Science.gov

Sample records for nasa-ames vertical motion

  1. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  2. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  3. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  4. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  5. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  6. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  7. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  8. Landing and Rollout STS-135 Crew Training on the Vertical Motion Simulator (VMS) at NASA Ames (Reporter Pkg)

    NASA Image and Video Library

    2011-07-05

    Every Space Shuttle flight crew has trained for the final phase of a Shuttle mission, landing and rollout, using the VMS at NASA Ames. This story follows at the crew of STS-135, the final Space Shuttle mission, as they train on the VMS. Includes an interview with Chris Ferguson, the STS-135 mission commander.

  9. Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Chou, R. C.; Davies, E. G.; Tsui, K. C.

    1978-01-01

    The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures.

  10. NASA Ames 2016 Highlights

    NASA Image and Video Library

    2016-12-28

    2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!

  11. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  12. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  13. Fidelity Assessment of a UH-60A Simulation on the NASA Ames Vertical Motion Simulator

    DTIC Science & Technology

    1993-09-01

    lateral cyclic stick position, in. PIO pilot-induced oscillation blong longitudinal cyclic stick position, in. PSD power spectral density 6ped pedal...12 -10 60 -6 -0 20 ~~2o 40 60 80 100 12 10 6010 303 70 60 so 30 au T I I I /PT 1 -17 -180 -160 -140 -120 k1*00 100 120 140 160 180 UO - iO 11 20 so X A...4) (Continued). 00286 50 100 S0 250 . .. . . . 0 5O IO ’K 0 i 0 0 20 40 G0 Time (s9c) Figure C-i18. Dash/quick-stop time history data for flight

  14. Evaluation of the Rotational Throttle Interface for Converting Aircraft Utilizing the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Rozovski, David; Theodore, Colin R.

    2011-01-01

    An experiment was conducted to compare a conventional helicopter Thrust Control Lever (TCL) to the Rotational Throttle Interface (RTI) for tiltrotor aircraft. The RTI is designed to adjust its orientation to match the angle of the tiltrotor s nacelles. The underlying principle behind the design is to increase pilot awareness of the vehicle s configuration state (i.e. nacelle angle). Four test pilots flew multiple runs on seven different experimental courses. Three predominant effects were discovered in the testing of the RTI: 1. Unintentional binding along the control axis resulted in difficulties with precision power setting, 2. Confusion in which way to move the throttle grip was present during RTI transition modes, and 3. Pilots were not able to distinguish small angle differences during RTI transition. In this experiment the pilots were able to successfully perform all of the required tasks with both inceptors although the handling qualities ratings were slightly worse for the RTI partly due to unforeseen deficiencies in the design. Pilots did however report improved understanding of nacelle movement during transitions with the RTI.

  15. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  16. NASA Ames Environmental Sustainability Report 2011

    NASA Technical Reports Server (NTRS)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  17. NASA Ames Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This overview of NASA Ames Research Center is intended to give the target audience of university students a general understanding of the mission, core competencies, and research goals of NASA and Ames.

  18. PSP Testing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Hand, L. A.; Schairer, E. T.; Mehta, R. D.; George, Michael W. (Technical Monitor)

    1997-01-01

    Pressure sensitive paints (PSPs) are now used routinely for measuring surface pressures on wind tunnel models at transonic and supersonic Mach numbers. The method utilizes a surface coating containing fluorescent or phosphorescent materials, the brightness of which varies with the local air pressure on the surface. The present paper will summarize PSP activities (in progress and planned) at the NASA Ames Research Center. One of the main accomplishments at NASA Ames has been the development of a PSP measurement system that is production testing capable. This system has been integrated successfully into the large-scale wind tunnel facilities at Ames. There are several problems related to PSP testing which are unique to large-scale wind tunnel testing. The hardware is often difficult to set-up and must operate under harsh conditions (e.g. high pressures and low temperatures). The data acquisition and reduction times need to be kept to a minimum so that the overall wind tunnel productivity is not compromised. The pressure sensitive paints needs to be very robust; the paints must readily adhere to different surfaces with varying geometries and remain functional for long running times. The paint must have well understood, and preferably minimal, temperature sensitivity since fine control of the tunnel temperature is not easily achievable in the larger wind tunnels. In an effort to improve the overall accuracy of the PSP technique, we are currently evaluating some referenced pressure sensitive paints which contain a pressure- independent luminophor in addition to the one which is affected by the surface pressure. The two luminophors are chosen so that their emission wavelengths are somewhat different. Then by taking two 'wind-on' images with either two cameras (with different filters) or one camera with a rotating filter system, the need for 'wind-off' images can be eliminated. The ratio of the two wind-on images accounts for nonuniform lighting and model motion problems

  19. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  20. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  1. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  2. NASA Ames Hosts 2017 Breakthrough Prize

    NASA Image and Video Library

    2016-12-08

    NASA's Ames Research Center in Silicon Valley was the location of the 5th annual Breakthrough Prize ceremony, honoring scientific achievement. Researchers and engineers rubbed shoulders with Hollywood actors, Top-40 musicians, astronauts, sports heroes and Silicon Valley luminaries on the red carpet. Winners were honored with $3 million dollar prizes in the categories of physics, life sciences and mathematics with more than $25 million dollars awarded during the ceremony. The prizes were created by Sergey Brin, co-founder of Google and Anne Wojcicki, founder of 23 and Me; Mark Zuckerberg and Priscilla Chan of Facebook, and Yuri and Julia Milner.

  3. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  4. Theoretical Chemistry At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen

    1996-01-01

    The theoretical work being carried out in the Computational Chemistry Branch at NASA Ames will be overviewed. This overview will be followed by a more in-depth discussion of our theoretical work to determine molecular opacities for the TiO and water molecules and a discussion of our density function theory (DFT) calculations to determine the harmonic frequencies and intensities to the vibrational bands of polycyclic aromatic hydrocarbons (PAHs) to assess their role as carriers to the unidentified infrared (UIR) bands. Finally, a more in-depth discussion of our work in the area of computational molecular nanotechnology will be presented.

  5. Theoretical Chemistry At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen

    1996-01-01

    The theoretical work being carried out in the Computational Chemistry Branch at NASA Ames will be overviewed. This overview will be followed by a more in-depth discussion of our theoretical work to determine molecular opacities for the TiO and water molecules and a discussion of our density function theory (DFT) calculations to determine the harmonic frequencies and intensities to the vibrational bands of polycyclic aromatic hydrocarbons (PAHs) to assess their role as carriers to the unidentified infrared (UIR) bands. Finally, a more in-depth discussion of our work in the area of computational molecular nanotechnology will be presented.

  6. Historical Review of Piloted Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.

    1996-01-01

    This paper traces the conception and development of in-flight and ground based simulators at NASA Ames Research Center, starting in 1947 and continuing to the early 1990's. Problems with their development and operation and how limitations were handled are recounted. Advances needed in simulator equipment to improve performance and fidelity to gain pilot acceptance are discussed. The uses of these simulators in various aircraft research and development programs and their importance to aircraft design and flight testing are reviewed. Challenges remaining include a better understanding of the tradeoff between motion cues and visual cues, the importance of simulation sophistication when examining aircraft with marginal handling qualities characteristics, and the continuing need for upgrading simulation technology as more complex problems are encountered. Additional research is needed to understand the human behavior aspect in the pilot/simulator system.

  7. Rotorcraft Research at the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.

    2009-01-01

    In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.

  8. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  9. NASA Ames Celebrates Curiosity Rover's Landing on Mars

    NASA Image and Video Library

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions wit...

  10. NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)

    NASA Image and Video Library

    2012-08-08

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.

  11. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  12. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  13. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  14. Center Overview and UAV Highlights at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Feng, Deborah; Yan, Jerry Chi Yiu

    2017-01-01

    The PowerPoint presentation gives an overview of NASA Ames Research Center and its core competencies, as well as some of the highlights of Unmanned Aerial Vehicle (UAV) and Unmanned Aircraft Systems (UAS) accomplishments and innovations by researchers at Ames.

  15. Comparison Between Field Data and NASA Ames Wind Tunnel Data

    SciTech Connect

    Corbus, D.

    2005-11-01

    The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

  16. Arc jet testing in NASA Ames Research Center thermophysics facilities

    NASA Astrophysics Data System (ADS)

    Balter-Peterson, Aliza; Nichols, Frank; Mifsud, Brian; Love, Wendell

    1992-12-01

    The Arc Jet Complex facilities at NASA Ames and their performance capabilities and support systems are presented. An overview of the typical testing procedures is provided. Attention is focused on a basic understanding of the types of facilities available at Ames for aerothermodynamic testing.

  17. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  18. Atmospheric Rotational Effects on Mars Based on the NASA Ames General Circulation Model: Angular Momentum Approach

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James

    2004-01-01

    The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.

  19. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  20. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  1. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  2. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  3. An Introduction to Rotorcraft Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Aiken, Edwin W. (Technical Monitor)

    1997-01-01

    NASA Ames Research Center, Moffett Field, CA is the NASA lead Center for rotorcraft research. Rotorcraft research at Ames includes system analysis and configuration optimization, aeromechanics, and flight control and cockpit integration. Research in other areas such as composite structure and material, and rotor acoustics are conducted mainly at Langley Research Center, and rotorcraft propulsion and drivetrain are conducted at Lewis Research Center. This seminar will discuss Ames' rotorcraft research goals and some sample research projects and results. The talk will also briefly describe the newly fanned Army/NASA Rotorcraft Division, which combines the resources of rotorcraft branches in NASA Ames Aeronautics Directorate with Army's Aeroflightdynamics Directorate to better achieve the missions of the two previous rotorcraft research organizations at Ames. Rotorcraft research activities at NASA Ames are funded by two main program categories: Research and Technology (RUTH Base program and the Short Haul (Civil Tiltrotor) program. Work in the R&T program is carried out by the research staff in the Army/NASA Rotorcraft Division, and the work on SH(CT) program is carried out jointly by the SH(CT) program office and the Army/NASA Rotorcraft Division. Sample research projects and results in REST base program, such as conceptual assessment of several high-speed rotorcraft, rotorcraft CFD, individual blade control for reduction of external noise and vibration, noise-abatement flight procedures, engine inoperative procedures, handling qualities, and advanced flight control laws are broadly reviewed. High-speed rotorcraft research related to SH(CT) technology development conducted at Ames in the areas of low-noise proprotor, and low-noise terminal-area operations is also discussed.

  4. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  5. Research activity at the shock tube facility at NASA Ames

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1992-01-01

    The general design and operating conditions of NASA Ames's electric arc drive shock tube facility are described, and the measurements conducted at the facility to support the development of a theoretical model of the effects of chemical nonequilibrium over a hypersonic vehicle are summarized. In particular, attention is given to the results of measurements at a shock velocity of 6.20 km/s in 1 Torr nitrogen and measurements at a shock velocity of 10.2 km/s in 0.1 Torr air. The discussion covers reaction rate measurement, the use of holographic interferometry, and measurements of vibrational populations using Raman scattering.

  6. Planning and scheduling research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Planning and scheduling is the area of artificial intelligence research that focuses on the determination of a series of operations to achieve some set of (possibly) interacting goals and the placement of those operations in a timeline that allows them to be accomplished given available resources. Work in this area at the NASA Ames Research Center ranging from basic research in constrain-based reasoning and machine learning, to the development of efficient scheduling tools, to the application of such tools to complex agency problems is described.

  7. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    NASA Technical Reports Server (NTRS)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  8. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  9. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  10. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  11. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  12. The NASA Ames Controlled Environment Research Chamber - Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration taskes external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  13. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  14. The NASA Ames Controlled Environment Research Chamber - Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration taskes external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  15. The NASA Ames Controlled Environment Research Chamber: Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  16. Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1994-01-01

    Computational fluid dynamics (CFD) is beginning to play a major role in the aircraft industry of the United States because of the realization that CFD can be a new and effective design tool and thus could provide a company with a competitive advantage. It is also playing a significant role in research institutions, both governmental and academic, as a tool for researching new fluid physics, as well as supplementing and complementing experimental testing. In this presentation, some of the progress made to date in CFD at NASA Ames will be reviewed. The presentation addresses the status of CFD in terms of methods, examples of CFD solutions, and computer technology. In addition, the role CFD will play in supporting the revolutionary goals set forth by the Aeronautical Policy Review Committee established by the Office of Science and Technology Policy is noted. The need for validated CFD tools is also briefly discussed.

  17. The NASA Ames Fatigue Countermeasures Program: The Next Generation

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.; Miller, Donna L.; Gregory, Kevin B.; Webbon, Lissa L.; Oyung, Ray L.

    1997-01-01

    Twenty-four hour, global aviation operations pose unique challenges to humans. Physiological requirements related to sleep, the internal circadian clock, and human fatigue are critical factors that are known to affect safety, performance, and productivity. Understanding the human operators' physiological capabilities, and limitations, will be important to address these issues as global demand for aviation activities continues to increase. In 1980, in response to a Congressional request, the National Aeronautics and Space Administration (NASA) Ames Research Center initiated a Fatigue/Jet Lag Program to examine the role of fatigue in flight operations. Originally established by Dr. John K. Lauber and Dr. Charles E. Billings, the Program was designed to address three objectives: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine how fatigue affected flight crew performance; and (3) develop strategies to maximize performance and alertness during flight operations.

  18. Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1994-01-01

    Computational fluid dynamics (CFD) is beginning to play a major role in the aircraft industry of the United States because of the realization that CFD can be a new and effective design tool and thus could provide a company with a competitive advantage. It is also playing a significant role in research institutions, both governmental and academic, as a tool for researching new fluid physics, as well as supplementing and complementing experimental testing. In this presentation, some of the progress made to date in CFD at NASA Ames will be reviewed. The presentation addresses the status of CFD in terms of methods, examples of CFD solutions, and computer technology. In addition, the role CFD will play in supporting the revolutionary goals set forth by the Aeronautical Policy Review Committee established by the Office of Science and Technology Policy is noted. The need for validated CFD tools is also briefly discussed.

  19. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  20. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  1. The NASA Ames integral aircraft passenger seat concept - A human engineering approach

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1974-01-01

    A new NASA Ames concept for an aircraft passenger seat has been under research and development since 1968. It includes many human-factor features that will provide protection to the passenger from vibration, jostle, and high impact. It is comfortable and safer than any of the seats presently in use. An in-depth design, fabrication, and impact analysis was conducted in order to design a seat that will maximize passenger protection in high g impacts (20 g horizontal -Gx, 36 g vertical +Gz, 16 g lateral Gy). The method for absorbing impact energy was accomplished with a combination of stretching stainless steel cables, thread breaking of stitches, hydraulic mechanism and the special Temper Form cushions. The restraint system for the seat consisted of a lap belt and shoulder harness inertia reel combination.

  2. Stationary Wave Activity Simulated by the NASA Ames MGCM Incorporating New MOLA Topography Data

    NASA Technical Reports Server (NTRS)

    Bridger, A. F. C.; Hollingsworth, J. L.; Haberle, R. M.; Schaeffer, J.

    1999-01-01

    Annual simulations of Mars' atmosphere have been conducted with the NASA Ames Mars General Circulation Model (MGCM) using the newly-acquired MOLA topography data. The data is provided at 1 x 1 deg resolution, and is used by the MGCM at 7.5 x 9 deg resolution. The vertical domain in the simulations reported here extends to around 80 km. Simulated stationary wave activity is examined in each hemisphere as a function of season (at every 30 deg of Ls), dust loading (dust visible opacities of 0.3, 1, and 3), and topography (comparing results with MOLA vs. Smith-Zuber topography). Additional information is contained in the original extended abstract.

  3. Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.

    1993-01-01

    Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.

  4. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  5. NASA Ames and Traveling Space Museum Host Space Day at Bay Area Schools (Version 2 - Final)

    NASA Image and Video Library

    2010-08-10

    NASA Ames and the Traveling Space Museum visited under-represented students in the Bay Area in an effort to excite them to the possibilities in science, technology, engineering and mathematics. Includes soundbites from Lewis Braxton III (NASA Ames) and actress Nichelle Nichols (TSM).

  6. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  7. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  8. Building Climate Resilience at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the

  9. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to

  10. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  11. NASA/Ames Research Center DC-8 data system

    NASA Technical Reports Server (NTRS)

    Cherniss, S. C.; Scofield, C. P.

    1991-01-01

    In-flight facility data acquisition, distribution, and recording on the NASA Ames Research Center (ARC) DC-8 are performed by the Data Acquisition and Distribution System (DADS). Navigational and environmental data collected by the DADS are converted to engineering units and distributed real-time to investigator stations once per second. Selected engineering units data are printed and displayed on closed circuit television monitors throughout flights. An in-flight graphical display of the DC-8 flight track (with barbs indicating wind direction and magnitude) has recently been added to the DADS capabilities. Logging of data run starts/stops and commentary from the mission director are also provided. All data are recorded to hard disk in-flight and archived to tape medium post-flight. Post-flight, hard copies of the track map and mission director's log are created by the DADS. The DADS is a distributed system consisting of a data subsystem, an Avionic Serial Data-to-VMEbus (ASD2VME) subsystem, and a host subsystem. Each subsystem has a dedicated central processing unit (CPU) and is capable of stand-alone operation. All three subsystems are housed in a single 20-slot VME chassis and communicate with each other over the VMEbus. The data and host subsystems are briefly discussed, and the DC-8 DADS internal configuration and system block diagram are presented.

  12. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  13. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  14. Recent Developments in Ultra High Temperature Ceramics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.

    2009-01-01

    NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.

  15. Current Testing Capabilities at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Ramsey, Alvin; Tam, Tim; Bogdanoff, David; Gage, Peter

    1999-01-01

    Capabilities for designing and performing ballistic range tests at the NASA Ames Research Center are presented. Computational tools to assist in designing and developing ballistic range models and to predict the flight characteristics of these models are described. A CFD code modeling two-stage gun performance is available, allowing muzzle velocity, maximum projectile base pressure, and gun erosion to be predicted. Aerodynamic characteristics such as drag and stability can be obtained at speeds ranging from 0.2 km/s to 8 km/s. The composition and density of the test gas can be controlled, which allows for an assessment of Reynolds number and specific heat ratio effects under conditions that closely match those encountered during planetary entry. Pressure transducers have been installed in the gun breech to record the time history of the pressure during launch, and pressure transducers have also been installed in the walls of the range to measure sonic boom effects. To illustrate the testing capabilities of the Ames ballistic ranges, an overview of some of the recent tests is given.

  16. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  17. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory.

    PubMed

    Brown, Steven W; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  18. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory

    SciTech Connect

    Brown, Steven W.; Johnson, B. Carol; Biggar, Stuart F.; Zalewski, Edward F.; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A.; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  19. Research activity at the shock tube facility at NASA Ames

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1992-01-01

    The real gas phenomena dominate the relaxation process occurring in the flow around hypersonic vehicles. The air flow around these vehicles undergoes vibrational excitation, chemical dissociation, and ionization. These chemical and kinetic phenomena absorb energy, change compressibility, cause temperature to fall, and density to rise. In high-altitude, low density environments, the characteristic thicknesses of the shock layers can be smaller than the relaxation distances required for the gas to attain chemical and thermodynamic equilibrium. To determine the effects of chemical nonequilibrium over a realistic hypersonic vehicle, it would be desirable to conduct an experiment in which all aspects of fluid flow are simulated. Such an experiment is extremely difficult to setup. The only practical alternative is to develop a theoretical model of the phenomena and to compute the flow around the vehicle including the chemical nonequilibrium, and compare the results with the experiments conducted in the facilities under conditions where only a portion of the flow phenomena is simulated. Three types of experimental data are needed to assist the aerospace community in this model development process: (1) data which will enhance our phenomenological understanding of the relaxation process, (2) data on rate reactions for the relevant reactions, and (3) data on bulk properties, such as spectral radiation emitted by the gas, for a given set of aerodynamic conditions. NASA Ames is in a process of collecting such data by simulating the required aerothermochemical conditions in an electric arc driven shock tube.

  20. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  1. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  2. Space Day 2002; Directors Breakfast @ NASA Ames Visitors Center for student Winners of Santa Clara

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space Day 2002; Directors Breakfast @ NASA Ames Visitors Center for student Winners of Santa Clara Valley Science & Engineering Fair and San Francisco Bay Aera Science Fair (Students are addressed by Bob Rosen, Ames Associate Director for Aerospace Programs)

  3. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  4. NASA Ames Helps Search For and Study of Sutter's Mill Meteorites

    NASA Image and Video Library

    Scientists, researchers and volunteers from NASA Ames, the SETI Institute and other organizations are searching for fragments of the Sutter's Mill Meteor that illuminated the sky over the Sierra Ne...

  5. Summary of proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee

    NASA Technical Reports Server (NTRS)

    Hettinger, Lawrence J.; Mccauley, Michael E.; Cook, Anthony E.; Voorhees, James W.

    1989-01-01

    A program of research to investigate simulator induced sickness has recently been initiated under the sponsorship of NASA Ames Research Center to coordinate efforts to investigate and eventually eliminate the problem of simulator sickness. As part of this program, a Simulator Sickness Steering Committee has been assembled, comprised of eighteen representatives from the Army, Air Force, Navy, NASA, NATO, academia, and industry. The proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee are summarized and discussed.

  6. The NASA Ames Closed Environmental Research Chamber: Present Status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Closed Environmental Research Chamber (CERC) at the NASA Ames Research Center was created to investigate both components and complete systems for life support of advanced space exploration missions. This facility includes a Main Chamber, an Airlock, a Sample Transfer Lock, a Vacuum System, an Air Recompression System, a dedicated control room and a pit area for housing supporting and environmental control systems. The Main Chamber provides 310 sq ft of internal working/living space on two levels. It is planned that the CERC will be a human-rated facility for habitation simulation under mass balance closure conditions. The internal pressure will be variable over the range of 14.7 psia to 5 psia with accompanying capability for variation in atmosphere composition to maintain the oxygen partial pressure at 160 mm Hg. The CERC will be provided with a core set of primary life support subsystems for temperature and humidity control, C02 removal and trace contaminant control. Interfacing with external life support technology test bds with be provided, along with connection to centralized, microprocessor-based data acquisition and control systems. This paper will discuss the current status of the CERC facility and show how it is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. In particular, it will be shown how the CERC, along with a human-powered centrifuge, a planetary terrain simulator and advanced displays and a virtual reality capability will work together to develop and demonstration applicable technologies for future planetary habitats. Artificial intelligence and expert system programming techniques will be used extensively to provide an automated environment for a 4-person crew. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative

  7. The NASA Ames Closed Environmental Research Chamber: Present Status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Closed Environmental Research Chamber (CERC) at the NASA Ames Research Center was created to investigate both components and complete systems for life support of advanced space exploration missions. This facility includes a Main Chamber, an Airlock, a Sample Transfer Lock, a Vacuum System, an Air Recompression System, a dedicated control room and a pit area for housing supporting and environmental control systems. The Main Chamber provides 310 sq ft of internal working/living space on two levels. It is planned that the CERC will be a human-rated facility for habitation simulation under mass balance closure conditions. The internal pressure will be variable over the range of 14.7 psia to 5 psia with accompanying capability for variation in atmosphere composition to maintain the oxygen partial pressure at 160 mm Hg. The CERC will be provided with a core set of primary life support subsystems for temperature and humidity control, C02 removal and trace contaminant control. Interfacing with external life support technology test bds with be provided, along with connection to centralized, microprocessor-based data acquisition and control systems. This paper will discuss the current status of the CERC facility and show how it is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. In particular, it will be shown how the CERC, along with a human-powered centrifuge, a planetary terrain simulator and advanced displays and a virtual reality capability will work together to develop and demonstration applicable technologies for future planetary habitats. Artificial intelligence and expert system programming techniques will be used extensively to provide an automated environment for a 4-person crew. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative

  8. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  9. Exploring Mars' Middle Atmosphere with the Extended NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J.

    2013-12-01

    The NASA Ames Mars General Circulation Model (Mars GCM) upper boundary has been extended to ~120 km altitude (pT ~ 10-6 mbar). The extension of the Mars GCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere. Moreover, it provides the opportunity to support missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). The calculated solar heating rates (LTE heating rates) within the Mars GCM are corrected for NLTE by applying factors from Table 1 in López-Valverde et al. (1998). The CO2 15-μm cooling parameterizations is adapted from Bougher et al. (2006). This modification to the radiative transfer forcing has been significantly tested in a 1D vertical column (i.e. RT code) and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented.

  10. Low-level jets in the NASA Ames Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Haberle, R. M.; Barnes, J. R.; Murphy, J. R.; Schaeffer, J.

    1997-03-01

    Previous simulations of the Martian atmosphere have shown how topography acts to confine the low-level Hadley cell flow into intense jets on the eastern flanks of Tharsis and Syrtis Major. We now conduct detailed studies of these jets using the NASA Ames Mars general circulation model (MGCM). The structure of the flow is found to be sensitive to local topography as well as large-scale diabatic heating patterns, consistent with terrestrial studies, and MGCM studies carried out with simplified topography. The summer subtropical zonal winds associated with the Hadley circulation also form spatially confined intense jet cores. Diurnal variations in heating affect jet structure in three distinct ways. Global tides interact with the jets, resulting in effects such as the two reinforcing each other at the summer subtropics near midday, leading to high winds and surface stresses at this time. Slope winds act to change the character of the jets during the course of a day, especially at Syrtis Major and the Hellas basin, where slopes are large. Vertical mixing acts to decrease low-level winds during the late afternoon. The sensitivity of the results to atmospheric dust loading is examined. We finally show how a decrease in boundary layer height due to dust loading actually augments mid-afternoon jet strength near the surface. The resulting increase in maximum surface stress indicates that this is a positive feedback to dust lifting.

  11. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1989-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. Some research projects as well as some applications are highlighted. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  12. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1988-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  13. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  14. NASA Ames Helps Re-enter the Dragon (Centerpiece for TWAN and Web)

    NASA Image and Video Library

    2012-05-14

    When the SpaceX Dragon spacecraft returns to Earth after its mission to the International Space Station, it will depend on a heat shield material called PICA-X to protect it during reentry. The heat shield material, called Phenolic Impregnated Carbon Ablator or PICA-X, was developed in partnership with NASA Ames Research Center.

  15. SOFIA Aircraft Visits NASA Ames, Reporter Package for TWAN/Web

    NASA Image and Video Library

    2011-10-19

    Taking a break from its science mission flights, the Stratospheric Observatory For Infrared Astronomy or SOFIA came to NASA Ames Research Center to offer tours to employees and VIP's alike. For two days, the aircraft was opened up so that dignitaries, members of the media, NASA employees and the general public could take self-guided tours of the aircraft.

  16. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  17. Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald

    2014-01-01

    Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.

  18. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  19. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful

  20. Status of Regenerative Life Support Research and Technology Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    1998-01-01

    Future long duration manned space missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. This presentation will provide an overview of the Advanced Life Support program unclassified fundamental research and technology development activities being conducted at NASA Ames Research Center. Top level program goals and technical objectives, and the role of NASA-Ames within the Advanced Life Support program, will be reviewed. The presentation will focus on FY97 and FY98 research tasks that were directed at physicochemical processes with emphasis on system closure and self-sufficiency. Research areas include solid waste processing and resource recovery, water recycling, air regeneration, and regenerative system dynamics. Proposed future work and potential applications of this research to both terrestrial and space closed ecology experimentation in space will be addressed.

  1. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  2. NASA Ames Contributes to Orion / EFT-1 Test Flight (Reporter Pkg)

    NASA Image and Video Library

    2014-12-03

    NASA's Orion spacecraft is built to take humans farther than they've ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA's Ames Research Center played a critical role in the development and preparation for the flight test designated Exploration Flight Test 1, or EFT-1.

  3. Upgrading of NASA-Ames high-energy hypersonic facilities: A Study

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Carlson, William C. A.

    1988-01-01

    This study reviews facility capabilities of NASA, Ames Research Center to simulate hypersonic flight with particular emphasis on arc heaters. Scaling laws are developed and compared with ARCFLO II calculations and with existing data. The calculations indicate that a 300 MW, 100 atmosphere arc heater is feasible. Recommendations for the arc heater, which will operate at voltages up to 50 kilovolts, and the associated elements needed for a test facility are included.

  4. Experimental program for real gas flow code validation at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul

    1989-01-01

    The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.

  5. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  6. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  7. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  8. Effect of vertical motion on current meters

    USGS Publications Warehouse

    Kallio, Nicholas A.

    1966-01-01

    The effect of vertical motion on the performance of current meters at various stream velocities was evaluated to determine whether accurate discharge measurements can be made from a bobbing boat. Three types of current meters--Ott, Price, and vane types--were tested under conditions simulating a bobbing boat. A known frequency and amplitude of vertical motion were imparted to the current meter, and the related effect on the measured stream velocity was determined. One test of the Price meter was made under actual conditions, using a boat and standard measuring gear. The results of the test under actual conditions verified those obtained by simulating the vertical movements of a boat. The tests show that for stream velocities below 2.5 feet per second the accuracy of all three meters is significantly affected when the meters are subjected to certain conditions of vertical motion that can occur during actual field operations. Both the rate of vertical motion and the frequency of vertical oscillation affect the registration of the meter. The results of these tests, presented in the form of graphs and tables, can be used as a guide to determine whether wind and stream flow are within an acceptable range for a reliable discharge measurement from a boat.

  9. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River.

  10. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  11. Human sensitivity to vertical self-motion.

    PubMed

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  12. Aircraft ground vibration testing at NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1987-01-01

    At the NASA Ames Research Center's Dryden Flight Research Facility at Edwards Air Force Base, California, a variety of ground vibration test techniques has been applied to an assortment of new or modified aerospace research vehicles. This paper presents a summary of these techniques and the experience gained from various applications. The role of ground vibration testing in the qualification of new and modified aircraft for flight is discussed. Data are presented for a wide variety of aircraft and component tests, including comparisons of sine-dwell, single-input random, and multiple-input random excitation methods on a JetStar airplane.

  13. Aircraft ground vibration testing at NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1987-01-01

    At the NASA Ames Research Center's Dryden Flight Research Facility at Edwards Air Force Base, California, a variety of ground vibration test techniques has been applied to an assortment of new or modified aerospace research vehicles. This paper presents a summary of these techniques and the experience gained from various applications. The role of ground vibration testing in the qualification of new and modified aircraft for flight is discussed. Data are presented for a wide variety of aircraft and component tests, including comparison of sine-dwell, single-input random, and multiple-input random excitation methods on a JetStar airplane.

