.

  14. Wind Lidar Edge Technique Shuttle Demonstration Mission: Anemos

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Bundas, David J.; Martino, Anthony J.; Carnahan, Timothy M.; Zukowski, Barbara J.

    1998-01-01

    A NASA mission is planned to demonstrate the technology for a wind lidar. This will implement the direct detection edge technique. The Anemos instrument will fly on the Space Transportation System (STS), or shuttle, aboard a Hitchhiker bridge. The instrument is being managed by the Goddard Space Flight Center as an in-house build, with science leadership from the GSFC Laboratory for Atmospheres, Mesoscale Atmospheric Processes Branch. During a roughly ten-day mission, the instrument will self calibrate and adjust for launch induced mis-alignments, and perform a campaign of measurements of tropospheric winds. The mission is planned for early 2001. The instrument is being developed under the auspices of NASA's New Millennium Program, in parallel with a comparable mission being managed by the Marshall Space Flight Center. That mission, called SPARCLE, will implement the coherent technique. NASA plans to fly the two missions together on the same shuttle flight, to allow synergy of wind measurements and a direct comparison of performance.

  15. NASA Advanced Supercomputing Facility Expansion

    NASA Technical Reports Server (NTRS)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  16. Wind effects on Martian soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false-color combination image highlights details of wind effects on the Martian soil at the Pathfinder landing site. Red and blue filter images have been combined to enhance brightness contrasts among several soil units. Martian winds have distributed these lighter and darker fine materials in complex patterns around the rocks in the scene (blue). For scale, the rock at right center is 16 centimeters (6.3 inches) long. This scene is one of several that will be monitored weekly for changes caused by wind activity.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Current Background Noise Sources and Levels in the NASA Ames 40- by 80-Foot Wind Tunnel: A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Jaeger, Stephen; Soderman, Paul; Koga, Dennis (Technical Monitor)

    1999-01-01

    Background noise measurements were made of the acoustic environment in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The measurements were acquired subsequent to the 40x80 Aeroacoustic Modernization Project, which was undertaken to improve the anechoic characteristics of the 40x80's closed test section as well as reduce the levels of background noise in the facility. The resulting 40x80 anechoic environment was described by Soderman et. al., and the current paper describes the resulting 40x80 background noise, discusses the sources of the noise, and draws comparisons to previous 40x80 background noise levels measurements. At low wind speeds or low frequencies, the 40x80 background noise is dominated by the fan drive system. To obtain the lowest fan drive noise for a given tunnel condition, it is possible in the 40x80 to reduce the fans' rotational speed and adjust the fans' blade pitch, as described by Schmidtz et. al. This idea is not new, but has now been operationally implemented with modifications for increased power at low rotational speeds. At low to mid-frequencies and at higher wind speeds, the dominant noise mechanism was thought to be caused by the surface interface of the previous test section floor acoustic lining. In order to reduce this noise mechanism, the new test section floor lining was designed to resist the pumping of flow in and out of the space between the grating slats required to support heavy equipment. In addition, the lining/flow interface over the entire test section was designed to be smoother and quieter than the previous design. At high wind speeds or high frequencies, the dominant source of background noise in the 40x80 is believed to be caused by the response of the in-flow microphone probes (required by the nature of the closed test section) to the fluctuations in the freestream flow. The resulting background noise levels are also different for probes of various

  18. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  19. NASA/MSFC FY-84 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Compiler); Porter, F. (Compiler)

    1984-01-01

    The two main areas of focus for NASA/MSFC's atmospheric research program are: (1) global scale processes (geophysical fluid processes, satellite Doppler lidar wind profiler, and satellite data analyses) and (2) mesoscale processes (atmospheric electricity (lightning), ground/airborne Doppler lidar wind measurements, and mesoscale analyses and space sensors). Topics within these two general areas are addressed.

  20. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  1. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  2. Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2002-11-26

    Navajo Code Talker Joe Morris, Sr. shared insights from his time as a secret World War Two messenger with his audience at NASA's Dryden Flight Research Center on Nov. 26, 2002. NASA Dryden is located on Edwards Air Force Base in California's Mojave Desert.

  3. The NASA/MSFC Coherent Lidar Technology Advisory Team

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.

  4. NASA CYGNSS Ocean Wind Observations in the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Balasubramaniam, R.; Mayers, D.; McKague, D. S.

    2017-12-01

    The CYGNSS constellation of eight satellites was successfully launched on 15 December 2016 into a low inclination (tropical) Earth orbit to measure ocean surface wind speed in the inner core of tropical cyclones with better than 12 hour refresh rates. Each satellite carries a four-channel bi-static radar receiver that measures GPS signals scattered by the ocean, from which ocean surface roughness, near surface wind speed, and air-sea latent heat flux are estimated. The measurements are unique in several respects, most notably in their ability to penetrate through all levels of precipitation, made possible by the low frequency at which GPS operates, and in the frequent sampling of tropical cyclone intensification, made possible by the large number of satellites. Level 2 science data products have been developed for near surface (10 m referenced) ocean wind speed, ocean surface roughness (mean square slope) and latent heat flux. Level 3 gridded versions of the L2 products have also been developed. A set of Level 4 products have also been developed specifically for direct tropical cyclone overpasses. These include the storm intensity (peak sustained winds) and size (radius of maximum winds), its extent (34, 50 and 64 knot wind radii), and its integrated kinetic energy. Results of measurements made during the 2017 Atlantic hurricane season, including frequent overpasses of Hurricanes Harvey, Irma and Maria, will be presented.

  5. NASA's Interests in Bioregenerative Life Support

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  6. Large Horizontal-Axis Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, R. W. (Editor)

    1982-01-01

    The proceedings of a workshop held in Cleveland, July 28-30, 1981 are described. The workshop emphasized recent experience in building and testing large propeller-type wind turbines, expanding upon the proceedings of three previous DOE/NASA workshops at which design and analysis topics were considered. A total of 41 papers were presented on the following subjects: current and advanced large wind turbine systems, rotor blade design and manufacture, electric utility activities, research and supporting technology, meteorological characteristics for design and operation, and wind resources assessments for siting.

  7. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  8. Power from the Wind

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Wind energy is the fastest-growing renewable energy source in the world. Over the last 20 years, the wind industry has done a very good job of engineering machines, improving materials, and economies of production, and making this energy source a reality. Like all renewable energy forms, wind energy's successful application is site specific. Also,…

  9. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  10. Large wind-turbine projects in the United States wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Robbins, W. H.

    1980-01-01

    The technological development of large, horizontal-axis wind turbines (100 kW-2500 kW) is surveyed with attention to prototype projects managed by NASA. Technical feasibility has been demonstrated in utility service for systems with a rated power of up to 200 kW and a rotor diameter of 125 ft (Mod-OA). Current designs of large wind turbines such as the 2500 kW Mod-2 are projected to be cost competitive for utility applications when produced in quantity, with capital costs of 600 to 700 dollars per kW (in 1977 dollars).

  11. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  12. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  13. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. WIND Flow Solver Released

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.

    1999-01-01

    The WIND code is a general-purpose, structured, multizone, compressible flow solver that can be used to analyze steady or unsteady flow for a wide range of geometric configurations and over a wide range of flow conditions. WIND is the latest product of the NPARC Alliance, a formal partnership between the NASA Lewis Research Center and the Air Force Arnold Engineering Development Center (AEDC). WIND Version 1.0 was released in February 1998, and Version 2.0 will be released in February 1999. The WIND code represents a merger of the capabilities of three existing computational fluid dynamics codes--NPARC (the original NPARC Alliance flow solver), NXAIR (an Air Force code used primarily for unsteady store separation problems), and NASTD (the primary flow solver at McDonnell Douglas, now part of Boeing).

  15. Wilma Winds Whip Mexico Yucatan

    NASA Image and Video Library

    2005-10-21

    The eye of Hurricane Wilma, a menacing Category 4 storm, approaches the northeastern tip of Mexico Yucatan Peninsula in this October 21 image from NASA QuikScat satellite, depicting relative wind speeds and direction.

  16. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  17. Stereo Images of Wind Tails Near Chimp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This stereo image pair of the rock 'Chimp' was taken by the Sojourner rover's front cameras on Sol 72 (September 15). Fine-scale texture on Chimp and other rocks is clearly visible. Wind tails, oriented from lower right to upper left, are seen next to small pebbles in the foreground. These were most likely produced by wind action.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Aerodynamic design of the contoured wind-tunnel liner for the NASA supercritical, laminar-flow-control, swept-wing experiment

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Anderson, E. C.; Peterson, J. B., Jr.

    1984-01-01

    An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them.

  19. Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2005-01-01

    The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

  20. The NASA-LeRC wind turbine sound prediction code

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1981-01-01

    Development of the wind turbine sound prediction code began as part of an effort understand and reduce the noise generated by Mod-1. Tone sound levels predicted with this code are in good agreement with measured data taken in the vicinity Mod-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may amplify the actual sound levels by 6 dB. Parametric analysis using the code shows that the predominant contributors to Mod-1 rotor noise are (1) the velocity deficit in the wake of the support tower, (2) the high rotor speed, and (3) off-optimum operation.

  1. Rapid Intensification of Hurricane Irma Seen in New SMAP Wind Images

    NASA Image and Video Library

    2017-09-05

    This pair of images shows ocean surface wind speeds for Hurricane Irma as observed at 5:26 a.m. EDT on Sept. 4, 2017 (top) and 24.5 hours later at 6:02 a.m. EDT on September 5th (bottom) by the radiometer instrument on NASA's Soil Moisture Active Passive (SMAP) satellite. Color indicates wind speed, with red being highest and blue lowest. Irma intensified from a Category 2 hurricane on Sept. 4 with observed wind speed of 106 miles per hour (47.5 meters per second) to a Category 5 hurricane on Sept. 5 with a maximum observed wind speed of 160 miles per hour (71.4 meters per second). https://photojournal.jpl.nasa.gov/catalog/PIA21939

  2. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  3. Wind Carved Rock

    NASA Image and Video Library

    2016-10-19

    The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111

  4. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot Low Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. A.; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low Speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  5. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  6. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  7. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  8. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David; Schoenenberger, Mark

    2017-01-01

    A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.

  9. 7. VIEW WEST OF SCALE ROOM IN FULLSCALE WIND TUNNEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST OF SCALE ROOM IN FULL-SCALE WIND TUNNEL; SCALES ARE USED TO MEASURE FORCES ACTING ON MODEL AIRCRAFT SUSPENDED ABOVE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  10. The NASA Technical Report Server

    NASA Astrophysics Data System (ADS)

    Nelson, M. L.; Gottlich, G. L.; Bianco, D. J.; Paulson, S. S.; Binkley, R. L.; Kellogg, Y. D.; Beaumont, C. J.; Schmunk, R. B.; Kurtz, M. J.; Accomazzi, A.; Syed, O.

    The National Aeronautics and Space Act of 1958 established the National Aeronautics and Space Administration (NASA) and charged it to "provide for the widest practicable and appropriate dissemination of information concerning...its activities and the results thereof". The search for innovative methods to distribute NASA's information led a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems .

  11. 5. VIEW NORTH OF TEST SECTION IN FULLSCALE WIND TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTH OF TEST SECTION IN FULL-SCALE WIND TUNNEL WITH FREE-FLIGHT MODEL OF A BOEING 737 SUSPENDED FROM A SAFETY CABLE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  12. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  13. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  14. High-energy, 2µm laser transmitter for coherent wind LIDAR

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  15. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely

  16. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final

  1. Wind and Water?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03284 Wind and Water?

    The deposits within this crater show evidence of erosion by both wind and water. The region outside the crater is dominated by wind erosion.

    Image information: VIS instrument. Latitude 1.4N, Longitude 204.1E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Results of the AFRSI rewaterproofing systems screening test in the NASA/Ames Research Center (ARC) 2 x 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Kingsland, R. B.

