Sample records for nasa-casa carnegie ames

  1. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    EPA Science Inventory

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  2. Terrestrial Carbon Fluxes from Deforestation in the Brazilian Amazon and Cerrado Regions Predicted from MODIS Satellite Data and Ecosystem Modeling

    NASA Astrophysics Data System (ADS)

    Klooster, S.; Potter, C.; Genovese, V.

    2008-12-01

    The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate tropical forest and savanna (Cerrado) carbon pools for the Brazilian Amazon region over the period 2000-2004. Adjustments for mean age of forest stands were carried out across the region, resulting in a new mapping of aboveground biomass pools based on MODIS satellite data. Yearly maps of newly deforested lands from the Brazilian PRODES (Programa de calculo do desflorestamento da Amazonia ) project were combined with these NASA-CASA biomass predictions to generate seasonal budgets of potential carbon and nitrogen trace gas losses from biomass burning events. Simulations of plant residue and soil carbon decomposition were conducted in the NASA-CASA model during and following deforestation events to track the fate of aboveground biomass pools that were cut and burned each year across the region.

  3. An ecosystem model for tropical forest disturbance and selective logging

    Treesearch

    Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry

    2008-01-01

    [1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...

  4. Using NASA Techniques to Atmospherically Correct AWiFS Data for Carbon Sequestration Studies

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara L.

    2007-01-01

    Carbon dioxide is a greenhouse gas emitted in a number of ways, including the burning of fossil fuels and the conversion of forest to agriculture. Research has begun to quantify the ability of vegetative land cover and oceans to absorb and store carbon dioxide. The USDA (U.S. Department of Agriculture) Forest Service is currently evaluating a DSS (decision support system) developed by researchers at the NASA Ames Research Center called CASA-CQUEST (Carnegie-Ames-Stanford Approach-Carbon Query and Evaluation Support Tools). CASA-CQUEST is capable of estimating levels of carbon sequestration based on different land cover types and of predicting the effects of land use change on atmospheric carbon amounts to assist land use management decisions. The CASA-CQUEST DSS currently uses land cover data acquired from MODIS (the Moderate Resolution Imaging Spectroradiometer), and the CASA-CQUEST project team is involved in several projects that use moderate-resolution land cover data derived from Landsat surface reflectance. Landsat offers higher spatial resolution than MODIS, allowing for increased ability to detect land use changes and forest disturbance. However, because of the rate at which changes occur and the fact that disturbances can be hidden by regrowth, updated land cover classifications may be required before the launch of the Landsat Data Continuity Mission, and consistent classifications will be needed after that time. This candidate solution investigates the potential of using NASA atmospheric correction techniques to produce science-quality surface reflectance data from the Indian Remote Sensing Advanced Wide-Field Sensor on the RESOURCESAT-1 mission to produce land cover classification maps for the CASA-CQUEST DSS.

  5. Net Primary Production of Terrestrial Ecosystems from 2000 to 2009

    NASA Technical Reports Server (NTRS)

    Potter, Christopher; Klooster, Steven; Genovese, Vanessa

    2012-01-01

    The CASA (Carnegie-Ames-Stanford) ecosystem model has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009, with global data inputs from NASA's Terra Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover mapping. Net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and the western Amazon since the year 2000. These CASA results for global NPP were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by CASA for the southern and western Untied States, the southern Amazon, and southern and eastern Africa. NPP in tropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the tropical rainforest zones, likely due to the enhanced detection of lower production ecosystems replacing primary rainforest.

  6. Coupling the NASA-CASA ecosystem model with a hydrologic routing algorithm for improved water management in Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Teaby, A.; Johnson, E. R.; Griffin, M.; Carrillo, C.; Kannan, T.; Shupe, J. W.; Schmidt, C.

    2013-12-01

    Historic trends reveal extreme precipitation variability within the Yosemite National Park (YNP) geographic region. While California obtains greater than half of its annual water supply from the Sierra Nevada, snowpack, precipitation, and runoff can fluctuate between less than 50% and greater than 200% of climatological averages. Advances in hydrological modeling are crucial to improving water-use efficiency at the local, state, and national levels. The NASA Carnegie Ames Stanford Approach (CASA) is a global simulation model that combines multi-year satellite, climate, and other land surface databases to estimate biosphere-atmosphere exchange of energy, water, and trace gases from plants and soils. By coupling CASA with a Hydrological Routing Algorithm known as HYDRA, it is possible to calculate current water availability and observe hydrological trends within YNP. Satellite-derived inputs such as surface evapotranspiration, temperature, precipitation, land cover, and elevation were included to create a valuable decision support tool for YNP's water resource managers. These results will be of enhanced importance given current efforts to restore 81 miles of the Merced River within the park's boundary. Validations of model results were conducted using in situ stream gage measurements. The model accurately simulated observed streamflow values, achieving a relatively strong Nash-Sutcliffe model efficiency coefficient. This geospatial assessment provides a standardized method which may be repeated in both national and international water-stressed regions.