  14. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  15. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  16. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  17. NASA Ames Hosts Viewing Party for Final Shuttle Launch (Reporter Package)

    NASA Image and Video Library

    2011-07-12

    The public was invited to NASA's Ames Research Center to observe a live televised broadcast of the final space shuttle launch on July 8, 2011. The STS-135 mission is the final flight of NASA's Space Shuttle Program. The orbiter Atlantis is carrying a system to investigate the potential for robotically refueling existing spacecraft and bring back a failed ammonia pump to help NASA better understand and improve pump designs for future systems. It also will deliver spare parts to sustain space station operations after the shuttles retire from service.

  18. Upper Boundary Extension of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Brecht, Amanda S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J. R.

    2012-01-01

    Extending the NASA Ames Mars General Circulation Model (MGCM) upper boundary will expand our understanding of the connection between the lower and upper atmosphere of Mars through the middle atmosphere. The extension's main requirements is incorporation of Non-local thermodynamic equilibrium (NLTE) heating (visible) and cooling (infrared). NLTE occurs when energy is exchanged more rapidly with the radiation field (or other energy sources) rather than collisions with other molecules. Without NLTE above approximately 80km/approximately 60km in Mars' atmosphere the IR/visible heating rates are overestimated. Currently NLTE has been applied successfully into the 1D RT code and is in progress for the 3D application.

  19. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  20. Capabilities of NASA-AMES Research Center`s Airborne Science Aircraft

    SciTech Connect

    Hall, G.W.; Knutson, M.A.; Petersen, E.V.

    1996-11-01

    NASA Ames Research Center at Moffett Federal Air Field, Mountain View, California is NASA`s lead center for Airborne Science Aircraft. The Airborne Science and Flight Research Division operates seven Airborne Science Aircraft. The aircraft are operated as national and international facilities in support of NASA Headquarters, NASA Centers, Universities, Federal Agencies, and International Organizations. The aircraft have made and continue to make major contributions in the fields of Astrophysics, Geophysics, Meteorology, Atmospheric and Stratospheric Science, Earth Resources, and in the development, evaluation and calibration of Spacecraft Sensors. The aircraft have also played key roles in disaster assessment and relief efforts. 5 figs.

  1. Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center

    NASA Astrophysics Data System (ADS)

    Kutler, Paul; Gross, Anthony R.

    1987-03-01

    The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.

  2. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  3. Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model. II - Transient baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Barnes, Jeffrey R.; Pollack, James B.; Haberle, Robert M.; Leovy, Conway B.; Zurek, Richard W.; Lee, Hilda; Schaeffer, James

    1993-01-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  4. Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Gross, Anthony R.

    1987-01-01

    The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.

  5. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. II - Transient baroclinic eddies

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Pollack, J. B.; Haberle, R. M.; Leovy, C. B.; Zurek, R. W.; Lee, H.; Schaeffer, J.

    1993-02-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  6. Vertical motions in the equatorial middle atmosphere

    NASA Technical Reports Server (NTRS)

    Weisman, M. L.

    1979-01-01

    A single station vertical velocity equation which considers ageostrophic and diabatic effects derived from the first law of thermodynamics and a generalized thermal wind relation is presented. An analysis and verification procedure which accounts for measurement and calculation errors as well as time and space continuity arguments and theoretical predictions are described. Vertical velocities are calculated at every kilometer between 25 and 60 km and for approximately every three hours for the above diurnal period at Kourou (French Guiana), Fort Sherman (Panama Canal Zone), Ascension Island, Antigua (British West Indies) and Natal (Brazil). The results, plotted as time series cross sections, suggest vertical motions ranging in magnitude from 1 or 2 cm/sec at 30 km to as much as 15 cm/sec at 60 km. Many of the general features of the results agree well with atmospheric tidal predictions but many particular features suggest that both smaller time scale gravity waves (periods less than 6 hours) and synoptic type waves (periods greater than 1 day) may be interacting significantly with the tidal fields. The results suggest that vertical motions can be calculated for the equatorial middle atmosphere and must be considered a significant part of the motion for time scales from 8 to 24 hours.

  7. Diagnosis of vertical motion from VAS retrievals

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Funk, Theodore W.

    1987-01-01

    Satellite-derived temperature profiles are used to determine if reliable estimates of synoptic-scale vertical motion can be obtained from the adiabatic, vorticity, and omega equation techniques. The period of study contains a short-wave trough over the Midwest and a convective outbreak over the middle Mississippi River Valley. Satellite soundings are available at 1-3 h intervals at five times. The emphasis is on assessing the strengths and weaknesses of the three vertical motion procedures, and determining the effects of short-interval observations on the calculations. Results show that the quasi-geostrophic omega equation provided patterns and magnitudes most consistent with observed weather events and 12 h radiosonde-derived motions. The vorticity method produced less satisfactory results, while adiabatic motions were unacceptable. The time derivative term dominated adiabatic motions and was a major influence in the vorticity method. Unrealistic temperature tendencies resulted from the retrieval algorithm; i.e., a diurnal temperature bias extended upwards to 500 mb, and there was a compensating effect at higher levels.

  8. Hybrid laminar flow control experiments in the NASA - Ames, 11-foot tunnel

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1995-01-01

    It was proposed to design and conduct experiments in the NASA-Ames Research Center, 11-foot wind tunnel, that would assess the role of freestream turbulence and surface roughness on swept-wing transition to turbulence. The work was to be a cooperative effort that had direct application to hybrid laminar flow control (HLFC) airfoils. The first part of the proposed work, initiated in FY92 and continued into FY93, concentrated on the design of such an experiment whose results may be compared with results obtained in other wind-tunnel facilities. At the same time, concurrent work in the Arizona State University (ASU) Unsteady Wind Tunnel would be conducted on the effects of surface roughness. The second part of the work, which was to be initiated in FY94, would have consisted of experiments conducted in both the 11-foot tunnel at NASA-Ames and the ASU Unsteady Wind Tunnel. However, this work was not continued. This report summarizes the experimental design considerations and some preliminary experiments that made up the first part of the work.

  9. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  10. Predicting Vertical Motion within Convective Storms

    NASA Astrophysics Data System (ADS)

    van den Heever, S. C.

    2016-12-01

    Convective storms are both beneficial in the fresh water they supply and destructive in the life-threatening extreme weather they produce. They are found throughout the tropics and midlatitudes, vary in structure from isolated to highly organized systems, and are the sole source of precipitation in many regions of Earth. Convective updrafts and downdrafts plays a crucial role in cloud and precipitation formation, latent heating, water vapor transport, storm organization, and large-scale atmospheric circulations such as the Hadley and Walker cells. These processes, in turn, impact the strength and longevity of updrafts and downdrafts through complex, non-linear feedbacks. In spite of the significant influence of convective updrafts and downdrafts on the weather and climate system, accurately predicting vertical motion using numerical models remains challenging. In high-resolution cloud-resolving models where vertical motion is normally resolved, significant biases exist in the predicted profiles of updraft and downdraft velocities, at least for the limited cases where observational data have been available for model evaluation. It has been suggested that feedbacks between the vertical motion and microphysical processes may be one cause of these discrepancies, however, our understanding of these feedbacks remains limited. In this talk, the results of a small field campaign conducted over northeastern Colorado designed to observe storm vertical motion and cold pool characteristics within isolated and organized deep convective storms will be described. High frequency radiosonde, radar and drone measurements of a developing through mature supercell storm updraft and cold pool will be presented and compared with RAMS simulations of the same supercell storm. An analysis of the feedbacks between the storm dynamical and microphysical processes will be presented, and implications for regional and global modeling of severe storms will be discussed.

  11. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  12. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  13. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  14. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  15. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  16. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  17. An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Chen, M.

    1987-01-01

    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.

  18. Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS

    NASA Technical Reports Server (NTRS)

    Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George

    2016-01-01

    This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.

  19. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  20. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  1. The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison

    NASA Technical Reports Server (NTRS)

    TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.

  2. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  3. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  4. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  5. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  6. THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA

    SciTech Connect

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.; Mattioda, A. L.; Cami, J.; Peeters, E.; Allamandola, L. J.; Sanchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.

    2010-08-15

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyze and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.

  7. The NASA Ames PAH IR Spectroscopic Database: A Demo of its Contents and Web Tools

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Sánchez de Armas, F.; Ricca, A.; Cami, J.; Peeters, E.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2009-01-01

    The features formerly known as the Unidentified Infrared (UIR) Emission Bands are now generally attributed to polycyclic aromatic hydrocarbons (PAHs). Exploitation of these features as astrophysical and astrochemical probes requires the IR properties of PAHs under interstellar conditions. To fulfill this need, we experimentally measured and theoretically computed the 2-2000 µm spectra of many PAHs over the past 18 years at NASA's Ames Research Center. Today's collection comprises about 600 theoretically computed and 60 laboratory measured spectra of PAHs in different forms. The molecules in the collection range in size from C10H8 to C130H28. For most of these, spectra are available for PAHs in their neutral and singly charged (+/-) states. In some cases, IR spectra of multiply charged species were also computed. The database includes pure PAHs; PAHs containing nitrogen (PANHs), oxygen, and silicon; PAHs with side groups; PAHs with extra hydrogens; and PAHs complexed with iron and magnesium. This collection of PAH spectra from 2 - 2000 µm has been assembled into a uniform database, which we will make publicly available on the web in early 2009. A WebGUI interface has been developed that can effectively interrogate the database using a variety of queries, such as formula, molecular name, charge, specific number of atoms, etc. Several molecules can be selected in such a process and one can obtain their 3-D structures, plot and co-add their spectra, adjust parameters such as the bandwidth, download their data and print graphs. The database can also be downloaded as a whole and IDL-routines are provided to interrogate it. This talk will present an overview of the contents and the web-GUI tools of the NASA Ames PAH IR Spectroscopic Database. Hands-on demonstrations will be available at the SOFIA Booth.

  8. Vertical land motion of Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Montillet, J. P.; Szeliga, W. M.

    2015-12-01

    We use GPS measurements from 400 stations located throughout the Pacific Northwest to estimate steady-state vertical land motion for the purpose of constraining relative sea level rise projections. Vertical motions are typically only a few percent of horizontal rates and the same order of magnitude as current sea level rise rates, so may either ameliorate or exacerbate future climate impacts. We use data from receivers operating from 1994 through 2015, each with at least three years of continuous daily measurements. Furthermore, daily position time series resulting from the processing of two GPS centers, namely the EarthScope Plate Boundary Observatory (PBO) and the Pacific Northwest Geodetic Array (PANGA), are considered throughout this study. The goal is two fold: the dissemination into the scientific community of the difference in processing between these two centers, and the level of agreement between the estimated crustal for future sea-level studies in the Pacific Northwest. We model both target and reference frame receiver trajectories as a superposition of discrete processes comprising steady-state tectonic motion, annual and bi-annual sinusoids exhibiting stationary phase and amplitude that reflect both local hydrology as well as artifacts introduced through satellite clock and orbit corrections, and discrete offsets due to known earthquakes (with Mw > 6) and hardware changes. Qualitatively, Vancouver Island shows long-term uplift of ~2 mm/year, consistent with both interseismic strain accumulation from the Juan de Fuca subduction along the coast and post-glacial rebound inland, and consistent with earlier reports based on few stations and shorter time series. Further south, coastal uplift rates transition to near-zero south of Pacific Beach, and remain low southward to Cape Blanco. Vertical motion is more heterogeneous throughout Puget Sound, but most regions show subsidence of ~0.5 - 1 mm/yr. The predominant subsidence throughout Puget Sound, where the

  9. Photographer: NASA Ames On 20 December 1989, Ames buried a time capsule and unveiled a sculpture at

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Photographer: NASA Ames On 20 December 1989, Ames buried a time capsule and unveiled a sculpture at the spot where, fifty years earlier, Russel Robinson had turned the first spade of dirt for the Ames construction shack: Robinson (left) Ames Director Dale Compton (center) and Ames Deputy Director Sy Syvertson (right)

  10. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River. Rick, Kolyer, Jonas Jonsson, Ethan, Pinsker, Bob Dahlgren.

  11. Aerial View Of The Site From The 40x80 Foot Wind Tunnel At Nasa Ames Research Center.

    NASA Image and Video Library

    1943-03-12

    (03/12/1943) Aerial view of the site from the 40x80 wind tunnel At NASA Ames Research Center. Site includes the 16 foot and 7x10 wind tunnels in the background. Building 200 also under construction. Framing for the drive fans of the 40x80 in scene.

  12. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    SciTech Connect

    O'Donnell, James T.; Maile, Tobias; Rose, Cody; Mrazovic, Natasa; Morrissey, Elmer; Regnier, Cynthia; Parrish, Kristen; Bazjanac, Vladimir

    2013-01-01

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage in the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive

  13. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  14. Estimating tropical vertical motion profile shapes from satellite observations

    NASA Astrophysics Data System (ADS)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  15. Vertical Heterophoria and Susceptibility to Visually-induced Motion Sickness

    PubMed Central

    Jackson, Danielle N.; Bedell, Harold E.

    2013-01-01

    Motion sickness is reported to be a common symptom in patients with vertical heterophoria. The goal of this study was to assess the relationship between vertical phoria and susceptibility to motion sickness in a non-clinical sample of 43 subjects. Vertical phoria was measured with a Maddox rod after 30 s of occlusion. To evaluate susceptibility to motion sickness, subjects read text while sitting inside a rotating optokinetic drum for 10 min. Subjects rated their level of motion sickness at 1 min intervals during drum rotation and the magnitude of 13 motion-sickness symptoms after drum rotation ended. The magnitude of vertical phoria ranged from 0 to 2.13 prism diopters (pd) with a mean of 0.46 pd and correlated significantly with both the maximum rating of motion sickness during drum rotation and the summed symptom score following rotation. A vertical phoria of 0.75 pd discriminated best between subjects with low vs. high summed motion-sickness-symptom scores (p < 0.0001). Introducing a prism to artificially increase the phoria of 12 subjects with vertical phorias < 0.75 pd increased motion-sickness symptoms in only 1 subject. Prisms that reduced the phoria of subjects with vertical phorias > 0.75 pd reduced motion-sickness symptoms in 2 of the 4 subjects tested. The results confirm an association between vertical phoria and motion sickness, but suggest the relationship may not be causal. PMID:22390327

  16. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  17. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  18. The NASA/Ames Mars General Circulation Model: Model Improvements and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Hollingsworth, J. L.; Colaprete, A.; Bridger, A. F. C.; McKay, C. P.; Murphy, J. R.; Schaeffer, J.; Freedman, R.; Fonda, Mark (Technical Monitor)

    2003-01-01

    For many years, the NASA/Ames Mars General Circulation Model (GCM) has been built around the UCLA B-grid dynamical core. An attached tracer transport scheme based on the aerosol microphysical model of Toon et al. (1988) provided a tool for studying dust storm transport and feedbacks (Murphy et al., 1995). While we still use a B-grid version of the model, the Ames group is now transitioning to the ARIES/GEOS Goddard C-grid dynamical core (Suarez and Takacs, 1995). The C-grid produces smoother fields when the model top is raised above 50 km, and has a built in transport scheme for an arbitrary number of tracers. All of our transport simulations are now carried out with the C-grid. We have also been updating our physics package. Several years ago we replaced our bulk boundary layer scheme with a level 2 type diffusive scheme, and added a multi-level soil model (Haberle et al., 2000). More recently we replaced our radiation code with a more generalized two-stream code that accounts for aerosol multiple scattering and gaseous absorption. This code gives us much more flexibility in choosing aerosol optical properties and radiatively active gases.

  19. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  20. Design outline for a new multiman ATC simulation facility at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Gallagher, O.

    1977-01-01

    A new and unique facility for studying human factors aspects in aeronautics is being planned for use in the Man-Vehicle Systems Research Division at the NASA-Ames Research Center. This facility will replace the existing three cockpit-single ground controller station and be expandable to include approximately seven cockpits and two ground controller stations. Unlike the previous system, each cockpit will be mini-computer centered and linked to a main CPU to effect a distributed computation facility. Each simulator will compute its own flight dynamic and flight path predictor. Mechanical flight instruments in each cockpit will be locally supported and CRT cockpit displays of (e.g.) traffic and or RNAV information will be centrally computed and distributed as a means of extending the existing computational and graphical resources. An outline of the total design is presented which addresses the technical design options and research possibilities of this unique man-machine facility and which may also serve as a model for other real time distributed simulation facilities.

  1. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  2. Absolute Radiation Measurement During Planetary Entry in the NASA Ames Electric Arc Shock Tube Facility

    NASA Astrophysics Data System (ADS)

    Cruden, Brett A.

    2011-05-01

    During planetary entry, a shock-heated plasma that imparts significant heating to the structure is formed in front of the space vehicle. At high velocities, a significant portion of that energy transfer originates from radiation from the shock-heated plasma. Shock tubes are capable of simulating the high velocity and low density conditions typical of planetary entry and thus are able to recreate the radiative environment encountered by spacecraft. The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is one of the few shock tubes in the world that is capable of reaching the high velocities that are necessary to study more extreme entry conditions. The EAST is presently being utilized to simulate radiation in a variety of planetary atmospheres. It is presently the only facility in which radiation originating in the vacuum ultraviolet is being quantified. This paper briefly describes recent tests in the EAST facility relevant to Earth, Mars, and Venus entry conditions, and outlines the issues in relating ground test data to flight relevant condition via predictive radiation simulations.

  3. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  4. Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1985-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.

  5. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  6. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  7. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  8. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  9. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  10. Incorporation of EGPWS in the NASA Ames Research Center 747-400 Flight Simulator

    NASA Technical Reports Server (NTRS)

    Sallant, Ghislain; DeGennaro, Robert A.

    2001-01-01

    The NASA Ames Research Center CAE Boeing 747300 flight simulator is used primarily for the study of human factors in aviation safety. The simulator is constantly upgraded to maintain a configuration match to a specific United Airlines aircraft and maintains the highest level of FAA certification to ensure credibility to the results of research programs. United's 747-400 fleet and hence the simulator are transitioning from the older Ground Proximity Warning System (GPWS) to the state-of-the-art Enhanced Ground Proximity Warning System (EGPWS). GPWS was an early attempt to reduce or eliminate Controlled Flight Into Terrain (CFIT). Basic GPWS alerting modes include: excessive descent rate, excessive terrain closure rate, altitude loss after takeoff, unsafe terrain clearance, excessive deviation below glideslope, advisory callouts and windshear alerting. However, since GPWS uses the radar altimeter which looks straight down, ample warning is not always provided. EGPWS retains all of the basic functions of GPWS but adds the ability to look ahead by comparing the aircraft position to an internal database and provide additional alerting and display capabilities. This paper evaluates three methods of incorporating EGPWS in the simulator and describes the implementation and architecture of the preferred option.

  11. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Bonnett, W. S.; Medan, R. T.

    1976-01-01

    A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

  12. Low-Disturbance Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford S. (Technical Monitor)

    1994-01-01

    A unique, low-disturbance (quiet) supersonic wind tunnel has been commissioned at the NASA-Ames Fluid Mechanics Laboratory (FML) to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the receptivity of the transition phenomena on swept (HSCT) wings to attachment-line contamination and cross-flows has provided the impetus for building the LFSWT. Low-disturbance or "quiet" wind tunnels are known to be an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable effort has gone into the design of the LFSWT to provide quiet flow. The paper describes efforts to quantify the low-disturbance flows in the LFSWT operating at Mach 1.6, as a precursor to transition research on wing models. The research includes: (1) Flow measurements in both the test section and settling chamber of the LFSWT, using a full range of measurement techniques; (2) Study of the state of the test section boundary layer so far by using a single hot-wire mounted above the floor centerline, with and without boundary layer trips fitted at the test section entrance; (3) The effect of flow quality of unsteady supersonic diffuser flow, joint steps and gaps, and wall vibration.

  13. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  14. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental

  15. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique

  16. PIAA Coronagraph Development at NASA Ames: High Contrast Laboratory Demonstration at 2 l/D

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Pluzhnik, E.; Witteborn, F. C.; Lynch, D. H.; Greene, T. P.; Zell, P. T.; Balasubramanian, K.; Guyon, O.

    2011-01-01

    Coronagraph technology is advancing and promises to directly image and spectrally characterize extrasolar Earth-like planets in the foreseeable future (such as the 2020 decade) with a telescope as small as 1.5m. A small Explorer-sized telescope can also be launched in the 2010 decade capable of seeing debris disks as small as 10s of zodis and potentially a few large planets. The Phase Induced Amplitude Apodization (PIAA) coronagraph makes such aggressive performance possible. We report on the latest results from a testbed at NASA Ames that is focused on developing and testing the PIAA coronagraph. This laboratory facility was built in 2008 and is designed to be flexible, operated in an actively thermally stabilized air environment, and to complement collaborative efforts at NASA JPL's High Contrast Imaging Testbed. For our wavefront control we are using small Micro-Electro-Mechanical-System deformable mirrors (MEMS DMs), which promise to reduce the size of the beam and overall instrument, a consideration that becomes very important for small telescopes. We describe our lab efforts and results, which include: the operation of our new active thermal control system; the demonstration of 5.4x10-8 (at time of this writing) average raw contrast in a dark zone from 2.0 - 5.2 λ/D in monochromatic light with a refractive PIAA system; preliminary results with an innovative low-cost set of reflective PIAA from JPL; preliminary results with a set of next-generation reflective PIAA built by Tinsley and designed to have the best theoretical broadband performance so far; and finally, an innovative design for a chromatically compensated focal plane occulter that promises to enhance broadband performance by matching the wavelength-dependent inner working angle of coronagraphs such as PIAA.

  17. Multi-Mission Suitability of the NASA Ames Modular Common Bus

    NASA Technical Reports Server (NTRS)

    Tietz, Sascha; Bell, James H.; Hine, Butler

    2009-01-01

    The obvious advantages of small spacecraft - their lower cost structure and the rapid development schedule - have enabled a large number of missions in the past. However, most of these missions have been focused on Earth observation from low Earth orbits. In 2006, the Small Spacecraft Division at the NASA Ames Research Center began the development of the Modular Common Bus, a spacecraft capable of delivering scientifically and technically useful payloads to a variety of destinations within 0.1 AU around the Earth. The core technologies used in the Common Bus design are a composite structure with body-mounted solar cells, an integrated avionics unit, and a high performance bipropellant propulsion system. Due to its modular approach, the Common Bus can be adapted to fit specific mission needs while still using a standardized and qualified set of components. Additionally a number of low cost launch vehicles are supported, resulting in overall mission costs of around $150M including the launch vehicle but excluding the science payloads. This significant reduction in cost and the shorter development time would enable NASA to conduct more frequent exploration missions within its budget and timeframe constraints, compared to the status quo. In this paper the suitability of the Common Spacecraft Bus for four different exploration scenarios is analyzed. These scenarios include a lunar orbiter, a lunar lander, a mission to a Sun-Earth Libration Point, and a rendezvous mission to a Near Earth Object. For each scenario, a preliminary design reference mission is developed and key design parameters for the spacecraft are determined.

  18. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, J. A.; Murphy, J. R.

    2016-09-01

    The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital epochs to investigate the formation history, structure, and stratigraphy of the polar layered terrains.

  19. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  20. An Overview of the NASA Ames Millimeter-Wave Thermal Launch System

    NASA Technical Reports Server (NTRS)

    Murakami, David

    2012-01-01

    The Millimeter-Wave Thermal Launch System (MTLS) is a beamed-energy propulsion concept being designed at NASA Ames Research Center. This effort is in response to the NASA Office of the Chief Technologist s announcement of the Ride the Light program. Our objective is to produce a design that goes beyond the feasibility analysis level of previous studies and provides a solid foundation for low cost access to space. The MTLS is designed to place a 500 lb payload into Low Earth Orbit (LEO) two times a day. This frequent launch, small payload niche is well suited for the particular advantages and constraints of beamed-energy propulsion, and has the potential to drastically increase access to space by reducing the cost per kilogram of placing payloads into LEO. This paper summarizes the findings of the MTLS study. The chemical rocket engine is in principle a simple device. It acts by releasing the chemical energy stored in propellants such as hydrogen and oxygen through combustion, then converting that thermal energy into kinetic energy by expansion through a nozzle. As such, it is fundamentally limited by the energy released in combustion reactions and the molecular weight of the products of those reactions. The highest performing conventional propellant combination, liquid oxygen and liquid hydrogen, can produce vacuum specific impulses of around 450 seconds. The design space of current launch vehicles (which tend to be large, multi-stage, and expendable) are defined by these limitations. An entirely new approach may be necessary in order to enable future launch vehicles of radically improved capabilities. Beamed-energy propulsion (BEP) is an alternative approach that bypasses the energy limitations of chemical propulsion. Instead of relying on a chemical reaction as the energy source, it is supplied externally via a beam of electromagnetic energy produced on the ground. In the concept examined in the MTLS, this energy is absorbed by a heat exchanger which then

  1. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  2. Vertical motion and ''scarred'' eigenfunctions in the stadium billiard

    SciTech Connect

    Christoffel, K.M.; Brumer, P.

    1985-05-01

    A subset of pseudoregular eigenfunctions of the classically chaotic stadium billiard is shown to participate strongly in vertically directed motion, supporting the conjectures of McDonald and of Heller regarding periodic orbits and pseudoregular eigenfunctions.

  3. NASA Ames's electric arc-driven shock tube facility and research on nonequilibrium phenomena in low density hypersonic flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1992-01-01

    Basic requirements for a ground test facility simulating low density hypersonic flows are discussed. Such facilities should be able to produce shock velocities in the range of 10-17 km/sec in an initial pressure of 0.010 to 0.050 Torr. The facility should be equipped with diagnostics systems to be able to measure the emitted radiation, characteristic temperatures and populations in various energy levels. In the light of these requirements, NASA Ames's electric arc-driven low density shock tube facility is described and available experimental diagnostics systems and computational tools are discussed.

  4. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  5. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  6. THE VERTICAL COMPONENT OF THE SUPERGRANULAR MOTION

    SciTech Connect

    Duvall, T. L. Jr.; Birch, A. C.

    2010-12-10

    Supergranules are observed at the solar photosphere as a cellular horizontal flow pattern with flow diverging from cell centers and converging on cell boundaries. Clark and Johnson calculated that mass conservation leads to an expected vertical flow of only 10 m s{sup -1}, which has been difficult to observe. In the present work, Doppler images near the disk center from Michelson Doppler Imager are averaged about locations of cell centers to obtain the necessary signal-to-noise ratio to see the vertical flow. It is found that, for an average over 1100 cell centers, there is a 10 m s{sup -1} upflow at cell center and a 5 m s{sup -1} downflow at the cell boundaries, confirming the previous estimate. The rms vertical flow is 4 m s{sup -1}, smaller than Giovanelli's upper limit of 10 m s{sup -1}.

  7. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    SciTech Connect

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J.; Bauschlicher, C. W. Jr.; Ricca, A.; Cami, J.; Peeters, E.; De Armas, F. Sánchez; Saborido, G. Puerta; Hudgins, D. M.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  8. The NASA Ames PAH IR Spectroscopic Database Version 2.00: Updated Content, Web Site, and On(Off)line Tools

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm-1) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  9. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    -47 aircraft and released. These initial car-tow tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. A small solid landing rocket, referred to as the 'instant L/D rocket,' was installed in the rear base of the M2-F1. This rocket, which could be ignited by the pilot, provided about 250 pounds of thrust for about 10 seconds. The rocket could be used to extend the flight time near landing if needed. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program, with an X-24A and -B built by Martin. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project).

  10. Vertical and rotational motion of mahogany seed

    NASA Astrophysics Data System (ADS)

    Camposano, A. V. C.; Virtudes, N. C.; Otadoy, R. E. S.; Violanda, R.

    2015-06-01

    Starting with a set of basic assumptions and with the application of well-known Newtonian physics, a theoretical model has been established for the flight of the mahogany winged seed. Using a high-speed camera, we successfully confirmed that the mahogany winged seed attains a vertical and rotational terminal velocity. From our model the mahogany seed has a terminal speed of 1.45 m/s. The experimental value of the terminal velocity on the average is 1.47 m/s (only about 1% error). The experimental value of the angular velocity was found to be around 54.33 rad/s, about 14% error compared to the predicted terminal velocity of 47.5 rad/s. The high predictable nature of a mahogany's terminal velocity can facilitate the biologist's study of mahogany mass seed dispersal.

  11. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  12. PMSE dependence on long-period vertical motions

    SciTech Connect

    Cho, J.Y.N.; Morley, R.L.

    1995-05-15

    The authors analyze the temporal relationship between PMSE (polar mesosphere summer echoes) and long-period vertical motions using the Poker Flat, Alaska radar data. The results show that the vertical velocity leads PMSE by 90{degrees} to 180{degrees} with a possible upward trend in phase with increasing frequency. They show that this is consistent with the current PMSE theories which depend primarily upon the presence of charged ice aerosols for the enhancement of radar scatter. 23 refs., 2 figs.

  13. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  14. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  15. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  16. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  17. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  18. Human comfort response to random motions with a dominant vertical motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented.

  19. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  20. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  1. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  2. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  3. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  4. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  5. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  6. Evaluation of the NASA Ames no. 1 7 by 10 foot wind tunnel as an acoustic test facility

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Scharton, T. D.

    1975-01-01

    Measurements were made in the no. 1 7'x10' wind tunnel at NASA Ames Research Center, with the objectives of defining the acoustic characteristics and recommending minimum cost treatments so that the tunnel can be converted into an acoustic research facility. The results indicate that the noise levels in the test section are due to (a) noise generation in the test section, associated with the presence of solid bodies such as the pitot tube, and (b) propagation of acoustic energy from the fan. A criterion for noise levels in the test section is recommended, based on low-noise microphone support systems. Noise control methods required to meet the criterion include removal of hardware items for the test section and diffuser, improved design of microphone supports, and installation of acoustic treatment in the settling chamber and diffuser.