    1985-01-01

    An experimental investigation was conducted in the NASA/Ames Research Center 2x2-foot Transonic Wind Tunnel to evaluate two AFRSI rewaterproofing systems and to investigate films as a means of reducing blanket joint distortion. The wind tunnel wall slot configuration influenced on the flow field over the test panel was investigated; primarily using oil flow data, and resulted in a closed slot configuration to provide a satisfactory screening environment flow field for the test. Sixteen AFRSI test panels, configured to represent the test system or film, were subjected to this screening environment (a flow field of separated and reattached flow at a freestream Mach numnber of 0.65 and q = 650 or 900 psf). Each condition was held until damage to the test article was observed or 55 minutes if no damage was incurred. All objectives related to AFRSI rewaterproofing and to the use of films to stiffen the blanket fibers were achieved.

  3. Hurricane Imaging Radiometer (HIRAD) Observations of Brightness Temperatures and Ocean Surface Wind Speed and Rain Rate During NASA's GRIP and HS3 Campaigns

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.

    2012-01-01

    HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.

  4. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Birchenough, A. G.

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  5. Operational results for the experimental DOE/NASA Mod-OA wind turbine project

    NASA Technical Reports Server (NTRS)

    Shaltens, R. K.; Birchenough, A. G.

    1983-01-01

    The Mod-OA wind turbine project which was to gain early experience in the operation of large wind turbines in a utility environment is discussed. The Mod-OA wind turbines were a first generation design, and even though not cost effective, the operating experience and performance characteristics had a significant effect on the design and development of the second and third generation machines. The Mod-OA machines were modified as a result of the operational experience, particularly the blade development and control system strategy. The results of study to investigate the interaction of a Mod-OA wind turbine with an isolated diesel generation system are discussed. The machine configuration, its advantages and disadvantages and the machine performance and availability are discussed.

  6. Spatial Information Processing: Standards-Based Open Source Visualization Technology

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2009-12-01

    . Spatial information intelligence is a global issue that will increasingly affect our ability to survive as a species. Collectively we must better appreciate the complex relationships that make life on Earth possible. Providing spatial information in its native context can accelerate our ability to process that information. To maximize this ability to process information, three basic elements are required: data delivery (server technology), data access (client technology), and data processing (information intelligence). NASA World Wind provides open source client and server technologies based on open standards. The possibilities for data processing and data sharing are enhanced by this inclusive infrastructure for geographic information. It is interesting that this open source and open standards approach, unfettered by proprietary constraints, simultaneously provides for entirely proprietary use of this same technology. 1. WHY WORLD WIND? NASA World Wind began as a single program with specific functionality, to deliver NASA content. But as the possibilities for virtual globe technology became more apparent, we found that while enabling a new class of information technology, we were also getting in the way. Researchers, developers and even users expressed their desire for World Wind functionality in ways that would service their specific needs. They want it in their web pages. They want to add their own features. They want to manage their own data. They told us that only with this kind of flexibility, could their objectives and the potential for this technology be truly realized. World Wind client technology is a set of development tools, a software development kit (SDK) that allows a software engineer to create applications requiring geographic visualization technology. 2. MODULAR COMPONENTRY Accelerated evolution of a technology requires that the essential elements of that technology be modular components such that each can advance independent of the other

  7. New NASA Images of Irma's Towering Clouds

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 a.m. local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. The animated GIF shows Irma's motion over the seven minutes of the MISR imagery. North is toward the top of the image. This composite image shows Hurricane Irma as viewed by the central, downward-looking camera (left), as well as the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. At the time the image was acquired, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour, according to the National Oceanic and Atmospheric Administration. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. These data were captured during Terra orbit 94267. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21946

  8. Impacts of Wind Farms on Local Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.

    2012-12-01

    The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean

  9. Wind shear detection. Forward-looking sensor technology

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M. (Compiler); Delnore, V. E. (Compiler)

    1987-01-01

    A meeting took place at NASA Langley Research Center in February 1987 to discuss the development and eventual use of forward-looking remote sensors for the detection and avoidance of wind shear by aircraft. The participants represented industry, academia, and government. The meeting was structured to provide first a review of the current FAA and NASA wind shear programs, then to define what really happens to the airplane, and finally to give technology updates on the various types of forward-looking sensors. This document is intended to informally record the essence of the technology updates (represented here through unedited duplication of the vugraphs used), and the floor discussion following each presentation. Also given are key issues remaining unresolved.

  10. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  11. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  12. Enhancing the NASA Prediction of Worldwide Energy Resource Web Data Delivery System with Geographic Information System (GIS) Capabilities

    NASA Technical Reports Server (NTRS)

    Chandler, William S.; Stackhouse, Paul W., Jr.; Barnett, Audy J.; Hoell, James M.; Westberg, David J.; Ross, Amanda I.

    2015-01-01

    Renewable energy technologies are changing the face of the world's energy market. Currently, these technologies are being incorporated within existing structures to increase energy efficiency. Crucial to the success of the emerging renewable market is the availability of accurate, global solar radiation, and meteorology data. This poster traces the history of the development of an effort to distribute data parameters from NASA's research for use in the energy sector applications spanning from renewable energy to energy efficiency. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings.

  13. Comparison between design and installed acoustic characteristics of NASA Lewis 9- by 15-foot low-speed wind tunnel acoustic treatment

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1990-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.

  14. Measuring tropospheric wind with microwave sounders

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  15. NASA superconducting magnetic mirror facility

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Obloy, S. J.; Nagy, L. A.; Brady, F. J.

    1973-01-01

    This report summarizes the design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coil is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3SN superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

  16. Large experimental wind turbines: Where we are now

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1976-01-01

    Several large wind turbine projects have been initiated by NASA-Lewis as part of the ERDA wind energy program. The projects consist of progressively large wind turbine ranging from 100 kW with a rotor diameter of 125 feet to 1500 kW with rotor diameters of 200 to 300 feet. Also included is supporting research and technology for large wind turbines and for lowering the costs and increasing the reliability of the major wind turbine components. The results and status of the above projects are briefly discussed in this report. In addition, a brief summary and status of the plans for selecting the utility sites for the experimental wind turbines is also discussed.

  17. Wind Energy Developments: Incentives In Selected Countries

    EIA Publications

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  18. Issues in NASA Program and Project Management: Focus on Project Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics addressed include: Planning and scheduling training for working project teams at NASA, overview of project planning and scheduling workshops, project planning at NASA, new approaches to systems engineering, software reliability assessment, and software reuse in wind tunnel control systems.

  19. NASA's Contribution to Global Space Geodesy Networks

    NASA Technical Reports Server (NTRS)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  20. Long Term Missions at the Sun-Earth Libration Point L1: ACE, SOHO, and WIND

    NASA Technical Reports Server (NTRS)

    Roberts, Craig E.

    2011-01-01

    Three heliophysics missions - the Solar Heliospheric Observatory (SOHO), the Advanced Composition Explorer (ACE), and the Global Geoscience WIND - have been orbiting the Sun-Earth interior libration point L1 continuously since 1996, 1997, and 2004, respectively. ACE and WIND (both NASA missions) and SOHO (an ESA-NASA joint mission) are all operated from the NASA Goddard Space Flight Center Flight Dynamics Facility. While ACE and SOHO have been dedicated libration point orbiters since their launches, WIND prior to 2004 flew a remarkable 10-year deep-space trajectory that featured 38 targeted lunar flybys. The L1 orbits and the mission histories of the three spacecraft are briefly reviewed, and the station-keeping techniques and orbit maneuver experience are discussed.

  1. Large horizontal axis wind turbine development

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Thomas, R. L.

    1979-01-01

    An overview of the NASA activities concerning ongoing wind systems oriented toward utility application is presented. First-generation-technology large wind turbines were designed and are in operation at selected utility sites. In order to make a significant energy impact, costs of 2 to 3 cents per kilowatt hour must be achieved. The federal program continues to fund the development by industry of wind turbines which can meet the cost goals of 2 to 3 cents per kilowatt hour. Lower costs are achieved through the incorporation of new technology and innovative system design to reduce weight and increase energy capture.

  2. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  3. Why credible propeller noise measurements are possible in the acoustically untreated NASA Lewis 8 ft by 6 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    An explanation is presented for the lack of acoustic reflections in noise studies of propfan models in the NASA-Lewis 8 x 6 ft wind tunnel, where trials were run at Mach numbers 0.5-0.85. The highly directional propeller noise, i.e., mainly in the plane of rotation, experiences a convective effect due to the high subsonic axial Mach number. Reflected sounds are carried downstream, out of range of the acoustic sensors in the tunnel. Furthermore, reflected noise is less audible, and therefore does not affect measurements near peak values. It is suggested that some data contamination may occur below Mach 0.6, and that measurements be performed on higher harmonics generated by low level reflected noise.

  4. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  5. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  6. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  7. Customizing NASA's Earth Science Research Products for addressing MENA Water Challenges

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2012-01-01

    As projected by IPCC 2007 report, by the end of this century the Middle East North Mrica (MENA) region is projected to experience an increase of 3 C to 5 C rise in mean temperatures and a 20% decline in precipitation. This poses a serious problem for this geographic zone especially when majority of the hydrological consumption is for the agriculture sector and the remaining amount is for domestic consumption. In late 2011, the World Bank, USAID and NASA have joined hands to establishing integrated, modem, up to date NASA developed capabilities for various countries in the MENA region for addressing water resource issues and adapting to climate change impacts for improved decision making for societal benefits. The main focus of this undertaking is to address the most pressing societal issues which can be modeled and solved by utilizing NASA Earth Science remote sensing data products and hydrological models. The remote sensing data from space is one of the best ways to study such complex issues and further feed into the decision support systems. NASA's fleet of Earth Observing satellites offer a great vantage point from space to look at the globe and provide vital signs necessary to maintain healthy and sustainable ecosystem. NASA has over fifteen satellites and thirty instruments operating on these space borne platforms and generating over 2000 different science products on a daily basis. Some of these products are soil moisture, global precipitation, aerosols, cloud cover, normalized difference vegetation index, land cover/use, ocean altimetry, ocean salinity, sea surface winds, sea surface temperature, ozone and atmospheric gasses, ice and snow measurements, and many more. All of the data products, models and research results are distributed via the Internet freely through out the world. This project will utilize several NASA models such as global Land Data Assimilation System (LDAS) to generate hydrological states and fluxes in near real time. These LDAS products

  8. Space capsule mounted in the Full Scale Wind Tunnel

    NASA Image and Video Library

    1959-01-22

    The Mercury space capsule undergoing tests in Full Scale Wind Tunnel, January 1959. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 75, by James Schultz. Also Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958, page 389, by James R. Hansen.

  9. NASA/FAA Tailplane Icing Program Overview

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  10. NASA Worldwide Emergency Medical Assistance

    NASA Technical Reports Server (NTRS)

    Martin, George A.; Tipton, David A.; Long, Irene D.

    1997-01-01

    In an effort to maintain employee health and welfare, ensure customer satisfaction, and to deliver high quality emergency medical care when necessary to employees located overseas, NASA has instituted a new contract with International SOS Assistance INC. International SOS Assistance INC. will provide civil servants and contractors engaged in official NASA business with many services upon request during a medical or personal emergency. Through the years, International SOS Assistance INC. has developed the expertise necessary to provide medical service in all remote areas of the world. One phone call connects you to the SOS network of multilingual staff trained to help resolve travel, medical, legal, and security problems. The SOS network of critical care and aeromedical specialists operates 24 hours a day, 365 days a year from SOS Alarm Centers around the world. This exhibit illustrates the details of the NASA-International SOS Assistance INC. agreement.