  7. New Projections of Global Forest Carbon and Ecosystems at Risk for Increased Greenhouse Gas Emissions From Disturbance and Forest Degradation

    NASA Astrophysics Data System (ADS)

    Klooster, S.; Potter, C. S.; Genovese, V. B.; Gross, P. M.; Kumar, V.; Boriah, S.; Mithal, V.; Castilla-Rubio, J.

    2009-12-01

    Widely cited forest carbon values from look-up tables and statistical correlations with aboveground biomass have proven to be inadequate to discern details of national carbon stocks in forest pools. Similarly, global estimates based on biome-average (tropical, temperate, boreal, etc.) carbon measurements are generally insufficient to support REDD incentives (Reductions in Emission from Deforestation in Developing countries). The NASA-CASA (Carnegie-Ames-Stanford Approach) ecosystem model published by Potter et al. (1999 and 2003) offers several unique advantages for carbon accounting that cannot be provided by conventional inventory techniques. First, CASA uses continuous satellite observations to map land cover status and changes in vegetation on a monthly time interval over the past 25 years. NASA satellites observe areas that are too remote or rugged for conventional inventory-based techniques to measure. Second, CASA estimates both aboveground and belowground pools of carbon in all ecosystems (forests, shrublands, croplands, and rangelands). Carbon storage estimates for forests globally are currently being estimated for the Cisco Planetary Skin open collaborative platform (www.planetaryskin.org ) in a new series of CASA model runs using the latest input data from the NASA MODIS satellites, from 2000 to the present. We have also developed an approach for detection of large-scale ecosystem disturbance (LSED) events based on sustained declines in the same satellite greenness data used for CASA modeling. This approach is global in scope, covers more than a decade of observations, and encompasses all potential categories of major ecosystem disturbance - physical, biogenic, and anthropogenic, using advanced methods of data mining and analysis. In addition to quantifying forest areas at various levels of risk for loss of carbon storage capacity, our data mining approaches for LSED events can be adapted to detect and map biophysically unsuitable areas for deforestation worldwide and to develop carbon risk scoring algorithms that can enable large scale finance for conservation and reforestation efforts globally.

  8. Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in the...

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Klooster, S.; Brooks, V.; Peterson, David L. (Technical Monitor)

    1997-01-01

    The degree to which primary production, soil carbon, and trace gas fluxes in tropical forests of the Amazon are limited by moisture availability and other environmental factors was examined using an ecosystem modeling application for the country of Brazil. A regional geographic information system (GIS) serves as the data source of climate drivers, satellite images, land cover, and soil properties for input to the NASA Ames-CASA (Carnegie-Ames-Stanford Approach) model over a 8-km grid resolution. Simulation results supports the hypothesis that net primary production (NPP) is limited by cloud interception of solar radiation over the humid northwestern portion of the region. Peak annual rates for NPP of nearly 1.4 kg C m-2yr -1are localized in the seasonally dry eastern Amazon in areas that we assume are primarily deep-rooted evergreen forest cover. Regional effects of forest conversion on NPP and soil carbon content are indicated in the model results, especially in seasonally dry areas. Comparison of model flux predictions along selected eco-climatic transects reveal moisture, soil, and land use controls on gradients of ecosystem production and soil trace gas emissions (CO2, N2O, and NO). These results are used to formulate a series of research hypotheses for testing in the next phase of regional modeling, which includes recalibration of the light-use efficiency term in CASA using field measurements of NPP, and refinements of vegetation index and soil property (texture and potential rooting depth) maps for the region.

  9. Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations

    NASA Astrophysics Data System (ADS)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2016-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.

  10. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    NASA Technical Reports Server (NTRS)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in situ observations.

  11. New constraints on Northern Hemisphere growing season net flux

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Washenfelder, R. A.; Keppel-Aleks, G.; Krakauer, N. Y.; Randerson, J. T.; Tans, P. P.; Sweeney, C.; Wennberg, P. O.