  7. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  8. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  9. 34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON (SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  10. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  11. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  12. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  13. Vertical ground motion from tide gauges and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Ostanciaux, Emilie; Husson, Laurent; Pedoja, Kevin

    2010-05-01

    Studying the evolution of Earth's shape which deforms in response to external processes such as erosion or sediment load and internal processes governed by mantle convection helps to better understand the Earth's internal dynamics. To do this one needs to study changes in relative and absolute sea level. Indeed, sea level is the intersection between the geoid and the solid Earth that are simultaneously deforming. Thus, sea level variations mirror the evolution of the Earth's shape. Tide gauges record apparent sea level since the XIXth century for oldest stations, relative to a terrestrial reference. They are attached to the coasts so part of the signal is due to vertical ground motion. Conversely, satellite altimetry only measures true sea level change, starting with TOPEX/POSEIDON since 1992. Subtraction of tide gauges measurements to those of satellites give an estimate of the magnitude of current vertical ground motion. Here we review the variety in methods of calculation and data selection. While some authors choose to use only data that corresponds to the recording period of TOPEX/POSEIDON (1992 to 2000) and work with the sea level height like Cazenave et al. (1999) and Nerem & Mitchum (2002), others like Kuo et al. (2008) and Bouin & Wöppelmann (2010) take into take advantage of the long record of tide gauges which provide estimates of apparent sea level change more accurately than those based on shorter timescales. All previous studies perform a drastic site selection for their quality. Because individual tide gauge records are nevertheless highly variable, we instead prefer the brute force approach to go towards a statistical evaluation of global ground motion and therefore consider all stations. We subsequently extract general trends by region, which indicate that vertical movements are not satisfactorily explained by estimates of glacio-hydro-isostatic readjustment (model ICE_5G, Peltier, 2004). Comparisons with previous methods and other records such as

  14. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  15. Operations manual: Vertical Motion Simulator (VMS) S.08

    NASA Technical Reports Server (NTRS)

    Jones, A. D.

    1980-01-01

    The Ames Research Center Vertical Motion Simulator (VMS) is described in terms useful to the researcher who intends to use it. A description of the VMS and its performance are presented together with the administrative policies governing its operation. The management controls over its use are detailed, including data requirements, user responsibilities, and scheduling procedures. This information is given in a form that should facilitate communication with the NASA operations group during initial simulator use.

  16. 35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR DISTORTION APPROACHING 45 DEGREES WITH LAMP POSTS APPEARING TO BE AT EIGHT ANGLES, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  17. Perception of the dynamic visual vertical during sinusoidal linear motion.

    PubMed

    Pomante, Antonella; Selen, Luc P J; Medendorp, W Pieter

    2017-08-16

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravito-inertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical - as a proxy for the tilt percept - during passive sinusoidal linear motion along the inter-aural axis (0.33Hz motion frequency, 1.75m/s2 peak acceleration, 80cm displacement). While subjects (n=10) kept fixation on a central body-fixed light, a line was briefly flashed (5ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase-shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of non-vestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. Copyright © 2017, Journal of Neurophysiology.

  18. Rising motion of a bubble layer near a vertical wall

    NASA Astrophysics Data System (ADS)

    Dabiri, Sadegh; Bhuvankar, Pramod

    2015-11-01

    Bubbly flows in vertical pipes and channels form a wall-peak distribution of bubbles under certain conditions. The dynamics of the bubbles near the wall is different than in an unbounded liquid. Here we report the rising motion of bubbles in a liquid near a vertical wall. In a simulation of a bubbly flow in a periodic domain with a vertical wall on one side, an average pressure gradient is applied to the domain that balances the weight of the liquid phase. The upward flow is created by the rising motion of the bubbles. The bubbles are kept near the wall by the lateral lift force acting on them as a result of rising in a shear flow which is in turn generated by rising motion of bubbles. The rise velocity of the bubbles on the wall and the average rise velocity of the liquid depend on three dimensionless parameters, Archimedes number, Eotvos number, and the average volume fraction of bubbles near the wall. In the limit of small Eo, bubbles are nearly spherical and the dependency on Eo becomes negligible. In this limit, the scaling of the liquid Reynolds number with Archimedes number and the void fraction is presented.

  19. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  20. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  1. Vertical motion of particles in vibration-induced granular capillarity

    NASA Astrophysics Data System (ADS)

    Fan, Fengxian; Liu, Ju; Parteli, Eric J. R.; Pöschel, Thorsten

    2017-06-01

    When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon - which we term granular capillarity - we numerically investigate the system using the Discrete Element Method (DEM). We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary) height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  2. Wind Erosion Regimes and the Evolution of the Surface of Mars Studied with the NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Armstrong, J.; Leovy, C.

    2004-12-01

    A billion year integration of Mars orbital parameters and the NASA Ames Mars General Circulation Model are combined to investigate the long-term erosional history of the surface of Mars. In agreement with findings of Robert Haberle et al., we find that the distribution of potential surface erosion by wind is robust with respect to orbital parameter variations. Potential erosion is strongest: (1) in storm tracks following the edges of the seasonal polar caps, (2) in regions of low surface elevation, (3) in regions of strong cross-equatorial solstice flows at moderate to high obliquity. It follows that maximum long-term erosion rates occur throughout most of the northern plains, in Acidalia and portions of Amazonis and Utopia, and in the Hellas basin. We also investigate the sensitivity of wind erosion to changes in global mean surface pressure and find, as expected, very high sensitivity. For example, if global mean surface pressure were to increase from the current 6 mb to 40 mb, model potential erosion rates increase by more than one order of magnitude. In this regime, potential erosion rates are sufficiently high that several km of easily eroded fine regolith could be removed in a time span of 100 million years. Possible observational consequences of these results will be discussed.

  3. Quiet Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel for Mach 1.6 Transition Studies

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford (Technical Monitor)

    1997-01-01

    Low-disturbance or 'quiet' wind tunnels are an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable study has gone into the design of a new wind tunnel to provide quiet (low-disturbance) flow, encompassing both theoretical and experimental efforts. Our pilot (eighth-scale) supersonic wind tunnel was reported in 1992. NASA-Ames Fluid Mechanics Laboratory (FML) commissioned a quiet wind tunnel in 1994 to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the transition phenomena on the leading edge region of swept (HSCT) wings provided the impetus for building the LFSWT. Additional information is contained in the original extended abstract.

  4. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    NASA Technical Reports Server (NTRS)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  5. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  6. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  7. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  8. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  9. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  10. Investigations of the variability of dust particle sizes in the martian atmosphere using the NASA Ames General Circulation Model

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Hollingsworth, Jeffery L.; Haberle, Robert M.; Murphy, James R.

    2008-06-01

    We present a Mars General Circulation Model (GCM) numerical investigation of the physical processes (i.e., wind stress and dust devil dust lifting and atmospheric transport) responsible for temporal and spatial variability of suspended dust particle sizes. Measurements of spatial and temporal variations in airborne dust particles sizes in the martian atmosphere have been derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectral and emission phase function data [Wolff, M.J., Clancy, R.T., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002057. 1-1; Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002058. 2-1]. The range of dust particle sizes simulated by the NASA Ames GCM is qualitatively consistent with TES-derived observations of effective dust particle size variability. Model results suggest that the wind stress dust lifting scheme (which produces regionally confined dust lifting) is the process responsible for the majority of the dust particle size variability in the martian atmosphere. Additionally, model results suggest that atmospheric transport processes play an important role in the evolution of atmospheric dust particles sizes during substantial dust storms on Mars. Finally, we show that including the radiative effects of a spatially variable particle size distribution significantly influences thermal and dynamical fields during the dissipation phase of the simulated global dust storm.

  11. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  12. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  13. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  14. Vertical plate motions in the West Siberian Basin

    NASA Astrophysics Data System (ADS)

    Vibe, Yulia

    2014-05-01

    The West Siberian Basin is a sedimentary basin situated between the Ural Mountains and the Siberian Craton. The Basin has experienced several periods of subsidence and uplift since the arrival of the Siberian Traps c. 250 Ma. Although the Basin is extensively explored and hosts large reserves of Oil and Gas, the forces driving the vertical motions are poorly understood. In this work we attempt to analyse the amount, timing and location of subsidence and uplift in the Basin to shed light on the possible causes of these motions. A detailed description of sedimentary layers is published in a number of Soviet-era books and articles and serves as a basis for our research. This data is first converted into sediment grids through time. Subsequently, the sediments, the sediment load and the compaction are taken into account ('backstripping') to produce the depth of the Basin at respective time steps. With this technique we calculate the tectonic component of subsidence. Uncertainties related to uplift events are estimated by the unconformities in the stratigraphic charts. One of the possible driving forces of vertical motions is a change of force balance arising at plate boundaries. Since active plate tectonics have been absent from West Siberia since the formation of the Urengoy and Khodosey Rifts, c. 250Ma, we study the far-field tectonic effects as a potential driving mechanism. Indeed, some of the significant vertical events in the West Siberian Basin coincide with the major tectonic events around Siberia. An example is the spreading in the Arctic (Eurasian Basin) in the Eocene (56 Ma) which was synchronous with initiation of uplift events in the northern part of West Siberia. In the middle Oligocene (33 Ma), the northern and eastern parts of the basin were subjected to uplift as subsidence migrated southwards and the Basin rose above the sea level. This was coincident with the changes of plate motions in the northern North Atlantic and Indo-European collision.

  15. Vertical Motions in Convective Clouds Over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Mallinson, H.; Schumacher, C.; Ahmed, F.

    2015-12-01

    Vertical motions are essential in parameterizing convection in large-scale models. Yet in tropical systems vertical motions are difficult to obtain, especially in areas of active convection. This study uses three months of profiler data from Darwin, Australia to directly compare vertical velocity and spectrum width with reflectivity at a height of 1 km (a near-surface rain proxy) for shallow, mid-level, and deep convective clouds. Vertical velocities for all convective clouds were also compared to echo-top heights of varying reflectivities to better understand convective cloud dynamics in relation to their vertical structure. In shallow convective clouds (tops <4 km) three distinct regimes appear: a weak up-and downdraft couplet at low reflectivities (0-15 dBz), a robust updraft at moderate reflectivities (20-35 dBz), and strong downdrafts at large reflectivities (>40 dBz). These regimes could represent different stages in the convective cloud life cycle with strong updrafts and moderate reflectivity occurring in the growing phase and strong downdrafts and large reflectivity occurring in the mature phase. The weak up-and downdraft couplet and low reflectivities suggest a dissipating phase. Mid-level convective clouds (tops 4-8 km) also show three distinct regimes: moderate updrafts at low reflectivities (possible growing phase), a weak up-and downdraft couplet at moderate reflectivities (possible dissipating phase), and strong up-and downdrafts at large reflectivities (mature phase). Deep convective clouds (tops >8 km) show strong updrafts above 4 km for all reflectivities with the strongest downdrafts occurring at large reflectivities. While maximum updrafts vary in height and occur at different reflectivities among cloud types, mean downdraft depth never exceeds 3 km and is always strongest at large reflectivities, which may allow better characterization of cold pool properties. Throughout all convective cloud types, spectrum width has the highest values at lower

  16. Subjective Vertical Conflict Theory and Space Motion Sickness.

    PubMed

    Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2016-02-01

    Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.

  17. Yaw Motion Cues in Helicopter Simulation

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffrey A.; Johnson, Walter W.

    1996-01-01

    A piloted simulation that examined the effects of yaw motion cues on pilot-vehicle performance, pilot workload, and pilot motion perception was conducted on the NASA Ames Vertical Motion Simulator. The vehicle model that was used represented an AH-64 helicopter. Three tasks were performed in which only combinations of vehicle yaw and vertical displacement were allowed. The commands issued to the motion platform were modified to present the following four motion configurations for a pilot located forward of the center of rotation: (1) only the linear translations, (2) only the angular rotation, (3) both the linear translations and the angular rotation, and (4) no motion. The objective data indicated that pilot-vehicle performance was reduced and the necessary control activity increased when linear motion was removed; however, the lack of angular rotation did not result in a measured degradation for almost all cases. Also, pilots provided subjective assessments of their compensation required, the motion fidelity, and their judgment of whether or not linear or rotational cockpit motion was present. Ratings of compensation and fidelity were affected only by linear acceleration, and the rotational motion had no significant impact. Also, when only linear motion was present, pilots typically reported the presence of rotation. Thus, linear acceleration cues, not yaw rotational cues, appear necessary to simulate hovering flight.

  18. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  19. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  20. Constraining the history of vertical surface motions in SE England.

    NASA Astrophysics Data System (ADS)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2015-04-01

    Constraining the history of vertical surface motions in SE England. While there is considerable focus on the effects of rising sea level what is often not considered are ongoing long term changes in surface topography driven by regional tectonics. The London basin is an area at risk from global sea level rise which has a significant long term history of vertical surface motions. Outcrop and borehole sections taken from the onshore and offshore Cenozoic geological record of the UK are used to plot these regional tectonic vertical motions through time. The Cenozoic geological formations useful to the research are dominantly shallow marine sediments and the successions are thickest in the axial regions of the London and Hampshire basins found in the South East of England. Each successive geological formation through time records a component of the tectonic uplift/subsidence history that spans from the end of the Cretaceous, 65Ma through to the present day. Once this history is better understood it can be used to make predictions of the possible vertical tectonic motion in the future. In order to isolate the tectonic uplift or subsidence in a basin and the magnitude of the basement movement, the water depth at the time of deposition, the relative sea-level and the compaction history for the sediments of each formation needs to be constrained. Water depth has been determined so far using a variety of sedimentological, palaeontological and sequence stratigraphic evidence. Palaeo-bathymetry maps have then be contoured from the point data providing the relative palaeo-coastline for each geological formation. The relative sea-level curve will be used from previous work. The third parameter is the decompaction of a formation from its preserved thickness at the present day, to its water saturated and unconsolidated state at the time of deposition. Resolving these parameters and producing a comprehensive burial history for each geological formation in the UK will allow the

  1. Cretaceous vertical motion of australia and the australian- antarctic discordance

    PubMed

    Gurnis; Muller; Moresi

    1998-03-06

    A three-dimensional model of mantle convection in which the known history of plate tectonics is imposed predicts the anomalous Cretaceous vertical motion of Australia and the present-day distinctive geochemistry and geophysics of the Australian-Antarctic Discordance. The dynamic models infer that a subducted slab associated with the long-lived Gondwanaland-Pacific converging margin passed beneath Australia during the Cretaceous, partially stagnated in the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge.

  2. Current Background Noise Sources and Levels in the NASA Ames 40- by 80-Foot Wind Tunnel: A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Jaeger, Stephen; Soderman, Paul; Koga, Dennis (Technical Monitor)

    1999-01-01

    Background noise measurements were made of the acoustic environment in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The measurements were acquired subsequent to the 40x80 Aeroacoustic Modernization Project, which was undertaken to improve the anechoic characteristics of the 40x80's closed test section as well as reduce the levels of background noise in the facility. The resulting 40x80 anechoic environment was described by Soderman et. al., and the current paper describes the resulting 40x80 background noise, discusses the sources of the noise, and draws comparisons to previous 40x80 background noise levels measurements. At low wind speeds or low frequencies, the 40x80 background noise is dominated by the fan drive system. To obtain the lowest fan drive noise for a given tunnel condition, it is possible in the 40x80 to reduce the fans' rotational speed and adjust the fans' blade pitch, as described by Schmidtz et. al. This idea is not new, but has now been operationally implemented with modifications for increased power at low rotational speeds. At low to mid-frequencies and at higher wind speeds, the dominant noise mechanism was thought to be caused by the surface interface of the previous test section floor acoustic lining. In order to reduce this noise mechanism, the new test section floor lining was designed to resist the pumping of flow in and out of the space between the grating slats required to support heavy equipment. In addition, the lining/flow interface over the entire test section was designed to be smoother and quieter than the previous design. At high wind speeds or high frequencies, the dominant source of background noise in the 40x80 is believed to be caused by the response of the in-flow microphone probes (required by the nature of the closed test section) to the fluctuations in the freestream flow. The resulting background noise levels are also different for probes of various

  3. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  4. ELAPSE - NASA AMES LISP AND ADA BENCHMARK SUITE: EFFICIENCY OF LISP AND ADA PROCESSING - A SYSTEM EVALUATION

    NASA Technical Reports Server (NTRS)

    Davis, G. J.

    1994-01-01

    One area of research of the Information Sciences Division at NASA Ames Research Center is devoted to the analysis and enhancement of processors and advanced computer architectures, specifically in support of automation and robotic systems. To compare systems' abilities to efficiently process Lisp and Ada, scientists at Ames Research Center have developed a suite of non-parallel benchmarks called ELAPSE. The benchmark suite was designed to test a single computer's efficiency as well as alternate machine comparisons on Lisp, and/or Ada languages. ELAPSE tests the efficiency with which a machine can execute the various routines in each environment. The sample routines are based on numeric and symbolic manipulations and include two-dimensional fast Fourier transformations, Cholesky decomposition and substitution, Gaussian elimination, high-level data processing, and symbol-list references. Also included is a routine based on a Bayesian classification program sorting data into optimized groups. The ELAPSE benchmarks are available for any computer with a validated Ada compiler and/or Common Lisp system. Of the 18 routines that comprise ELAPSE, provided within this package are 14 developed or translated at Ames. The others are readily available through literature. The benchmark that requires the most memory is CHOLESKY.ADA. Under VAX/VMS, CHOLESKY.ADA requires 760K of main memory. ELAPSE is available on either two 5.25 inch 360K MS-DOS format diskettes (standard distribution) or a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The ELAPSE benchmarks were written in 1990. VAX and VMS are trademarks of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  5. Dissecting the polar dichotomy of the noncondensable gas enhancement on Mars using the NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Nelli, Steven M.; Murphy, James R.; Sprague, Ann L.; Boynton, William V.; Kerry, Kris E.; Janes, Daniel M.; Metzger, Albert E.

    2007-08-01

    The atmospheric processes underlying the observed spatial and temporal enhancement of noncondensing gases in Mars' atmosphere are investigated. The Gamma Ray Spectrometer (GRS) on board Mars Odyssey has obtained measurements indicating that the absolute and relative column abundance of noncondensing gases (primarily argon and nitrogen) maximizes at high latitudes in both hemispheres during winter as CO2 gas condenses and forms the seasonal polar ice cap. This condensing CO2 "leaves behind" noncondensing gases whose local absolute and relative column abundances can increase at a rate controlled by mixing with less-enhanced air from lower latitudes. Understanding the processes responsible for the magnitude and seasonal variations of these enhancement values is an aid in understanding atmospheric transport processes. The NASA Ames Mars General Circulation Model is employed to help understand the atmospheric thermodynamical mechanisms that give rise to the observed temporal and magnitude variations in the polar enhancement values. The model produces a threefold noncondensable gas enhancement in the south polar region and an approximate 1.4-fold increase in noncondensables in the north polar region. These model results are temporally consistent with observed values, but the observed enhancement magnitudes exceed those modeled by up to a factor of two. The difference in strength and the season of formation between transient eddies in the southern and northern hemispheres may play a large role in determining the different character of the two polar enhancements. Model simulations also illuminate the effect that topography, orbital eccentricity, and atmospheric dust opacity have on producing the north versus south polar enhancement dichotomy.

  6. ELAPSE - NASA AMES LISP AND ADA BENCHMARK SUITE: EFFICIENCY OF LISP AND ADA PROCESSING - A SYSTEM EVALUATION

    NASA Technical Reports Server (NTRS)

    Davis, G. J.

    1994-01-01

    One area of research of the Information Sciences Division at NASA Ames Research Center is devoted to the analysis and enhancement of processors and advanced computer architectures, specifically in support of automation and robotic systems. To compare systems' abilities to efficiently process Lisp and Ada, scientists at Ames Research Center have developed a suite of non-parallel benchmarks called ELAPSE. The benchmark suite was designed to test a single computer's efficiency as well as alternate machine comparisons on Lisp, and/or Ada languages. ELAPSE tests the efficiency with which a machine can execute the various routines in each environment. The sample routines are based on numeric and symbolic manipulations and include two-dimensional fast Fourier transformations, Cholesky decomposition and substitution, Gaussian elimination, high-level data processing, and symbol-list references. Also included is a routine based on a Bayesian classification program sorting data into optimized groups. The ELAPSE benchmarks are available for any computer with a validated Ada compiler and/or Common Lisp system. Of the 18 routines that comprise ELAPSE, provided within this package are 14 developed or translated at Ames. The others are readily available through literature. The benchmark that requires the most memory is CHOLESKY.ADA. Under VAX/VMS, CHOLESKY.ADA requires 760K of main memory. ELAPSE is available on either two 5.25 inch 360K MS-DOS format diskettes (standard distribution) or a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The ELAPSE benchmarks were written in 1990. VAX and VMS are trademarks of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  7. Nanotechnology at NASA Ames

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Meyyappan, Meyya; Yan, Jerry (Technical Monitor)

    2000-01-01

    Advanced miniaturization, a key thrust area to enable new science and exploration missions, provides ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume, and power consumption. Revolutions in electronics and computing will allow reconfigurable, autonomous, 'thinking' spacecraft. Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures: (1) networks of ultrasmall probes on planetary surfaces; (2) micro-rovers that drive, hop, fly, and burrow; and (3) collections of microspacecraft making a variety of measurements.

  8. Mobile VLBI and GPS measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Davidson, J. M.; Gardner, E. C.

    1985-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  9. Characteristics of vertical air motion in isolated convective clouds

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; French, Jeffrey R.

    2016-08-01

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (< 500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFs are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (> 20 m s-1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 104 kg m-1 s-1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.

  10. Mobile VLBI and GPS measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Davidson, J. M.; Gardner, E. C.

    1985-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  11. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.; Flowers, R. M.

    2011-12-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on continental cratonic regions. We propose that burial-unroofing histories of continental cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests and constraints on our mantle

  12. Predicting and testing continental vertical motion histories since the Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Flowers, Rebecca M.

    2012-02-01

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400 Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330 Ma but uplifts significantly from 330 Ma to 240 Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180 Ma to 90 Ma after Pangea breakup, but its dynamic topography remains stable for the last 90 Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.

  13. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing

  14. Motion of spheroidal particles in vertical shear flows

    NASA Astrophysics Data System (ADS)

    Broday, David; Fichman, Mati; Shapiro, Michael; Gutfinger, Chaim

    1998-01-01

    The motion of non-neutrally buoyant prolate spheroidal particles in vertical shear flows is investigated. Using the generalized Faxen law, we calculate the hydrodynamic forces and moments acting on such inertial and inertialess particles, and their trajectories. The calculations are done for (i) freely rotating particles, and (ii) particles with orientations fixed by means of an external torque exerted by a strong orienting field. Inertial particles are found to migrate across the streamlines, and their trajectories differ considerably from those calculated for inertialess particles. Neutrally buoyant spheroids, inertial or not, which either freely rotate or have fixed orientations in shear flows, translate along the streamlines. Non-neutrally buoyant inertialess spheroids freely moving in simple shear flow translate along periodic trajectories with no net lateral drift. In contrast, inertial particles under similar flow conditions drift laterally toward locations characterized by higher local velocities in a direction opposing gravity. The motion of non-neutrally buoyant inertial particles with fixed orientations may be unstable with the drift velocity growing exponentially with time. Conditions for the occurrence of this unstable motion are formulated analytically in terms of particle and flow parameters. In general, the rate of drift depends on particle shape, via its aspect ratio, and its inertia.

  15. Coastal Vertical Land motion in the German Bight

    NASA Astrophysics Data System (ADS)

    Becker, Matthias; Fenoglio, Luciana; Reckeweg, Florian

    2017-04-01

    In the framework of the ESA Sea Level Climate Change Initiative (CCI) we analyse a set of GNSS equipped tide gauges at the German Bight. Main goals are the determination of tropospheric zenith delay corrections for altimetric observations, precise coordinates in ITRF2008 and vertical land motion (VLM) rates of the tide gauge stations. These are to be used for georeferencing the tide gauges and the correction of tide gauge observations for VLM. The set of stations includes 38 GNSS stations. 19 stations are in the German Bight, where 15 of them belong to the Bundesanstalt für Gewässerkunde, 3 to EUREF and 1 to GREF. These stations are collocated with tide gauges (TGs). The other 19 GNSS stations in the network belong to EUREF, IGS and GREF. We analyse data in the time span from 2008 till the end of 2016 with the Bernese PPP processing approach. Data are partly rather noisy and disturbed by offsets and data gaps at the coastal TG sites. Special effort is therefore put into a proper estimation of the VLM. We use FODITS (Ostini2012), HECTOR (Bos et al, 2013), CATS (Williams, 2003) and the MIDAS approach of Blewitt (2016) to robustly derive rates and realistic error estimates. The results are compared to those published by the European Permanent Network (EPN), ITRF and the Système d'Observation du Niveau des Eaux Littorales (SONEL) for common stations. Vertical motion is small in general, at the -1 to -2 mm/yr level for most coastal stations. A comparison of the standard deviations of the velocity differences to EPN with the mean values of the estimated velocity standard deviations for our solution shows a very good agreement of the estimated velocities and their standard deviations with the reference solution from EPN. In the comparison with results by SONEL the standard deviation of the differences is slightly higher. The discrepancies may arise from differences in the time span analyzed and gaps, offsets and data preprocessing. The combined estimation of functional

  16. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  17. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results

  18. New results from the analyses of the solid phase of the NASA Ames Titan Haze Simulation (THS) experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2015-11-01

    In Titan’s atmosphere, a complex chemistry occurs at low temperature between N2 and CH4 that leads to the production of heavy organic molecules and subsequently solid aerosols. The Titan Haze Simulation (THS) experiment was developed at the NASA Ames COSmIC facility to study Titan’s atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma (~200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier molecules, in order to monitor the evolution of the chemical growth.Following a recent in situ mass spectrometry study of the gas phase that demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan’s atmospheric chemistry at low temperature (Sciamma-O’Brien et al., Icarus, 243, 325 (2014)), we have performed a complementary study of the solid phase. The findings are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited onto various substrates for ex situ analyses. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates, and that different growth mechanisms seem to occur depending on the gas mixture. They also allow the determination of the size distribution of the THS solid grains. A Direct Analysis in Real Time mass spectrometry analysis coupled with Collision Induced Dissociation has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. Infrared and µIR spectra of samples deposited on KBr and Si substrates show the

  19. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  20. Pulsejet engine dynamics in vertical motion using momentum conservation

    NASA Astrophysics Data System (ADS)

    Cheche, Tiberius O.

    2017-03-01

    The momentum conservation law is applied to analyse the dynamics of a pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts the existence of a terminal speed given the frequency of the short pulses. The conditions where the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitational field intensity for a certain frequency of pulses. The pulsejet engine and turbojet engine aircraft models of dynamics are compared. Also the octopus dynamics is modelled. The paper is addressed to intermediate undergraduate students of classical mechanics and aerospace engineering.

  1. Extrapolation of vertical target motion through a brief visual occlusion.

    PubMed

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  2. Visual-Motion Cueing in Altitude and Yaw Control

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Schroeder, Jeffery; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Research conducted using the Vertical Motion Simulator at the NASA Ames Research Center examined the contributions of platform motion and visual level-of-detail (LOD) cueing to tasks that required altitude and/or yaw control in a simulated AH-64 Apache helicopter. Within the altitude control tasks the LOD manipulation caused optical density to change across altitudes by a small, moderate, or large amount; while platform motion was either present or absent. The results from these tasks showed that both constant optical density and platform motion improved altitude awareness in an altitude repositioning task, while the presence of platform motion also led to improved performance in a vertical rate control task. The yaw control tasks had pilots'sit 4.5 ft in front of the center of rotation, thus subjecting them to both rotational and lateral motions during a yaw. The pilots were required to regulate their yaw, while the platform motion was manipulated in order to present all combinations of the resulting rotational and lateral motion components. Ratings of simulation fidelity and sensed platform motion showed that the pilots were relatively insensitive to the rotational component, but highly aware of the lateral component. Together these findings show that: 1) platform motion cues are important when speed regulation is required during altitude change; 2) platform motion contributes to the perception of movement amplitude; 3) lateral, but not rotational, motion cues are essential to the perception of vehicle yaw; and 4) LOD management yielding constant optical density across altitudes improves altitude awareness.

  3. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s−1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 104 kg m−1 s−1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  4. Vertical ship motions and sea loads considering nonlinear effects

    NASA Astrophysics Data System (ADS)

    Shacham, I.; Weller, T.

    1986-12-01

    A mathematical model dealing with vertical motions and longitudinal strength of a ship, whose shape deviates from the linear theory assumptions, was developed. The model includes nonlinear effects stemming from ship flexibility, widening of side walls in the waterline region and ship bottom emersion. The model also considers coupling between ship response and exciting forces (hydroelastic). Based on the mathematical model equations, a computer program was written to calculate the motions and stresses, developed in a prescribed ship hull sailing at a given speed and course in a given sinusoidal type sea. Calculations obtained for a fast patrol boat and an aircraft carrier featured by a large bow flare, demonstrated very good agreement, both qualitatively and quantitatively, with results measured in sea trials. The method of solution proposed resulted in a time saving computer program, which can be applied effectively for a parametric study of the many factors which affect the whipping phenomenon. The program can also be used as an auxiliary tool at the design stage of new ships and for the determination of sailing envelopes of existing ships.

  5. Scenario Development Process at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Reardon, Scott E.; Beard, Steven D.; Lewis, Emily

    2017-01-01

    There has been a significant effort within the simulation community to standardize many aspects of flight simulation. More recently, an effort has begun to develop a formal scenario definition language for aviation. A working group within the AIAA Modeling and Simulation Technical Committee has been created to develop a standard aviation scenario definition language, though much of the initial effort has been tailored to training simulators. Research and development (R&D) simulators, like the Vertical Motion Simulator (VMS), and training simulators have different missions and thus have different scenario requirements. The purpose of this paper is to highlight some of the unique tasks and scenario elements used at the VMS so they may be captured by scenario standardization efforts. The VMS most often performs handling qualities studies and transfer of training studies. Three representative handling qualities simulation studies and two transfer of training simulation studies are described in this paper. Unique scenario elements discussed in this paper included special out-the-window (OTW) targets and environmental conditions, motion system parameters, active inceptor parameters, and configurable vehicle math model parameters.

  6. Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6

    NASA Technical Reports Server (NTRS)

    Vickers, Dean; Mahrt, L.

    2005-01-01

    Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.

  7. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  8. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  9. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  10. Report of the Interagency Optical Network Testbeds Workshop 2 September 12-14, 2006 NASA Ames Research Center

    SciTech Connect

    Joe Mambretti Richard desJardins

    2006-05-01

    A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describing agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying

  11. Contemporary vertical crustal motion in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holdahl, Sandford R.; Faucher, Francois; Dragert, Herb

    A map of recent vertical crustal motion has been compiled for coastal Washington and southwest British Columbia. Average velocities over the past 80 years were determined by least squares adjustment of repeated precise levelings and mean sea-level observations from 21 tide gauges. Annual variations in mean sea level were determined directly within the adjustment model under the assumption that they were identical at all tide gauges in a given year. The derived vertical velocities range from -2.0±0.9 mm/yr near Seattle, to 2.5±0.8 mm/yr at the northwest tip of the Olympic Peninsula, and over 3 mm/yr in the region to the north of Campbell River on Vancouver Island. Determination of a constant velocity in this latter region is complicated by about 10 cm of coseismic subsidence associated with a magnitude 7.3 earthquake in 1946, and an apparent increase in uplift rate over the past decade. Qualitatively, the regional velocity pattern is consistent with features of the current plate convergence model: 1) the rapid uplift of the region north of central Vancouver Island is consistent with the overriding of the young (<6My), buoyant Explorer Plate which may be underplating the coastal margin in this area; and 2) the ridge of uplift extending from the Neah Bay area north across Vancouver Island to Campbell River is consistent with a pattern expected from a locked subduction zone underlying this coastal region. The large-scale subsidence to the southwest of Puget Sound is more difficult to explain in the context of plate convergence.