  11. 11. INTERIOR VIEW OF 8FOOT HIGH SPEED WIND TUNNEL. SAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL. SAME CAMERA POSITION AS VA-118-B-10 LOOKING IN THE OPPOSITE DIRECTION. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  12. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1993-01-01

    The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.

  13. C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.

    2015-12-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.

  14. Wind-Related Topography in Phoenix's Region of Mars (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This movie shifts from a global zoom indicating the Phoenix landing area on Mars to a topographical map indicating relative elevations in the landing region. The elevations could affect wind patterns at the site.

    In particular, Phoenix is in a broad, shallow valley. The edge of the valley, about 150 meters (500 feet) above the floor, may provide enough of a slope to the east of Phoenix to explain winds coming from the east during nights at the site. Cooler, denser air could be sinking down the slope and toward the lander.

    Atmospheric scientists on the Phoenix team are analyzing wind patterns to distiguish effects of nearby topography from larger-scale movement of the atmosphere in the polar region.

    The elevation information for this topographical mapping comes from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. The blue-coded area is the valley floor. Orange and yellow indicate relatively higher elevations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver. JPL managed the Mars Global Surveyor mission for the NASA Science Mission Directorate.

  15. Wind energy - A utility perspective

    NASA Astrophysics Data System (ADS)

    Fung, K. T.; Scheffler, R. L.; Stolpe, J.

    1981-03-01

    Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.

  16. Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, I.; Flowers, L.; Kelly, M.

    2009-05-01

    As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program'smore » objectives, goals, approach, and results.« less

  17. Evaluation of the NASA Ames no. 1 7 by 10 foot wind tunnel as an acoustic test facility

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1975-01-01

    Measurements were made in the no. 1 7'x10' wind tunnel at NASA Ames Research Center, with the objectives of defining the acoustic characteristics and recommending minimum cost treatments so that the tunnel can be converted into an acoustic research facility. The results indicate that the noise levels in the test section are due to (a) noise generation in the test section, associated with the presence of solid bodies such as the pitot tube, and (b) propagation of acoustic energy from the fan. A criterion for noise levels in the test section is recommended, based on low-noise microphone support systems. Noise control methods required to meet the criterion include removal of hardware items for the test section and diffuser, improved design of microphone supports, and installation of acoustic treatment in the settling chamber and diffuser.

  18. Noise measurements from an ejector suppressor nozzle in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas

    1990-01-01

    Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.

  19. NASA Satellite Image of Tropical Cyclone Ului

    NASA Image and Video Library

    2017-12-08

    NASA image acquired March 18, 2010. Tropical Cyclone Ului persisted south of the Solomon Islands on March 18, 2010. A bulletin from the U.S. Navy’s Joint Typhoon Warning Center (JTWC) issued the same day reported that the cyclone had maximum sustained winds of 80 knots (150 kilometers per hour) and gusts up to 100 knots (185 kilometers per hour). Although still strong, the wind speeds had significantly diminished over the previous few days. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the storm on March 18, 2010. North of the storm lie the Solomon Islands (shown in the high-resolution image). Southeast of the storm is New Caledonia. Ului’s eye appears to span 100 kilometers (60 miles) and the whole storm spans several hundred kilometers. As of 15:00 UTC on March 18 (2:00 a.m. on March 19 in Sydney, Australia), Ului was roughly 670 nautical miles (1,240 kilometers) east of Cairns, Australia. The JTWC reported that Ului had been moving southward and was expected to turn west and accelerate toward Australia. The JTWC forecast that Ului would make landfall over the northeastern Queensland coast and diminish over land. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS To learn more about this image go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43180

  20. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  1. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  2. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation: Doppler Aerosol WiNd Lidar (DAWN). Interim Review #1 (6 months)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Amzajerdian, Farzin; Trieu, Bo C.; Petros, Mulugeta

    2006-01-01

    A new project, selected in 2005 by NASA's Science Mission Directorate (SMD), under the Instrument Incubator Program (IIP), will be described. The 3-year effort is intended to design, fabricate, and demonstrate a packaged, rugged, compact, space-qualifiable coherent Doppler wind lidar (DWL) transceiver capable of future validation in an aircraft and/or Unmanned Aerial Vehicle (UAV). The state-of-the-art 2-micron coherent DWL breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent DWL system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid DWL solution to the need for global tropospheric wind measurements.

  3. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  4. EDITORIAL: Wind energy

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  5. Construction of a Mod-0A Wind Turbine in Clayton, New Mexico

    NASA Image and Video Library

    1977-11-21

    TA Mod-0A 200-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Clayton, New Mexico. The wind turbine program was a joint effort by NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed built at NASA’s Plum Brook Station. This Mod-0A 200-kilowatt turbine built in Clayton in 1977 was the program’s second device. It included a 125-foot long blade atop a 100-foot tall tower. The Mod-0A was designed to determine the turbine’s operating problems, integrate the system with the local utilities, and assess the attitude of the local community. There were additional Mod-0A turbines built in Culebra, Puerto Rico; Block Island, Rhode Island; and Oahu, Hawaii. The Mod-0A turbines were initially unreliable and suffered issues with the durability of the rotor blade. Lewis engineers addressed the problems, and the wind turbines proved to be reliable and efficient devices that operated for a number of years. The information gained from these early models was vital to the design and improvement of the later generations.

  6. Next Generation Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheraghi, S. Hossein; Madden, Frank

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the researchmore » and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.« less

  7. Low cost composite materials for wind energy conversion systems

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1980-01-01

    A winding process utilizing a low-cost E-glass fabric called transverse-filament tape for low-cost production of wind turbine generators (WTG) is described. The process can be carried out continuously at high speed to produce large one-piece parts with tapered wall thicknesses on a tapered mandrel. It is being used to manufacture blades for the NASA/DOE 200-ft-diameter MOD-1 WTG and Rockwell/DOE 40-kW small wind energy conversion system (SWECS).

  8. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  9. Acoustical evaluation of the NASA Lewis 9 by 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1992-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel was acoustically treated to allow the measurement of acoustic sources located within the tunnel test section under simulated free field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and to withstand tunnel airflow velocities up to 0.2 Mach. Evaluation tests with no tunnel airflow were conducted in the test section to assess the performance of the installed treatment. This performance would not be significantly affected by low speed airflow. Time delay spectrometry tests showed that interference ripples in the incident signal resulting from reflections occurring within the test section average from 1.7 dB to 3.2 dB wide over a 500 to 5150 Hz frequency range. Late reflections, from upstream and downstream of the test section, were found to be insignificant at the microphone measuring points. For acoustic sources with low directivity characteristics, decay with distance measurements in the test section showed that incident free field behavior can be measured on average with an accuracy of +/- 1.5 dB or better at source frequencies from 400 Hz to 10 kHz. The free field variations are typically much smaller with an omnidirectional source.

  10. Wind Drifts at Viking 1 Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image is of so-called wind drifts seen at the Viking 1 landing site. These are somewhat different from the features seen at the Pathfinder site in two important ways. 1) These landforms have no apparent slip-or avalanche-face as do both terrestrial dunes and the Pathfinder features, and may represent deposits of sediment falling from the air, as opposed to dune sand, which 'hops' or saltates along the ground; 2) these features may indicate erosion on one side, because of the layering and apparent scouring on their right sides. They may, therefore have been deposited by a wind moving left to right, partly or weakly cemented or solidified by surface processes at some later time, then eroded by a second wind (right to left), exposing their internal structure.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  11. Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers

    NASA Astrophysics Data System (ADS)

    1980-03-01

    Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.

  12. Wind energy developments in the 20th century

    NASA Technical Reports Server (NTRS)

    Vargo, D. J.

    1974-01-01

    Wind turbine systems for generating electrical power have been tested in many countries. Representative examples of turbines which have produced from 100 to 1250 kW are described. The advantages of wind energy consist of its being a nondepleting, nonpolluting, and free fuel source. Its disadvantages relate to the variability of wind and the high installation cost per kilowatt of capacity of wind turbines when compared to other methods of electric-power generation. High fuel costs and potential resource scarcity have led to a five-year joint NASA-NSF program to study wind energy. The program will study wind energy conversion and storage systems with respect to cost effectiveness, and will attempt to estimate national wind-energy potential and develop techniques for generator site selection. The studies concern a small-systems (50-250 kW) project, a megawatt-systems (500-3000 kW) project, supporting research and technology, and energy storage. Preliminary economic analyses indicate that wind-energy conversion can be competitive in high-average-wind areas.

  13. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  14. Applications of the DOE/NASA wind turbine engineering information system

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1981-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.

  15. Wind Measurements from a High Energy, Pulsed, 2-Micron, Coherent-Detection Doppler Lidar and Intercomparison with other sensors deployed during Field Campaign

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Koch, Grady; Kavaya, Michael; Yu, Jirong; Beyon, Jeffrey; Demoz, Belay

    2010-05-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center (LaRC) for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 and WB-57 aircraft. The WB-57 flights will present a more severe environment and will require autonomous operation of the lidar system. The DC-8 lidar system is a likely component of future NASA hurricane research. It will include real-time data processing and display, as well as full data archiving. The LaRC mobile lidar was deployed at Howard University facility in Beltsville, Maryland as part of NASA HQ funded (ROSES-2007, Wind Lidar Science Proposal entitled "Intercomparison of Multiple Lidars for Wind Measurements). During the campaign, testing of the lidar was combined with a field campaign to operate a 2-micron coherent lidar alongside a 355-nm direct detection lidar to demonstrate the hybrid wind lidar concept. Besides lidar, many other meteorological sensors were located at the campaign site, including wind measuring balloon sondes, sonic and propeller anemometers mounted on a tower, and a 915-MHz radio acoustic sounding system. Comparisons among these wind measurement sensors will be presented at the conference.

  16. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  17. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April '98 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; and others will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach. Many of these visualizations have been widely disseminated through the world wide web pages of the HPCC/LTP/RSD program which can be found at http://rsd.gsfc.nasa.gov/rsd The one min interval animations of Hurricane Luis on ABC Nightline and the color perspective rendering of Hurricane Fran published by TIME, LIFE, Newsweek, Popular Science, National Geographic, Scientific American, and the "Weekly Reader" are some of the examples which will be shown.

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. System Identification for the Clipper Liberty C96 Wind Turbine

    NASA Astrophysics Data System (ADS)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  1. Wind - Prototypes on the landscape

    NASA Astrophysics Data System (ADS)

    Smith, M. L.

    1981-12-01

    Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.

  2. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  3. The 80 megawatt wind power project at Kahuku Point, Hawaii

    NASA Technical Reports Server (NTRS)

    Laessig, R. R.

    1982-01-01

    Windfarms Ltd. is developing the two largest wind energy projects in the world. Designed to produce 80 megawatts at Kahuku Point, Hawaii and 350 megawatts in Solano County, California, these projects will be the prototypes for future large-scale wind energy installations throughout the world.

  4. Offshore Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strach-Sonsalla, Mareike; Stammler, Matthias; Wenske, Jan

    In 1991, the Vindeby Offshore Wind Farm, the first offshore wind farm in the world, started feeding electricity to the grid off the coast of Lolland, Denmark. Since then, offshore wind energy has developed from this early experiment to a multibillion dollar market and an important pillar of worldwide renewable energy production. Unit sizes grew from 450 kW at Vindeby to the 7.5 MW-class offshore wind turbines (OWT ) that are currently (by October 2014) in the prototyping phase. This chapter gives an overview of the state of the art in offshore wind turbine (OWT) technology and introduces the principlesmore » of modeling and simulating an OWT. The OWT components -- including the rotor, nacelle, support structure, control system, and power electronics -- are introduced, and current technological challenges are presented. The OWT system dynamics and the environment (wind and ocean waves) are described from the perspective of OWT modelers and designers. Finally, an outlook on future technology is provided. The descriptions in this chapter are focused on a single OWT -- more precisely, a horizontal-axis wind turbine -- as a dynamic system. Offshore wind farms and wind farm effects are not described in detail in this chapter, but an introduction and further references are given.« less

  5. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  6. The WindStar project

    NASA Astrophysics Data System (ADS)

    McCandless, Samuel W.; Jones, W. Linwood; Huxtable, Barton D.; Jones, Lawrence P.