    2007-06-01

    Observations of the column-averaged dry molar mixing ratio of CO2 above both Park Falls, Wisconsin and Kitt Peak, Arizona, together with partial columns derived from aircraft profiles over Eurasia and North America are used to estimate the seasonal integral of net ecosystem exchange (NEE) between the atmosphere and the terrestrial biosphere in the Northern Hemisphere. We find that NEE is ~25% larger than predicted by the Carnegie Ames Stanford Approach (CASA) model. We show that the estimates of NEE may have been biased low by too weak vertical mixing in the transport models used to infer seasonal changes in Northern Hemisphere CO2 mass from the surface measurements of CO2 mixing ratio.

  12. Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations

    PubMed Central

    Tang, Chuanjiang; Fu, Xinyu; Jiang, Dong; Zhang, Xinyue; Zhou, Su

    2014-01-01

    Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands. PMID:25250396

  13. Global Carbon Cycle Modeling in GISS ModelE2 GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Romanski, J.

    2014-12-01

    Consistent and accurate modeling of the Global Carbon Cycle remains one of the main challenges for the Earth System Models. NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM) was recently equipped with a complete Global Carbon Cycle algorithm, consisting of three integrated components: Ent Terrestrial Biosphere Model (Ent TBM), Ocean Biogeochemistry Module and atmospheric CO2 tracer. Ent TBM provides CO2 fluxes from the land surface to the atmosphere. Its biophysics utilizes the well-known photosynthesis functions of Farqhuar, von Caemmerer, and Berry and Farqhuar and von Caemmerer, and stomatal conductance of Ball and Berry. Its phenology is based on temperature, drought, and radiation fluxes, and growth is controlled via allocation of carbon from labile carbohydrate reserve storage to different plant components. Soil biogeochemistry is based on the Carnegie-Ames-Stanford (CASA) model of Potter et al. Ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. Atmospheric CO2 is advected with a quadratic upstream algorithm implemented in atmospheric part of ModelE2. Here we present the results for pre-industrial equilibrium and modern transient simulations and provide comparison to available observations. We also discuss the process of validation and tuning of particular algorithms used in the model.

  14. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Others seated include Jon Morse, NASA's Astrophysics Director, Sara Seager, Professor of Planetary Science and Physics at MIT, and Alan Boss, an Astrophysicist at the Carnegie Institution at the Department of Terrestrial Magnetism in Washington, right. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  15. Selective Cutting Impact on Carbon Storage in Fremont-Winema National Forest, Oregon

    NASA Astrophysics Data System (ADS)

    Huybrechts, C.; Cleve, C. T.

    2004-12-01

    Management personnel of the Fremont-Winema National Forest in southern Oregon were interested in investigating how selective cutting or fuel load reduction treatments affect forest carbon sinks and as an ancillary product, fire risk. This study was constructed with the objective of providing this information to the forest administrators, as well as to satisfy a directive to study carbon management, a component of the 2004 NASA's Application Division Program Plan. During the summer of 2004, a request for decision support tools by the forest management was addressed by a NASA sponsored student-led, student-run internship group called DEVELOP. This full-time10-week program was designed to be an introduction to work done by earth scientists, professional business / client relationships and the facilities available at NASA Ames. Four college and graduate students from varying educational backgrounds designed the study and implementation plan. The team collected data for five consecutive days in Oregon throughout the Fremont-Winema forest and the surrounding terrain, consisting of soil sampling for underground carbon dynamics, fire model and vegetation map validation. The goal of the carbon management component of the project was to model current carbon levels, then to gauge the effect of fuel load reduction treatments. To study carbon dynamics, MODIS derived fraction photosynthetically active radiation (FPAR) maps, regional climate data, and Landsat 5 generated dominant vegetation species and land cover maps were used in conjunction with the NASA - Carnegie-Ames-Stanford-Approach (CASA) model. To address fire risk the dominant vegetation species map was used to estimate fuel load based on species biomass in conjunction with a mosaic of digital elevation models (DEMs) as components to the creation of an Anderson-inspired fuel map, a rate of spread in meters/minute map and a flame length map using ArcMap 9 and FlamMap. Fire risk results are to be viewed qualitatively as maps output spatial distribution of data rather then quantitative assessment of risk. For the first time ever, the resource managers at the Fremont-Winema forest will be taking into consideration the value of carbon as a resource in their decision making process for the 2005 Fremont-Winema forest management plan.