  12. Subduction and vertical coastal motions in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  13. NASA Ames Participates in Two Major Bay Area Events (Reporter Package)NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

    NASA Image and Video Library

    2014-05-28

    NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

  14. Vertical Mandibular Range of Motion in Anesthetized Dogs and Cats

    PubMed Central

    Gracis, Margherita; Zini, Eric

    2016-01-01

    The main movement of the temporomandibular joint of dogs and cats is in vertical dimensions (opening and closing the mouth). An objective evaluation of the vertical mandibular range of motion (vmROM) may favor early diagnosis of a number of conditions affecting the joint mobility. vmROM, corresponding to the maximum interincisal opening, was measured in 260 dogs and 127 cats anesthetized between June 2011 and April 2015 because of oral or maxillofacial problems and procedures. Animals with a known history of or having current diseases considered to hamper mandibular extension were excluded from the study. Dogs were divided into four subgroups, based on body weight: subgroup 1 (≤5.0 kg, 51 dogs), subgroup 2 (5.1–10.0 kg, 56 dogs), subgroup 3 (10.1–25 kg, 66 dogs), and subgroup 4 (>25.1 kg, 87 dogs). The mean vmROM of all dogs was 107 ± 30 mm (median 109, range 40–180); in subgroup 1 was 67 ± 15 mm (median 67, range 40–100), in subgroup 2 was 93 ± 15 mm (median 93, range 53–128), in subgroup 3 was 115 ± 19 mm (median 116, range 59–154), and in subgroup 4 was 134 ± 19 mm (median 135, range 93–180). The mean vmROM of the cats was 62 ± 8 mm (median 63, range 41–84). Correlations between vmROM, age, sex, and body weight were evaluated. In dogs, vmROM did not correlate with age, and in cats a weak positive correlation was found. vmROM and body weight were positively correlated in both populations, except dog subgroup 2. Overall, mean vmROM and body weight were significantly higher in male than in female, both in dogs and in cats. However, vmROM did not differ between sexes in any of the canine subgroups, and only in subgroup 4 male dogs were significantly heavier than females. Evaluation of vmROM should be incorporated into every diagnostic examination as it may be valuable in showing changes over time for every single patient. PMID:27446939

  15. Dynamic simulation of sphere motion in a vertical tube

    NASA Astrophysics Data System (ADS)

    Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I.

    2004-11-01

    In this paper, the sedimentation of a sphere and its radial migration in a Poiseuille flow in a vertical tube filled with a Newtonian fluid are simulated with a finite-difference-based distributed Lagrange multiplier (DLM) method. The flow features, the settling velocities, the trajectories and the angular velocities of the spheres sedimenting in a tube at different Reynolds numbers are presented. The results show that at relatively low Reynolds numbers, the sphere approaches the tube axis monotonically, whereas in a high-Reynolds-number regime where shedding of vortices takes place, the sphere takes up a spiral trajectory that is closer to the tube wall than the tube axis. The rotation motion and the lateral motion of the sphere are highly correlated through the Magnus effect, which is verified to be an important (but not the only) driving force for the lateral migration of the sphere at relatively high Reynolds numbers. The standard vortex structures in the wake of a sphere, for Reynolds number higher than 400, are composed of a loop mainly located in a plane perpendicular to the streamwise direction and two streamwise vortex pairs. When moving downstream, the legs of the hairpin vortex retract and at the same time a streamwise vortex pair with rotation opposite to that of the legs forms between the loops. For Reynolds number around 400, the wake structures shed during the impact of the sphere on the wall typically form into streamwise vortex structures or else into hairpin vortices when the sphere spirals down. The radial, angular and axial velocities of both neutrally buoyant and non-neutrally buoyant spheres in a circular Poiseuille flow are reported. The results are in remarkably good agreement with the available experimental data. It is shown that suppresion of the sphere rotation produces significant large additional lift forces pointing towards the tube axis on the spheres in the neutrally buoyant and more-dense-downflow cases, whereas it has a negligible

  16. In pursuit of perspective: does vertical perspective disambiguate depth from motion parallax?

    PubMed

    George, Jonathon M; Johnson, Joshua I; Nawrot, Mark

    2013-01-01

    Motion parallax provides a dynamic, unambiguous, monocular visual depth cue. However, the lateral image motion in computer-generated motion parallax displays is depth-sign ambiguous. While mounting evidence indicates that the visual system uses an extra-retinal signal from the pursuit system to disambiguate depth, vertical perspective is a potential confound because it co-varies with the stimulus translation that produces the pursuit signal. Here the role of an extra-retinal pursuit signal and the role of vertical perspective in disambiguating depth from motion parallax were investigated. Through the careful isolation of each cue, the results indicate that observers have excellent depth discrimination with an extra-retinal pursuit cue alone, but have poor discrimination with vertical perspective alone. The conclusion is that vertical perspective does not play a role in the disambiguation of depth in small computer-generated motion parallax displays.

  17. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  18. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-01-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  19. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  20. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  1. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  2. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  3. Results of the AFRSI rewaterproofing systems screening test in the NASA/Ames Research Center (ARC) 2 x 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Kingsland, R. B.

    1985-01-01

    An experimental investigation was conducted in the NASA/Ames Research Center 2x2-foot Transonic Wind Tunnel to evaluate two AFRSI rewaterproofing systems and to investigate films as a means of reducing blanket joint distortion. The wind tunnel wall slot configuration influenced on the flow field over the test panel was investigated; primarily using oil flow data, and resulted in a closed slot configuration to provide a satisfactory screening environment flow field for the test. Sixteen AFRSI test panels, configured to represent the test system or film, were subjected to this screening environment (a flow field of separated and reattached flow at a freestream Mach numnber of 0.65 and q = 650 or 900 psf). Each condition was held until damage to the test article was observed or 55 minutes if no damage was incurred. All objectives related to AFRSI rewaterproofing and to the use of films to stiffen the blanket fibers were achieved.

  4. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  5. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-01-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  6. Dynamical and thermodynamical contributions to the vertical motions over the wintertime oceanic frontal zones

    NASA Astrophysics Data System (ADS)

    Miyasaka, T.; Nakamura, H.

    2016-12-01

    Western boundary currents transport warm water into extratropics, and then vast heat is released from ocean to atmosphere there. Over the Gulf Stream, strong diabatic heating and vertical motions are confirmed (Minobe et al. 2008, 2010). Oceanic frontal zones associated with western boundary currents accompany strong lower-tropospheric baroclinicity and storm tracks, therefore vertical motions can be formed not only by diabatic heating but also by dry dynamical and thermodynamical processes associated with transient eddies. The present study shows relative importance of diabatic and dry processes for the formation of vertical motions in winter based on a quasi-geostrophic omega equation with ERA-interim reanalysis from December 2008 to February 2009. Seasonal mean vertical motions at 700-hPa averaged over the Gulf Stream show that vertical motions by diabatic heating and dry processes are -0.023 and 0.008 [Pa/s], respectively, while counterpart of reanalysis is -0.028 [Pa/s]. This result indicates that seasonal mean vertical motions are mainly driven by diabatic heating and dry process has no constructive contribution, although quasi-geostrophic approximation yields somewhat error. Meanwhile, vertical motions in a time scale of transient eddies show that diabatic heating and dry processes reach 41% and 31% strength of anomalous vertical motions of reanalysis, respectively. This result suggests that the influence of dry processes cannot be negligible for transports moisture upward and contributes to trigger and enhance rainfall and diabatic heating in upward motion regions. It is confirmed that similar results are confirmed over the North Pacific. Further studies based on longer data, however, are required to verify aforementioned relative importance of diabatic heating and dry processes.

  7. Ocean-atmosphere relationships from synoptic scale to local scale in South San Francisco Bay, with implications to flood risk at NASA Ames Research Center, Silicon Valley

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Costa-Cabral, M. C.; Bromirski, P. D.; Miller, N. L.; Coats, R. N.; Loewenstein, M.; Roy, S. B.; MacWilliams, M.

    2012-12-01

    This work evaluates the implications to flooding risk at the low-lying NASA Ames Research Center in South San Francisco Bay under historical and projected climate and sea level rise. Atmospheric circulation patterns over the Pacific Ocean, influenced by ENSO and PDO, can result in extended periods of higher mean coastal sea level in California. Simultaneously they originate a larger number of storms that make landfall and have higher mean intensity. These storms generate barometrically-induced high water anomalies, and winds that are sometimes capable of producing large coastal waves. Storm surges that propagate from the coast into the estuary and South Bay, and locally-generated waves, may compromise the discharge capacity of stream channels. These conditions also typically generate high intensity rainfall, and the reduced channel capacity may result in fluvial flooding. Such atmospheric circulation patterns may persist for many months, during which California experiences more precipitation events of longer mean duration and higher intensity, leading to large precipitation totals that saturate soils and may exceed the storage capacity of stormwater retention ponds. Future scenarios of sea level rise, that may surpass a meter in this century according to the projections recently published by the National Research Council for states of CA, OR and WA, and projected atmospheric circulation changes associated with anthropogenic climate change, may amplify these risks. We evaluate the impacts of these changes on NASA's Ames Research Center through four areas of study: (i) wetland accretion and evolution as mean sea level rises, with implications to the Bay's response to the sea level rise and storm surges, (ii) hydrodynamic modeling to simulate the propagation of tidal height and storm surges in the Bay and the influence of local winds on wave height, (iii) evaluation of historical data and future climate projections to identify extreme precipitation events, and (iv

  8. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  9. An automated, open-source (NASA Ames Stereo Pipeline) workflow for mass production of high-resolution DEMs from commercial stereo satellite imagery: Application to mountain glacies in the contiguous US

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Arendt, A. A.; Whorton, E.; Riedel, J. L.; O'Neel, S.; Fountain, A. G.; Joughin, I. R.

    2016-12-01

    We adapted the open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline an automated processing workflow for 0.5 m GSD DigitalGlobe WorldView-1/2/3 and GeoEye-1 along-track and cross-track stereo image data. Output DEM products are posted at 2, 8, and 32 m with direct geolocation accuracy of <5.0 m CE90/LE90. An automated iterative closest-point (ICP) co-registration tool reduces absolute vertical and horizontal error to <0.5­ m where appropriate ground-control data are available, with observed standard deviation of 0.1-0.5 m for overlapping, co-registered DEMs (n=14,17). While ASP can be used to process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We have leveraged these resources to produce dense time series and regional mosaics for the Earth's ice sheets. We are now processing and analyzing all available 2008-2016 commercial stereo DEMs over glaciers and perennial snowfields in the contiguous US. We are using these records to study long-term, interannual, and seasonal volume change and glacier mass balance. This analysis will provide a new assessment of regional climate change, and will offer basin-scale analyses of snowpack evolution and snow/ice melt runoff for water resource applications.

  10. Lockheed XFV-1 model in the 40x80 foot Wind Tunnel at NASA Ames Research Center.

    NASA Image and Video Library

    1952-05-16

    Lockheed XFV-1 model. Project engineer Mark Kelly (not shown). Remote controlled model flown in the settling chamber of the 40x80 wind tunnel. Electric motors in the model, controlled the counter-rotating propellers to test vertical takeoff. Test no. 71

  11. Lockheed XFV-1 model in the 40x80 foot wind tunnel at NASA Ames Research Center

    NASA Image and Video Library

    1952-05-16

    Wide shot of 40x 80 wind tunnel settling chamber with Lockheed XFV-1 model. Project engineer Mark Kelly (not shown). Remote controlled model flown in the settling chamber of the 40x80 wind tunnel. Electric motors in the model, controlled the counter-rotating propellers to test vertical takeoff. Test no. 71

  12. Investigation of pitch motion portion in vertical response at sides of a Tension-Leg Platform

    NASA Astrophysics Data System (ADS)

    Tabeshpour, Mohammad Reza; Malayjerdi, Ebrahim

    2016-06-01

    Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.

  13. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    USGS Publications Warehouse

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  14. Visual motion stimulation, but not visually induced perception of self-motion, biases the perceived direction of verticality.

    PubMed

    Thilo, Kai V; Gresty, Michael A

    2002-08-01

    Large-field torsional optokinetic stimulation is known to affect the perceived direction of gravity with verticality judgements deviating towards the direction of visual stimulus rotation. The present study aimed to replicate this effect and to examine it further by subjecting participants to optokinetic stimulation in roll, resulting in spontaneous alternations between the perception of object-motion and that of contradirectional self-motion (vection), as reported by the subjects. Simultaneously, subjects were oscillated laterally in a flight simulator and indicated their perception of postural verticality. Results confirmed that rotation of the visual environment in the frontal plane biases the perceived orientation of gravity towards the direction of visual stimulus motion. However, no differential effect of perceptual state on postural verticality was obtained when contrasting verticality judgements made during the perception of object-motion with those obtained during reported self-motion perception. This finding is likely to reflect a functional segregation of central nervous visual-vestibular subsystems that process the perception of self-tilt and that of self-rotation to some degree independently.

  15. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  16. Atmospheric Methane Measurements from an Aircraft Based at NASA Ames: Five Years of Observations by the AJAX Project

    NASA Technical Reports Server (NTRS)

    Iraci, Laura

    2016-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approx. 8 km to near surface),boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. This talk will present an overview of our flights flown to date, with particular focus on methane observations in the San Francisco Bay Area, Sacramento, and the delta region.

  17. Effect of working position on vertical motion straightness of open hydrostatic guideways in grinding machine

    NASA Astrophysics Data System (ADS)

    Zha, Jun; Wang, Zhiwei; Xue, Fei; Chen, Yaolong

    2017-01-01

    Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the X beam, and 5.08 μm/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.

  18. The effects of vertical motion on the performance of current meters

    USGS Publications Warehouse

    Thibodeaux, K.G.; Futrell, J. C.

    1987-01-01

    A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)

  19. Vertical land motion and sea level change in Macaronesia

    NASA Astrophysics Data System (ADS)

    Mendes, V. B.; Barbosa, S. M.; Romero, I.; Madeira, J.; Brum da Silveira, A.

    2017-08-01

    This study addresses long-term sea level variability in Macaronesia from a holistic perspective using all available instrumental records in the region, including a dense network of GPS continuous stations, tide gauges and satellite observations. A detailed assessment of vertical movement from GPS time series underlines the influence of the complex volcano-tectonic setting of the Macaronesian islands in local uplift/subsidence. Relative sea level for the region is spatially highly variable, ranging from -1.1 to 5.1 mm yr-1. Absolute sea level from satellite altimetry exhibits consistent trends in the Macaronesia, with a mean value of 3.0 ± 0.5 mm yr-1. Typically, sea level trends from tide gauge records corrected for vertical movement using the estimates from GPS time series are lower than uncorrected estimates. The agreement between satellite altimetry and tide gauge trends corrected for vertical land varies substantially from island to island. Trends derived from the combination of GPS and tide gauge observations differ by less than 1 mm yr-1 with respect to absolute sea level trends from satellite altimetry for 56 per cent of the stations, despite the heterogeneity in length of both GPS and tide gauge series, and the influence of volcanic-tectonic processes affecting the position of some GPS stations.

  20. Dynamics of ultralight aircraft: Motion in vertical gusts

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1977-01-01

    Gust load calculations are extended to the range of conditions encountered by ultralight aircraft such as hang gliders. Having wing loadings of the order of 5 kg/sq m, these gliders acquire a substantial fraction of the motion of a gust within a distance of 1 or 2 m. Comparative loads and displacements for a small powered airplane having a wing loading of 50 kg sq m and for a commercial jet with 500 kg sq m are shown.

  1. Approximate formula for the vertical asymptote of projectile motion in midair

    NASA Astrophysics Data System (ADS)

    Sergey Chudinov, Peter

    2010-01-01

    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion - the vertical asymptote. The value of an asymptote is determined directly by the initial conditions of throwing. Analytically derived values of asymptotes in comparison with numerical values obtained by integrating the equations of motion are given. The motion of a baseball is presented as an example.

  2. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  3. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  4. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  5. Phase 4 static tests of the J-97 powered, external augmentor V/STOL model at the NASA, Ames Research Center, November 1983

    NASA Technical Reports Server (NTRS)

    Garland, D. B.

    1985-01-01

    A large-scale, ejector-lift V/STOL Model, powered by a J-97 engine, was tested at the NASA Ames Research Center Outdoor Aerodynamics Research Facility. The model incorporated the external augmentor concept developed by DHC. Since the first test at Ames in 1979, the fuselage augmentor nozzle array has been redesigned with a larger pitch and notched nozzles instead of plain slot nozzles. Thrust augmentation of the ejector as measured at Ames Research Center was lower than that measured in the DHC laboratory. It is believed that this difference is due to the high temperature of the primary jet flow as compared to the DHC blown-down rig. An ejector-lift/vectored thrust configuration was also included in the recent tests. This is an arrangement where the fuselage augmentor is shortened in the chordwise direction and the extra thrust is generated with a vectorable, ventral nozzle. In free air the shortened fuselage augmentor produced the same augmentation as the long augmentor. In ground proximity, at a height of 27 in, and with zero pitch angle, a negative ground effect was measured equal to 6.5 percent of the free-air lift.

  6. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  7. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  8. Aeroacoustic Characterization of the NASA Ames Experimental Aero-Physics Branch 32- by 48-Inch Subsonic Wind Tunnel with a 24-Element Phased Microphone Array

    NASA Technical Reports Server (NTRS)

    Costanza, Bryan T.; Horne, William C.; Schery, S. D.; Babb, Alex T.

    2011-01-01

    The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic measurements with a phased microphone array was recently explored. Acoustic characterization of the wind tunnel was carried out with a floor-mounted 24-element array and two ceiling-mounted speakers. The minimum speaker level for accurate level measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and streamwise speaker locations. A variety of post-processing procedures, including conventional beamforming and deconvolutional processing such as TIDY, were used. The speaker measurements, with and without flow, were used to compare actual versus simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel background noise were found valuable for predicting sound levels for which the speakers were detectable when the wind was on. Speaker sources were detectable 2 - 10 dB below the peak background noise level with conventional data processing. The effectiveness of background noise cross-spectral matrix subtraction was assessed and found to improve the detectability of test sound sources by approximately 10 dB over a wide frequency range.

  9. Modeling the Interaction between Quasi-Geostrophic Vertical Motion and Convection in a Single Column

    NASA Astrophysics Data System (ADS)

    Nie, J.

    2015-12-01

    A single-column modeling approach is proposed to study interaction between convection and large-scale dynamics using the quasi-geostrophic (QG) framework. Vertical motion is represented by the QG omega equation with the diabatic heating term included. This approach extends the notion of ``parameterization of large scale dynamics", previously applied in the tropics using the weak temperature gradient approximation and other comparable methods, to the extratropics, where balanced adiabatic dynamics plays a larger role in inducing large-scale vertical motion. The diabatic heating term in the QG-omega equation represents the feedback from convection, coupling the convection and large-scale vertical motion. The strength of the coupling depends on the characteristic wavelength of the large-scale disturbances, a free parameter in the system. This approach is demonstrated using two representations of convection: a single- column model with a convective parameterization, and linear response functions derived by Z. Kuang from a large set of cloud-resolving simulations. The results are qualitatively similar in both cases, though the linear response functions allow for a more thorough analysis of the system dynamics. The behavior of convection that is strongly coupled to large-scale vertical motion is significantly different from that in the uncoupled case in which large-scale dynamics is not present. The positive feedback of the diabatic heating on the large-scale vertical motion reduces the stability of the system, extends the decay time scale after initial perturbations, and increases the amplitude of the convective response to transient large-scale perturbations or imposed forcings. The diabatic feedback of convection on vertical motion is strongest for horizontal wavelengths roughly between 2000 km and 1000 km.

  10. The Retrieval of Vertical Air Motion from an Airborne W-Band using Mie Scattering

    NASA Astrophysics Data System (ADS)

    Jung, E.; Albrecht, B. A.; Kollias, P.

    2010-12-01

    Raindrops have diameters comparable to the wavelength (3.2 mm) of a 95-GHz radar. As a result, the Rayleigh scattering approximation is not valid and the full Mie scattering theory is required to explain the oscillations of the backscattering cross section between successive peaks and valleys as a function of the raindrop diameter. At radar wavelengths of 3 mm, the first minimum in the backscattering cross section occurs at a raindrop diameter equals to 1.7 mm. Since raindrop diameters often exceed this size, these oscillations are captured in the radar Doppler spectrum and thus can be used as reference for the retrieval of the vertical air motion. This technique, which has been successfully developed for surface-based radars, is applied to radar Doppler spectra from an airborne, upward pointing W-band radar operated during the Barbados Aerosol Cloud Experiment (BACEX) from precipitating cumulus. Before the technique is applied to the airborne W-band radar data, the observed Doppler velocities are corrected for aircraft motions and attitude as recorded by the aircraft navigation system. The first order corrections to the vertical component of the Doppler velocity involve the pitch and speed of the aircraft and the vertical motion of aircraft itself for the radar operating in an upward pointing configuration. The vertical air velocity can then be deduced form the difference between the terminal velocity of a raindrop with a diameter of 1.7mm and the value of observed first minimum in the Doppler spectrum. An air density correction for the terminal velocity is made using the mean profile of density. The vertical air velocity retrieved from the technique is extrapolated to the level of aircraft (the radar has a dead zone of approximately ~50m) for comparison with the vertical air motion obtained from the aircraft sensors. Possible applications of this technique for airborne observations of the vertical profiles of air vertical velocities and the relative drop

  11. Hybrid control of microvibration of high-tech facility under horizontal and vertical ground motion

    NASA Astrophysics Data System (ADS)

    Xu, You-Lin; Guo, An-Xin; Li, Hui; Ng, Chi-Lun

    2004-07-01

    Hybrid control platform is investigated in this paper for mitigating microvibration of a batch of high tech equipment installed in a high tech facility (building) subject to nearby road vehicle-induced horizontal and vertical ground motions. Hybrid control platform, on which high tech equipment is installed, is mounted on the building floor through a series of passive mounts and controlled by hydraulic actuators in both horizontal and vertical directions. The hybrid control platform is taken as an elastic body with significant bending modes of vibration, and a sub-optimal control algorithm is used to manipulate the hydraulic actuators with the actuator dynamics included. The governing equations of motion of the coupled platform-building system are established in the absolute coordinate to facilitate the feedback control and performance evaluation of the platform. The horizontal and vertical ground motions at the base of the building induced by nearby moving road vehicles are assumed to be random and statistically stationary processes. A typical three-story high tech building is selected as a case study. The case study shows that the ground motion and vibration of the high tech building are higher in the vertical direction than in the horizontal direction. The use of hybrid control platform can effectively reduce both horizontal and vertical microvibrations of a vast quantity of high tech equipment to the level satisfying the most stringent microscale velocity requirement specified in the BBN criteria.

  12. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gage, K. S.; McAfee, J. R.; Carter, D. A.; Ecklund, W. L.; Riddle, A. C.; Reid, G. C.; Balsley, B. B.

    1991-12-01

    Measurement from Christmas Island (2^circN, 157^circW) of long-term mean vertical motions in the tropical atmosphere using very-high-frequency wind-profiling Doppler radar show that there is a transition from downward motion in the free troposphere to upward motion in the upper troposphere and lower stratosphere. The observations in the free troposphere are consistent with a balance between adiabatic and diabatic heating and cooling rates in a clear atmosphere. Comparison of the results at Christmas Island during El Nino and non-El Nino conditions with earlier results obtained for stratiform rain conditions over Pohnpei, Federated States of Micronesia, show that cirrus clouds in the vicinity of the tropopause likely play an important role in determining the sense and magnitude of vertical motions in this region. These results have implications for the exchange of mass between the troposphere and stratosphere over the tropics.

  13. Observing Vertical Motion of Deep Convective Clouds by Stereo Photogrammetry

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Romps, D. M.

    2013-12-01

    Using stereo photography, the vertical velocities of convective clouds are measured over Biscayne Bay in Miami. When applied to deep convection, the stereo cameras observe typical ascent speeds in excess of 10 m/s. With a high frame rate, fine spatial resolution, and long range, the cameras are able to reconstruct the trajectories -- in three-dimensional space -- of individual convective plumes through their lifecycle deep into the upper troposphere. To ensure high accuracy when looking out over water, a novel algorithm has been designed to calibrate the orientation of the cameras in the absence of traditional landmarks. The accuracy is validated by comparing the cloud heights obtained from the stereo cameras to data from a colocated ceilometer, and by comparing the stereo-camera winds to data from nearby radiosondes. With the ability to capture full field-of-view data at a high frame rate (i.e., 0.1 to 10 Hz), stereo photography provides a unique and powerful complement to traditional radar technology.

  14. Vertical motions in the gaseous disk of the spiral galaxy NGC 3631

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Koruzhii, O. V.; Zasov, A. V.; Sil'chenko, O. K.; Moiseev, A. V.; Burlak, A. N.; Afanas'ev, V. L.; Dodonov, S. N.; Knapen, J.

    1998-11-01

    The velocity field of the nearly face-on galaxy NGC 3631 is derived from observations in the Hα line on the 6-m telescope of the Special Astrophysical Observatory. These optical data are compared with radio observations of this galaxy (Knapen 1997). It is argued that the two-armed spiral structure of NGC 3631 has a wave nature, and that the observed vertical gas motions represent motions in a spiral density wave.

  15. Decoding the origins of vertical land motions observed today at coasts

    NASA Astrophysics Data System (ADS)

    Pfeffer, J.; Spada, G.; Mémin, A.; Boy, J.-P.; Allemand, P.

    2017-07-01

    In recent decades, geodetic techniques have allowed detecting vertical land motions and sea-level changes of a few millimetres per year, based on measurements taken at the coast (tide gauges), on board of satellite platforms (satellite altimetry) or both (Global Navigation Satellite System). Here, contemporary vertical land motions are analysed from January 1993 to July 2013 at 849 globally distributed coastal sites. The vertical displacement of the coastal platform due to surface mass changes is modelled using elastic and viscoelastic Green's functions. Special attention is paid to the effects of glacial isostatic adjustment induced by past and present-day ice melting. Various rheological and loading parameters are explored to provide a set of scenarios that could explain the coastal observations of vertical land motions globally. In well-instrumented regions, predicted vertical land motions explain more than 80 per cent of the variance observed at scales larger than a few hundred kilometres. Residual vertical land motions show a strong local variability, especially in the vicinity of plate boundaries due to the earthquake cycle. Significant residual signals are also observed at scales of a few hundred kilometres over nine well-instrumented regions forming observation windows on unmodelled geophysical processes. This study highlights the potential of our multitechnique database to detect geodynamical processes, driven by anthropogenic influence, surface mass changes (surface loading and glacial isostatic adjustment) and tectonic activity (including the earthquake cycle, sediment and volcanic loading, as well as regional tectonic constraints). Future improvements should be aimed at densifying the instrumental network and at investigating more thoroughly the uncertainties associated with glacial isostatic adjustment models.

  16. Large-scale vertical motion calculations in the AVE IV Experiment. [of atmospheric wind velocity

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1976-01-01

    Using 3- and 6-h consecutive rawinsonde and surface data from NASA's AVE IV Experiment, synoptic-scale vertical motion calculations are made using an adiabatic technique and three variations of the kinematic technique. Both subjective and objective comparisons in space and time between the sign and magnitude of the computed vertical velocities and precipitation intensities are made. These comparisons are conducted to determine which method would consistently produce realistic magnitudes, patterns, and vertical profiles of vertical velocity essential to the diagnostic study of the relationship between severe convective storms and their environment in AVE IV. The kinematic method, adjusted to the adiabatic value at 100 mb, proved to produce the best overall vertical velocities.

  17. Spectral characteristics of vertical ground motion in the Northridge and other earthquakes

    SciTech Connect

    Bozorgnia, Y.; Niazi, M.; Campbell, K.W.

    1995-12-31

    Spectral characteristics of vertical ground motion recorded during the Northridge earthquake are evaluated and compared to those of other earthquakes. Relationship between vertical and horizontal spectra is examined through development of attenuation of vertical and horizontal response spectra. Vertical-to-horizontal response spectral relationship is then compared to that of 1989 Loma Prieta earthquake, and several other earthquakes recorded over SMART-1 array in Taiwan. This preliminary analysis shows that the main characteristics of vertical-to-horizontal spectral ratio are similar to those of other earthquakes. One main characteristic is that in the near-field region and in short period range, the ratio is much higher than commonly assumed ratio of 2/3.

  18. GPS Imaging of Global Vertical Land Motion for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Hamlington, B. D.

    2015-12-01

    Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.

  19. Simulation System Optimization for Rotorcraft Research on the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott; Tobias, Eric Luke; Aponso, Bimal Lalith

    2012-01-01

    A handling qualities experiment was run on the Vertical Motion Simulator using the GenHel math model configured for a UH60A Blackhawk helicopter. In order to obtain valid handling qualities ratings, the simulation system including the math model were optimized to provide realistic cues. The aircraft math model was adjusted to account for the simulator motion system delays and the motion systems gains and washouts were tuned for the bob-up, precision hover and sidestep tasks. The handling qualities ratings from this experiment showed good correlation to flight ratings.

  20. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  1. Vertical Motions Estimated Using Data from a Single Station and a Form of the Adiabatic Method.

    NASA Astrophysics Data System (ADS)

    Nastrom, G. D.; Warnock, J. M.

    1994-01-01

    The so-called adiabatic method for estimating vertical air motions under isentropic flow conditions can be used with wind and temperature data from a single station. With the advent of radio acoustic sounding systems, wind and temperature measurements will be available with the necessary frequency to employ this form of the adiabatic method on a routine basis. In an effort to test this method, data from series of Cross-chain Loran Atmospheric Sounding System balloons launched at high frequency from Champaign, Illinois, have been used to compute vertical motions. The results are compared with the synoptic setting of each campaign and with estimates made using the kinematic method. It appears that smoothing over layers about 100 hPa deep is necessary to remove features not associated with the large-scale flow. The vertical-motion results show that the adiabatic method usually compares as favorably as the kinematic method with proxy indicators of vertical motion such as clouds and moisture. The adiabatic method does not appear as reliable at the edge of cloud decks, apparently due to radiative flux divergence.