    1996-03-01

    The ``WindStar'' project is a cooperative, cost-sharing venture between NASA's Earth Observations Commercial Applications Program (EOCAP), directed by the Stennis Space Center (SSC), and User Systems, Incorporated (USI), a Virginia-based remote sensing technology development company. The project seeks to establish the commercial viability of using twice-a-day satellite scatterometer data to produce marine wind forecasts for commercial television weather broadcasts. The WindStar product will be an animated, two dimensional map of wind speed and direction that evolves in time from the observed ``nowcast'' every 12 hours to a projected ``forecast''. Commercial television stations in coastal areas will incorporate this video into the weather segment of their news broadcasts to advise viewers, with both commercial and recreational interests, of coastal and off-shore conditions. While contributing to improved near shore marine operations for both recreational and commercial boaters, the proposed product would also be of use to commercial fishermen, coastal shipping operations, search and rescue operations, state and local governments, the Coast Guard, and the Navy. Projected new business plans include establishing and maintaining a ``Global Wind History'' archive that can be accessed on Internet.

  7. Analysing wind farm efficiency on complex terrains

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Terzi, Ludovico; Schaldemose Hansen, Kurt; Sanz Rodrigo, Javier

    2014-06-01

    Actual performances of onshore wind farms are deeply affected both by wake interactions and terrain complexity: therefore monitoring how the efficiency varies with the wind direction is a crucial task. Polar efficiency plot is therefore a useful tool for monitoring wind farm performances. The approach deserves careful discussion for onshore wind farms, where orography and layout commonly affect performance assessment. The present work deals with three modern wind farms, owned by Sorgenia Green, located on hilly terrains with slopes from gentle to rough. Further, onshore wind farm of Nprrekffir Enge has been analysed as a reference case: its layout is similar to offshore wind farms and the efficiency is mainly driven by wakes. It is shown and justified that terrain complexity imposes a novel and more consistent way for defining polar efficiency. Dependency of efficiency on wind direction, farm layout and orography is analysed and discussed. Effects of atmospheric stability have been also investigated through MERRA reanalysis data from NASA satellites. Monin-Obukhov Length has been used to discriminate climate regimes.

  8. New NASA Images of Irma's Towering Clouds (Anaglyph)

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 am local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. This stereo anaglyph combines two of the MISR angles to show a three-dimensional view of Irma. You will need red-blue glasses to view the anaglyph; place the red lens over your left eye. At this time, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. https://photojournal.jpl.nasa.gov/catalog/PIA21945

  9. Investigation of water droplet trajectories within the NASA icing research tunnel

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Ibrahim, Mounir

    1995-01-01

    Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.

  10. CFD Analysis in Advance of the NASA Juncture Flow Experiment

    NASA Technical Reports Server (NTRS)

    Lee, H. C.; Pulliam, T. H.; Neuhart, D. H.; Kegerise, M. A.

    2017-01-01

    NASA through its Transformational Tools and Technologies Project (TTT) under the Advanced Air Vehicle Program, is supporting a substantial effort to investigate the formation and origin of separation bubbles found on wing-body juncture zones. The flow behavior in these regions is highly complex, difficult to measure experimentally, and challenging to model numerically. Multiple wing configurations were designed and evaluated using Computational Fluid Dynamics (CFD), and a series of wind tunnel risk reduction tests were performed to further down-select the candidates for the final experiment. This paper documents the CFD analysis done in conjunction with the 6 percent scale risk reduction experiment performed in NASA Langley's 14- by 22-Foot Subsonic Tunnel. The combined CFD and wind tunnel results ultimately helped the Juncture Flow committee select the wing configurations for the final experiment.

  11. A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.

    1973-01-01

    An investigation was conducted in the Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel to evaluate the effectiveness of three variations of the NASA supercritical airfoil as applied to a model of a variable wing sweep fighter airplane. Wing panels incorporating conventional NACA 64A series airfoil with 0.20 and 0.40 camber were used as bases of reference for this evaluation. Static force and moment measurements were obtained for wing leading edge sweep angles of 26, 33, 39, and 72.5 degrees. Fluctuating wing root bending moment data were obtained at subsonic speeds to determine buffet characteristics. Subsonic data were also obtained for determining the effects of wing transition location and spoiler deflection. Limited lateral directional data are included for the conventional 0.20 cambered wing and the supercritical wing.

  12. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  13. Height extrapolation of wind data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhail, A.S.

    1982-11-01

    Hourly average data for a period of 1 year from three tall meteorological towers - the Erie tower in Colorado, the Goodnoe Hills tower in Washington and the WKY-TV tower in Oklahoma - were used to analyze the wind shear exponent variabiilty with various parameters such as thermal stability, anemometer level wind speed, projection height and surface roughness. Different proposed models for prediction of height variability of short-term average wind speeds were discussed. Other models that predict the height dependence of Weilbull distribution parameters were tested. The observed power law exponent for all three towers showed strong dependence on themore » anemometer level wind speed and stability (nighttime and daytime). It also exhibited a high degree of dependence on extrapolation height with respect to anemometer height. These dependences became less severe as the anemometer level wind speeds were increased due to the turbulent mixing of the atmospheric boundary layer. The three models used for Weibull distribution parameter extrapolation were he velocity-dependent power law model (Justus), the velocity, surface roughness, and height-dependent model (Mikhail) and the velocity and surface roughness-dependent model (NASA). The models projected the scale parameter C fairly accurately for the Goodnoe Hills and WKY-TV towers and were less accurate for the Erie tower. However, all models overestimated the C value. The maximum error for the Mikhail model was less than 2% for Goodnoe Hills, 6% for WKY-TV and 28% for Erie. The error associated with the prediction of the shape factor (K) was similar for the NASA, Mikhail and Justus models. It ranged from 20 to 25%. The effect of the misestimation of hub-height distribution parameters (C and K) on average power output is briefly discussed.« less

  14. Utility operational experience on the NASA/DOE MOD-0A 200-kW wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Robbins, W. H.

    1979-01-01

    The Mod-0A 200 wind turbine was designed and fabricated as part of the Federal Wind Energy Program. Early wind turbine operation and performance data were obtained while gaining initial experience in the operation of large, horizontal axis wind turbines in typical utility environments. The Mod-0A wind turbine was turned over to the Town of Clayton Light and Water Plant, Clayton, NM, for utility operation and on December 31, 1978, the machine had completed ten months of utility operation. The machine is described and the recent operational experience at Clayton, NMis documented.

  15. Elysium Winds

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03283 Elysium Winds

    The multiple trends of yardangs in this image indicate that the winds in the Elysium region have changed direction several times.

    Image information: VIS instrument. Latitude 2.6N, Longitude 151.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Airborne Wind Profiling With the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.

  17. Wind Resource Assessment of Gujarat (India)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less

  18. Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Prokopius, Kevin

    2007-01-01

    An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.

  19. Research and Development at NASA

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Vision for Space Exploration marks the next segment of NASA's continuing journey to find answers to compelling questions about the origins of the solar system, the existence of life beyond Earth, and the ability of humankind to live on other worlds. The success of the Vision relies upon the ongoing research and development activities conducted at each of NASA's 10 field centers. In an effort to promote synergy across NASA as it works to meet its long-term goals, the Agency restructured its Strategic Enterprises into four Mission Directorates that align with the Vision. Consisting of Exploration Systems, Space Operations, Science, and Aeronautics Research, these directorates provide NASA Headquarters and the field centers with a streamlined approach to continue exploration both in space and on Earth.

  20. Experimental constraints on impact-induced winds

    NASA Astrophysics Data System (ADS)

    Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.

    2018-05-01

    A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.

  1. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  2. Stardust Worlds

    NASA Image and Video Library

    2011-03-24

    This composite image shows the three small worlds NASA Stardust spacecraft encountered during its 12 year mission. Stardust performed a flyby of asteroid Annefrank in 2002, Comet Wild in 2004, and Tempel 1 in 2011.

  3. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  4. Solar Wind Eight: Proceedings of the Eighth International Solar Wind Conference. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterhalter, D.; Gosling, J.T.; Habbal, S.R.

    1997-06-01

    These proceedings represent papers presented at the eighth international solar wind conference held at the Dana Point Resort, California. The conference was sponsored by the National Aeronautics and Space Administration(NASA), the National Science Foundation(NSF) and the Committee on space Research (COSPAR). The proceedings from this conference reflected the state of the art of solar wind research: its origin at the sun, the transport through the solar system, and its ultimate fate at the heliocentric boundaries. There were one hundred and seventy eight papers presented and nineteen papers for which the research was sponsored by the US Department of Energy havemore » been abstracted for the Energy Science and Technology database.(AIP)« less

  5. An Overview of NASA's Contributions to Energy Technology

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Levine, Arlene S.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) is well known for its many contributions to advancing technology for the aviation and space industries. It may be surprising to some that it has also made a major impact in advancing energy technologies. This paper presents a historic overview of some of the energy programs that NASA was involved in, as well as presenting some current energy-related work that is relevant to both aerospace and non-aerospace needs. In the past, NASA developed prototype electric cars, low-emission gas turbines, wind turbines, and solar-powered villages, to name a few of the major energy projects. The fundamental expertise in fluid mechanics, heat transfer, thermodynamics, mechanical and electrical engineering, and other related fields, found in NASA s workforce, can easily be applied to develop creative solutions to energy problems in space, aviation, or terrestrial systems.

  6. Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C. (Editor)

    1999-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  7. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Introduction to wind energy systems

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.

    2017-07-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  10. Introduction to wind energy systems

    NASA Astrophysics Data System (ADS)

    Wagner, H.-J.

    2015-08-01

    This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.

  11. Typhoon Chan-Hom "Eyes" NASA's Aqua Satellite

    NASA Image and Video Library

    2017-12-08

    Typhoon Chan-Hom's eye was visible from space when NASA's Aqua satellite passed overhead early on July 8, 2015. The MODIS instrument, known as the Moderate Resolution Imaging Spectrometer, flies aboard NASA's Aqua satellite. When Aqua passed over Typhoon Chan-Hom on July 8 at 04:25 UTC (12:25 a.m. EDT), MODIS captured a visible-light image of the storm that clearly showed its eye. The MODIS image also a ring of powerful thunderstorms surrounding the eye of the storm, and the bulk of thunderstorms wrapping around the system from west to east, along the southern side. At 0900 UTC (5 a.m. EDT), Typhoon Chan-Hom's maximum sustained winds were near 85 knots (97.8 mph/157.4 kph). Tropical-storm-force winds extended 145 nautical miles (166.9 miles/268.5 km) from the center, making the storm almost 300 nautical miles (345 miles/555 km) in diameter. Typhoon-force winds extended out to 35 nautical miles (40 miles/64.8 km) from the center. Chan-Hom's eye was centered near 20.5 North latitude and 132.7 East longitude, about 450 nautical miles (517.9 miles/833.4 km) southeast of Kadena Air Base, Iwo To, Japan. Chan-Hom was moving to the northwest at 11 knots (12.6 mph/20.3 kph). The typhoon was generating very rough seas with wave heights to 28 feet (8.5 meters). The Joint Typhoon Warning Center expects Chan-Hom to continue tracking northwestward over the next three days under the steering influence of a sub-tropical ridge (elongated area of high pressure). Chan-Hom is expected to intensify steadily peaking at 120 knots (138.1 mph/222.2 kph) on July 10. The JTWC forecast predicts that Chan-Hom will make landfall near Wenzhou, Zhejiang, China and begin decaying due to land interaction. For updated warnings and watches from China's National Meteorological Centre, visit: www.cma.gov.cn/en/WeatherWarnings/. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific

  12. The NOAA Real-Time Solar-Wind (RTSW) System using ACE Data

    NASA Astrophysics Data System (ADS)

    Zwickl, R. D.; Doggett, K. A.; Sahm, S.; Barrett, W. P.; Grubb, R. N.; Detman, T. R.; Raben, V. J.; Smith, C. W.; Riley, P.; Gold, R. E.; Mewaldt, R. A.; Maruyama, T.