  16. Assessing the Importance of Prior Biospheric Fluxes on Inverse Model Estimates of CO2

    NASA Astrophysics Data System (ADS)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2017-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emissions and biospheric sources/sinks. The processes controlling terrestrial biosphere-atmosphere carbon exchange are currently not fully understood, resulting in models having significant differences in the quantification of biospheric CO2 fluxes. Currently, atmospheric chemical transport models (CTM) and global climate models (GCM) use multiple different biospheric CO2 flux models resulting in large differences in simulating the global carbon cycle. The Orbiting Carbon Observatory 2 (OCO-2) satellite mission was designed to allow for the improved understanding of the processes involved in the exchange of carbon between terrestrial ecosystems and the atmosphere, and therefore allowing for more accurate assessment of the seasonal/inter-annual variability of CO2. OCO-2 provides much-needed CO2 observations in data-limited regions allowing for the evaluation of model simulations of greenhouse gases (GHG) and facilitating global/regional estimates of "top-down" CO2 fluxes. We conduct a 4-D Variation (4D-Var) data assimilation with the GEOS-Chem (Goddard Earth Observation System-Chemistry) CTM using 1) OCO-2 land nadir and land glint retrievals and 2) global in situ surface flask observations to constrain biospheric CO2 fluxes. We apply different state-of-the-science year-specific CO2 flux models (e.g., NASA-CASA (NASA-Carnegie Ames Stanford Approach), CASA-GFED (Global Fire Emissions Database), Simple Biosphere Model version 4 (SiB-4), and LPJ (Lund-Postdam-Jena)) to assess the impact of "a priori" flux predictions to "a posteriori" estimates. We will present the "top-down" CO2 flux estimates for the year 2015 using OCO-2 and in situ observations, and a complete indirect evaluation of the a priori and a posteriori flux estimates using independent in situ observations. We will also present our assessment of the variability of "top-down" CO2 flux estimates when using different biospheric CO2 flux models. This work will improve our understanding of the global carbon cycle, specifically, how OCO-2 observations can be used to constrain biospheric CO2 flux model estimates.

  17. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  18. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  19. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  20. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Conclusions Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape. PMID:21835025

  1. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.

  2. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    PubMed

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.

  3. Detecting a Terrestrial Biosphere Sink for Carbon Dioxide: Interannual Ecosystem Modeling for the Mid-1980s

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.; Klooster, Steven A.; Brooks, Vanessa; Gore, Warren J. (Technical Monitor)

    1998-01-01

    There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20-30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60 degrees N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (10 (exp 15) g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983-1984, coinciding with an El Nino event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Avg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (delta (sup 13 C) convolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.

  4. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Pan, Jinghu

    2018-03-01

    Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

  5. Comparing the Performance of Three Land Models in Global C Cycle Simulations: A Detailed Structural Analysis: Structural Analysis of Land Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra

    Land models are valuable tools to understand the dynamics of global carbon (C) cycle. Various models have been developed and used for predictions of future C dynamics but uncertainties still exist. Diagnosing the models’ behaviors in terms of structures can help to narrow down the uncertainties in prediction of C dynamics. In this study three widely used land surface models, namely CSIRO’s Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools were driven by themore » observed meteorological forcing. The simulated C storage and residence time were used for analysis. The C storage and residence time were computed globally for all individual soil and plant pools, as well as net primary productivity (NPP) and its allocation to different plant components’ based on these models. Remotely sensed NPP and statistically derived HWSD, and GLC2000 datasets were used as a reference to evaluate the performance of these models. Results showed that CABLE exhibited better agreement with referenced C storage and residence time for plant and soil pools, as compared with CLM-CASA and CLM4. CABLE had longer bulk residence time for soil C pools and stored more C in roots, whereas, CLM-CASA and CLM4 stored more C in woody pools due to differential NPP allocation. Overall, these results indicate that the differences in C storage and residence times in three models are largely due to the differences in their fundamental structures (number of C pools), NPP allocation and C transfer rates. Our results have implications in model development and provide a general framework to explain the bias/uncertainties in simulation of C storage and residence times from the perspectives of model structures.« less

  6. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  7. Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Tan, Kun; Chen, Baozhang; Du, Peijun

    2017-03-01

    In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward trend with the increase of latitude and longitude. Moreover, the influence of climate change on the evolution of NPP shows that NPP has had different impact factors in different regions and periods over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central regions is significantly positively correlated with annual solar radiation, while NPP in these two regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the development of the economy and climate change have influenced NPP evolution in China. In addition, NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to ecological issues when developing the economy.