  2. Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia

    2003-01-01

    This study examines a high-resolution simulation of Hurricane Bonnie. Results from the simulation will be compared to the conceptual model of Heymsfield et al. (2001) to determine the extent to which this conceptual model explains vertical motions and precipitation growth in the eyewall.

  3. Vertical ground motion and its effects on liquefaction resistance of fully saturated sand deposits.

    PubMed

    Tsaparli, Vasiliki; Kontoe, Stavroula; Taborda, David M G; Potts, David M

    2016-08-01

    Soil liquefaction has been extensively investigated over the years with the aim to understand its fundamental mechanism and successfully remediate it. Despite the multi-directional nature of earthquakes, the vertical seismic component is largely neglected, as it is traditionally considered to be of much lower amplitude than the components in the horizontal plane. The 2010-2011 Canterbury earthquake sequence in New Zealand is a prime example that vertical accelerations can be of significant magnitude, with peak amplitudes well exceeding their horizontal counterparts. As research on this topic is very limited, there is an emerging need for a more thorough investigation of the vertical motion and its effect on soil liquefaction. As such, throughout this study, uni- and bidirectional finite-element analyses are carried out focusing on the influence of the input vertical motion on sand liquefaction. The effects of the frequency content of the input motion, of the depth of the deposit and of the hydraulic regime, using variable permeability, are investigated and exhaustively discussed. The results indicate that the usual assumption of linear elastic response when compressional waves propagate in a fully saturated sand deposit does not always hold true. Most importantly post-liquefaction settlements appear to be increased when the vertical component is included in the analysis.

  4. Ground motion prediction equations for horizontal and vertical components of acceleration in Northern Iran

    NASA Astrophysics Data System (ADS)

    Soghrat, M. R.; Ziyaeifar, M.

    2017-01-01

    Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.

  5. Vertical ground motion and its effects on liquefaction resistance of fully saturated sand deposits

    PubMed Central

    Kontoe, Stavroula; Taborda, David M. G.; Potts, David M.

    2016-01-01

    Soil liquefaction has been extensively investigated over the years with the aim to understand its fundamental mechanism and successfully remediate it. Despite the multi-directional nature of earthquakes, the vertical seismic component is largely neglected, as it is traditionally considered to be of much lower amplitude than the components in the horizontal plane. The 2010–2011 Canterbury earthquake sequence in New Zealand is a prime example that vertical accelerations can be of significant magnitude, with peak amplitudes well exceeding their horizontal counterparts. As research on this topic is very limited, there is an emerging need for a more thorough investigation of the vertical motion and its effect on soil liquefaction. As such, throughout this study, uni- and bidirectional finite-element analyses are carried out focusing on the influence of the input vertical motion on sand liquefaction. The effects of the frequency content of the input motion, of the depth of the deposit and of the hydraulic regime, using variable permeability, are investigated and exhaustively discussed. The results indicate that the usual assumption of linear elastic response when compressional waves propagate in a fully saturated sand deposit does not always hold true. Most importantly post-liquefaction settlements appear to be increased when the vertical component is included in the analysis. PMID:27616931

  6. Aeroacoustic Study of a 26%-Scale Semispan Model of a Boeing 777 Wing in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Burnside, Nathan J.; Soderman, Paul T.; Jaeger, Stephen M.; Reinero, Bryan R.; James, Kevin D.; Arledge, Thomas K.

    2004-01-01

    An acoustic and aerodynamic study was made of a 26%-scale unpowered Boeing 777 aircraft semispan model in the NASA Ames 40- by 80-Foot Wind Tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated approach and landing configurations were evaluated at Mach numbers between 0.12 and 0.24. Cruise configurations were evaluated at Mach numbers between 0.24 and 0.33. The research team used two Ames phased-microphone arrays, a large fixed array and a small traversing array, mounted under the wing to locate and compare various noise sources in the wing high-lift system and landing gear. Numerous model modifications and noise alleviation devices were evaluated. Simultaneous with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by the geometric modifications. Numerous airframe noise sources were identified that might be important factors in the approach and landing noise of the full-scale aircraft. Several noise-control devices were applied to each noise source. The devices were chosen to manipulate and control, if possible, the flow around the various tips and through the various gaps of the high-lift system so as to minimize the noise generation. Fences, fairings, tip extensions, cove fillers, vortex generators, hole coverings, and boundary-layer trips were tested. In many cases, the noise-control devices eliminated noise from some sources at specific frequencies. When scaled to full-scale third-octave bands, typical noise reductions ranged from 1 to 10 dB without significant aerodynamic performance loss.

  7. Investigating the asymmetry of Mars’ South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, Julie; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; NASA Ames Global Climate Modelling Group

    2013-10-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, this could maintain the asymmetry of the southern ice cap. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures and cap recession rates. Observed mesospheric and polar night clouds are well reproduced by the model, and a third unobserved type of cloud is predicted to form close to the surface of the subliming caps. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and maximizing snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow, frost and dust), and on surface metamorphism processes due to sintering and incoming solar radiation. The goal of this work is to develop a more complete understanding of the existence of the SPRC and of the Martian CO2 cycle.

  8. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1980-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in the NASA Ames Research Center 40 x 80 foot Wind Tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a Conventional Takeoff/Landing (CTOL) hybrid inlet, a Short Takeoff/Landing (STOL) hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The CTOL hybrid inlet suppressed the high tip speed fan noise as much as 18 PNdB on a 61 m (200 ft) sideline scaled to a CF6 size engine while the STOL hybrid inlet suppressed the low tip speed fan noise as much as 13 PNdB on a 61 m (200 ft) sideline scaled to a OCSEE size engine. The deflector inlet suppressed the high tip speed fan noise as much as 13 PNdB at 61 m (200 ft) overhead scaled to a CF6 size engine. No significant changes in fan noise suppression for the CTOL and STOL hybrid inlets occurred for forward velocity changes above 21 m/s (68 ft/s) or for angle of attack changes up to 15 deg. However, changes in both forward velocity and angle of attack changed the deflector inlet noise unpredictably due to the asymmetry of the inlet flow field into the fan.

  9. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  10. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Limaye, A.; Molthan, A.

    2010-12-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the “infrastructure as a service” concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  11. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  12. Shared cortical systems for processing of horizontal and vertical sound motion.

    PubMed

    Getzmann, Stephan; Lewald, Jörg

    2010-04-01

    Cortical processing of horizontal and vertical sound motion in free-field space was investigated using high-density electroencephalography in combination with standardized low-resolution brain electromagnetic tomography (sLORETA). Eighteen subjects heard sound stimuli that, after an initial stationary phase in a central position, started to move centrifugally, either to the left, to the right, upward, or downward. The delayed onset of both horizontal and vertical motion elicited a specific motion-onset response (MOR), resulting in widely distributed activations, with prominent maxima in primary and nonprimary auditory cortices, insula, and parietal lobe. The comparison of MORs to horizontal and vertical motion orientations did not indicate any significant differences in latency or topography. Contrasting the sLORETA solutions for the two motion orientations revealed only marginal activation in postcentral gyrus. These data are consistent with the notion that azimuth and elevation components of dynamic auditory spatial information are processed in common, rather than separate, cortical substrates. Furthermore, the findings support the assumption that the MOR originates at a stage of auditory analysis after the different spatial cues (interaural and monaural spectral cues) have been integrated into a unified space code.

  13. Comparison of dynamic stall phenomena for pitching and vertical translation motions

    NASA Technical Reports Server (NTRS)

    Fukushima, T.; Dadone, L. U.

    1977-01-01

    Test data for vertical translation motions of the V0012 and V23010-1.58 airfoils were compared with force pitch and oscillation data to determine qualitative differences in dynamic stall behavior. Chordwise differential pressure variations were examined in detail for the test conditions displaying dynamic stall. The comparison revealed a number of differences both in the onset of stall and in the progression separation as a function of the type of motion. The evidence of secondary stall events following the recovery from initial stall were found to be dependent on the type of motion, but additional data will be needed to incorporate vertical translation effects into the empirical approximation of dynamic stall.

  14. Diagnosis of vertical motions from VAS retrievals during a convective outbreak

    NASA Technical Reports Server (NTRS)

    Funk, T. W.; Fuelberg, H. E.

    1985-01-01

    GOES-VAS satellite retrievals are used to investigate an intense convective outbreak over the Mississippi River Valley on 21-22 July 1982. The primary goals are to assess the strengths and weaknesses of three methods for computing vertical motion using satellite retrievals and to determine the effects of short interval observations on the calculations. Then, the vertical motions are incorporated with thermodynamic parameters to assess the usefulness of VAS data in delineating factors leading to storm formation. Results indicate that the quasi-geotrophic omega equation provided patterns and magnitudes most consistent with observed weather events and the 12 h radiosonde-derived motions. The vorticity method generally produced reasonable patterns, especially over the convective outbreak, although magnitudes were large due to its time derivative.

  15. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  16. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    NASA Astrophysics Data System (ADS)

    Le Cozannet, Gonéri; Raucoules, Daniel; Wöppelmann, Guy; Garcin, Manuel; Da Sylva, Sylvestre; Meyssignac, Benoit; Gravelle, Médéric; Lavigne, Franck

    2015-08-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992-2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year-1. Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions.

  17. Large-Scale Mid- and Upper-Tropospheric Vertical Motions and MJO Convective Onset

    NASA Astrophysics Data System (ADS)

    Powell, Scott; Houze, Robert

    2015-04-01

    Reanalysis (ERA-Interim) is used to demonstrate that anomalies of large-scale vertical motion with ~30 day variability at Addu City, Maldives, exist to the west of the Indian Ocean prior to the occurrence of widespread, organized convection associated with convectively active Madden-Julian Oscillation (MJO) events during DYNAMO/AMIE. The upward motions are associated with large negative anomalies of 150 hPa velocity potential, extend as low as 700 hPa, and apparently circumnavigate the globe several times. Sustained, widespread, organized convection does not initially develop until 0-2 days after large-scale upper-tropospheric upward motion anomalies arrive over the Indian Ocean. Over low-precipitation regions where they are not reinforced by latent heating, the magnitude of the equatorial anomalies is as large as 0.03 Pa s-1. Using large-scale forcing data derived from a sounding array in conjunction with ground-based radar, typical profiles of environmental heating, vertical motion, and moisture advection are computed for periods prior to those during which deep convection is prevalent and those during which moderately deep cumulonimbi do not form into deep clouds. In both environmental regimes, convection with tops between 3 and 7 km are present. Drying by horizontal advection is also ubiquitous. During periods when moderately deep cumulonimbus do not tend to grow into deep convection, vertical moisture advection is insufficient on the large-scale to overcome drying by horizontal advection. Prior to sustenance of deep convection,vertical advection of moisture in the mid- to upper-troposphere overcomes drying by horizontal advection such that the total (horizontal + vertical) moisture advection throughout the troposphere is positive. In order to do so, upward motion in the middle- and upper-troposphere, in excess of the median by as much as 0.03 Pa s-1, is necessary. The large-scale upward motions connected to equatorially trapped, eastward propagating divergent

  18. Vertical Crustal Motion of Taiwan Determined from Tide Gauge and Altimeter Data

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Chang, E. T.; Lo, C.; Chao, B. F.

    2008-12-01

    Taiwan is located at the western bordure of the convergent boundary between the Philippine Sea plate and Eurasian plate. Processings of plate collision and mountain building is obvious and occur uncountable earthquakes here. In this study, we applied the method of comparing the tide gauge (TG) and altimeter (ALT) data to resolve land vertical motion at 20 TG sites along Taiwan coast. Sea surface height measured by altimetry is related to an absolute reference frame, while TG is related to the coast where they are attached on land. The difference of time series Alt(t)-TG(t) contains information about vertical crustal motion. This method has been used to many applications, such as the global image of vertical ground motion [Cazenave et al., 1999; Nerem and Mitchum, 2002], the tectonic activity around Mediterranean [Garcia et al., 2007], and glacial isostatic rebound occurred in Scandinavian Peninsula, Great Lakes region, and Alaska [Kuo, 2004], etc. In this study, the tide gauge records are adopted from the Marine database of Central Weather Bureau, and altimetry data are the Geophysical Data Record (GDR) which conducted from the tracks of TOPEX/Poseidon(1992 - 2002) and Jason-1 (2002 - Present), charging from JPL's Physical Oceanography Distributed Active Archive Center (PO.DAAC). We calculate the linear trend of the ALT-TG record for each of the TG locations. Seasonal signals, primarily periodic tides are removed from both TG and ALT data as the beforehand treatment for linear regression. We can therefore figure out a whole image of vertical motion along the Taiwan coast. The majority of these movements tend to descend in the latest decade. However, some TG stations reveal an extreme large uplift rate which may be affected by local effects. Sites in the eastern Taiwan generally have a smaller descending rate in comparison to the western sites. Furthermore, our estimations in the southwestern Taiwan show a clear land subsidence from -6.2mm/yr to -34.3mm/yr. Another

  19. Vertical Crustal Motion Derived from Satellite Altimetry and Tide Gauges, and Comparisons with DORIS Measurements

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Beckley, B. D.; Lemoine, F. G.

    2010-01-01

    A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.

  20. Retrievals Of Vertical Motion in Convective Precipitating Systems: an ARM Perspective

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Giangrande, S. E.; North, K.; Protat, A.; Kumar, V.; Helmus, J.; Kollias, P.

    2013-12-01

    Vertical motions in the atmosphere link many processes, controlling processes such as accretion rates, species transport (water vapor, aerosols) and radiative properties of detrained cloud anvils, and being strongly influenced my many scales of dynamical forcing, latent heat feedbacks and entrainment. Due to this, statistical properties of vertical motion can act as an observational target for fine scale (eg LES, CRM) models. Determining the veracity of processes in such models is vital as these are commonly used to asses processes in Single column and global models. However retrievals of vertical motions in these systems is complicated by many factors including sampling, the veracity of constraints and boundary and initial conditions used in the retrieval. Therefore a multi-scale approach is needed, using a mix of independent measurements and retrieval techniques to build an understanding of the vertical velocity spectrum in these systems. This presentation will cover work across the ARM facility including retrievals from the Darwin Tropical West Pacific (Australia) and the Oklahoma, Southern Great Plains (USA) site. By initially focusing on Intensive Observational Periods such as TWP-ICE and MC3E retrieval efforts can dovetail with model intercomparison projects and ongoing work in parameterization and model development. In addition to ongoing work paths towards building single radar based retrievals leveraging microphysical insight from polarimetric radars will be discussed.

  1. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  2. Effects of vestibular training on motion sickness, nystagmus, and subjective vertical.

    PubMed

    Clément, Gilles; Deguine, Olivier; Bourg, Mathieu; Pavy-LeTraon, Anne

    2007-01-01

    Pitch head-and-trunk movements during constant velocity rotation are a provocative vestibular stimulus that produces vertigo and nausea. When exposed to this stimulus repeatedly, motion sickness symptoms diminish as the subjects habituate. Acetylleucine is a drug that is used to treat acute vestibular vertigo. In this study, we wanted to ascertain whether this drug (a) lessened motion sickness or delayed habituation; (b) accelerated the recovery following habituation; and (c) whether changes in the subjective vertical accompanied habituation. Twenty subjects were administered acetylleucine or placebo in a double-blind study during a five-day vestibular training. Horizontal vestibulo-ocular reflex, optokinetic nystagmus, smooth pursuit, and subjective visual vertical were evaluated before, during, and up to two months after the vestibular training. Based on Graybiel's diagnostic criteria, motion sickness decreased steadily in each vestibular training session, and there was no difference between the scores in the acetylleucine and placebo groups. Post-rotatory nystagmus peak velocity and time constant also declined in both groups at the same rate. Thus, acetylleucine neither reduced the nausea associated with this provocative stimulus, nor hastened the acquisition or retention of vestibular habituation of motion sickness and nystagmus. There was no difference in optokinetic nystagmus and smooth pursuit between the acetylleucine and placebo groups. However, subjects showed larger error in the subjective visual vertical after habituation, which indicates that spatial orientation is also affected by vestibular training.

  3. Probabilistic reconstruction of GPS vertical ground motion and comparison with GIA models

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Bodin, Thomas; Choblet, Gael; Kreemer, Corné

    2017-04-01

    The vertical position time-series of GPS stations have become long enough for many parts of the world to infer modern rates of vertical ground motion. We use the worldwide compilation of GPS trend velocities of the Nevada Geodetic Laboratory. Those rates are inferred by applying the MIDAS algorithm (Blewitt et al., 2016) to time-series obtained from publicly available data from permanent stations. Because MIDAS filters out seasonality and discontinuities, regardless of their causes, it gives robust long-term rates of vertical ground motion (except where there is significant postseismic deformation). As the stations are unevenly distributed, and because data errors are also highly variable, sometimes to an unknown degree, we use a Bayesian inference method to reconstruct 2D maps of vertical ground motion. Our models are based on a Voronoi tessellation and self-adapt to the spatially variable level of information provided by the data. Instead of providing a unique interpolated surface, each point of the reconstructed surface is defined through a probability density function. We apply our method to a series of vast regions covering entire continents. Not surprisingly, the reconstructed surface at a long wavelength is dominated by the GIA. This result can be exploited to evaluate whether forward models of GIA reproduce geodetic rates within the uncertainties derived from our interpolation, not only at high latitudes where postglacial rebound is fast, but also in more temperate latitudes where, for instance, such rates may compete with modern sea level rise. At shorter wavelengths, the reconstructed surface of vertical ground motion features a variety of identifiable patterns, whose geometries and rates can be mapped. Examples are transient dynamic topography over the convecting mantle, actively deforming domains (mountain belts and active margins), volcanic areas, or anthropogenic contributions.

  4. Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Zhan, Wei; Li, Fei; Hao, Weifeng; Yan, Jianguo

    2017-09-01

    Seasonal Vertical Crustal Motions (SVCM) in Yunnan are assessed from 27 continuous Global Positioning System (cGPS) stations observations over the period 2010-2015. Results demonstrate significant SVCM in Yunnan with annual cyclic movements as the dominant pattern, the mean annual cyclic amplitude and initial phase is 9.7 mm and 2.9 months, respectively. These annual cyclic movements exhibit a high degree of spatial uniformity as a whole, while some spatial differences exist across regions. GPS seasonal vertical time-series show strong consistency with GRACE (Gravity Recovery and Climate Experiment) data, providing further indication that regional deformation exerts a dominant effect on the GPS vertical time-series. Over the period, the Yunnan area featured substantial precipitation that shows significant annual periodicity and a strong correlation with the GPS vertical time-series. The seasonal precipitation is therefore concluded to be the regional dominant factor that governs vertical cyclic crustal movements in this area. Differences in topography and precipitation between western and eastern Yunnan (i.e. across the Jinshajiang-Red River Fault) result in a greater magnitude of SVCM in western Yunnan compared to that in eastern Yunnan. Vertical linear movement rates of Yunnan derived from GPS also exhibit evident differences between eastern and western Yunnan. Therefore, results suggest that the Red River Fault is an important factor in the spatial variability of vertical crustal movements in Yunnan.

  5. Brief communication: The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo E. M.; Frederikse, Thomas; King, Matt A.; Marzeion, Ben; van den Broeke, Michiel R.

    2017-06-01

    Melting glaciers, ice caps and ice sheets have made an important contribution to sea-level rise through the last century. Self-attraction and loading effects driven by shrinking ice masses cause a spatially varying redistribution of ocean waters that affects reconstructions of past sea level from sparse observations. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea-level change.

  6. Vertical motions of the midlatitude F2 layer during magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Park, C. G.; Meng, C.

    1971-01-01

    Use of ground-based ionosonde records from midlatitude stations during winter nights to study vertical motions of the F2 layer associated with magnetospheric substorms. The results show that during substorms the F2 layer is lifted upward in the premidnight sector and pushed downward in the postmidnight sector. These motions are interpreted in terms of E x B drifts, the electric field being eastward on the eveningside and westward on the morningside. The results emphasize the importance of substorm effects on the midlatitude F region and the potential of ground-based hf sounding techniques in studying magnetospheric substorms.

  7. Slow nonstationary vertical motions of a die on the surface of an elastic half-space

    NASA Astrophysics Data System (ADS)

    Argatov, I. I.

    2007-10-01

    We consider the dynamic contact problem on vertical motions of an absolutely rigid body on an elastic half-space. We assume that the contact region does not vary during the motion and there is no friction under the die bottom. We construct an approximate solution of the problem under the assumption that the variation in the contact pressure under the die bottom on the time interval in which the Rayleigh wave runs the distance equal to the contact area diameter is small. Computational formulas are obtained for the cases of circular and elliptic dies.

  8. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  9. Investigating the asymmetry of Mars' South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, J. M.; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.

    2013-12-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, they suggest that this topography driven atmospheric circulation maintains the asymmetry of the southern ice cap. However, Colaprete et al (2005) do not explicitly model the albedo of the south cap to demonstrate the viability of their hypothesis. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures, cap recession rates and cloud patterns (mesospheric and polar night clouds). Although mesospheric and polar night clouds are thoroughly documented in the literature, the model predicts a third type of cloud to form close to the surface of the subliming ice caps, which has not been observed. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and enhanced snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow

  10. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  11. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  12. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  13. Relationships Between Vertical Motion on Isentropic Surfaces from 3-Hr Rawinsonde Data and Radar Echoes.

    DTIC Science & Technology

    cm/s in a horizontal distance of 300 km. The rate of change of vertical motion is demonstrated to be as large as 8 cm/s/h from data taken at 3-h...intervals while data taken at 12-h intervals the same day displayed a maximum rate of change of 2 cm/s/h. Radar observations confirmed that the intensity

  14. Monthly periodicity in acoustic reflections and vertical motions in the deep ocean

    NASA Astrophysics Data System (ADS)

    van Haren, Hans

    2007-06-01

    A recent, 1.5 years long record of acoustic Doppler current profiler (ADCP)-data from the Canary Basin (North-Atlantic ocean) likely reflects vertical zooplankton migration between 800 and 1400 m. This record clearly distinguishes 3 major periodicities of down- and upgoing motions to within a precision of ~1/400: a daily, a seasonal and a monthly cycle. Largest daily excursions occur during full moon. The directly observed hourly mean vertical velocity amplitudes of |w| = 0.025 +/- 0.01 m s-1 are too slow for particles from the observational depths to reach the zone of moon- (and only very weak sun-) light penetration in half a day. It is shown that no physical (internal wave), geochemical or sinking food mechanism can trigger the daily and monthly cycles, which are coupled. It is speculated that an entrained biorhythm running precise internal biochemical clocks controls the vertical migration.

  15. Characterization of motion modes of pseudo-two dimensional granular materials in a vertical rotating drum

    NASA Astrophysics Data System (ADS)

    Yulia; Mardiansyah, Y.; Khotimah, S. N.; Suprijadi; Viridi, S.

    2016-08-01

    The aim of this work is to characterize the modes of motion of pseudo-two dimensional granular materials in a vertical rotating drum. The granular materials are 4 mm diameter marbles, which are put in a flat drum with 16 cm diameter and 5 mm thickness. Rotation axis of the drum is always perpendicular to the direction of gravity. Granular materials in a vertical rotating drum usually have six modes of motion i.e. slipping, slumping, rolling, cascading, cataracting, and centrifuging. Those modes depend on number of granular particles, rotation speed, and types of materials of granular particles. Characterization of modes of motion in this work has been conducted by varying number of particles, rotation speed, and types of materials. Rotation speed is varied from 15 rpm to 125 rpm, while number of granular material is varied from 50 to 600. Each steel and plastic granular materials has five modes of motion with centrifuging mode is absence in observation of steel materials and slipping mode is absence in observation of plastic materials, both for the same parameter ranges used in the experiments. Parameters room of number of particles against rotation speed for both types of materials are presented.

  16. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  17. Dominant influence of volcanic loading on vertical motions of the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Huppert, K.; Royden, L.; Perron, J.

    2013-12-01

    Volcanic ocean islands offer numerous advantages as natural experiments in landscape evolution, including homogeneous bedrock, dramatic climate gradients, and an initial surface that can often be reconstructed and dated. Uplift and subsidence set the time-dependent base level and elevations that strongly influence an island's evolution, yet the vertical motion history from an ocean island's construction to its eventual submergence below sea level is not well understood. Volcanic ocean islands may uplift or subside due to flexural isostatic response of the lithosphere to volcanic loading and island migration over bathymetric swells associated with hotspots. With an abundance of dated paleoshoreline markers, the Hawaiian Islands provide a unique opportunity to compare observations of island uplift and subsidence to various models of lithospheric deformation. We calculated 444 rates of island vertical motion, averaged over 50 years to 5 Myr, from drowned and emerged corals, subaerially erupted basalt, and tide gauge records in the Hawaiian Islands. To compare these observations to theoretical predictions for migration over hotspot topography, we filtered Hawaiian bathymetry to isolate the regional swell component and tracked its elevation change between the present and paleo locations of the rate observations, assuming constant plate velocity. For volcanic loading, we determined the deflection resulting from individual volcanoes by modeling the lithosphere as a thin elastic plate. We used radiometric basalt ages to calculate vertical motion rates averaged over discrete volcanic loading events. More than 60% of the rate observations averaged over >100 kyr lie within uncertainty of modeled rates of vertical motion for volcanic loading calculated using an effective elastic thicknesses of the lithosphere Te within the range of previously determined Te for Hawai'i. Migration over swell topography has a comparatively minor influence on island uplift and subsidence

  18. Phase-linking and the perceived motion during off-vertical axis rotation

    PubMed Central

    Wood, Scott J.; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt

  19. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  20. Constraining the vertical surface motions of the Hampshire Basin, south England During the Cenozoic

    NASA Astrophysics Data System (ADS)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2016-04-01

    The potential effect of rising sea level on the UK has received considerable attention in recent years. However, the ongoing long-term changes in surface topography of the UK driven by regional tectonics and the mechanisms responsible are not fully understood. It is thought that glacial loading/unloading is the primary influence. However, this is inconsistent with present-day vertical surface motions recorded from Continuous Global Positioning Stations (CGPS) across the UK. The lateral variations in the present day motions are too complex to be explained by glacial isostatic rebound. We are investigating the hypothesis that the vertical motions of SE England also reflect the long term tectonic history by backstripping the Cenozoic geological record. So far the Paleogene stratigraphic record of the Hampshire basin in southern England has been investigated and using a series of deep boreholes that reach the chalk basement, a 2-D backstripping method has been applied. Subsidence analysis of cliff sections and boreholes reveal the Hampshire Basin was tectonically subsiding at a steady rate from 56.5Ma and any major periods of uplift and denudation to the present day state must have occurred from the mid Oligocene onwards. At this time the northern and western regions of the UK were believed to be uplifting as evidenced by heavy mineral transport directionns and sediment drainage patterns. A rapid increase in tectonic subsidence from 42Ma recorded by the three Isle of Wight sections in close proximity to an existing Variscan fault, thought to reactivate as a thrust during the Cenozoic, suggests a compressional stress regime in this region. The stress pattern observed from the tectonic subsidence data and evidence from drainage patterns supports a model in which the UK was uplifting in the north and west while the south east was subsiding. As this pattern is similar to the present day vertical surface motions and pre-dates glaciation, we propose glacial unloading as a

  1. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  2. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network.

    PubMed

    Li, Limin; Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms.

  3. Motion Adaptive Vertical Handoff in Cellular/WLAN Heterogeneous Wireless Network

    PubMed Central

    Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  4. Vertical Air Motion Estimates from W-band Radar Doppler Spectra Observed during DYNAMO

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Gibson, J. S.; Fairall, C. W.

    2014-12-01

    During the DYNAMO field campaign, a vertically pointing NOAA W-band (94 GHz) radar was mounted on the R/V Revelle to sample a wide range of clouds from shallow warm clouds to high cirrus clouds. The Doppler velocity spectra often contained multiple peak structures. In warm clouds, multiple peaks were due to cloud droplets and drizzle droplets in the same radar pulse volume. And in rainfall beneath well-defined reflectivity dim-bands near the melting layer, the multiple peaks were due to Mie scattering signatures from raindrops larger than 1.6 mm. This presentation will describe a method of identifying multiple peaks in Doppler spectra and then determining if the multiple peaks were due to cloud and drizzle droplets or due to large raindrops exciting a Mie scattering signature. In both cases, the multiple peak structure provides a signature to estimate vertical air motion. For spectra containing cloud droplets, the symmetric peak is a tracer used to estimate the air motion. For spectra with asymmetric shapes and large downward Doppler velocities, the Mie scattering notch is used to estimate the air motion. Examples of the retrieval procedure will be provided at the conference.

  5. High-Resolution Simulation of Hurricane Bonnie (1998). Part 1; The Organization of Vertical Motion

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhaoxia

    2003-01-01

    Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.

  6. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  7. Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hart, Daniel C.

    1993-01-01

    The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  8. Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector

    NASA Technical Reports Server (NTRS)

    Keyser, Daniel; Schmidt, Brian D.; Duffy, Dean G.

    1992-01-01

    In a recent paper on the kinematics of frontogenesis, Keyser et al. (1988) conjectured that partitioning the Q vector into along- and cross-isentrope components yields vertical-motion patterns that are respectively cellular and banded: the former on the scale of the baroclinic disturbance, and the latter on the scale of the embedded frontal zones. This conjecture is examined diagnostically through solution of the quasi-geostrophic omega equation, using the output from a nearly adiabatic and frictionless f-plane primitive equation channel model of the evolution of a baroclinic disturbance to finite amplitude. The results of the present study support the proposed conjecture, suggesting the following interpretation of the characteristic comma structure of the vertical-motion field in midlatitude baroclinic disturbances: the dipole is associated with the along-isentrope component of the Q vector, reflecting the wavelike pattern in the potential temperature field within the baroclinic disturbance; the asymmetries are associated with the cross-isentrope component of the Q vector, reflecting the presence of frontal zones within the baroclinic disturbance.

  9. A comparison of adiabatic and kinematic vertical motions using mesoscale data

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Lee, W. S.