    1998-07-01

    The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage in satellite systems.

  13. Test Data Report, Low-Speed Wind Tunnel Drag Test of a 2/5 Scale Lockheed AH-56 Cheyenne Door-Hinge Hub

    DTIC Science & Technology

    2016-07-01

    the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research Center in Moffett Field, CA. The purpose of the test was to quantify the drag...drag test of a non-rotating 2/5 scale Lockheed AH-56 Cheyenne main rotor hub in the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research...the U.S. Army 7– by 10–foot wind tunnel at NASA Ames Research Center 5 2.3 Perspective view of the hub mounted with major dimensions and model

  14. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  15. NASA Sees Large Tropical Cyclone Yasi Headed Toward Queensland, Australia

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 30, 2011 at 23:20 UTC. Satellite: Terra Click here to see the most recent image captured Feb. 1: www.flickr.com/photos/gsfc/5407540724/ Tropical Storm Anthony made landfall in Queensland, Australia this past weekend, and now the residents are watching a larger, more powerful cyclone headed their way. NASA's Terra satellite captured a visible image of the large Tropical Cyclone Yasi late yesterday as it makes its way west through the Coral Sea toward Queensland. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra satellite captured an image of Cyclone Yasi on Jan. 30 at 23:20 UTC (6:20 p.m. EST/09:20 a.m., Monday, January 31 in Australia/Brisbane local time). Although the image did not reveal a visible eye, the storm appears to be well-formed and also appears to be strengthening. Warnings and watches are already in effect throughout the Coral Sea. The Solomon Islands currently have a Tropical Cyclone warning for the provinces of Temotu, Rennell & Bellona, Makira and Guadalcanal. The Australian Bureau of Meteorology has already posted a Tropical Cyclone Watch from Cooktown to Yeppoon and inland to between Georgetown and Moranbah in Queensland, Australia. The Australian Bureau of Meteorology expects damaging winds to develop in coastal and island communities between Cooktown and Yeppoon Wednesday morning, and inland areas on Wednesday afternoon. Updates from the Australian Bureau of Meteorology can be monitored at the Bureau's website at www.bom.gov.au. On January 31 at 1500 UTC (10 a.m. EST/ 1:00 a.m. Tuesday February 1, 2011 in Australia/Brisbane local time), Tropical Cyclone Yasi had maximum sustained winds near 90 knots (103 mph/166 kmh). Yasi is a Category Two Cyclone on the Saffir-Simpson Scale. It was centered about 875 miles E of Cairns, Australia, near 13.4 South latitude and 160.4 East longitude. It was moving west near 19 knots (22 mph/35 kmh). Cyclone-force winds extend out to 30

  16. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  17. Scope of wind energy in Bangladesh and simulation analysis of three different horizontal axis wind turbine blade shapes

    NASA Astrophysics Data System (ADS)

    Khan, Md. Arif-Ul Islam; Das, Swapnil; Dey, Saikat

    2017-12-01

    : Economic growth and energy demand are intertwined. Therefore, one of the most important concerns of the government and in the world is the need for energy security. Currently, the world relies on coal, crude oil and natural gas for energy generati on. However, the energy crisis together with climate change and depletion of oil have become major concerns to all countries. Therefore, alternative energy resources such as wind energy attracted interest from both public and private sectors to invest in energy generation from this source extensively. Both Vertical and Horizontal axis wind turbine can be used for this purpose. But, Horizontal axis is the most promising between them due to its efficiency and low expense. Bangladesh being a tropical country does have a lot of wind flow at different seasons of the year. However, there are some windy locations in which wind energy projects could be feasible. In this project a detailed review of the current st ate-of-art for wind turbine blade design is presented including theoretical maximum efficiency, Horizontal Axis Wind Turbine (HAWT) blade design, simulation power and COP values for different blade material. By studying previously collected data on the wind resources available in B angladesh at present and by analyzing this data, this paper will discuss the scope of wind energy in Bangladesh.

  18. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0

  19. Tropical Storm Harvey Spotted by NASA's MISR

    NASA Image and Video Library

    2017-08-29

    On Aug. 27, 2017, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over then-Tropical Storm Harvey about noon local time, the day after the storm first made landfall in Texas as a Category 4 hurricane. The MISR instrument is equipped with nine cameras that observe Earth at different angles over a time period of seven minutes. Geometric information from the multiple camera views is used to compute the cloud top heights, and motion of the clouds during the image sequence is used to calculate wind speed. This composite image shows the storm as viewed by the central, downward-looking camera (left), as well as the cloud top heights in kilometers (center) and the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. Also included is an animation made by combining all nine images from the MISR cameras, showing the motion of the storm during the seven-minute period. At this time, the center of the tropical storm was located just northwest of the city of Victoria and maximum wind speeds on the ground were around 40 miles per hour (65 kilometers per hour) according to the National Oceanic and Atmospheric Administration (NOAA), which matches well with the near-surface winds calculated by MISR to the west of Corpus Christi. In the 36 hours or so since it had made landfall, Harvey had weakened considerably -- these images show that the eye had disappeared and much of the circular motion of storm had dissipated, as shown by the calculated wind directions. However, the area of very high clouds and strong winds near Houston shows that the storm was continuing to produce powerful rain bands. At this point, hydrographs managed by NOAA in downtown Houston were already recording flood stage at both the Buffalo Bayou (28 feet or 8.5 meters as of 12:15 p.m. CDT August 27) and the White Oak Bayou (40 feet or 12 meters at

  20. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  1. Boeing CST-100 Starliner/ULA Atlas V Wind Tunnel Demonstration

    NASA Image and Video Library

    2016-10-13

    An engineer works with a model of a United Launch Alliance Atlas V rocket with a Boeing CST-100 Starliner capsule inside a wind tunnel at NASA's Ames Research Center in California. The Starliner/Atlas V system is under development by Boeing and ULA in partnership with NASA's Commercial Crew Program to launch astronauts to the International Space Station.

  2. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  3. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an arraymore » of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.« less

  4. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  5. Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  6. Pieces of Other Worlds - Extraterrestrial Samples for Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2010-01-01

    During the Year of the Solar System spacecraft from NASA and our international partners will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. At the current time JSC curates six types of extraterrestrial samples: (1) Moon rocks and soils collected by the Apollo astronauts (2) Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) (3) "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft (4) Solar wind atoms collected by the Genesis spacecraft (5) Comet particles collected by the Stardust spacecraft (6) Interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise

  7. NASA Applications of Molecular Nanotechnology

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  8. The Genesis Mission Solar Wind Collection: Solar-Wind Statistics over the Period of Collection

    NASA Technical Reports Server (NTRS)

    Barraclough, B. L.; Wiens, R. C.; Steinberg, J. E.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.; Gosling, J.; Bremmer, R. R.

    2004-01-01

    The NASA Genesis spacecraft was launched August 8, 2001 on a mission to collect samples of solar wind for 2 years and return them to earth September 8, 2004. Detailed analyses of the solar wind ions implanted into high-purity collection substrates will be carried out using various mass spectrometry techniques. These analyses are expected to determine key isotopic ratios and elemental abundances in the solar wind, and by extension, in the solar photosphere. Further, the photospheric composition is thought to be representative of the solar nebula with a few exceptions, so that the Genesis mission will provide a baseline for the average solar nebula composition with which to compare present-day compositions of planets, meteorites, and asteroids. The collection of solar wind samples is almost complete. Collection began for most substrates in early December, 2001, and is scheduled to be complete on April 2 of this year. It is critical to understand the solar-wind conditions during the collection phase of the mission. For this reason, plasma ion and electron spectrometers are continuously monitoring the solar wind proton density, velocity, temperature, the alpha/proton ratio, and angular distribution of suprathermal electrons. Here we report on the solar-wind conditions as observed by these in-situ instruments during the first half of the collection phase of the mission, from December, 2001 to present.

  9. Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; Mladenova, Iliana; Fang, Fan

    2010-01-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by coordinating monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main goal of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE (See diagram below). Soil moisture is currently a primary data gap at WAOB.

  10. NASA's IMAGE Spacecraft View of Aurora Australis from Space

    NASA Image and Video Library

    2017-12-08

    NASA file image acquired September 11, 2005 To view a video of this event go here: www.flickr.com/photos/gsfc/6257608714 From space, the aurora is a crown of light that circles each of Earth’s poles. The IMAGE satellite captured this view of the aurora australis (southern lights) on September 11, 2005, four days after a record-setting solar flare sent plasma—an ionized gas of protons and electrons—flying towards the Earth. The ring of light that the solar storm generated over Antarctica glows green in the ultraviolet part of the spectrum, shown in this image. The IMAGE observations of the aurora are overlaid onto NASA’s satellite-based Blue Marble image. From the Earth’s surface, the ring would appear as a curtain of light shimmering across the night sky. Like all solar storms, the September storm distorted the shape of the magnetic field that surrounds the Earth. Without buffeting from the solar wind (charged particles like protons and electrons that are ejected from the Sun), the Earth’s magnetic field would look something like a plump doughnut, with the North and South poles forming the slender hole in the center. In reality, the nearly constant solar winds flatten the space side of the “doughnut” into a long tail. The amount of distortion changes when solar storms, such as the flare on September 7, send stronger winds towards the Earth. Changes to the magnetic field release fast-moving particles, which flow with charged particles from the Sun towards the center of the “doughnut” at the Earth’s poles. As the particles sink into the atmosphere, they collide with oxygen and nitrogen, lighting the sky with Nature’s version of neon lights, the aurora. Though scientists knew that the aurora were caused by charged particles from the Sun and their interaction with the Earth’s magnetic field, they had no way to measure the interaction until NASA launched the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in 2000. The

  11. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  12. Automated Boundary Conditions for Wind Tunnel Simulations

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  13. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  14. Analysis of Dynamic Data from Supersonic Retropropulsion Experiments in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Codoni, Joshua R.; Berry, Scott A.

    2012-01-01

    Recent experimental supersonic retropropulsion tests were conducted at the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 2 for a range of Mach numbers from 2.4 to 4.6. A 5-inch 70-degree sphere-cone forebody model with a 10-inch cylindrical aftbody experimental model was used which is capable of multiple retrorocket configurations. These configurations include a single central nozzle on the center point of the forebody, three nozzles at the forebody half-radius, and a combination of the first two configurations with no jets being plugged. A series of measurements were achieved through various instrumentation including forebody and aftbody pressure, internal pressures and temperatures, and high speed Schlieren visualization. Specifically, several high speed pressure transducers on the forebody and in the plenum were implemented to look at unsteady flow effects. The following work focuses on analyzing frequency traits due to the unsteady flow for a range of thrust coefficients for single, tri, and quad-nozzle test cases at freestream Mach 4.6 and angle of attack ranging from -8 degrees to +20 degrees. This analysis uses Matlab s fast Fourier transform, Welch's method (modified average of a periodogram), to create a power spectral density and analyze any high speed pressure transducer frequency traits due to the unsteady flow.