  8. NPP estimation and seasonal change research of Gansu province in northwest China

    NASA Astrophysics Data System (ADS)

    Han, Tao; Wang, Dawei; Hao, Xiaocui; Jiang, Youyan

    2018-03-01

    Based on GIS and remote sensing technology, this paper estimates the NPP of the 2015 year-round and every season of Gansu province in northwest China by using the CASA(Carnegie Ames Stanford Approach) light energy utilization model. The result shows that the total annual NPP of Gansu province gradually decline from southeast to northwest in the space, which is in accordance with the water and heat condition in Gansu province. The results show that the summer NPP in Gansu Province is the maximum in each season. The maximum value of summer NPP in Gansu Province reached 695 (gCm-2•season-1), and the maximum value was 473 in spring, and 288 in the autumn, and the NPP in the winter in Gansu province were under 60. The fluctuation range of NPP value is large, this is due to the diversity of ecosystem types in Gansu province, including desert, grassland, farmland and forest, among them, the grassland area is the largest, and the grassland type is very diverse, the grassland coverage is obviously different, especially the low coverage grassland growth is affected by precipitation and temperature and other meteorological factors obviously.

  9. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin

    NASA Astrophysics Data System (ADS)

    BöSch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; de Beek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; Connor, B. J.; Natraj, V.; Yung, Y. L.

    2006-12-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 ? with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (˜1000 × 1000 km2) and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve ? and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 μm and the 1.58 μm CO2 band for Park Falls, Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS ? retrievals of ˜3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY ? retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS ? retrievals. We compared the seasonal cycle of ? at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  10. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  11. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; hide

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  12. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983-1988) were estimated at 57.1 Pg C-CO2yr-1, 9.8Tg (1012 g) N-NO yr-1, and 9.7 Tg N-N2O yr-1. Chemical fertilizer contributions to global soil N gas fluxes were estimated at between 1.3 to 7.3 Tg N-NO yr-1, and 1.2 to 4.0 Tg N-N2O yr-1.

  13. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Tan, Kun; Zhou, Songyang; Li, Erzhu; Du, Peijun

    2015-06-01

    An improved Carnegie Ames Stanford Approach (CASA) model based on two kinds of remote sensing (RS) data, Landsat Enhanced Thematic Mapper Plus (ETM +) and Moderate Resolution Imaging Spectro-radiometer (MODIS), and climate variables were applied to estimate the Net Primary Productivity (NPP) of Xuzhou in June of each year from 2001 to 2010. The NPP of the study area decreased as the spatial scale increased. The average NPP of terrestrial vegetation in Xuzhou showed a decreasing trend in recent years, likely due to changes in climate and environment. The study area was divided into four sub-regions, designated as highest, moderately high, moderately low, and lowest in NPP. The area designated as the lowest sub-region in NPP increased with expanding scale, indicating that the NPP distribution varied with different spatial scales. The NPP of different vegetation types was also significantly influenced by scale. In particular, the NPP of urban woodland produced lower estimates because of mixed pixels. Similar trends in NPP were observed with different RS data. In addition, expansion of residential areas and reduction of vegetated areas were the major reasons for NPP change. Land cover changes in urban areas reduced NPP, which could chiefly be attributed to human-induced disturbance.

  14. Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, Wisconsin

    NASA Technical Reports Server (NTRS)

    Bosch, H.; Toon, G. C.; Sen, B.; Washenfelder, R. A.; Wennberg, P. O.; Buchwitz, M.; deBeek, R.; Burrows, J. P.; Crisp, D.; Christi, M.; hide

    2006-01-01

    Space-based measurements of reflected sunlight in the near-infrared (NIR) region promise to yield accurate and precise observations of the global distribution of atmospheric CO2. The Orbiting Carbon Observatory (OCO) is a future NASA mission, which will use this technique to measure the column-averaged dry air mole fraction of CO2 (XCO2) with the precision and accuracy needed to quantify CO2 sources and sinks on regional scales (approx.1000 x 1000 sq km and to characterize their variability on seasonal timescales. Here, we have used the OCO retrieval algorithm to retrieve XCO2 and surface pressure from space-based Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measurements and from coincident ground-based Fourier transform spectrometer (FTS) measurements of the O2 A band at 0.76 mm and the 1.58 mm CO2 band for Park Falls,Wisconsin. Even after accounting for a systematic error in our representation of the O2 absorption cross sections, we still obtained a positive bias between SCIAMACHY and FTS XCO2 retrievals of approx.3.5%. Additionally, the retrieved surface pressures from SCIAMACHY systematically underestimate measurements of a calibrated pressure sensor at the FTS site. These findings lead us to speculate about inadequacies in the forward model of our retrieval algorithm. By assuming a 1% intensity offset in the O2 A band region for the SCIAMACHY XCO2 retrieval, we significantly improved the spectral fit and achieved better consistency between SCIAMACHY and FTS XCO2 retrievals. We compared the seasonal cycle of XCO2 at Park Falls from SCIAMACHY and FTS retrievals with calculations of the Model of Atmospheric Transport and Chemistry/Carnegie-Ames-Stanford Approach (MATCH/CASA) and found a good qualitative agreement but with MATCH/CASA underestimating the measured seasonal amplitude. Furthermore, since SCIAMACHY observations are similar in viewing geometry and spectral range to those of OCO, this study represents an important test of the OCO retrieval algorithm and validation concept using NIR spectra measured from space. Finally, we argue that significant improvements in precision and accuracy could be obtained from a dedicated CO2 instrument such as OCO, which has much higher spectral and spatial resolutions than SCIAMACHY. These measurements would then provide critical data for improving our understanding of the carbon cycle and carbon sources and sinks.