    1982-01-01

    Results are compared from the adiabatic and kinematic methods of determining vertical motion during a period of severe convective storms when special meso alpha-scale rawinsonde data were available. The two procedures were tested using data from the first regional-scale day of AVE-SESAME '79 which coincided with the Red River Valley tornado outbreak of April 10-11, 1979. At 700 mb, each technique showed good agreement with the weather patterns, but the kinematic procedure gave superior results at 500 mb. The overall goodness of the adiabatic method during this particular case was not solely due to the high-resolution SESAME data since synoptic-scale mechanisms played a major role in creating a storm-conducive environment. With the advent of computer aided analysis systems such as AFOS, forecasters will have quicker access to a greater variety of information. Present results suggest that the adiabatic method can yield useful information for severe storm forecasters, especially in the lower troposphere. An interesting follow-on study would use sounding data from geostationary VAS satellites to compute adiabatic vertical motions at finer time and space resolutions than is now possible using RAOB data alone. Geostrophic winds derived from satellite thermal data probably can be used.

  10. A comparison of adiabatic and kinematic vertical motions using mesoscale data

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Lee, W. S.

    1982-01-01

    Results are compared from the adiabatic and kinematic methods of determining vertical motion during a period of severe convective storms when special meso alpha-scale rawinsonde data were available. The two procedures were tested using data from the first regional-scale day of AVE-SESAME '79 which coincided with the Red River Valley tornado outbreak of April 10-11, 1979. At 700 mb, each technique showed good agreement with the weather patterns, but the kinematic procedure gave superior results at 500 mb. The overall goodness of the adiabatic method during this particular case was not solely due to the high-resolution SESAME data since synoptic-scale mechanisms played a major role in creating a storm-conducive environment. With the advent of computer aided analysis systems such as AFOS, forecasters will have quicker access to a greater variety of information. Present results suggest that the adiabatic method can yield useful information for severe storm forecasters, especially in the lower troposphere. An interesting follow-on study would use sounding data from geostationary VAS satellites to compute adiabatic vertical motions at finer time and space resolutions than is now possible using RAOB data alone. Geostrophic winds derived from satellite thermal data probably can be used.

  11. An eliminating method of motion-induced vertical parallax for time-division 3D display technology

    NASA Astrophysics Data System (ADS)

    Lin, Liyuan; Hou, Chunping

    2015-10-01

    A time difference between the left image and right image of the time-division 3D display makes a person perceive alternating vertical parallax when an object is moving vertically on a fixed depth plane, which causes the left image and right image perceived do not match and makes people more prone to visual fatigue. This mismatch cannot eliminate simply rely on the precise synchronous control of the left image and right image. Based on the principle of time-division 3D display technology and human visual system characteristics, this paper establishes a model of the true vertical motion velocity in reality and vertical motion velocity on the screen, and calculates the amount of the vertical parallax caused by vertical motion, and then puts forward a motion compensation method to eliminate the vertical parallax. Finally, subjective experiments are carried out to analyze how the time difference affects the stereo visual comfort by comparing the comfort values of the stereo image sequences before and after compensating using the eliminating method. The theoretical analysis and experimental results show that the proposed method is reasonable and efficient.

  12. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. ITRF2014 GNSS vertical velocities, geocenter motions and ellipticity time variations.

    NASA Astrophysics Data System (ADS)

    Metivier, L.; Rouby, H.; Rebischung, P.; Altamimi, Z.

    2016-12-01

    We investigate the GNSS station vertical velocities provided by the new solution of the International Terrestrial Reference Frame, entitled ITRF2014. Constructed from a global network of approximately 1500 stations of the different space geodetic techniques, this new solution provides two times more GNSS station velocities than the ITRF2008. We show here that ITRF2014 solution presents a peculiarity compared to all precedent solutions: very large vertical velocities can be seen across Greenland, South East Alaska and the Antarctic Peninsula, which are a priori caused by recent ice sheet melting. This signal, which is larger than the Glacial Isostatic Adjustment signal, tends in addition to accelerate. As a consequence, we had to introduce multiple velocity discontinuities in ITRF2014 GNSS time series to account for the specific behavior of stations close to ice sheets. Then, we investigate the global Earth figure variations as seen by the ITRF2014 GNSS vertical velocities. We particularly focus on the geocenter motion, the ellipticity of the solid Earth, and the J2-dot time rate.

  14. Mobile very long baseline interferometry and Global Positioning System measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, Peter M.; Davidson, John M.; Gardner, Elaine C.

    1986-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  15. Mobile very long baseline interferometry and Global Positioning System measurement of vertical crustal motion

    NASA Technical Reports Server (NTRS)

    Kroger, Peter M.; Davidson, John M.; Gardner, Elaine C.

    1986-01-01

    Mobile Very Long Base Interferometry (VLBI) and Global Positioning System (GPS) geodetic measurements have many error sources in common. Calibration of the effects of water vapor on signal transmission through the atmosphere, however, remains the primary limitation to the accuracy of vertical crustal motion measurements made by either technique. The two primary methods of water vapor calibration currently in use for mobile VLBI baseline measurements were evaluated: radiometric measurements of the sky brightness near the 22 GHz emission line of free water molecules and surface meteorological measurements used as input to an atmospheric model. Based upon a limited set of 9 baselines, it is shown that calibrating VLBI data with water vapor radiometer measurements provides a significantly better fit to the theoretical decay model than calibrating the same data with surface meteorological measurements. The effect of estimating a systematic error in the surface meteorological calibration is shown to improve the consistency of the vertical baseline components obtained by the two calibration methods. A detailed error model for the vertical baseline components obtained indicates current mobile VLBI technology should allow accuracies of order 3 cm with WVR calibration and 10 cm when surface meteorological calibration is used.

  16. An investigation of the vertical wavenumber and frequency spectra of gravity wave motions in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Chou, Hua-Guo

    1987-01-01

    The vertical and oblique velocities of atmospheric motions in the lower stratosphere were analyzed using data obtained on February 1-5, 1986, from the Poker Flat, Alaska, MST radar; two beams of orthogonal polarization were directed vertically, and four oblique beams at 7 deg off-vertical were directed at azimuths of 64, 154, 244, and 334 deg from north. Results indicate that the majority of the energy at gravity wave periods is associated with inertia-gravity wave motions having an upward direction of propagation and dominant vertical wavelengths near 2 km. The results of vertical wavenumber spectra support the saturation hypothesis of Dewan and Good (1986) and Smith et al. (1987), suggesting that saturation processes act to control spectral amplitudes at large wavenumbers.

  17. Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping.

    PubMed

    Moran, Kieran A; Wallace, Eric S

    2007-12-01

    The aim of the study was to determine the effects of variations in eccentric loading and knee joint range of motion on performance enhancement associated with the stretch-shortening cycle in vertical jumping. Seventeen male elite volleyball players performed three variations of the vertical jump which served as the research model: the squat jump (SJ), countermovement jump (CMJ) and drop jump from a height of 30 cm (DJ30). Knee joint angle (70 degrees and 90 degrees of flexion) at the commencement of the propulsive phase for each jump type was experimentally controlled, with the trunk kept as erect as possible. Force and motion data were recorded for each performance and used to compute a range of kinematic and kinetic variables, including hip, knee and ankle angles, angular velocities, work done, net joint moments and a number of temporal variables. The average of 12 trials for each participant was used in a series of repeated measures ANOVA's (jump xk nee, alpha=.05). From both knee joint angles, an increase in eccentric loading resulted in a significant increase in jump height (DJ30>CMJ>SJ; p<.05). These enhancements were significantly greater (p<.05) for 70 degrees in comparison to 90 degrees of knee flexion. From 70 degrees of knee flexion, these enhancements were due to significant increases in work done at all three joints; while from 90 degrees of knee flexion, only the hip and ankle joints appeared to contribute (p<.05). The amount of enhancement associated with employing the SSC in jumping is dependent upon the interaction of the magnitude of eccentric loading and the range of motion used.

  18. Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.

    2006-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the

  19. The relationship between large-scale vertical motion, highly reflective cloud, and sea surface temperature in the tropical Pacific region

    NASA Technical Reports Server (NTRS)

    Zimmermann, Peter H.; Newell, Reginald E.; Selkirk, Henry B.

    1988-01-01

    Vertical motion fields at 850 mbar over the tropical Pacific region are calculated from the 1963-1973 mean wind fields for 4 months of the year and for October 1972, the peak month in the 1972-1973 El Nino event. These vertical motion fields are derived using the projective separation technique, which has the unique property of separating vertical motion into components due to meridional wind convergence and zonal wind convergence. This separation permits investigation of the response of the Hadley and Walker circulations to annual and interannual variation of the sea surface temperature in the tropical Pacific. The large-scale features of the computed vertical motion fields are in agreement with those of highly reflective clouds, which indicate the locations of deep convection. Examination of the annual cycle of the vertical motion and its components shows no strong variation of the Walker circulation with the east-west gradient of sea surface temperature. On the other hand, a strong correlation is found between meridional overturning in the eastern Pacific and the local equatorial sea surface temperature: during El Nino events, the eastern and central Pacific contribution to the Hadley circulation tends to increase.

  20. A numerical study of primary production related to vertical turbulent diffusion with special reference to vertical motions of the phytoplankton cells in nutrient and light fields

    NASA Astrophysics Data System (ADS)

    Zakardjian, Bruno; Prieur, Louis

    1994-08-01

    Assuming stationary physical processes, in particular the light field and turbulent activity [ K( z)], we described steady-state and convergent solutions obtained from a simple time-dependent vertical model of phytoplankton dynamics. Simulations included vertical turbulent motions experienced by the cells in the light and nutrient fields. Parallel simulations made with a classical formulation of phytoplankton growth, i.e., neglecting vertical turbulent motions, are discussed. From two typical situations of stratification in the Western Mediterranean, we identified two distinct systems of new production, as the consequence of Low (LTR) and High Turbulent Regime (HTR) in the photic zone respectively. Data from the Prolig-II (1985) and Almofront-I (1991) cruises supported the LTR system of new production. The results of the second part of the Mediprod-I (1969) cruise show several patterns that specifically appeared in the HTR simulation. Regenerated production was not influenced by the turbulent activity situation. In natural conditions, regenerated production depends on the specific phytoplankton-grazers system that develops according to the level of new production; such ecological dynamics were not considered in our model. Differences with the reference model changed the relationships between the vertical distributions of biomass and new production. Particularly, the HTR simulation led to distinct vertical distribution of biomass and new production. Such a pattern did not occur with the reference model. Although the vertical turbulent motions affected both the level and vertical distribution of new production, a significant effect on the depth-integrated production finally depends on how the phytoplankton biomass interacts with its environmental conditions. It is shown that the minimum of K( z) in the euphotic zone determined the system of new production, whereas its values below the euphotic zone scaled the production and biomass levels. The two distinct systems of

  1. Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Ni, Ming-Jiu

    2014-10-01

    Motion of single Ar bubbles rising in GaInSn under vertical magnetic fields is studied numerically using a volume-of-fluid method and adaptive mesh refinement technique for two-phase interface treatment; a consistent and conservative scheme calculates induced current density and Lorentz force. Numerical results are compared with published experimental data [C. Zhang, S. Eckert, and G. Gerbeth, "Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field," Int. J. Multiphase Flow 31, 824-842 (2005)], where bubble diameters range from 2.5 to 6.4 mm, producing Reynolds numbers that vary between 2000 and 4000. Maximum experimental magnetic field strength was set to 0.3 T because of experimental restrictions, although we increased it to 0.5 T for firm conclusions. Apart from terminal rising velocity comparisons, we focused on variations in bubble motion paths and wake structures under magnetic fields, which cannot be observed experimentally because liquid metal is opaque. Magnetic field effects on bubble trajectory are exerted through vortex structure modification, which reinforced the conjecture that path instability is mainly attributed to wake instability. In bubble motion without magnetic fields, vortex threads in the bubble wake wrap around each other while vortex filaments incline parallel to the field with increasing magnetic intensity. Additionally, high magnetic fields will induce secondary bubble path instabilities, which contribute to the high Reynolds number flow that instabilities develop around the bubble, producing an asymmetrical Lorentz force distribution. This instability vanishes under higher magnetic intensities because flow instability is suppressed. Rising bubble aspect ratios decrease considerably under magnetic fields and may also contribute to smaller vorticities at the bubble surface. A close relationship between fluctuations in rising velocity and shape variations is found.

  2. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-10-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically

  3. Retrievals of Vertical Air Motion from the HIAPER Cloud Radar during CSET

    NASA Astrophysics Data System (ADS)

    Schwartz, M. C.; Ghate, V. P.; Vivekanandan, J.; Tsai, P.; Ellis, S. M.

    2015-12-01

    the ocean surface echoes, together with aircraft motion data, will be used to ameliorate the radar beam broadening due to aircraft motion. After accounting for the aircraft motion we will explore techniques to retrieve the vertical air motion and cloud microphysical variables from the radar Doppler spectrum.

  4. Modeling of steady motion and vertical-plane dynamics of a tunnel hull

    NASA Astrophysics Data System (ADS)

    Chaney, Christopher S.; Matveev, Konstantin I.

    2014-06-01

    High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

  5. Asymmetric Eyewall Vertical Motion in a High-Resolution Simulation of Hurricane Bonnie (1998)

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Pu, Zhao-Xia

    2004-01-01

    Reasor et al. (2004) examined the tilting of a vortex by shear and found that a damping mechanism intrinsic to the dry adiabatic dynamics suppresses departures from an upright state. This realignment occurs through projection of the tilt asymmetry onto two types of vortex Rossby waves: sheared vortex Rossby waves, in which the radial shear of the swirling flow axisymmetrizes tilt asymmetries, and a quasi-mode, or discrete, vortex Rossby wave that, in the absence of damping, causes precession of the upper vortex until it realigns with the lower one (thereafter undergoing repeated cycles of tilting and realignment). With damping, the vortex achieves a downshear-left equilibrium tilt. This paper examines the role of a damped quasi-mode in producing asymmetric vertical motions in a high-resolution simulation of Hurricane Bonnie (1998).

  6. Coastal sea level projections with improved accounting for vertical land motion.

    PubMed

    Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy

    2015-11-03

    Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions.

  7. A time lag study of the vertical motion simulator computer system

    NASA Technical Reports Server (NTRS)

    Cleveland, W. B.

    1981-01-01

    A study was performed to evaluate an experimental method to determine time lags in real-time computer systems as the one associated with the Vertical Motion Simulator at Ames Research Center. The approach was to use an ordinary frequency analyzer to measure the phase difference between inputs and outputs of the computer system. The various elements of the program and computational architecture were modeled. Various factors, such as computer frame time and input frequency, were varied so that they were representative of the operational use of the simulator facilities. Experimentally determined results were compared with predictions derived from the simulation models. The results indicate that the frequency analyzer can be readily used to evaluate time lags in systems of this type. Differences between predicted and measured phase values indicate that the hardware and software imparts a time lag of about 5 msec to this facility.

  8. CFD simulation of vertical linear motion mixing in anaerobic digester tanks.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2014-09-01

    Computational fluid dynamics (CFD) was used to simulate the mixing characteristics of a small circular anaerobic digester tank (diameter 6 m) equipped sequentially with 13 different plunger type vertical linear motion mixers and two different type internal draft-tube mixers. Rates of mixing of step injection of tracers were calculated from which active volume (AV) and hydraulic retention time (HRT) could be calculated. Washout characteristics were compared to analytic formulae to estimate any presence of partial mixing, dead volume, short-circuiting, or piston flow. Active volumes were also estimated based on tank regions that exceeded minimum velocity criteria. The mixers were ranked based on an ad hoc criteria related to the ratio of AV to unit power (UP) or AV/UP. The best plunger mixers were found to behave about the same as the conventional draft-tube mixers of similar UP.

  9. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  10. Coastal sea level projections with improved accounting for vertical land motion

    PubMed Central

    Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy

    2015-01-01

    Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions. PMID:26526287

  11. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    SciTech Connect

    Cesaratto, J.M.; Fox, J.D.; Pivi, M.T.; Rivetta, C.H.; Turgut, O.; Uemura, S.; Hofle, W.; Wehrle, U.; /CERN

    2012-06-01

    Electron cloud (ecloud) and transverse mode coupled-bunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system. The final goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become significant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a significant step in the development of the feedback control techniques.

  12. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  13. Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.

    1994-01-01

    Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.

  14. Evaluation of Vertical Motion Contributions Towards Tropical Cyclone Rapid Intensification Under Varying Wind Shear

    NASA Astrophysics Data System (ADS)

    Harnos, D. S.; Nesbitt, S. W.

    2013-12-01

    Tropical cyclone (TC) intensity prediction remains one of the primary challenges facing the meteorological community despite its dependence upon the secondary circulation being well established. Recent attention has focused upon the region residing within the radius of maximum wind due to its increased inertial stability, where heating is more efficient to develop the TC warm core. Here a method to objectively identify the 3-D evolution of the radius of maximum wind to act as an analysis region is utilized with Weather Research and Forecasting model simulations of rapid intensification episodes for two Atlantic basin tropical cyclones under low (Hurricane Ike 2008) and high (Hurricane Earl 2010) wind shear. The TC simulations are utilized to compare and contrast vertical motion and diabatic heating field evolutions relative to timing of rapid intensification. Further, a method to quantify three-dimensional individual updraft contributions relative to the maximum height by each updraft feature is used as a proxy for precipitation regimes (e.g. shallow cumulus, cumulus congestus, deep convection, and convective bursts). Quantified for each precipitation regime are vertical fluxes of mass, water vapor, cloud particles, and hydrometeors as they are intrinsically linked to diabatic heating and resultant magnitude of the ascending branch of the TC secondary circulation. The perspective yielded by each of these simulations enhances our understanding of TC intensification while also helping guide potential observing platform strategies and real-time forecasting applications.

  15. Oblique wave motion over multiple submerged porous bars near a vertical wall

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Liu, Yong; Li, Huajun; Chang, Anteng

    2017-08-01

    This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, C R and C T , respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower C R and C T . The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting C R and C T . The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.

  16. INVITED PAPER: Surfactant effect on the bubble motions and bubbly flow structures in a vertical channel

    NASA Astrophysics Data System (ADS)

    Takagi, Shu; Ogasawara, Toshiyuki; Fukuta, Masato; Matsumoto, Yoichiro

    2009-12-01

    It is well known that a small amount of surfactant can drastically change the motion of a single bubble and this causes a dramatic change of the whole bubbly flow structure. In our previous studies using upward vertical channel flows, it was shown that surfactant influences the shear-induced lift and the lateral migration of a bubble, which causes bubble accumulation and clustering near the wall. In this paper, the dependence of surfactant concentration on the motions of a 1 mm bubble rising through the laminar shear flow is investigated using 1-, 3-Pentanol and Triton X-100. The results are compared with the numerical ones, which show quantitative agreement on the lift and drag forces. Furthermore, we analyze the experimental data for the condition of bubble clustering in upward channel flows with the consideration of contaminant level in tap water. The results indicate that lower contaminant level and higher shear rate cause the significant bubble migration toward the wall, which leads to the formation of bubble clusters.

  17. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges

    NASA Astrophysics Data System (ADS)

    Jin, Zhibin; Pei, Shiling; Li, Xiaozhen; Liu, Hongyan; Qiang, Shizhong

    2016-11-01

    The running safety of railway vehicles on bridges can be negatively affected by earthquake events. This phenomenon has traditionally been investigated with only the lateral ground excitation component considered. This paper presented results from a numerical investigation on the contribution of vertical ground motion component to the derailment of vehicles on simply-supported bridges. A full nonlinear wheel-rail contact model was used in the investigation together with the Hertzian contact theory and nonlinear creepage theory, which allows the wheel to jump vertically and separate from the rail. The wheel-rail relative displacement was used as the criterion for derailment events. A total of 18 ground motion records were used in the analysis to account for the uncertainty of ground motions. The results showed that inclusion of vertical ground motion will likely increase the chance of derailment. It is recommended to include vertical ground motion component in earthquake induced derailment analysis to ensure conservative estimations. The derailment event on bridges was found to be more closely related to the deck acceleration rather than the ground acceleration.

  18. The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel

    2017-04-01

    The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies

  19. Measurements of vertical motions by the Saskatoon MF radar (1983-1985): Relationships with horizontal winds and gravity waves

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.

    1989-01-01

    The continuing series of horizontal wind measurements by the spaced-antenna real time winds (RTW) method was supplemented by a phase coherent system for two years. Vertical motions are inferred from the complex autocorrelation functions, and an RTW system provides 5 min samples from 60 to 110 km. Comparisons with full interferometric 3-D velocity measurements confirm the validity of this approach. Following comparisons and corrections with the horizontal winds, mean summer and winter (24 h) days of vertical motions are shown. Tidal fluctuations are evident. In summer the motions are downward, consistent with data from Poker Flat, and the suggestion of Coy et al. (1986) that these represent Eulerian motions. The expected upward Lagrangian motion then results from adding up upward Stokes' drift. The winter motions are more complex, and are discussed in the context of gravity wave fluxes and possible meridional cells. The divergence of the vertical flux of zonal momentum is also calculated and found to be similar to the coriolis torque due to the meridional winds.

  20. Present-day horizontal and vertical crustal motion of New Zealand

    NASA Astrophysics Data System (ADS)

    Beavan, R. J.; Wallace, L.; Denys, P. H.; Litchfield, N. J.; Palmer, N.

    2012-12-01

    We present horizontal velocities in a well-defined reference frame from ~800 campaign GPS and ~120 continuous GPS stations in New Zealand, and relative vertical velocities from ~120 continuous GPS stations, by linear fits to daily GPS coordinate solutions. We use data spanning 1996 through 2012, though velocities in much of the South Island omit data from mid-2009 onwards to avoid major coseismic and postseismic effects. The period 1996-2012 (1996-2009 in the South Island) was free of major earthquakes, with the exception of two earthquakes south and west of the South Island whose coseismic and postseismic effects can be corrected. The resulting velocities can therefore be taken as average interseismic velocities, though admittedly only estimated over a 13-16 year time period. In the southern and eastern North Island and northeasternernmost South Island, many time series are non-linear due to slow slip events (SSEs) occurring on the Hikurangi subduction interface. Some of the velocities derived from these time series will be biased because they don't sample multiple repeats of the SSEs. We compare present-day vertical rates around the coastline with geological estimates of long-term (mainly 125,000 year) rates. There is general consistency except in the region affected by strong coupling on the subduction interface, where the present-day rates are as much as an order of magnitude faster and of opposite sign to the long-term rates. When we compare the observed vertical rates with rates predicted by a subduction-coupling model based largely on campaign GPS horizontal velocities we find general agreement, except for a possible uniform bias of ~1 mm/yr. The present-day vertical rates are fast enough (up to ~4 mm/yr subsidence) that we expect them to contribute significantly to the effects of future relative sea-level rise in the eastern and southern North Island, at least until such time as the interseismic strain is relieved by a major earthquake on the subduction

  1. XC-142 Tilt Wing; 0.6 Scale Model in the 40x80 Foot Wind Tunnel at NASA Ames Research Center.

    NASA Image and Video Library

    1964-01-22

    3/4 front right side only with Tim Wills on right and Charles Greco, mechanic. Large flaps on Variable height struts. XC-142 was a tri-service tiltwing experimental aircraft designed to investigate the operational suitability of vertical/short takeoff and landing (V/STOL) transports.

  2. The influence of range of motion versus application of force on vertical jump performance in prepubescent girls and adult females.

    PubMed

    Floría, Pablo; Harrison, Andrew J

    2014-01-01

    This study examined whether during childhood, the parameters for the range of motion had more influence on vertical jump height than parameters for application of force. Counter-movement jumps performed by 36 girls aged between 5 and 8 years and 20 adult females were examined using force platform analysis. Multiple regression analysis of the data indicated that the parameters for the range of motion had more influence on jump height than the parameters for application of force. This was demonstrated by standardised coefficients for range of motion which were higher than the standardised coefficients for application of force. Although this trend was observed in both groups, the influence of the range of motion was relatively greater in prepubescent girls than in adult females. The present results suggest that prepubescent girls increased their jump height by increasing the range of motion over which force is applied.

  3. Determination of horizontal and vertical design spectra based on ground motion records at Lali tunnel, Iran

    NASA Astrophysics Data System (ADS)

    Moradpouri, F.; Mojarab, M.

    2012-08-01

    Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spectra, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio ( R SN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the R SN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions.

  4. Uncertainty of the 20th century sea-level rise due to vertical land motion errors

    NASA Astrophysics Data System (ADS)

    Santamaría-Gómez, Alvaro; Gravelle, Médéric; Dangendorf, Sönke; Marcos, Marta; Spada, Giorgio; Wöppelmann, Guy

    2017-09-01

    Assessing the vertical land motion (VLM) at tide gauges (TG) is crucial to understanding global and regional mean sea-level changes (SLC) over the last century. However, estimating VLM with accuracy better than a few tenths of a millimeter per year is not a trivial undertaking and many factors, including the reference frame uncertainty, must be considered. Using a novel reconstruction approach and updated geodetic VLM corrections, we found the terrestrial reference frame and the estimated VLM uncertainty may contribute to the global SLC rate error by ± 0.2 mmyr-1. In addition, a spurious global SLC acceleration may be introduced up to ± 4.8 ×10-3 mmyr-2. Regional SLC rate and acceleration errors may be inflated by a factor 3 compared to the global. The difference of VLM from two independent Glacio-Isostatic Adjustment models introduces global SLC rate and acceleration biases at the level of ± 0.1 mmyr-1 and 2.8 ×10-3 mmyr-2, increasing up to 0.5 mm yr-1 and 9 ×10-3 mmyr-2 for the regional SLC. Errors in VLM corrections need to be budgeted when considering past and future SLC scenarios.

  5. Reduced equations of motion of the interface of dielectric liquids in vertical electric and gravitational fields

    NASA Astrophysics Data System (ADS)

    Kochurin, Evgeny A.; Zubarev, Nikolay M.

    2012-07-01

    The dynamics of the interface between two dielectric fluids in the presence of vertical electric and gravitational fields is studied theoretically. It is shown that, in the particular case where the rate of change of the electric field is proportional to the effective gravitational acceleration, a special flow regime can be realized for which the velocity and electric potentials are linearly dependent functions. This means that there exists a frame of reference in which liquids move along the electric field lines. We derive and analyze the corresponding reduced equations of motion of a liquid-liquid interface. For small density ratio, they turn into the equations describing the Laplacian growth. In the case of two spatial dimensions, we show that these equations determine the asymptotic behavior of the system. For arbitrary density ratios, the Laplacian growth equations adequately describe the initial (weakly nonlinear) stage of the interface instability development. The integrability of these equations makes it possible to investigate the evolution of nonlinear waves at the boundary and, in particular, to demonstrate the tendency to the formation of singularities (cusps).

  6. Design Opportunities and Challenges in the Development of Vertical Lift Planetary Aerial Vehicles

    DTIC Science & Technology

    2000-01-01

    1978. 21. Totah, J.J. and Kinney, D.J. ÒSimulating Conceptual and Developmental AircraftÓ AIAA-98- 4161. 22. Dejarnette , F.R. and Mckay, C.P...1 Design Opportunities and Challenges in the Development of Vertical Lift Planetary Aerial Vehicles Larry A. Young Robert T.N. Chen Edwin W. Aiken...Army/NASA Rotorcraft Division Geoffrey A. Briggs Center for Mars Exploration NASA Ames Research Center Moffett Field, CA Abstract The next few years

  7. Vertical motions in Northern Victoria Land inferred from GPS: A comparison with a glacial isostatic adjustment model

    USGS Publications Warehouse

    Mancini, F.; Negusini, M.; Zanutta, A.; Capra, A.

    2007-01-01

    Following the densification of GPS permanent and episodic trackers in Antarctica, geodetic observations are playing an increasing role in geodynamics research and the study of the glacial isostatic adjustment (GIA). The improvement in geodetic measurements accuracy suggests their use in constraining GIA models. It is essential to have a deeper knowledge on the sensitivity of GPS data to motionsrelated to long-term ice mass changes and the present-day mass imbalance of the ice sheets. In order to investigate the geodynamic phenomena in Northern Victoria Land (NVL), GPS geodetic observations were made during the last decade within the VLNDEF (Victoria Land Network for Deformation control) project. The processed data provided a picture of the motions occurring in NVL with a high level of accuracy and depicts, for the whole period, a well defined pattern of vertical motion. The comparison between GPS-derived vertical displacementsand GIA is addressed, showing a good degree of agreement and highlighting the future use of geodetic GPS measurements as constraints in GIA models. In spite of this agreement, the sensitivity of GPS vertical rates to non-GIA vertical motions has to be carefully evaluated.

  8. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  9. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  10. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    PubMed

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  11. ULR Re-analysed Global GPS Solution for Vertical Land Motion Correction at Tide Gauges

    NASA Astrophysics Data System (ADS)

    Letetrel, C.; W¨{O}Ppelmann, G.; Bouin, M.; Altamimi, Z.; Martine, F.; Santamaria, A.

    2007-12-01

    The presentation will review the recent results published by W¨{o}ppelmann et al. (2007) in Global and Planetary Change. Geocentric sea-level trend estimates were derived from the global GPS analyses conducted at ULR consortium to correct a set of relevant tide gauges from the vertical motion of the land upon which they are settled. The exercise proved worthwhile. The results showed a reduced dispersion of the estimated sea level trends, either regionally or globally, after application of the GPS corrections compared to the corrections derived from the glacio-isostatic adjustment models of Peltier (2004). Here we will focus on two important issues that were not addressed in W¨{o}ppelmann et al. (2007). The first issue concerns the noise content of our GPS solutions. Previous works have shown that GPS coordinate time series are subject to significant time-correlated (coloured) noise, with a large predominance of flicker noise (Zhang et al. 1997, Mao et al. 1999, Williams et al. 2004). The presence of coloured noise in a time series has a significant effect on the rate uncertainty, which may otherwise be underestimated by as much as an order of magnitude. We therefore carefully investigate the now 10-year long data set of reanalysed GPS solutions for noise content using the Allan variance technique (Feissel et al. 2007). Preliminary results show that the reanalysed solutions at ULR exhibit far less flicker noise than any other solution published so far in the literature available to us. The percentage of stations with flicker noise drops to only about 20%. These encouraging results advocate for a comprehensive reanalysis strategy with full coherent models over the entire observation data span. Moreover, the noise level reaches the best levels of other geodetic results recently published, namely the VLBI level in the horizontal component and the SLR level in the vertical component (Feissel et al. 2007). The second issue that we would like to address in the

  12. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.

  13. Note: Dynamic analysis of a robotic fish motion with a caudal fin with vertical phase differences.

    PubMed

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghwi

    2013-03-01

    In this paper, a robotic fish with a caudal fin with vertical phase differences is studied, especially focusing on the energy consumption. Energies for thrusting a conventional robotic fish and one with caudal fin with vertical phase differences are obtained and compared each other. It is shown that a robotic fish with a caudal fin with vertical phase differences can save more energy, which implies the efficient thrusting via a vertically waving caudal fin.