  15. The NASA Environmentally Responsible Aviation Project/General Electric Open Rotor Test Campaign

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale

    2013-01-01

    The Open Rotor is a modern version of the UnDucted Fan (UDF) that was flight tested in the late 1980's through a partnership between NASA and General Electric (GE). Tests were conducted in the 9'x15' Low Speed Wind Tunnel and the 8'x6' Supersonic Wind Tunnel starting in late 2009 and completed in early 2012. Aerodynamic and acoustic data were obtained for takeoff, approach and cruise simulations. GE was the primary partner, but other organizations were involved such as Boeing and Airbus who provided additional hardware for fuselage simulations. This test campaign provided the acoustic and performance characteristics for modern open rotor blades designs." NASA and GE conducted joint systems analysis to evaluate how well new blade designs would perform on a B737 class aircraft, and compared the results to an advanced higher bypass ratio turbofan." Acoustic shielding experiments were performed at NASA GRC and Boeing LSAF facilities to provide data for noise estimates of unconventional aircraft configurations with Open Rotor propulsion systems." The work was sponsored by NASA's aeronautics programs, including the Subsonic Fixed Wing (SFW) and the Environmentally Responsible Aviation (ERA) projects."

  16. Wind Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.

  17. World Cup Hopes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    From May 31 to June 30 the biggest single-sport event in the world, the 2002 FIFA World Cup (tm), will be taking place in Asia. South Korea and Japan are acting as hosts for the event which is being held in Asia for the first time. This true-color image of the southern Korean peninsula and southern Japan was acquired on May 25, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Thirty-two nations are represented at this year's Finals including the 1998 champion France, European powers England and Italy, tournament favorite Argentina, and the United States. The finals are the culmination of a 2-year qualifying process which started with 132 nations competing in regional qualification tournaments. In the round-robin first round of the World Cup, the U.S. team will be competing against teams from Portugal, Poland, and South Korea. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  18. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  19. Artist Concept of the Interaction of the Solar Wind

    NASA Image and Video Library

    2015-07-17

    Artist concept of the interaction of the solar wind the supersonic outflow of electrically charged particles from the Sun with Pluto predominantly nitrogen atmosphere based on NASA New Horizons SWAP instrument.

  20. Simulating the Reiner Gamma Lunar Swirl: Solar Wind Standoff Works!

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lue, Charles; Ahmadi, Tara; Horányi, Mihály

    2017-04-01

    Discovered by early astronomers during the Renaissance, the Reiner Gamma formation is a prominent lunar surface feature. Observations have shown that the tadpole-shaped albedo marking, or swirl, is co-located with one of the strongest crustal magnetic anomalies on the Moon. The region therefore presents an ideal test case to constrain the kinetic solar wind interaction with lunar magnetic anomalies and its possible consequences for lunar swirl formation. All known swirls have been associated with magnetic anomalies, but the opposite does not hold. The evolutionary scenario of the lunar albedo markings has been under debate since the Apollo era. By coupling fully kinetic simulations with a surface vector mapping model based on Kaguya and Lunar Prospector magnetic field measurements, we show that solar wind standoff is the dominant process to have formed the lunar swirls. It is an ion-electron kinetic interaction mechanism that locally prevents weathering by solar wind ions and the subsequent formation of nanophase iron. The correlation between the surface weathering process and the surface reflectance is optimal when evaluating the proton energy flux, rather than the proton density or number flux. This is an important result to characterise the primary process for surface darkening. In addition, the simulated proton reflection rate is for the first time directly compared with in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft. The agreement is found excellent. Understanding the relation between the lunar surface albedo features and the co-located magnetic anomaly is essential for our interpretation of the Moon's geological history, space weathering, and to evaluate future lunar exploration opportunities. This work was supported in part by NASA's Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). The work by C.L. was supported by NASA grant NNX

  1. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  2. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  3. NASA Sees Typhoon Soudelor's Remnants Over Eastern China

    NASA Image and Video Library

    2017-12-08

    On August 9 at 03:00 UTC (Aug. 8 at 11 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite passed over the remnant clouds of Typhoon Soudelor when it was over eastern China. By 22:35 UTC (6:35 p.m. EDT) on August 8, 2015, Typhoon Soudelor had made landfall in eastern China and was rapidly dissipating. Maximum sustained winds had dropped to 45 knots (51.7 mph/83.3 kph) after landfall, making it a tropical storm. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Comparison of QuikSCAT and GPS-Derived Ocean Surface Winds

    NASA Technical Reports Server (NTRS)

    Axelrad, Penina

    2001-01-01

    The Colorado Center for Astrodynamics has completed a study comparing ocean surface winds derived from GPS bistatic measurements with QuikSCAT wind fields. We have also compiled an extensive database of the bistatic GPS flight data collected by NASA Langley Research Center over the last several years. The GPS data are augmented with coincident data from QuikSCAT, buoys, TOPEX, and ERS.

  5. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  6. Pressure-sensitive paint measurements on a supersonic high-sweep oblique wing model. [conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    McLachlan, B. G.; Bell, J. H.; Park, H.; Kennelly, R. A.; Schreiner, J. A.; Smith, S. C.; Strong, J. M.; Gallery, J.; Gouterman, M.

    1995-01-01

    The pressure-sensitive paint method was used in the test of a high-sweep oblique wing model, conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel. Surface pressure data was acquired from both the luminescent paint and conventional pressure taps at Mach numbers between M = 1.6 and 2.0. In addition, schlieren photographs of the outer flow were used to determine the location of shock waves impinging on the model. The results show that the luminescent pressure-sensitive paint can capture both global and fine features of the static surface pressure field. Comparison with conventional pressure tap data shows good agreement between the two techniques, and that the luminescent paint data can be used to make quantitative measurements of the pressure changes over the model surface. The experiment also demonstrates the practical considerations and limitations that arise in the application of this technique under supersonic flow conditions in large-scale facilities, as well as the directions in which future research is necessary in order to make this technique a more practical wind-tunnel testing tool.

  7. Capabilities, Design, Construction and Commissioning of New Vibration, Acoustic, and Electromagnetic Capabilities Added to the World's Largest Thermal Vacuum Chamber at NASA's Space Power Facility

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.

  8. NASA Missions Monitor a Waking Black Hole

    NASA Image and Video Library

    2015-06-30

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

  9. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  10. Selected Papers Presented at MODSIM World 2009 Conference and Expo

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E. (Editor)

    2010-01-01

    Selected papers from MODSIM World 2009 Conference and Expo are contained in this NASA Conference Publication (CP). MODSIM World 2009 was held in Virginia Beach, Virginia, October 14-16, 2009, at the Virginia Beach Convention Center. The theme of the 2009 conference and expo was "21st Century Decision-Making: The Art of Modeling & Simulation." The 79 submitted papers were peer-reviewed and 64 were accepted for presentation at MODSIM World 2009. As a condition of acceptance, the first author was responsible for securing/obtaining all permissions associated with the general release and public availability of the paper. Further, the first authors also had to grant NASA the right to include their papers in the NASA CP. There are 53 papers in this NASA CP.

  11. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  12. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  13. Radiometric correction of scatterometric wind measurements

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Use of a spaceborne scatterometer to determine the ocean-surface wind vector requires accurate measurement of radar backscatter from ocean. Such measurements are hindered by the effect of attenuation in the precipitating regions over sea. The attenuation can be estimated reasonably well with the knowledge of brightness temperatures observed by a microwave radiometer. The NASA SeaWinds scatterometer is to be flown on the Japanese ADEOS2. The AMSR multi-frequency radiometer on ADEOS2 will be used to correct errors due to attenuation in the SeaWinds scatterometer measurements. Here we investigate the errors in the attenuation corrections. Errors would be quite small if the radiometer and scatterometer footprints were identical and filled with uniform rain. However, the footprints are not identical, and because of their size one cannot expect uniform rain across each cell. Simulations were performed with the SeaWinds scatterometer (13.4 GHz) and AMSR (18.7 GHz) footprints with gradients of attenuation. The study shows that the resulting wind speed errors after correction (using the radiometer) are small for most cases. However, variations in the degree of overlap between the radiometer and scatterometer footprints affect the accuracy of the wind speed measurements.

  14. The Science behind a NASA Poster.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2002-01-01

    Uses National Aeronautics and Space Administration (NASA) posters and the information behind them as instructional materials to connect real world science to the classroom. Provides a list of resources. (YDS)

  15. MO and DA on the SWIE Instrument on the Wind Spacecraft

    NASA Technical Reports Server (NTRS)

    Lazarus, Alan J.

    2002-01-01

    The construction of the Faraday Cup portion of the SWIE instrument on the Wind spacecraft, participation in Mission Operations, and Data Analysis (MO and DA) of observations of the solar wind has been supported by a sequence of grants. This 'final' Report represents work done on Mission Operations and Data Analysis for the Faraday Cup portion of the SWE. The work reported here was supported under NASA Grant NAG5-7359 (OSP 6701100) from June 1998 to October 2001. It should be noted that this work is continuing under NASA Grant NAG-10915, and therefore this report is 'final' only in the sense that the Grant has changed its number; a future report will cover the entire period of work. We have two types of obligations under these contracts: (1) To provide and assure the validity of "Key Parameters" which describe the basic properties of the solar wind on a daily basis. We have provided our 92 second observations daily via plots and parameters available from our Web site: http://web.mit.edu/space/www/wind/wind.html (2). To carry out scientific studies based on our observations. To document the extent of our research, we are including below a list of publications and presentations related to this project. The observations from Wind have made a major contribution to the study of the solar wind, and have every indication of continuing to do so.

  16. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  17. NASA Access Mechanism: Lessons learned document

    NASA Technical Reports Server (NTRS)

    Burdick, Lisa; Dunbar, Rick; Duncan, Denise; Generous, Curtis; Hunter, Judy; Lycas, John; Taber-Dudas, Ardeth

    1994-01-01

    The six-month beta test of the NASA Access Mechanism (NAM) prototype was completed on June 30, 1993. This report documents the lessons learned from the use of this Graphical User Interface to NASA databases such as the NASA STI Database, outside databases, Internet resources, and peers in the NASA R&D community. Design decisions, such as the use of XWindows software, a client-server distributed architecture, and use of the NASA Science Internet, are explained. Users' reactions to the interface and suggestions for design changes are reported, as are the changes made by the software developers based on new technology for information discovery and retrieval. The lessons learned section also reports reactions from the public, both at demonstrations and in response to articles in the trade press and journals. Recommendations are included for future versions, such as a World Wide Web (WWW) and Mosaic based interface to heterogeneous databases, and NAM-Lite, a version which allows customization to include utilities provided locally at NASA Centers.

  18. Development of an Intelligent Videogrammetric Wind Tunnel Measurement System

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.

    2004-01-01

    A videogrammetric technique developed at NASA Langley Research Center has been used at five NASA facilities at the Langley and Ames Research Centers for deformation measurements on a number of sting mounted and semispan models. These include high-speed research and transport models tested over a wide range of aerodynamic conditions including subsonic, transonic, and supersonic regimes. The technique, based on digital photogrammetry, has been used to measure model attitude, deformation, and sting bending. In addition, the technique has been used to study model injection rate effects and to calibrate and validate methods for predicting static aeroelastic deformations of wind tunnel models. An effort is currently underway to develop an intelligent videogrammetric measurement system that will be both useful and usable in large production wind tunnels while providing accurate data in a robust and timely manner. Designed to encode a higher degree of knowledge through computer vision, the system features advanced pattern recognition techniques to improve automated location and identification of targets placed on the wind tunnel model to be used for aerodynamic measurements such as attitude and deformation. This paper will describe the development and strategy of the new intelligent system that was used in a recent test at a large transonic wind tunnel.