  15. Evaluation of Diagnostic CO2 Flux and Transport Modeling in NU-WRF and GEOS-5

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Collatz, G. J.; Tao, Z.; Wang, J. S.; Ott, L. E.; Liu, Y.; Andrews, A. E.; Sweeney, C.

    2015-12-01

    We report on recent diagnostic (constrained by observations) model simulations of atmospheric CO2 flux and transport using a newly developed facility in the NASA Unified-Weather Research and Forecast (NU-WRF) model. The results are compared to CO2 data (ground-based, airborne, and GOSAT) and to corresponding simulations from a global model that uses meteorology from the NASA GEOS-5 Modern Era Retrospective analysis for Research and Applications (MERRA). The objective of these intercomparisons is to assess the relative strengths and weaknesses of the respective models in pursuit of an overall carbon process improvement at both regional and global scales. Our guiding hypothesis is that the finer resolution and improved land surface representation in NU-WRF will lead to better comparisons with CO2 data than those using global MERRA, which will, in turn, inform process model development in global prognostic models. Initial intercomparison results, however, have generally been mixed: NU-WRF is better at some sites and times but not uniformly. We are examining the model transport processes in detail to diagnose differences in the CO2 behavior. These comparisons are done in the context of a long history of simulations from the Parameterized Chemistry and Transport Model, based on GEOS-5 meteorology and Carnegie Ames-Stanford Approach-Global Fire Emissions Database (CASA-GFED) fluxes, that capture much of the CO2 variation from synoptic to seasonal to global scales. We have run the NU-WRF model using unconstrained, internally generated meteorology within the North American domain, and with meteorological 'nudging' from Global Forecast System and North American Regional Reanalysis (NARR) in an effort to optimize the CO2 simulations. Output results constrained by NARR show the best comparisons to data. Discrepancies, of course, may arise either from flux or transport errors and compensating errors are possible. Resolving their interplay is also important to using the data in inverse models. Recent analysis is focused on planetary boundary depth, which can be significantly different between MERRA and NU-WRF, along with subgrid transport differences. Characterization of transport differences between the models will allow us to better constrain the CO2 fluxes, which is the major objective of this work.

  16. NASA Ames Environmental Sustainability Report 2011

    NASA Technical Reports Server (NTRS)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  17. Carnegie Cuts a Crater

    NASA Image and Video Library

    2015-04-10

    Carnegie Rupes makes a dramatic sight in this large image mosaic. The giant lobate scarp cuts through Duccio crater. If you were to approach the scarp from the southwest, you would find yourself facing a wall nearly 2 km high! Be sure to zoom in for a closer look! Carnegie Rupes was named after a research vessel launched in 1909. The ship was built almost entirely from wood and other non-magnetic materials to allow sensitive magnetic measurements to be taken for the Carnegie Institution's Department of Terrestrial Magnetism. http://photojournal.jpl.nasa.gov/catalog/PIA19279

  18. NASA Ames Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This overview of NASA Ames Research Center is intended to give the target audience of university students a general understanding of the mission, core competencies, and research goals of NASA and Ames.

  19. Photographer: NASA Ames On 20 December 1989, Ames buried a time capsule and unveiled a sculpture at

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Photographer: NASA Ames On 20 December 1989, Ames buried a time capsule and unveiled a sculpture at the spot where, fifty years earlier, Russel Robinson had turned the first spade of dirt for the Ames construction shack: Robinson (left) Ames Director Dale Compton (center) and Ames Deputy Director Sy Syvertson (right)

  20. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity.