  14. Vertical plate motions from ancient buried landscapes: Constraints on Icelandic plume evolution

    NASA Astrophysics Data System (ADS)

    Stucky de Quay, G.

    2016-12-01

    Convection in the Earth's mantle is strongly time-dependent (Ra 106-108). In regions that are dynamically supported, uplift and subsidence histories might therefore contain information about evolution of mantle convection. We examine uplift and subsidence histories of sedimentary basins fringing NW Europe, close to the Icelandic plume, where it has been shown short-term vertical motions disrupt post-rift thermal subsidence. These sedimentary basins contain ancient (59-53 Ma) buried fluvial landscapes which developed during inception of the Icelandic plume. Stratigraphic and seismic reflection data indicate that these terrestrial landscapes were incised by 100s of meters in only a few million years and were then rapidly submerged. We extracted a landscape buried beneath 1.5 km of sedimentary rock in the Bressay region, offshore eastern Scotland. This landscape was mapped using a three-dimensional 9000 km2 seismic dataset and seven exploration wells. First, the buried landscape was mapped using every inline and cross line (horizontal resolution 12 m). Second, the landscape was depth converted and decompacted using check-shot data. Third, drainage patterns were reconstructed by calculating flow directions across the mapped landscape. River profiles were extracted from these drainage patterns and contain three knickzones analogous to those documented in an older buried landscape in the Faereo-Shetland Basin, 400 km to the west. Fourth, we reinterpreted dinocyst records to determine the age of our landscape, allowing us to constrain erosion rates. Finally, our drainage inventory was inverted for uplift rate as a function of space and time. Results indicate three uplift events occurred between 55-57 Ma, resulting in a total cumulative uplift of 400 m. We combine these results with estimates of uplift in nearby regions to constrain the behavior of the incipient Icelandic plume both in a temporal and spatial context.

  15. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies

    DOE PAGES

    Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.

    2015-09-15

    When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, whichmore » have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.« less

  16. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies

    SciTech Connect

    Piecuch, Piotr; Hansen, Jared A.; Ajala, Adeayo O.

    2015-09-15

    When vertical energies are excited for a comprehensive test set of about 150 singlet excited states of 28 medium-sized organic molecules computed using two variants of the completely renormalised (CR) equation-of-motion (EOM) coupled-cluster (CC) method with singles, doubles, and non-iterative triples, abbreviated as δ-CR-EOMCCSD(T), and the analogous two variants of the newer, left-eigenstate δ-CR-EOMCC(2,3) approach are benchmarked against the previously published CASPT2, CC3, and EOMCCSDT-3 results, as well as the suggested theoretical best estimate (TBE) values. The δ-CR-EOMCC approaches are also used to identify and characterise about 50 additional excited states, including several states having substantial two-electron excitation components, which have not been found in the previous work and which can be used in future benchmark studies. We demonstrated that the non-iterative triples corrections to the EOMCCSD excitation energies defining the relatively inexpensive, single-reference, black-box δ-CR-EOMCC approaches provide significant improvements in the EOMCCSD data, while closely matching the results of the iterative and considerably more expensive CC3 and EOMCCSDT-3 calculations and their CASPT2 and TBE counterparts. It is also shown that the δ-CR-EOMCC methods, especially δ-CR-EOMCC(2,3), are capable of bringing the results of the CC3 and EOMCCSDT-3 calculations to a closer agreement with the CASPT2 and TBE data, demonstrating the utility of the cost-effective δ-CR-EOMCC methods in applications involving molecular electronic spectra. Finally, we show that there may exist a relationship between the magnitude of the triples corrections defining δ-CR-EOMCC approaches and the reduced excitation level diagnostic resulting from EOMCCSD.

  17. Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates

    NASA Technical Reports Server (NTRS)

    Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.

    2016-01-01

    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.2460.08 mm yr21 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.

  18. Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates

    NASA Technical Reports Server (NTRS)

    Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.

    2016-01-01

    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.2460.08 mm yr21 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.

  19. Assessing the impact of vertical land motion on twentieth century global mean sea level estimates

    NASA Astrophysics Data System (ADS)

    Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.

    2016-07-01

    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.24 ± 0.08 mm yr-1 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.

  20. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  1. Flight effects on noise by the JT8D engine with inverted primary/fan flow as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1978-01-01

    A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.

  2. Wind tunnel tests of the 0.010-scale space shuttle integrated vehicle (model 52-QT) in the NASA/Ames 3.5-foot hypersonic wind tunnel (IA18)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Chee, E.; Stone, J.; Mellenthin, J. A.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel on an 0.010-scale model of the space shuttle integrated vehicle consisting of an orbiter and external tank. The basic hypersonic stability characteristics of the orbiter attached rigidly to the external tank and the basic hypersonic stability characteristics of external tank alone simulating RTLS abort conditions were evaluated. The integrated vehicle was tested at angles of attack from- 8 deg through +30 deg and angles of sideslip of- 8 deg through +8 deg at fixed angles of attack of -4 deg, 0 deg, and +4 deg. A maximum angle of attack range of +15 deg through +40 deg was obtained for this configuration, at Mach number 7.3, for one run only. External tank alone testing was conducted at angles of attack from +8 deg through -30 deg and angles of sideslip of -8 deg at fixed angles of attack of -4 deg, 0 deg and +4 deg. Six-component force data and static base pressures were recorded during the test.

  3. Results of tests to determine the aerodynamic characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations in the NASA-Ames 3.5 foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ketter, F. C., Jr.

    1974-01-01

    An aerodynamic wind tunnel investigation was conducted in the NASA-Ames Research Center (ARC) 3.5-foot hypersonic facility to provide data for use in obtaining experimental force and static stability characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations. The experimental data were compared with the aerodynamic characteristics estimated using Newtonian theory, thus establishing the usefulness of these predictions. The candidate AMOOS configurations selected for the wind tunnel tests were the AMOOS 5B and HB configurations. Two flap configurations were tested for each candidate - a forward or compression surface flap and an aft or expansion flap. Photographs and sketches of the two configurations with different control surfaces are shown. It was determined that Newtonian theory generally predicted the aerodynamics of the 5B configuration with acceptable accuracy for all expansion flap deflections and for compression flap deflections less than or equal to 10 degrees. Flow separation upstream of large compression flap deflections was detected from the experimental data.

  4. Large-scale Vertical Motions, Intensity Change and Precipitation Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.; Kwembe, T.; Zhang, Z.

    2016-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data for Convective Available Potential Energy for water vapor (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorm, tornadoes, storm surge and floods Numerical model (WRF/ARW) with data assimilations have been used for this research to investigate the model's performances on hurricane tracks and intensities associated with the hurricane Katrina, which began to strengthen until reaching Category 5 on 28 August 2005. The model was run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 hr periods, from August 28th to August 30th. The model output was compared with the observations and is capable of simulating the surface features, intensity change and track associated with hurricane Katrina.

  5. The onshore Cenozoic basin development of the UK and its relation to present-day vertical surface motions

    NASA Astrophysics Data System (ADS)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2017-04-01

    Historical long wavelength uplift and subsidence patterns in the UK have been assumed to reflect glacial isostatic adjustment. Shorter wavelength variations are generally neglected, and do not fit with glacial rebound models, hence they may give important clues to other processes driving vertical motions. Present day vertical surface motions are based on one generation of observed data and do not necessarily represent the long-term stress and tectonic configuration of the UK. Cenozoic strata can provide a record of long-term changes and potentially can indicate the drivers of present day short wavelength variations. Understanding the dominant controls on UK tectonics may have implications for petroleum systems, geotechnical assessments and anthropogenic impact factors. Here we apply stratigraphic backstripping techniques to determine Cenozoic vertical surface motions. To complete the dataset, we also backstripped the Pleistocene Crag formations of East Anglia which post-dated the substantial Miocene hiatus most likely caused by the main phase of Alpine orogenic development. These deposits, the youngest being 2.1 Ma pre-date the glacial maximum of the UK helping to bridge the gap between the early Cenozoic and recent events. Subsidence analysis of the sequence indicates larger subsidence rates and sediment accumulation in the Hampshire basin than in the rest of southeast England. Reactivation of Variscan faults during the deposition of Cenozoic sediments appears to have taken place concomitantly with tectonic shortening and suggests phases of compression affected the UK throughout the Paleogene and Neogene not dissimilar to the current stress state and earthquake record. From our data we may be able to understand the major tectonic controls influencing southern England during the Cenozoic and assess the nature of the transition to the vertical surface motion observed from CGPS (Continuous Global Positioning Stations) at the present day. The Cenozoic could be a good

  6. Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu)

    NASA Astrophysics Data System (ADS)

    Ballu, Valérie; Bouin, Marie-Noëlle; Siméoni, Patricia; Crawford, Wayne C.; Calmant, Stephane; Boré, Jean-Michel; Kanas, Tony; Pelletier, Bernard

    2011-08-01

    Since the late 1990s, rising sea levels around the Torres Islands (north Vanuatu, southwest Pacific) have caused strong local and international concern. In 2002-2004, a village was displaced due to increasing sea incursions, and in 2005 a United Nations Environment Programme press release referred to the displaced village as perhaps the world's first climate change "refugees." We show here that vertical motions of the Torres Islands themselves dominate the apparent sea-level rise observed on the islands. From 1997 to 2009, the absolute sea level rose by 150 + /-20 mm. But GPS data reveal that the islands subsided by 117 + /-30 mm over the same time period, almost doubling the apparent gradual sea-level rise. Moreover, large earthquakes that occurred just before and after this period caused several hundreds of mm of sudden vertical motion, generating larger apparent sea-level changes than those observed during the entire intervening period. Our results show that vertical ground motions must be accounted for when evaluating sea-level change hazards in active tectonic regions. These data are needed to help communities and governments understand environmental changes and make the best decisions for their future.

  7. Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu).

    PubMed

    Ballu, Valérie; Bouin, Marie-Noëlle; Siméoni, Patricia; Crawford, Wayne C; Calmant, Stephane; Boré, Jean-Michel; Kanas, Tony; Pelletier, Bernard

    2011-08-09

    Since the late 1990s, rising sea levels around the Torres Islands (north Vanuatu, southwest Pacific) have caused strong local and international concern. In 2002-2004, a village was displaced due to increasing sea incursions, and in 2005 a United Nations Environment Programme press release referred to the displaced village as perhaps the world's first climate change "refugees." We show here that vertical motions of the Torres Islands themselves dominate the apparent sea-level rise observed on the islands. From 1997 to 2009, the absolute sea level rose by 150 + /-20 mm. But GPS data reveal that the islands subsided by 117 + /-30 mm over the same time period, almost doubling the apparent gradual sea-level rise. Moreover, large earthquakes that occurred just before and after this period caused several hundreds of mm of sudden vertical motion, generating larger apparent sea-level changes than those observed during the entire intervening period. Our results show that vertical ground motions must be accounted for when evaluating sea-level change hazards in active tectonic regions. These data are needed to help communities and governments understand environmental changes and make the best decisions for their future.

  8. Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu)

    PubMed Central

    Ballu, Valérie; Bouin, Marie-Noëlle; Siméoni, Patricia; Crawford, Wayne C.; Calmant, Stephane; Boré, Jean-Michel; Kanas, Tony; Pelletier, Bernard

    2011-01-01

    Since the late 1990s, rising sea levels around the Torres Islands (north Vanuatu, southwest Pacific) have caused strong local and international concern. In 2002–2004, a village was displaced due to increasing sea incursions, and in 2005 a United Nations Environment Programme press release referred to the displaced village as perhaps the world’s first climate change “refugees.” We show here that vertical motions of the Torres Islands themselves dominate the apparent sea-level rise observed on the islands. From 1997 to 2009, the absolute sea level rose by 150 + /-20 mm. But GPS data reveal that the islands subsided by 117 + /-30 mm over the same time period, almost doubling the apparent gradual sea-level rise. Moreover, large earthquakes that occurred just before and after this period caused several hundreds of mm of sudden vertical motion, generating larger apparent sea-level changes than those observed during the entire intervening period. Our results show that vertical ground motions must be accounted for when evaluating sea-level change hazards in active tectonic regions. These data are needed to help communities and governments understand environmental changes and make the best decisions for their future. PMID:21795605

  9. Foot orthotic devices decrease transverse plane motion during landing from a forward vertical jump in healthy females.

    PubMed

    Jenkins, Walter L; Williams, Dorsey Shelton; Durland, Alex; Adams, Brandon; O'Brien, Kevin

    2009-11-01

    The use of foot orthoses has been evaluated during a variety of functional activities. Twelve college-aged active females wore two types of foot orthoses and performed a vertical jump to determine the biomechanical effect of the orthoses on lower extremity transverse plane movement during landing. Data collection included three-dimensional analysis of the tibia, knee, and hip. A repeated-measures ANOVA was performed to determine the differences between no orthoses, over-the-counter, and custom-made orthoses with transverse plane motion. At the hip joint, there was significantly less internal rotation (p < .05) in the over-the-counter condition as compared with the no orthoses condition. There was significantly less tibial internal rotation (p < .05) in the custom-made condition as compared with no orthoses. Over-the-counter devices decreased transverse plane motion at the hip, whereas custom-made devices decreased transverse plane motion of the tibia.

  10. Difference of Horizontal-to-Vertical (H/V) Spectral Ratios of Microtremors and Earthquake Motions: Theory and Observation

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.

    2013-05-01

    Horizontal-to-vertical spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of vertical displacement for a vertically applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a vertical incidence of S wave divided by the vertical motion on the surface for a vertical incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared observed HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these observed differences. At this

  11. Cenozoic vertical motions of the western continental margin of Peninsular India

    NASA Astrophysics Data System (ADS)

    Richards, Fred; Hoggard, Mark; White, Nicky

    2016-04-01

    wavelengths; considerably shorter than required for a purely flexural driving mechanism. Instead, the ˜1 km amplitude, ˜2000 km wavelength and long-timescale (˜25 Ma) growth of the western Indian margin topographic anomaly are diagnostic of dynamic topography. This implication is confirmed by the excellent spatial correlation between upper mantle shear wave anomalies and residual depth measurements. The western Indian margin is one of several elevated passive margins that abut regions of anomalously elevated ocean floor, suggesting that mantle-derived vertical motions may be the major control on modern-day margin topography.

  12. Self-Motion and Depth Estimation from Image Sequences

    NASA Technical Reports Server (NTRS)

    Perrone, John

    1999-01-01

    An image-based version of a computational model of human self-motion perception (developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center) has been generated and tested. The research included in the grant proposal sought to extend the utility of the self-motion model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. The model can now be tested with video input sequences (including computer generated imagery) which enables simulation of human self-motion estimation in a variety of applied settings.

  13. A Numerical Study of Hurricane Erin (2001). Part II; Shear and the Organization of Eyewall Vertical Motion

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Wu, Liguang

    2006-01-01

    A high-resolution numerical simulation of Hurricane Erin (2001) is used to examine the organization of vertical motion in the eyewall and how that organization responds to a large and rapid increase in the environmental vertical wind shear and subsequent decrease in shear. During the early intensification period, prior to the onset of significant shear, the upward motion in the eyewall was concentrated in small-scale convective updrafts that formed in association with regions of concentrated vorticity (herein termed mesovortices) with no preferred formation region in the eyewall. Asymmetric flow within the eye was weak. As the shear increased, an azimuthal wavenumber 1 asymmetry in storm structure developed with updrafts tending to form on the downshear to downshear-left side of the eyewall. Continued intensification of the shear led to increasing wavenumber 1 asymmetry, large vortex tilt, and a change in eyewall structure and vertical motion organization. During this time, the eyewall structure was dominated by a vortex couplet with a cyclonic (anticyclonic) vortex on the downtilt-left (downtilt-right) side of the eyewall and strong asymmetric flow across the eye that led to strong mixing of eyewall vorticity into the eye. Upward motion was concentrated over an azimuthally broader region on the downtilt side of the eyewall, upstream of the cyclonic vortex, where low-level environmental inflow converged with the asymmetric outflow from the eye. As the shear diminished, the vortex tilt and wavenumber 1 asymmetry decreased, while the organization of updrafts trended back toward that seen during the weak shear period.

  14. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  15. Results of a Pressure Loads Investigation on a 0.030-scale Model (47-OTS) of the Integrated Space Shuttle Vehicle Configuration 5 in the NASA Ames Research Center 11 by 11 Foot Leg of the Unitary Plan Wind Tunnel (IA81A), Volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    Results of wind tunnel tests on a 0.030-scale model of the integrated space shuttle vehicle configuration 5 are presented. Testing was conducted in the NASA Ames Research Center 11 x 11 foot leg of the Unitary Plan Wind Tunnel to investigate pressure distributions for airloads analyses at Mach numbers from 0.9 through 1.4. Angles of attack and sideslip were varied from -6 to +6 degrees.

  16. Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair

    ERIC Educational Resources Information Center

    Chudinov, Peter Sergey

    2010-01-01

    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…

  17. Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair

    ERIC Educational Resources Information Center

    Chudinov, Peter Sergey

    2010-01-01

    The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…

  18. Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid

    ERIC Educational Resources Information Center

    Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.

    2012-01-01

    This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…

  19. Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid

    ERIC Educational Resources Information Center

    Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.

    2012-01-01

    This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…

  20. Modeling Visual, Vestibular and Oculomotor Interactions in Self-Motion Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John

    1997-01-01

    A computational model of human self-motion perception has been developed in collaboration with Dr. Leland S. Stone at NASA Ames Research Center. The research included in the grant proposal sought to extend the utility of this model so that it could be used for explaining and predicting human performance in a greater variety of aerospace applications. This extension has been achieved along with physiological validation of the basic operation of the model.

  1. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Simons, M.; Riel, B.; Milillo, P.

    2017-01-01

    To better understand the influence of stress changes over floating ice shelves on grounded ice streams, we develop a Bayesian method for inferring time-dependent 3-D surface velocity fields from synthetic aperture radar (SAR) and optical remote sensing data. Our specific goal is to observe ocean tide-induced variability in vertical ice shelf position and horizontal ice stream flow. Thus, we consider the special case where observed surface displacement at a given location can be defined by a 3-D secular velocity vector, a family of 3-D sinusoidal functions, and a correction to the digital elevation model used to process the SAR data. Using nearly 9 months of SAR data collected from multiple satellite viewing geometries with the COSMO-SkyMed 4-satellite constellation, we infer the spatiotemporal response of Rutford Ice Stream, West Antarctica, to ocean tidal forcing. Consistent with expected tidal uplift, inferred vertical motion over the ice shelf is dominated by semidiurnal and diurnal tidal constituents. Horizontal ice flow variability, on the other hand, occurs primarily at the fortnightly spring-neap tidal period (Msf). We propose that periodic grounding of the ice shelf is the primary mechanism for translating vertical tidal motion into horizontal flow variability, causing ice flow to accelerate first and most strongly over the ice shelf. Flow variations then propagate through the grounded ice stream at a mean rate of ˜29 km/d and decay quasi-linearly with distance over ˜85 km upstream of the grounding zone.

  2. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distribution of Weather Data Transponders II. Vertical Transponder Motion Considerations

    SciTech Connect

    Grossman, A.; Errico, R.M.

    1999-11-29

    The vertical motion of constant density atmospheric balloons has been considered via an equation of motion for the vertical displacement of a balloon, due to vertical air motion, which can be numerically solved for balloon positions. Initial calculations are made for a constant density atmosphere. Various vertical wind models with relatively large amplitudes are applied to the model to determine how tightly the balloons are coupled to the reference level and the time scale for the balloons to change to the wind driven reference altitude. A surface launch of a balloon to a 6 km reference altitude is modeled using a detailed atmospheric pressure-density-temperature profile in the equation of motion. The results show the balloons to be relatively tightly coupled ({approx} 50-100 m) to the reference altitude.

  3. Photonic processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Ochoa, Ellen; Reid, Max

    1990-01-01

    The Photonic Processing group is engaged in applied research on optical processors in support of the Ames vision to lead the development of autonomous intelligent systems. Optical processors, in conjunction with numeric and symbolic processors, are needed to provide the powerful processing capability that is required for many future agency missions. The research program emphasizes application of analog optical processing, where free-space propagation between components allows natural implementations of algorithms requiring a large degree of parallel computation. Special consideration is given in the Ames program to the integration of optical processors into larger, heterogeneous computational systems. Demonstration of the effective integration of optical processors within a broader knowledge-based system is essential to evaluate their potential for dependable operation in an autonomous environment such as space. The Ames Photonics program is currently addressing several areas of interest. One of the efforts is to develop an optical correlator system with two programmable spatial light modulators (SLMs) to perform distortion invariant pattern recognition. Another area of research is optical neural networks, also for use in distortion-invariant pattern recognition.

  4. Visualization of fluid dynamics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Watson, V.; Walatka, P. P.; Bancroft, G.; Plessel, T.; Merritt, F.

    1990-01-01

    Some of the hardware and software tools and techniques in use at NASA's numerical aerodynamic simulation facility for the analysis of computational fluid dynamics are described. The visualization process can be illustrated by video tapes and stereo pictures. Although these visualization tools have dramatically improved the ability to conduct research in fluid dynamics, a comparison of the current environment for analysis with an 'ideal' environment illustrates that there are still major improvements that should be made. The most time-consuming task in future analyses of the increasingly complex computer simulations will be the extraction and clear display of the key features. In addition, the interface between the workstation and the scientist should be improved significantly. Current research on techniques for creating these improvements is described.

  5. NASA-Ames workload research program

    NASA Technical Reports Server (NTRS)

    Hart, Sandra

    1988-01-01

    Research has been underway for several years to develop valid and reliable measures and predictors of workload as a function of operator state, task requirements, and system resources. Although the initial focus of this research was on aeronautics, the underlying principles and methodologies are equally applicable to space, and provide a set of tools that NASA and its contractors can use to evaluate design alternatives from the perspective of the astronauts. Objectives and approach of the research program are described, as well as the resources used in conducting research and the conceptual framework around which the program evolved. Next, standardized tasks are described, in addition to predictive models and assessment techniques and their application to the space program. Finally, some of the operational applications of these tasks and measures are reviewed.

  6. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  7. The IBM PC at NASA Ames

    NASA Technical Reports Server (NTRS)

    Peredo, James P.

    1988-01-01

    Like many large companies, Ames relies very much on its computing power to get work done. And, like many other large companies, finding the IBM PC a reliable tool, Ames uses it for many of the same types of functions as other companies. Presentation and clarification needs demand much of graphics packages. Programming and text editing needs require simpler, more-powerful packages. The storage space needed by NASA's scientists and users for the monumental amounts of data that Ames needs to keep demand the best database packages that are large and easy to use. Availability to the Micom Switching Network combines the powers of the IBM PC with the capabilities of other computers and mainframes and allows users to communicate electronically. These four primary capabilities of the PC are vital to the needs of NASA's users and help to continue and support the vast amounts of work done by the NASA employees.

  8. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    This study aims to quantify the vertical motions driving the decadal coastline mobility and their uncertainty at global scale. Multisatellite altimetry is combined with tide gauges and Global Positioning System (GPS) observations to evaluate the marine and crustal components of relative sea level variations. Vertical land motions and sea level variations are estimated simultaneously over the past 20 years for a network of 886 ground stations, with accuracies better than 1.7 mm/yr. The ALTIGAPS database present significant interest both by its technical characteristics (global coverage, larger number of sites, longer period of observation, improved accuracy) and by the novelty of the applications empowered. ALTIGAPS offers the opportunity to look independently into the recent dynamic processes affecting the ocean and the interior of the Earth. Here, the role of vertical land motions in relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Global evidence for the local variability in vertical land motions is provided, which may either amplify or attenuate the apparent rise of the sea at the coast. A set of 182 potential vulnerable localities are identified by large coastal subsidence (>1.5 mm/yr) which increases by several times the effects of climate-induced sea level rise. For coastal management purposes, both marine (absolute sea level variations) and crustal (vertical land motions) components of vertical coastal motions (relative sea level variations) should therefore be accounted for.

  9. Gender and foot orthotic device effect on frontal plane hip motion during landing from a vertical jump.

    PubMed

    Jenkins, Walter L; Williams, D S; Bevil, Brandon; Stanley, Sara; Blemker, Michael; Taylor, Drue; O'Brien, Kevin

    2011-05-01

    Excessive hip motion has been linked to lower extremity pathology. Foot orthoses are commonly used to control motion within lower extremity joints when lower extremity pathology and dysfunction are present. Few studies have investigated the effect of foot orthoses on hip angular kinematics during functional activities. Eighteen females and 18 males performed a vertical jump with and without a prefabricated foot orthoses to determine the biomechanical effect of foot orthoses on hip kinematics when landing from a jump. Data collection included three-dimensional motion analysis of the lower extremity. Paired t tests were performed to determine if differences existed within genders with and without foot orthoses. At the hip joint, there was significantly less hip adduction motion in the foot orthoses condition as compared with the no foot orthoses condition in females (p < .05). There were no differences between foot orthoses conditions in males. Females appear to have a different proximal response to foot orthoses when landing from a forward jump than males.

  10. Stable water isotopes and large-scale vertical motions in the tropics

    NASA Astrophysics Data System (ADS)

    Torri, Giuseppe; Ma, Ding; Kuang, Zhiming

    2017-04-01

    A complete understanding of the interaction between convection and the large-scale circulation in the tropics remains an outstanding problem. Although there is evidence that the vertical structure of convective heating has great influence in the large-scale response and that this structure also presents considerable geographical variations, more need to be done. One of the questions that are still unanswered is how the vertical structure of the convective heating, or, similarly, of vertical velocity, varies across the tropical Pacific. Here it is suggested that some light can be shed on this debate by considering stable water isotopes. Because these tend to be progressively less abundant with increasing height, precipitation associated with top heavy profiles should be expected to be more depleted than that associated with bottom heavy profiles. This claim is verified with a variety of data: first, using observations from IAEA/WMO Global Network of Isotopes in Precipitation stations; then, using a simple model based on the budget of water isotopes in precipitation; finally, using a more complex isotope-enabled general circulation model. Evidence provided by these sources confirms that different structures of vertical velocities are associated with different isotopic abundances, with top heavy profiles giving rise to more depleted rainfall. Finally, the data from over the Pacific, although scarce, seem to suggest that precipitation in the eastern part is more enriched than in the western, thus hinting at velocity profiles over the East being more bottom heavy than over the West Pacific.

  11. Sinusoidal Vertical Motion of a Sonobuoy Suspension: Experimental Data and a Theoretical Model

    DTIC Science & Technology

    2008-06-01

    dB par décade. Selon des expériences, le coefficient d’inertie Ci et le coefficient de frottement Cf d’un disque circulaire en mouvement sinusoïdal... coefficient CI and the drag coefficient CD of a circular disk in sinusoidal motion are in fact not constants, but depend on the dimensionless ratio of...investigation of hydrodynamic added mass and damping of disks in sinusoidal motion revealed that these coefficients may not be constant, but may in fact be

  12. Rolling Motion of a Ball Spinning About a Near-Vertical Axis

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed ω. When v = Rω, where R is the ball radius, the ball will start rolling and the friction force drops almost to zero since the contact point at the bottom of the ball comes to rest on the surface. The coefficient of rolling friction is much smaller than that for sliding friction. A different situation arises if the ball is projected forward while it is spinning about a vertical or near vertical axis. The latter situation arises in many ball sports. It arises if a player attempts to curve a ball down a bowling alley, or when a billiards player imparts sidespin or "English" to a ball,2 and it can arise in golf if a player strikes a ball with a putter at a point well away from the middle of the putter head. The situation also arises in the game of curling,3 although in that case the object that is projected is a cylindrical rock rather than a spherical ball, and it arises in tennis when a ball lands on the court spinning about a near vertical axis, as it does in both a slice serve and a kick serve. In a slice serve, the axis is almost vertical. In a kick serve, the axis is tilted about 30 degrees away from the vertical in order to increase the amount of topspin.4

  13. Sea level differences between Topex/Poseidon altimetry and tide gauges: observed trends and vertical land motions

    NASA Astrophysics Data System (ADS)

    Lombard, A.; Dominh, K.; Cazenave, A.; Calmant, S.; Cretaux, J.

    2002-12-01

    Nine year-long (1993-2001) sea level difference time series have been constructed by comparing sea level recorded by tide gauges and Topex/Poseidon altimetry. Although the primary goal of such an analysis is to define a sub network of good quality tide gauges for calibration of satellite altimetry systems, in particular Jason-1. The difference time series displaying large positive or negative trends may give evidence of vertical land motion at the tide gauge site. We have analyzed 98 tide gauge records from the UHSLC. Among them, 42 sites mainly located on open ocean islands, give very good agreement (better than 2 mm/year) with Topex/Poseidon-derived sea level trends. 22 other sites, mainly located along the continental coastlines of the Pacific Ocean, present sea level trends differing by more than 5 mm/year with Topex/Poseidon. Many of these sites are located in active tectonic areas (either in the vicinity of subduction zones or in active volcanic areas), where vertical land motions (either transient or long-term) are expected. For example, this is the case at Kushimoto, Ofunato, Kushiro (Japan), Kodiak Island and Yakutat (Alaska), La Libertad, Callao, Caldera (western south America), and Rabaul (western Pacific). When possible, we compare these observed trends in sea level differences with GPS and/or DORIS observations.

  14. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  15. Assessing vertical jump developmental levels in childhood using a low-cost motion capture approach.

    PubMed

    Sgrò, Francesco; Nicolosi, Simona; Schembri, Rosaria; Pavone, Marica; Lipoma, Mario

    2015-04-01

    Understanding the developmental levels of fundamental movement skills has a critical role in the improvement of motor competence in childhood. In this respect, the use of Microsoft Kinect to assess vertical jumping skill and to predict developmental levels in 9- to 12-yr.-old children was evaluated. 41 boys and girls repeated the countermovement jump test three times. Vertical jumping skill levels were categorized using observational records, while kinematic and temporal parameters were estimated using a biomechanical model based on data acquired by the Kinect. Multivariate analysis of variance (MANOVA) and discriminant analysis verified that the height of the jump and the flight height predict the primary differences in jumping skill developmental levels, and the Kinect-based assessment discriminates these levels.

  16. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    DOE PAGES

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; ...

    2017-08-04

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with thosemore » from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time–height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. Lastly, the results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.« less

  17. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    NASA Astrophysics Data System (ADS)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; Giangrande, Scott E.; Collis, Scott M.; Potvin, Corey K.

    2017-08-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with those from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time-height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. The results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.

  18. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift.