  19. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two critical aspects of the Applications Engineering Program were especially successful: commercializing products of Application Projects; and leveraging NASA funds for projects by developing cofunding from industry and other agencies. Results are presented in the following areas: the excimer laser was commercialized for clearing plaque in the arteries of patients with coronary artery disease; the ultrasound burn depth analysis technology is to be licensed and commercialized; a phased commercialization plan was submitted to NASA for the intracranial pressure monitor; the Flexible Agricultural Robotics Manipulator System (FARMS) is making progress in the development of sensors and a customized end effector for a roboticized greenhouse operation; a dual robot are controller was improved; a multisensor urodynamic pressure catherer was successful in clinical tests; commercial applications were examined for diamond like carbon coatings; further work was done on the multichannel flow cytometer; progress on the liquid airpack for fire fighters; a wind energy conversion device was tested in a low speed wind tunnel; and the Space Shuttle Thermal Protection System was reviewed.

  20. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of

  1. Avrocar Test in Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1961-04-03

    Rear view of the Avrocar with tail, mounted on variable height struts. Overhead doors of the wind tunnel test section open. The first Avrocar, S/N 58-7055 (marked AV-7055), after tethered testing, became the "wind tunnel" test model at NASA Ames, where it remained in storage from 1961 until 1966, when it was donated to the National Air and Space Museum, in Suitland, Maryland.

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. NASA CYGNSS Mission Applications Workshop

    NASA Technical Reports Server (NTRS)

    Amin, Aimee V. (Compiler); Murray, John J. (Editor); Stough, Timothy M. (Editor); Molthan, Andrew (Editor)

    2015-01-01

    NASA's Cyclone Global Navigation Satellite System, (CYGNSS), mission is a constellation of eight microsatellites that will measure surface winds in and near the inner cores of hurricanes, including regions beneath the eyewall and intense inner rainbands that could not previously be measured from space. The CYGNSS-measured wind fields, when combined with precipitation fields (e.g., produced by the Global Precipitation Measurement [GPM] core satellite and its constellation of precipitation imagers), will provide coupled observations of moist atmospheric thermodynamics and ocean surface response, enabling new insights into hurricane inner core dynamics and energetics. The outcomes of this workshop, which are detailed in this report, comprise two primary elements: (1) A report of workshop proceedings, and; (2) Detailed Applications Traceability Matrices with requirements and operational considerations to serve broadly for development of value-added tools, applications, and products.

  4. Wind Variability in Intermediate Luminosity B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1996-01-01

    This study used the unique spectroscopic diagnostics of intermediate luminosity B supergiants to determine the ubiquity and nature of wind variability. Specifically, (1) A detailed analysis of HD 64760 demonstrated massive ejections into its wind, provided the first clear demonstration of a 'photospheric connection' and ionization shifts in a stellar wind; (2) The international 'IUE MEGA campaign' obtained unprecedented temporal coverage of wind variability in rapidly rotating stars and demonstrated regularly repeating wind features originating in the photosphere; (3) A detailed analysis of wind variability in the rapidly rotating B1 Ib, gamma Ara demonstrated a two component wind with distinctly different mean states at different epochs; (4) A follow-on campaign to the MEGA project to study slowly rotating stars was organized and deemed a key project by ESA/NASA, and will obtain 30 days of IUE observations in May-June 1996; and (5) A global survey of archival IUE time series identified recurring spectroscopic signatures, identified with different physical phenomena. Items 4 and 5 above are still in progress and will be completed this summer in collaboration with Raman Prinja at University College, London.

  5. NASA Space Telescopes See Weather Patterns in Brown Dwarf

    NASA Image and Video Library

    2017-12-08

    JANUARY 8, 2013: Astronomers using NASA's Hubble and Spitzer space telescopes have probed the stormy atmosphere of a brown dwarf named 2MASSJ22282889-431026, creating the most detailed "weather map" yet for this class of cool, star-like orbs. The forecast shows wind-driven, planet-sized clouds enshrouding these strange worlds. Brown dwarfs form out of condensing gas, as stars do, but lack the mass to fuse atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets with their complex, varied atmospheres. The new research is a stepping stone toward a better understanding not only brown dwarfs, but also of the atmospheres of planets beyond our solar system. Hubble and Spitzer simultaneously watched the brown dwarf as its light varied in time, brightening and dimming about every 90 minutes as the body rotated. Astronomers found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light. The variations are the result of different layers or patches of material swirling around in the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers. Daniel Apai, the principal investigator of the research from the University of Arizona, Tucson, presented the results at the American Astronomical Society meeting on January 8 in Long Beach, Calif. A study describing the results, led by Esther Buenzli, also of the University of Arizona, is published in the Astrophysical Journal Letters. For more information about this study, visit www.nasa.gov/spitzer . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  6. NASA's 2018 To Do List

    NASA Image and Video Library

    2017-12-19

    This is NASA's 2018 'To Do' list. The work we do, which will continue in 2018, helps the United States maintain its world leadership in space exploration and scientific discovery. Launches, discoveries and more exploration await in the year ahead.

  7. Marshall Space Flight Center's Solar Wind Facility

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Whittlesey, P. L.

    2017-01-01

    Historically, NASA's Marshall Space Flight Center (MSFC) has operated a Solar Wind Facility (SWF) to provide long term particle and photon exposure to material samples. The requirements on the particle beam details were not stringent as the cumulative fluence level is the test goal. Motivated by development of the faraday cup instrument on the NASA Solar Probe Plus (SPP) mission, the MSFC SWF has been upgraded to included high fidelity particle beams providing broadbeam ions, broadbeam electrons, and narrow beam protons or ions, which cover a wide dynamic range of solar wind velocity and flux conditions. The large vacuum chamber with integrated cryo-shroud, combined with a 3-axis positioning system, provides an excellent platform for sensor development and qualification. This short paper provides some details of the SWF charged particle beams characteristics in the context of the Solar Probe Plus program requirements. Data will be presented on the flux and energy ranges as well as beam stability.

  8. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report summarizes the research work accomplished on the NASA grant contract NAG8-892 during 1992. Research goals of this contract are the following: to complete upgrades to the Cooperative Institute for Meteorological Satellite Studies (CIMSS) wind system procedures for assigning heights and incorporating first guess information; to evaluate these modifications using simulated tracer fields; to add an automated quality control system to minimize the need for manual editing, while maintaining product quality; and to benchmark the upgraded algorithm in tests with NMC and/or MSFC. Work progressed on all these tasks and is detailed. This work was done in collaboration with CIMSS NOAA/NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  9. Mars Technologies Spawn Durable Wind Turbines

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  10. Data acquisition and analysis in the DOE/NASA Wind Energy Program

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.

    1980-01-01

    Four categories of data systems, each responding to a distinct information need are presented. The categories are: control, technology, engineering and performance. The focus is on the technology data system which consists of the following elements: sensors which measure critical parameters such as wind speed and direction, output power, blade loads and strains, and tower vibrations; remote multiplexing units (RMU) mounted on each wind turbine which frequency modulate, multiplex and transmit sensor outputs; the instrumentation available to record, process and display these signals; and centralized computer analysis of data. The RMU characteristics and multiplexing techniques are presented. Data processing is illustrated by following a typical signal through instruments such as the analog tape recorder, analog to digital converter, data compressor, digital tape recorder, video (CRT) display, and strip chart recorder.

  11. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  12. Application of Neural Networks to Wind tunnel Data Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Zhao, J. L.; DeLoach, Richard

    2000-01-01

    The integration of nonlinear neural network methods with conventional linear regression techniques is demonstrated for representative wind tunnel force balance data modeling. This work was motivated by a desire to formulate precision intervals for response surfaces produced by neural networks. Applications are demonstrated for representative wind tunnel data acquired at NASA Langley Research Center and the Arnold Engineering Development Center in Tullahoma, TN.

  13. NASA's Discovery Mission to (16) Psyche: Visiting a Metal World

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Bell, J. F., III

    2017-09-01

    The Psyche mission is one of NASA's most recent Discovery mission selections. It is designed to explore the large metallic Main Belt asteroid (16) Psyche and test the hypothesis that it is the exposed core of an ancient differentiated planetesimal.

  14. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  15. A directional microphone array for acoustic studies of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Noble, S. C.

    1974-01-01

    An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.

  16. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  17. Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator

    NASA Astrophysics Data System (ADS)

    Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki

    Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.

  18. NASA superconducting magnetic mirror facility. [for thermonuclear research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.

    1973-01-01

    The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

  19. Integrating NASA Satellite Data Into USDA World Agricultural Outlook Board Decision Making Environment To Improve Agricultural Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; deJeu, Richard; Kempler, Steve

    2012-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. The goal of the current project is to improve WAOB estimates by integrating NASA satellite precipitation and soil moisture observations into WAOB's decision making environment. Precipitation (Level 3 gridded) is from the TRMM Multi-satellite Precipitation Analysis (TMPA). Soil moisture (Level 2 swath and Level 3 gridded) is generated by the Land Parameter Retrieval Model (LPRM) and operationally produced by the NASA Goddard Earth Sciences Data and Information Services Center (GBS DISC). A root zone soil moisture (RZSM) product is also generated, via assimilation of the Level 3 LPRM data by a land surface model (part of a related project). Data services to be available for these products include GeoTIFF, GDS (GrADS Data Server), WMS (Web Map Service), WCS (Web Coverage Service), and NASA Giovanni. Project benchmarking is based on retrospective analyses of WAOB analog year comparisons. The latter are between a given year and historical years with similar weather patterns and estimated crop yields. An analog index (AI) was developed to introduce a more rigorous, statistical approach for identifying analog years. Results thus far show that crop yield estimates derived from TMPA precipitation data are closer to measured yields than are estimates derived from surface-based precipitation measurements. Work is continuing to include LPRM surface soil moisture data and model-assimilated RZSM.

  20. NASA hydrogen maser accuracy and stability in relation to world standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Percival, D. B.

    1973-01-01

    Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.

  1. 10' x 10' Supersonic Wind Tunnel Flexwall

    NASA Image and Video Library

    2015-08-10

    The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.

  2. Optical Flow for Flight and Wind Tunnel Background Oriented Schlieren Imaging

    NASA Technical Reports Server (NTRS)

    Smith, Nathanial T.; Heineck, James T.; Schairer, Edward T.

    2017-01-01

    Background oriented Schlieren images have historically been generated by calculating the observed pixel displacement between a wind-on and wind-o image pair using normalized cross-correlation. This work uses optical flow to solve the displacement fields which generate the Schlieren images. A well established method used in the computer vision community, optical flow is the apparent motion in an image sequence due to brightness changes. The regularization method of Horn and Schunck is used to create Schlieren images using two data sets: a supersonic jet plume shock interaction from the NASA Ames Unitary Plan Wind Tunnel, and a transonic flight test of a T-38 aircraft using a naturally occurring background, performed in conjunction with NASA Ames and Armstrong Research Centers. Results are presented and contrasted with those using normalized cross-correlation. The optical flow Schlieren images are found to provided significantly more detail. We apply the method to historical data sets to demonstrate the broad applicability and limitations of the technique.

  3. The NASA Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Paulson, Sharon S.; Binkley, Robert L.; Kellogg, Yvonne D.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael J.; Accomazzi, Alberto

    1995-01-01

    The National Aeronautics and Space Act of 1958 established NASA and charged it to "provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." The search for innovative methods to distribute NASA's information lead a grass-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. The NTRS is comprised of several units, some constructed especially for inclusion in NTRS, and others that are existing NASA publication services that NTRS reuses. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the service. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained ensures that NASA's institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.

  4. Comparison of options for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel, including reduction of nozzle area

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.

    1984-01-01

    The acoustically significant features of the NASA 4X7m wind tunnel and the Dutch-German DNW low speed tunnel are compared to illustrate the reasons for large differences in background noise in the open jet test sections of the two tunnels. Also introduced is the concept of reducing test section noise levels through fan and turning vane source reductions which can be brought about by reducing the nozzle cross sectional area, and thus the circuit mass flow for a particular exit velocity. The costs and benefits of treating sources, paths, and changing nozzle geometry are reviewed.