    PubMed

    He, Chunyang; Liu, Zhifeng; Xu, Min; Ma, Qun; Dou, Yinyin

    2017-01-15

    Cropland net primary productivity (CNPP) is a crucial indicator of grain productivity and food security. However, assessments of the impact of urban expansion on the CNPP in China have been inadequate owing to data limitations. In this paper, our objective was to assess the impact of urban expansion on the CNPP in China from 1992 to 2015 in a spatially explicit manner. We first obtained the CNPP before urban expansion between 1992 and 2015 in China using the Carnegie-Ames-Stanford Approach (CASA) model. We then assessed the impact of urban expansion on the CNPP from 1992 to 2015 at multiple scales (the whole country, agricultural zones, and urban expansion hotspots) by combining the CNPP before urban expansion with the urban land coverage time series extracted from multi-source remotely sensed data. We found that the total loss of the CNPP due to urban expansion from 1992 to 2015 was 13.77TgC, which accounts for 1.88% of the CNPP before urban expansion in China. This CNPP loss resulted in a 12.45-million-ton decrease in grain production in China, corresponding to a reduction in the mean annual grain self-sufficiency rate of 2%. Therefore, we concluded that rapid urban expansion from 1992 to 2015 caused stress to China's food security. We suggest that it is still vital for China to effectively protect cropland to improve the urbanization level to 60% by 2020. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ARC-2008-ACD08-0205-069

    NASA Image and Video Library

    2008-09-16

    NASA's 50th Anniversay year. Panel discussion with four of NASA AMES's past center directors on how their tenure effected Ames and NASA. On the projects they pushed for and/or pushed forward and the culture of the center and the agency and how that worked for or against Ames, as well as major contributions of the time made by Ames Research Center. Panel L-R; Hans Mark, Sy Syvertson, Dale Compton, Scott Hubbard and Pete Worden, present director. (Past Directors served for periods from 1969 thru 2006) Sy Syverson posses with his portrait hanging in the hall of NASA Ames Administration Building N-200.

  2. ARC-1965-A-34401

    NASA Image and Video Library

    1965-04-22

    Vance I. Oyama at the Gas Chromatograph in Ames' life detection laboratory, Vance and his brother Jiro both pioneered new areas of life sciences research at Ames. Publication: Ames History; Atmosphere of Freedom; 60 yrs at NASA Ames NASA SP-2000-4314

  3. ARC-2006-ACD06-0113-006

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. (back row l-r) Yvonne Clearwater, Ames Education Division, Donald James, Ames Education Division Chief, Pete Worden, Ames Center Director, Angela Diaz, Ames Director of Strategic Communications) see full text on the NASA-Ames News - Research # 04-91AR

  4. Improved simulation of regional CO2 surface concentrations using GEOS-Chem and fluxes from VEGAS

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Zhu, J.; Zeng, N.

    2013-08-01

    CO2 measurements have been combined with simulated CO2 distributions from a transport model in order to produce the optimal estimates of CO2 surface fluxes in inverse modeling. However, one persistent problem in using model-observation comparisons for this goal relates to the issue of compatibility. Observations at a single station reflect all underlying processes of various scales. These processes usually cannot be fully resolved by model simulations at the grid points nearest the station due to lack of spatial or temporal resolution or missing processes in the model. In this study the stations in one region were grouped based on the amplitude and phase of the seasonal cycle at each station. The regionally averaged CO2 at all stations in one region represents the regional CO2 concentration of this region. The regional CO2 concentrations from model simulations and observations were used to evaluate the regional model results. The difference of the regional CO2 concentration between observation and modeled results reflects the uncertainty of the large-scale flux in the region where the grouped stations are. We compared the regional CO2 concentrations between model results with biospheric fluxes from the Carnegie-Ames-Stanford Approach (CASA) and VEgetation-Global-Atmosphere-Soil (VEGAS) models, and used observations from GLOBALVIEW-CO2 to evaluate the regional model results. The results show the largest difference of the regionally averaged values between simulations with fluxes from VEGAS and observations is less than 5 ppm for North American boreal, North American temperate, Eurasian boreal, Eurasian temperate and Europe, which is smaller than the largest difference between CASA simulations and observations (more than 5 ppm). There is still a large difference between two model results and observations for the regional CO2 concentration in the North Atlantic, Indian Ocean, and South Pacific tropics. The regionally averaged CO2 concentrations will be helpful for comparing CO2 concentrations from modeled results and observations and evaluating regional surface fluxes from different methods.

  5. Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed a review room in its headquarters building where, in the graphical style that prevailed in the 1960's, Ames leadership could review progress against schedule, budget and performance measures. Shown, in October 1965 is Merrill Mead chief of Ames' program and resources office. (for H Julian Allen Retirement album)

  6. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  7. NASA Ames and Traveling Space Museum Host Space Day at Bay Area Schools (Version 2 - Final)

    NASA Image and Video Library

    2010-08-10

    NASA Ames and the Traveling Space Museum visited under-represented students in the Bay Area in an effort to excite them to the possibilities in science, technology, engineering and mathematics. Includes soundbites from Lewis Braxton III (NASA Ames) and actress Nichelle Nichols (TSM).