    PubMed

    Hammond, William C; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  19. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    NASA Astrophysics Data System (ADS)

    Hammond, William C.; Blewitt, Geoffrey; Kreemer, Corné

    2016-10-01

    We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5-20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011-2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane.

  20. Theoretical calculations of the pressure, forces, and moments at supersonic speeds due to various lateral motions acting on thin isolated vertical tails

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Bobbitt, Percy J

    1956-01-01

    Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.

  1. Betatron motion with coupling of horizontal and vertical degrees of freedom

    DOE PAGES

    Lebedev, V. A.; Bogacz, S. A.

    2010-10-21

    Presently, there are two most frequently used parameterezations of linear x-y coupled motion used in the accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted to an analysis of close relationship between the two representations, thus adding a clarity to their physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it consideres a further development of Mais-Ripken parameteresation where the particle motion is descrabed by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances.more » In comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. In addition, considered relationship between second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and Derbenev’s vertex-to-plane adapter.« less

  2. Betatron motion with coupling of horizontal and vertical degrees of freedom

    SciTech Connect

    Lebedev, V. A.; Bogacz, S. A.

    2010-10-21

    Presently, there are two most frequently used parameterezations of linear x-y coupled motion used in the accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted to an analysis of close relationship between the two representations, thus adding a clarity to their physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it consideres a further development of Mais-Ripken parameteresation where the particle motion is descrabed by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances. In comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. In addition, considered relationship between second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and Derbenev’s vertex-to-plane adapter.

  3. Betatron motion with coupling of horizontal and vertical degrees of freedom

    SciTech Connect

    Lebedev, V.A.; Bogacz, S.A.; /Jefferson Lab

    2010-09-01

    Presently, there are two most frequently used parameterizations of linear x-y coupled motion used in the accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted to an analysis of close relationship between the two representations, thus adding a clarity to their physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it consideres a further development of Mais-Ripken parameteresation where the particle motion is described by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances. In comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. Considered relationship between second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and Derbenev's vertex-to-plane adapter.

  4. THE VERTICAL MOTIONS OF MONO-ABUNDANCE SUB-POPULATIONS IN THE MILKY WAY DISK

    SciTech Connect

    Bovy, Jo; Rix, Hans-Walter; Hogg, David W.; Zhang, Lan; Beers, Timothy C.; Lee, Young Sun

    2012-08-20

    We present the vertical kinematics of stars in the Milky Way's stellar disk inferred from Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) G-dwarf data, deriving the vertical velocity dispersion, {sigma}{sub z}, as a function of vertical height |z| and Galactocentric radius R for a set of 'mono-abundance' sub-populations of stars with very similar elemental abundances [{alpha}/Fe] and [Fe/H]. We find that all mono-abundance components exhibit nearly isothermal kinematics in |z|, and a slow outward decrease of the vertical velocity dispersion: {sigma}{sub z}(z, R | [{alpha}/Fe], [Fe/H]) Almost-Equal-To {sigma}{sub z}([{alpha}/Fe], [Fe/H]) Multiplication-Sign exp (- (R - R{sub 0})/7 kpc). The characteristic velocity dispersions of these components vary from {approx}15 km s{sup -1} for chemically young, metal-rich stars with solar [{alpha}/Fe], to {approx}> 50 km s{sup -1} for metal-poor stars that are strongly [{alpha}/Fe]-enhanced, and hence presumably very old. The mean {sigma}{sub z} gradient (d{sigma}{sub z}/dz) away from the mid-plane is only 0.3 {+-} 0.2 km s{sup -1} kpc{sup -1}. This kinematic simplicity of the mono-abundance components mirrors their geometric simplicity; we have recently found their density distribution to be simple exponentials in both the z- and R-directions. We find a continuum of vertical kinetic temperatures ({proportional_to}{sigma}{sup 2}{sub z}) as a function of ([{alpha}/Fe], [Fe/H]), which contribute to the total stellar surface-mass density approximately as {Sigma}{sub R{sub 0}}({sigma}{sup 2}{sub z}){proportional_to} exp(-{sigma}{sup 2}{sub z}). This and the existence of isothermal mono-abundance populations with intermediate dispersions (30-40 km s{sup -1}) reject the notion of a thin-thick-disk dichotomy. This continuum of disk components, ranging from old, 'hot', and centrally concentrated ones to younger, cooler, and radially extended ones, argues against models where the thicker

  5. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    PubMed Central

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  6. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  7. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.

    PubMed

    Soyka, Florian; Giordano, Paolo Robuffo; Barnett-Cowan, Michael; Bülthoff, Heinrich H

    2012-07-01

    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds.

  8. Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause

    USGS Publications Warehouse

    ten Brink, U.

    2005-01-01

    The Puerto Rico trench exhibits great water depth, an extremely low gravity anomaly, and a tilted carbonate platform between (reconstructed) elevations of +1300 m and -4000 m. I argue that these features are manifestations of large vertical movements of a segment of the Puerto Rico trench, its forearc, and the island of Puerto Rico that took place 3.3 m.y. ago over a time period as short as 14-40 kyr. I explain these vertical movements by a sudden increase in the slab's descent angle that caused the trench to subside and the island to rise. The increased dip could have been caused by shearing or even by a complete tear of the descending North American slab, although the exact nature of this deformation is unknown. The rapid (14-40 kyr) and uniform tilt along a 250 km long section of the trench is compatible with scales of mantle flow and plate bending. The proposed shear zone or tear is inferred from seismic, morphological, and gravity observations to start at the trench at 64.5??W and trend southwestwardly toward eastern Puerto Rico. The tensile stresses necessary to deform or tear the slab could have been generated by increased curvature of the trench following a counterclockwise rotation of the upper plate and by the subduction of a large seamount.

  9. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy

    NASA Astrophysics Data System (ADS)

    Serafimovich, A.; Siebicke, L.; Foken, T.

    2009-04-01

    In a forested ecosystem low frequency coherent events contribute significantly to the budgets of momentum, heat and matter. In the frame of EGER (ExchanGE processes in mountainous Regions) project the contribution of coherent structures to the vertical and horizontal transfer of energy and matter in a tall spruce canopy was investigated. Two measuring campaigns were carried out in North-Eastern Bavaria at the Waldstein site in the Fichtelgebirge mountains. Observations of coherent structures were obtained by a vertical profile of sonic anemometers equipped with fast CO2 and H2O analyzers covering all parts of the forest up to the lower part of the roughness sub layer. In addition five small masts were set up in the trunk space of the forest and equipped with sonic anemometers, humidity and temperature sensors as well as CO2 analyzers. Combination of measurements done in vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport and vertical coupling between the subcanopy, canopy and air above the canopy level. To extract coherent structures from the turbulent time series, the technique based on the wavelet transform has been used. Conditional sampling analysis showed a domination of coherent structure signatures in vertical wind measurements with probable temporal scales in the order of 10 s to 30 s. The mean temporal scale of coherent structures detected in the trunk space of the forest was 30 - 40 s. The number of coherent structures detected at the slim and tall tower was found to be 40% less than the number of coherent structures detected at the heavy main tower. In contrast to the slim tower the main tower is more massive and was equipped with more instruments resulting for additional generation of turbulence. The Reynolds-averaged flux and flux contribution of coherent structures were derived using a triple decomposition for the detected and conditionally averaged time series, when

  10. Ageostrophic winds and vertical motion fields accompanying upper level jet streak propagation during the Red River Valley tornado outbreak

    NASA Technical Reports Server (NTRS)

    Moore, J. T.; Squires, M. F.

    1982-01-01

    Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.

  11. Experimental and numerical modeling of the high frequency resonant motion of a vertical cylinder in irregular waves

    SciTech Connect

    Scolan, Y.M.; Deleuil, G.; Martigny, D.

    1996-12-31

    The ringing phenomenon does not seem to be completely solved yet. After the first stage of the French CLAROM project: High Frequency Resonances of Offshore Structures, it is shown the necessity to provide not only better models of hydrodynamics forces but also better models of wave crest kinematics. Here the so-called Madsen-Rainey-Manners and Faltinsen-Newman-Vinje formulations are used. Numerical results are compared to experimental ones. The test set-up consists of a vibrating vertical cylinder resting on the bottom of a tank; its natural mode is excited by a wave train. It clearly appears that, owing to the nonlinearities of the force formulation and/or to the wave crest extrapolated kinematics the resonant motion can be reproduced. However, uncertainties still remain concerning the choice of the adequate stretching model in the wave crest.

  12. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    NASA Astrophysics Data System (ADS)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-06-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  13. Ageostrophic winds and vertical motion fields accompanying upper level jet streak propagation during the Red River Valley tornado outbreak

    NASA Technical Reports Server (NTRS)

    Moore, J. T.; Squires, M. F.

    1982-01-01

    Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.

  14. Fallspeeds and Vertical Air Motions in Stratiform Rain Derived from ER-2 Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Tian, L.

    2000-01-01

    The Tropical Rain Measuring Mission (TRMM) conducted several intensive field validation campaigns for improved understanding of Tropical precipitation systems. Two of the campaigns (TEFLUN in Florida and Texas, and LBA in Brazil) utilized: the NASA ER-2 high-altitude (20 km) remote sensing aircraft instrumented with the ER-2 Doppler Radar (EDOP), the University of North Dakota Citation microphysics aircraft, and the NCAR S-POL polarization radar. This paper focuses on EDOP-derived fallspeeds and vertical velocities in the rain regions of two stratiform cases (5 September 1998 along the east coast of Florida, and 17 February 1999 in Amazonia in Brazil). These cases were sampled in situ microphysically by the Citation and reported elsewhere in this meeting; the main emphasis of this paper will be on the airborne radar measurements and inferences from them.

  15. Ground-based optical atomic clocks as a tool to monitor vertical surface motion

    NASA Astrophysics Data System (ADS)

    Bondarescu, Ruxandra; Schärer, Andreas; Lundgren, Andrew; Hetényi, György; Houlié, Nicolas; Jetzer, Philippe; Bondarescu, Mihai

    2015-09-01

    According to general relativity, a clock experiencing a shift in the gravitational potential ΔU will measure a frequency change given by Δf/f ≈ ΔU/c2. The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of Δf/f ˜ 10-18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.

  16. Late Cenozoic Vertical Motions of the Coachella Valley Using Apatite U-Th/He and 4/3He Thermochronometry

    NASA Astrophysics Data System (ADS)

    Mason, C. C.; Spotila, J. A.; Fame, M. L.; Dorsey, R. J.; Shuster, D. L.

    2015-12-01

    The Coachella Valley of southern California (USA) is a late Cenozoic transform-related sedimentary basin created by top-to-the-east extension on the West Salton detachment fault and dextral strike-slip offset on the San Andreas fault (Axen and Fletcher, 1998), which has continued to subside as a result of northeastward tilting since initiation of the San Jacinto fault ca. 1.2 Ma. Though it is generally agreed that these large regional faults are responsible for creation of high relief and deep subsidence in the Coachella Valley, the timing, magnitude, and geometries of fault offsets on these structures are still debated. This project applies an integrated source-to-sink approach to investigate tectonic models for evolution of the Pacific-North American plate boundary as recorded in the world-class natural laboratory of the Coachella Valley. In this study we integrate new thermochronometry-constrained kinematic models with tectonostratigraphic interpretations to help quantify the timing, rates, and magnitudes of tectonically driven vertical crustal motions and resulting mass fluxes. We sampled bedrock for U-Th/He (A-He) thermochronometry in the Mecca Hills, Santa Rosa, San Jacinto, and Little San Bernardino Mountains in both spatially focused and widely distributed areas. We also present new results from apatite 4/3He thermochronometry to help constrain the most recent exhumation histories. A-He results reveal spatially variable exhumation ages. The southwest Santa Rosa Mountains experienced late Miocene-early Pliocene exhumation along their southwest flank, while new A-He ages from ranges bounding Coachella Valley reveal complex uplift histories. We integrate our data set with previously published thermochronometric data to improve a regional synthesis of late Cenozoic vertical motions of the Coachella Valley.

  17. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers.

    PubMed

    Morrin, Niamh; Redding, Emma

    2013-01-01

    The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.

  18. Changes in plate motion and vertical movements along passive continental margins

    NASA Astrophysics Data System (ADS)

    Japsen, P.; Cobbold, P. R.; Chalmers, J. A.; Green, P. F.; Bonow, J. M.

    2012-04-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) has been a hot topic in geoscience for many years. Studies of individual margins have led to models, which explain high elevations by invoking specific conditions for each margin in question. We have studied the uplift history of several margins and have found some striking coincidences between episodes of uplift and changes in plate motion. In the Campanian, Eocene and Miocene, pronounced events of uplift and erosion affected not only SE Brazil (Cobbold et al., 2001), but also NE Brazil and SW Africa (Japsen et al., 2012a). The uplift phases in Brazil also coincided with three main phases of Andean orogeny (Cobbold et al., 2001, 2007). These phases, Peruvian (90-75 Ma), Incaic (50-40 Ma), and Quechuan (25-0 Ma), were also periods of relatively rapid convergence at the Andean margin of South America (Pardo-Casas and Molnar, 1987). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, we suggest that all these uplift events have a common cause, which is lateral resistance to plate motion (Japsen et al., 2012a). Because the uplift phases in South America and Africa are common to the margins of two diverging plates, we also suggest that the driving forces can transmit across the spreading axis, probably at great depth, e.g. in the asthenosphere (Japsen et al., 2012a). Similarly, a phase of uplift and erosion at the Eocene-Oligocene transition (c. 35 Ma), which affected margins around the North Atlantic, correlates with a major plate reorganization there (Japsen et al., 2012b). Passive continental margins clearly formed as a result of extension. Despite this, the World Stress Map shows that, where data exist, all EPCMs are today under compression. We maintain that folds, reverse faults, reactivated normal faults and strike-slip faults that are typical of EPCMs are a result

  19. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  20. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  1. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  2. Interpretation of deformed ionograms induced by vertical ground motion of seismic Rayleigh waves and infrasound in the thermosphere

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Yusupov, Kamil; Akchurin, Adel

    2016-02-01

    The vertical ground motion of seismic surface waves launches acoustic waves into the atmosphere and induces ionospheric disturbances. Disturbances due to Rayleigh waves near the short-period Airy phase appear as wavy fluctuations in the virtual height of an ionogram and have a multiple-cusp signature (MCS) when the fluctuation amplitude is increased. An extremely developed MCS was observed at Kazan, Russia, after the 2010 M 8.8 Chile earthquake. The ionogram exhibited steep satellite traces for which the virtual heights increased rapidly with frequency starting near the top of cusps and continuing for 0.1-0.2 MHz. This complicated ionogram was analyzed by applying a ray tracing technique to the radio wave propagation in the ionosphere that was perturbed by acoustic waves. Acoustic wavefronts were inclined by the effects of finite Rayleigh wave velocity and sound speed in the thermosphere. The satellite echo traces were reproduced by oblique returns from the inclined wavefronts, in addition to the nearly vertical returns that are responsible for the main trace.

  3. Improved Modeling of Vertical Crustal Motion in Canada for a New North American Reference Frame

    NASA Astrophysics Data System (ADS)

    Robin, C. M. I.; Craymer, M.; Ferland, R.; Lapelle, E.; Piraszewski, M.; Zhao, Y.; James, T. S.

    2016-12-01

    A national-scale crustal velocity model has been developed for Canada as part of the current realization of NAD83(CSRS). It is used to propagate coordinates to different reference epochs, and to support scientific studies such as natural hazards related to earthquakes and sea level rise. The current velocity model is based solely on continuous and campaign GPS data between 1994 and 2011.3. To improve on this, a new hybrid model has been created which incorporates a new GPS velocity field with GIA and elastic rebound models for improved accuracy, particularly in northern areas with sparse GPS coverage. Several GIA models and interpolation techniques were tested. Improvements to the GPS velocity field include the addition of new stations in key areas, 5 more years of data, and the reprocessing of all data with the latest software, orbits and antenna calibrations. We include all continuous GPS sites in Canada, the northern portions of the US, all of Greenland, repeated high accuracy campaign surveys of the Canadian Base Network, and a set of global sites used to define the reference frame. Initial uncertainty estimates for the hybrid model are also provided. It is envisaged that such a hybrid model can be used to provide an improved vertical crustal velocity model for a new North American reference system.

  4. Observational Studies of how Atmospheric Vertical Motions Influence Frozen Hydrometeor Fallspeed

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2013-12-01

    The vertical velocity of hydrometeors is one of the most important parameters to get right in weather and climate models. Many fallspeed parameterizations have been developed as a function of hydrometeor habit, but in all cases, the measurements or theory that has been used as their basis has either constructed or assumed conditions of still air. But clearly snow swirls as it gets caught up in local eddies, yet the importance of this has been almost entirely neglected in the atmospheric sciences literature. There is however guidance from the engineering literature. Theoretical and numerical modeling calculations suggest particles can become concentrated in the downward flow of turbulent eddies, and this accelerates their mean settling velocity by up to 50% relative to the particle terminal fallspeed. This phenomenon of preferential acceleration has been shown numerically to occur when the Stokes number is nearly equal to unity, where the Stokes number is the ratio of the timescale for adjustment to the terminal fallspeed in still air to the Kolmogorov eddy turnover time at the microscale of turbulence. Indeed, snowfall composed of aggregate flakes is associated with more moderate turbulence and fallspeeds, in which case the Stokes number might plausibly near unity, allowing for aggregate acceleration. The effect of turbulence on precipitation fallspeeds is being tested using recent measurements from the Multi-Angle Snowflake Camera, a new instrument that takes high resolution photographs of hydrometeors in freefall while simultaneously measuring their fallspeed. In situ MASC measurements show a remarkable lack of correlation between particle size or shape and fallspeed. While the measured range of fallspeeds measured spans more than two orders of magnitude, there appears to be a nearly equal preference for particles to fall at about 1 m/s independent of whether the particles are compact graupel or aggregate flakes, or whether the particles are small or large. If

  5. A future geodetic monitoring system for vertical land motion in the Perth basin, Australia

    NASA Astrophysics Data System (ADS)

    Filmer, Mick; Featherstone, Will; Morgan, Linda; Schenk, Andreas

    2013-04-01

    Vertical land movement (VLM) affects many regions around the world and can have various causes, such as tectonics, glacial isostatic adjustment and resource extraction. Geodetic monitoring systems are employed in different configurations to identify VLM to provide knowledge for hazard mapping, risk assessment and land planning. We describe results from historical geodetic observations, and efforts to establish a monitoring system in the Western Australian city of Perth, which is subject to VLM, most probably caused by groundwater extraction over the past ~100 years. The most direct evidence of VLM in Perth is provided by two continuously operating GNSS (CGNSS) stations HIL1 (from 1997) and PERT (from 1992). However, these stations provide estimates only at discrete locations. In addition, the data from HIL1 is subject to frequent equipment changes and PERT ceased operation in early 2012. The CGNSS VLM rates reach ~-6 mm/yr, but are not linear over time and appear to be highly correlated with the rates of groundwater extraction. Limited sequences of interferometric synthetic aperture radar (InSAR) images are available over short periods between 1992-2009, and although these suggest spatially variable VLM rates reaching -5 mm/yr at some locations, the uncertainty from the small number of images suggest that these results should be treated cautiously. If it remains necessary to extract groundwater for Perth (possibly at increased rates), an ongoing monitoring programme is needed. This should be based on combined GNSS, InSAR and levelling observation programmes. Historical levelling data from the early 1970s is currently being extracted from hardcopy archives into digital file format for analysis and adjustment. These data will be used to establish an original reference network for later geodetic observations comprising repeat levelling campaigns connected to periodic GNSS campaigns and CGNSS stations, but most importantly, a regular and structured acquisition of In

  6. Some Studies in Large-Scale Surface Fluxes and Vertical Motions Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2010-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.

  7. Fluid motions and compositional gradients produced by crystallization or melting at vertical boundaries

    NASA Astrophysics Data System (ADS)

    Turner, J. Stewart; Gustafson, Lewis B.

    1981-12-01

    The results of a continuing series of laboratory experiments, designed to model the fluid motions which accompany crystallization, are both described and related in a preliminary way to prototype flows in magma chambers. Previous experiments have demonstrated the importance of compositional inhomogeneity, produced by crystallization and melting in a thermal gradient and coupled with double-diffusive effects, in driving convective flows which result in thermal and compositional stratification in an originally homogeneous fluid. The present experiments examine effects produced in tanks cooled at the side, by the upward flow of a less dense boundary layer depleted in the crystallizing component as crystals grow on the side wall. These processes are examined in simple two and three component aqueous systems (H 2O-Na 2CO 3, H 2O-Na 2CO 3-K 2CO 3, H 2O-CuSO 4-Na 2SO 4) with one and two crystallizing phases. In each of these systems, an initially downward flow of a cooled boundary layer against the side wall is reversed as crystallization commences and depletes the boundary layer in the crystallizing component. Accumulation of this cooler but lighter depleted fluid at the top of the chamber produces thermal and compositional layering by a "filling box" mechanism, partly modified by interchange between the boundary layer and the convecting layers outside. When more than one component is present in the solution, the crystallization process produces a differentiated fluid column, i.e. one with compositional gradients which are different for each of the components. The compositional and thermal distributions within the fluid change with time, but finally appear to reach a steady state. These distributions are the integrated result of compositional changes produced by crystallization from a thin boundary layer, a small proportion of the bulk fluid which evolves in composition and temperature independently of the bulk fluid, in a manner controlled by the dynamics of the system

  8. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 3: User's manual for VATOL simulation program

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.

  9. Vertical motions in Thailand after the 2004 Sumatra-Andaman Earthquake from GPS observations and its geophysical modelling

    NASA Astrophysics Data System (ADS)

    Satirapod, C.; Trisirisatayawong, I.; Fleitout, L.; Garaud, J. D.; Simons, W. J. F.

    2013-04-01

    Following previous findings from ongoing GPS research in Thailand since 2004 we continue to exploit the GPS technique to monitor and model land motions induced by the Sumatra-Andaman Earthquake. Our latest results show that up to the end of 2010, Thailand has been co-seismically displaced and is subsequently undergoing a post-seismic horizontal deformation with total displacements (co-seismic plus post-seismic) ranging from 10.5 to 74.7 cm. We observed the largest horizontal displacements in the southern part of Thailand and moderate and small displacements in the central and northern parts. In addition to horizontal displacements throughout Thailand, continuous GPS measurements show that large parts of Thailand are subsiding at rates up to 1 cm/yr. It is the first time that such vertical post-seismic deformations at large distances (650-1500 km away from the Earthquake's epicentre) have been recorded. We have investigated the physical processes leading to the observed subsidence. While after-slip on the subduction interface induces negligible or even slightly positive vertical motions, relaxation in the asthenosphere is associated with a sizable subsidence. Predictions from a 3D finite element model feature an asthenosphere with an effective viscosity of the order of 3 \\midast 1018 Pas, fit the horizontal post-seismic data and the observed subsidence well. This model is then used to predict the subsidence over the whole seismic cycle. The subsidence should go on with a diminishing rate through the next two decades and its final magnitude should not exceed 10 cm in the Bangkok area.The post-seismic subsidence makes it difficult to identify other geophysical signals, particularly sea level rise, when observed from tide gauge data and thus there is a need for reliable estimation of subsidence velocities. This phenomenon may also worsen coastal erosion and flooding from sea water and so cause a considerable impact on the socio-economic development of coastal and low

  10. Phanerozoic deposition, erosion, and vertical motion history of the Slave craton from apatite (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Flowers, R. M.; Bowring, S. A.

    2012-12-01

    that the transition from Paleozoic-Mesozoic subsidence to surface uplift may signal a change from predominantly northern (Franklinian-Innuitian orogen) to western (Canadian Cordilleran orogen) plate boundary controls on continental interior processes, with the latter driving the east-to-west wave of unroofing. The Cretaceous-Early Tertiary history was influenced by evolution of the Canadian Cordillera. Dynamic topography in response to changing mantle flow regimes, plate margin flexural effects, and relative proximity to sediment sources associated with regions of high topography likely controlled the burial, erosion, and vertical motion history of the northwestern Canadian shield. The combination of thermochronometric data with regional geologic information can provide new constraints on the long-term vertical motions of cratons and thereby provide insight into the causes of their elevation change.

  11. Validation of an Actuator Line Model Coupled to a Dynamic Stall Model for Pitching Motions Characteristic to Vertical Axis Turbines

    NASA Astrophysics Data System (ADS)

    Mendoza, Victor; Bachant, Peter; Wosnik, Martin; Goude, Anders

    2016-09-01

    Vertical axis wind turbines (VAWT) can be used to extract renewable energy from wind flows. A simpler design, low cost of maintenance, and the ability to accept flow from all directions perpendicular to the rotor axis are some of the most important advantages over conventional horizontal axis wind turbines (HAWT). However, VAWT encounter complex and unsteady fluid dynamics, which present significant modeling challenges. One of the most relevant phenomena is dynamic stall, which is caused by the unsteady variation of angle of attack throughout the blade rotation, and is the focus of the present study. Dynamic stall is usually used as a passive control for VAWT operating conditions, hence the importance of predicting its effects. In this study, a coupled model is implemented with the open-source CFD toolbox OpenFOAM for solving the Navier-Stokes equations, where an actuator line model and dynamic stall model are used to compute the blade loading and body force. Force coefficients obtained from the model are validated with experimental data of pitching airfoil in similar operating conditions as an H-rotor type VAWT. Numerical results show reasonable agreement with experimental data for pitching motion.

  12. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  13. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  14. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  15. Environmental effects and building damage induced by the vertical component of ground motion during the August 24, 2016 Amatrice (Central Italy) earthquake

    NASA Astrophysics Data System (ADS)

    Carydis, Panayotis; Lekkas, Efthymios; Mavroulis, Spyridon

    2017-04-01

    On August 24, 2016 an Mw 6.0 earthquake struck central Italy resulting in 299 fatalities, 388 injuries and about 3000 homeless. The provided focal mechanisms demonstrated a NW-SE striking seismic normal fault which is consistent with the spatial distribution of the coseismic surface ruptures observed along the western slope of Mt Vettore. Based on our field reconnaissance in the affected area immediately after the earthquake, extensive secondary environmental effects including landslides, rockfalls and ground cracks were also observed. Most landslides were generated within the Amatrice intermontane basin, which, instead of a flat surface, comprises isolated flat hills and ridges with relatively high and steep slopes extending several meters above the low-lying part of the basin consisting of Quaternary deposits and with several villages founded at their top. Landslides generated along the steep slopes of Amatrice, Accumoli and Pescara del Tronto flat hills were due to topographical amplification of the earthquake motion derived from accelerometric recordings analysis along with the action of the vertical component of the ground motion and the already established instability conditions resulting from river incision and erosion at the base of the hills. Strong evidences of the effect of the vertical ground motion in reinforced concrete (RC) buildings are the symmetrical buckling of reinforcement, compression damage and crushing at midheight and in other parts of columns, undamaged windows and unbroken glass panels as well as partial collapse of the buildings that usually occur along the vertical axis within the plan of the building. On the contrary, high flexible structures such as castle and bell towers in Arcuata del Tronto and Amatrice respectively were not affected by the vertical ground motion. During the action of the vertical component of the ground motion in Amatrice affected area, stationary waves were formed vertically in the observed structures resulting

  16. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    NASA Technical Reports Server (NTRS)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  17. Heat transfer test of an 0.006-scale thin-skin thermocouple space shuttle model (50-0, 41-T) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel at Mach 5.3 (IH28), volume 1

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Foster, T. F.; Lockman, W. K.

    1976-01-01

    Data obtained from a heat transfer test conducted on an 0.006-scale space shuttle orbiter and external tank in the NASA-Ames Research Center 3.5-foot Hypersonic Wind Tunnel are presented. The purpose of this test was to obtain data under simulated return-to-launch-site abort conditions. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone at angles of attack of 0, + or - 30, + or - 60, + or - 90, and + or - 120 degrees. Runs were conducted at Mach numbers of 5.2 and 5.3 for Reynolds numbers of 1.0 and 4.0 million per foot, respectively. Heat transfer data were obtained from 75 orbiter and 75 external tank iron-constantan thermocouples.

  18. Differences in End Range of Motion Vertical Jump Kinetic and Kinematic Strategies Between Trained Weightlifters and Elite Short Track Speed Skaters.

    PubMed

    Haug, William B; Spratford, Wayne; Williams, Kym J; Chapman, Dale W; Drinkwater, Eric J

    2015-09-01

    The purpose of this investigation was to identify differences in end range of motion (ROM) kinetic and kinematic strategies between highly resistance and vertical jump-trained athletes and controls. Weightlifters (WL: n = 4), short track speed skaters (STSS: n = 5), and nonresistance-trained controls (C: n = 6) performed 6 standing vertical squat jumps (SJ) and countermovement jumps (CMJ) without external resistance. Jump testing was performed using 3-dimensional marker trajectories captured with a 15-camera motion analysis system synchronized with 2 in-ground force plates. During SJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.43; ES: -1.73, respectively) and for the decrease between peak and toe off vertical velocity (ES: -1.28; ES: -1.71, respectively). During CMJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.28; ES: -1.53, respectively) and for decrease between peak and toe off vertical velocity (ES: -1.03; ES: -1.59, respectively). Accompanying these differences for both jump types were large effects for time of joint deceleration before toe off for all lower body joints between WL compared with C with large effects between WL and STSS at the hip and between STSS and C at the ankle. These findings suggest that the end ROM kinetic and kinematic strategy used during jumping is group-specific in power-trained athletes, with WL exhibiting superior strategies as compared with resistance- and jump-trained STSS.

  19. Results of investigations on an 0.015-scale 140A/B configuration of the Rockwell International space shuttle orbiter (model 49-O) in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel (OA36)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Gillins, R. L.; Cleary, J. W.

    1974-01-01

    The results of wind tunnel tests of the 140A/B configuration components are reported for the fuselage, canopy, elevons, bodyflaps, pods, engine nozzles, rudder, vertical tail, and wing. The test facility, and data reduction procedures are described. Test results for each component are graphed, and tabulated source data are included.

  20. Motion-based carriage simulation of extra-vehicular activity (EVA) rescue

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.

    1992-01-01

    A research program was outlined for a series of Extra-Vehicular Activity (EVA) rescue studies. The general purpose is to get a better appreciation of the characteristics describing an EVA rescue scenario. Several studies have been completed in the Virtual Interactive Environment Workstation (VIEW) at NASA Ames Research Center. Similar studies are planned for a variety of simulators both to get more reliable results for the EVA rescue problem and to baseline the simulators against one another. Work is planned for a motion-based carriage to expand the validity of the previously obtained results.