  5. An Overview of the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model Program

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Perry, Boyd, III; Florance, James R.; Sanetrik, Mark D.; Wieseman, Carol D.; Stevens, William L.; Funk, Christie J.; Christhilf, David M.; Coulson, David A.

    2012-01-01

    A summary of computational and experimental aeroelastic (AE) and aeroservoelastic (ASE) results for the Semi-Span Super-Sonic Transport (S4T) wind-tunnel model is presented. A broad range of analyses and multiple AE and ASE wind-tunnel tests of the S4T wind-tunnel model have been performed in support of the ASE element in the Supersonics Program, part of the NASA Fundamental Aeronautics Program. This paper is intended to be an overview of multiple papers that comprise a special S4T technical session. Along those lines, a brief description of the design and hardware of the S4T wind-tunnel model will be presented. Computational results presented include linear and nonlinear aeroelastic analyses, and rapid aeroelastic analyses using CFD-based reduced-order models (ROMs). A brief survey of some of the experimental results from two open-loop and two closed-loop wind-tunnel tests performed at the NASA Langley Transonic Dynamics Tunnel (TDT) will be presented as well.

  6. Some techniques for reducing the tower shadow of the DOE/NASA mod-0 wind turbine tower. [wind tunnel tests to measure effects of tower structure on wind velocity

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.

    1979-01-01

    Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

  7. Experimental investigation of the subsonic high-altitude operation of the NASA Lewis 10- by 10-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.

    1988-01-01

    An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.

  8. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  9. SSM/I and ECMWF Wind Vector Comparison

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Ashcroft, Peter D.

    1996-01-01

    Wentz was the first to convincingly show that satellite microwave radiometers have the potential to measure the oceanic wind vector. The most compelling evidence for this conclusion was the monthly wind vector maps derived solely from a statistical analysis of Special Sensor Microwave Imager (SSM/I) observations. In a qualitative sense, these maps clearly showed the general circulation over the world's oceans. In this report we take a closer look at the SSM/I monthly wind vector maps and compare them to European Center for Medium-Range Weather Forecasts (ECMWF) wind fields. This investigation leads both to an empirical comparison of SSM/I calculated wind vectors with ECMWF wind vectors, and to an examination of possible reasons that the SSM/I calculated wind vector direction would be inherently more reliable at some locations than others.

  10. Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.

    1985-01-01

    The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations.

  11. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  12. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  13. NASA AIRS Instrument Captures Data on Monster Winter Storm Affecting 30 States

    NASA Image and Video Library

    2011-02-02

    This visible image from NASA Aqua satellite Jan. 31 shows thickening clouds along a developing intense front in the plains and Midwestern states that will produce excessive snow, freezing rain, sleet, and wind in those areas.

  14. Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen

    2012-01-01

    There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.

  15. NASA Satellite View of Tropical Storm Isaac

    NASA Image and Video Library

    2017-12-08

    NASA's Terra satellite passed over Tropical Storm Isaac on Aug. 24 at 15:20 UTC (11:20 a.m. EDT) as it continued moving through the eastern Caribbean Sea. The MODIS instrument onboard Aqua captured this visible image. At 2 p.m. EDT on Aug. 24, Isaac's maximum sustained winds were near 60 mph (95 kmh). The National Hurricane Center noted that Isaac could strengthen later before reaching the coast of Hispaniola tonight, Aug. 24. Hispaniola is an island that contains the Dominican Republic and Haiti. Isaac is located about 135 miles (215 km) south-southeast of Port au Prince, Haiti, near latitude 16.8 north and longitude 71.4 west. Isaac is now moving toward the northwest near 14 mph (22 kmh). Isaac is expected to reach hurricane status over the weekend of Aug. 25-26 and NASA satellites will continue providing valuable temperature, rainfall, visible and infrared data. Text Credit: Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. To read more go to: www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012... Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  17. NASA Launches Five Rockets in Five Minutes

    NASA Image and Video Library

    2017-12-08

    NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NASA Launches Five Rockets in Five Minutes

    NASA Image and Video Library

    2012-03-27

    NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Roadmaps for powering the world, U.S., and individual states for all purposes with wind, water, and sunlight (Invited)

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2013-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. This talk discusses these problems and technical and economic plans to solve them by powering 100% of the world, individual countries, and states for all purposes, including electricity, transportation, industry, and heating/cooling, with wind, water, and sunlight (WWS) together with efficiency measures, within 20-40 years. Specific plans for New York State and California are discussed. For California, the plan contemplates all new energy powered with WWS by 2020, 80-85% of existing energy replaced by 2030, and 100% replaced by 2050. Electrification plus modest efficiency measures would reduce California's end-use power demand ~44% and stabilize energy prices since WWS fuel costs are zero. Even without additional efficiency improvements, remaining all-purpose 2030 end-use demand could be met with 25% onshore and 10% offshore wind, 15% concentrated solar, 15% utility-scale PV, 10% residential PV, 15% commercial/government PV, 5% geothermal, 0.5% wave, 0.5% tidal, and 4% hydroelectric. These percentages will shift upon implementation. Converting would create ~137,000 net permanent jobs, decrease ~16,000 (4,800-29,600) state air pollution deaths/yr, and avoid 131 (39-296) billion/yr in health costs (6.9% of California's 2010 gross domestic product), repaying the 1 trillion capital cost for 573 GW installed power within ~7.3 yr. California's emission decreases would reduce 2050 U.S. and global climate costs by ~6 and 60 billion/yr, respectively.

  20. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  1. Detailed flow surveys of turning vanes designed for a 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.; Gelder, Thomas F.

    1987-01-01

    Detailed flow surveys downstream of the corner turning vanes and downstream of the fan inlet guide vanes have been obtained in a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel. Two turning vane designs were evaluated in both corners 1 and 2 (the corners between the test section and the drive fan). Vane A was a controlled-diffusion airfoil and vane B was a circular-arc airfoil. At given flows the turning vane wakes were surveyed to determine the vane pressure losses. For both corners the vane A turning vane configuration gave lower losses than the vane B configuration in the regions where the flow regime should be representative of two-dimensional flow. For both vane sets the vane loss coefficient increased rapidly near the walls.

  2. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  3. NASA CloudSat Looks Hurricane Nichole in the Eye

    NASA Image and Video Library

    2016-10-14

    NASA's CloudSat satellite completed an eye overpass of Hurricane Nicole on Oct. 12, 2016, at 10:55 a.m. PDT (17:55 UTC) as the storm was moving toward Bermuda. At the time the system had sustained winds of 109 miles per hour (95 knots), with a minimum pressure of 962 millibars. CloudSat viewed the system just as it was going through a period of intensification (from 98 miles per hour, or 85 knots, to 121 miles per hour (105 knots) during a 12-hour period. http://photojournal.jpl.nasa.gov/catalog/PIA21098

  4. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  5. Results of a Pressure Loads Investigation on a 0.030-scale Model (47-OTS) of the Integrated Space Shuttle Vehicle Configuration 5 in the NASA Ames Research Center 11 by 11 Foot Leg of the Unitary Plan Wind Tunnel (IA81A), Volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    Results of wind tunnel tests on a 0.030-scale model of the integrated space shuttle vehicle configuration 5 are presented. Testing was conducted in the NASA Ames Research Center 11 x 11 foot leg of the Unitary Plan Wind Tunnel to investigate pressure distributions for airloads analyses at Mach numbers from 0.9 through 1.4. Angles of attack and sideslip were varied from -6 to +6 degrees.

  6. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  7. A 100 kW experimental wind turbine: Simulation of starting, overspeed, and shutdown characteristics

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.

    1976-01-01

    The ERDA/NASA 100 kW experimental wind turbine is modeled on a digital computer in order to study the performance of a wind turbine under operating conditions. Simulation studies of starting, overspeed, and shutdown performance were made. From these studies operating procedures, precautions, and limitations are prescribed.

  8. 2014 Wind Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, R.; Bolinger, M.

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditionalmore » power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.« less

  9. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  10. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  11. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  12. Open Rotor Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. The research program in both the low and high-speed wind tunnels is reviewed. Some detailed flowfield and acoustics measurements acquired for an internal NASA program are highlighted. The publically available research data is presented also.

  13. The Long, Hard Journey: Expanding the Use of NASA Data and Models for Sustainable Development Planning Around the World

    NASA Technical Reports Server (NTRS)

    Khan, Maudood; Limaye, Ashutosh; Crosson, William; Unal, Alper; Kete, nancy; Rickman, Douglas

    2009-01-01

    In 2007, the National Research Council's committee on Extending Observations and Research Results to Practical Applications recommended that NASA's Applied Science Program (ASP) directly engage with a broader community of users - not just federal agencies. Soon afterwards, scientists at the NASA Marshall Space Flight Center began discussions on a collaborative research project with EMBARQ - the World Resource Institute's Center for Sustainable Transport. The discussions initially focused on how best to utilize satellite observations and atmospheric models for assessing the impact of a proposed transportation project on land use and air quality. Discussions exposed the participants to a broad spectrum of science and policy challenges that these diverse organizations face on a routine basis. It brought into clear focus the need for an observation-modeling system that will allow a proactive approach towards development planning, and the fact that satellite systems do not always provide the spatial and temporal resolution useful for urban-scale applications, underscoring the need for earth system models to bridge this gap. Realizing the significant risk that unplanned urbanization and climate change pose to the social and functional stability of large cities, both organizations decided to expand the scope of their preliminary discussion to include water resources and agriculture. A pilot project, funded by NASA ASP, EMBARQ and Istanbul Technical University focused on quantifying the magnitude and extent of urbanization in Istanbul, and analyzed the combined effect of urbanization and projected climate change on local climate, air quality, and its consequent effects on agricultural productivity. Preliminary results show that Istanbul has undergone a significant amount of Land Use/Land Cover change over the past two decades. While some forested areas have been lost to urban-landscapes, urbanization has mostly occurred over former croplands due to the fact that in

  14. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  15. Investigation of cloud/water vapor motion winds from geostationary satellite

    NASA Technical Reports Server (NTRS)

    Nieman, Steve; Velden, Chris; Hayden, Kit; Menzel, Paul

    1993-01-01

    Work has been primarily focussed on three tasks: (1) comparison of wind fields produced at MSFC with the CO2 autowind/autoeditor system newly installed in NESDIS operations; (2) evaluation of techniques for improved tracer selection through use of cloud classification predictors; and (3) development of height assignment algorithm with water vapor channel radiances. The contract goal is to improve the CIMSS wind system by developing new techniques and assimilating better existing techniques. The work reported here was done in collaboration with the NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.

  16. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Brenton, James C.; Walker, James C.; Leach, Richard D.

    2015-01-01

    Space launch vehicles utilize atmospheric winds in design of the vehicle and during day-of-launch (DOL) operations to assess affects of wind loading on the vehicle and to optimize vehicle performance during ascent. The launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use for vehicle engineering assessments. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output on DOL. First, balloons need approximately one hour to reach required altitude. For vehicle assessments this occurs at 60 kft (18.3 km). Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. Figure 1 illustrates the spatial separation of balloon measurements from the surface up to approximately 55 kft (16.8 km) during the Space Shuttle launch on 10 December 2006. The balloon issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data up to 60 kft (18.3 km) for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. Details on how data from various wind measurement systems are combined and sample output will be presented in the following sections.

  17. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    PubMed

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  18. Optimizing the NASA Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Maa, Ming-Hokng

    1996-01-01

    The NASA Technical Report Server (NTRS), a World Wide Web report distribution NASA technical publications service, is modified for performance enhancement, greater protocol support, and human interface optimization. Results include: Parallel database queries, significantly decreasing user access times by an average factor of 2.3; access from clients behind firewalls and/ or proxies which truncate excessively long Uniform Resource Locators (URLs); access to non-Wide Area Information Server (WAIS) databases and compatibility with the 239-50.3 protocol; and a streamlined user interface.

  19. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  20. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.