  8. Analysis of Returned Comet Nucleus Samples

    NASA Astrophysics Data System (ADS)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  9. Analysis of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Chang, Sherwood (Compiler)

    1997-01-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  10. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Meets with

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Meets with Roberto Cruz, National Hispanic University (seated, right) and Ames Center Director Dr. Henry McDonald follow the signing of the educational MOU between NHU and Ames.

  11. (New) NASA Director Sean O'Keefe comes to Ames for employee briefing and tour. Meets with Roberto

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Director Sean O'Keefe comes to Ames for employee briefing and tour. Meets with Roberto Cruz, National Hispanic University (seated, right) and Ames Center Director Dr. Henry McDonald follow the signing of the educational MOU between NHU and Ames.

  12. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  13. NASA Ames Participates in Two Major Bay Area Events (Reporter Package)NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

    NASA Image and Video Library

    2014-05-28

    NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

  14. ARC-2010-ACD10-0123-001

    NASA Image and Video Library

    2010-06-24

    Park Avenue Elementary Teachers Visit / Thank You for Donation of Computers. From left to right are Dennis Wingo, Skycorp, Damon Reid, Property Disposal Officer NASA Ames, Andy Dominguez, Property Disposal Specialist NASA Ames, Kenneth Zin, PKZ Corp. Pete Worden, Director, NASA Ames Research Center, Sergio Torres, Vice Principle Park Avenue Elementary, unkown, Betty Maxwell, Speech Languare Pathologist.

  15. Autonomy @ Ames

    NASA Technical Reports Server (NTRS)

    Van Dalsem, William; Krishnakumar, Kalmanje Srinivas

    2016-01-01

    This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html

  16. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  17. NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)

    NASA Image and Video Library

    2012-08-08

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.

  18. ARC-2010-ACD10-0066-001

    NASA Image and Video Library

    2010-04-09

    Netherlands Memorandum of Record (MOR) agreement signing and visit to the NASA Ames Research Center, Mofffett Field, California. At the table are left to right, Dr. Scott Sanford, NASA Ames, Dr Alexander Tielens, former NASA Civil Servant and former SOFIA Project Scientist, Dr Andrew Mattioda, NASA Ames, Dr. Louis B.J.Vertegaal, Director of Physical Sciences, Chemistry, and Advanced Chemical Technologies for Sustainability, of the Netherlands Organisation for Scientific Research (NWO)

  19. Improved simulation of group averaged CO2 surface concentrations using GEOS-Chem and fluxes from VEGAS

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Zhu, J.; Zeng, N.

    2013-01-01

    CO2 measurements have been combined with simulated CO2 distributions from a transport model in order to produce the optimal estimates of CO2 surface fluxes in inverse modeling. However one persistent problem in using model-observation comparisons for this goal relates to the issue of compatibility. Observations at a single site reflect all underlying processes of various scales that usually cannot be fully resolved by model simulations at the grid points nearest the site due to lack of spatial or temporal resolution or missing processes in models. In this article we group site observations of multiple stations according to atmospheric mixing regimes and surface characteristics. The group averaged values of CO2 concentration from model simulations and observations are used to evaluate the regional model results. Using the group averaged measurements of CO2 reduces the noise of individual stations. The difference of group averaged values between observation and modeled results reflects the uncertainties of the large scale flux in the region where the grouped stations are. We compared the group averaged values between model results with two biospheric fluxes from the model Carnegie-Ames-Stanford-Approach (CASA) and VEgetation-Global-Atmosphere-Soil (VEGAS) and observations to evaluate the regional model results. Results show that the modeling group averaged values of CO2 concentrations in all regions with fluxes from VEGAS have significant improvements for most regions. There is still large difference between two model results and observations for grouped average values in North Atlantic, Indian Ocean, and South Pacific Tropics. This implies possible large uncertainties in the fluxes there.

  20. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 7:30 a.m. to 11:30 a.m., Local Time. ADDRESSES: NASA Ames Research Center, NASA Ames Conference...

  1. What Machines Need to Learn to Support Human Problem-Solving

    NASA Technical Reports Server (NTRS)

    Vera, Alonso

    2017-01-01

    In the development of intelligent systems that interact with humans, there is often confusion between how the system functions with respect to the humans it interacts with and how it interfaces with those humans. The former is a much deeper challenge than the latter it requires a system-level understanding of evolving human roles as well as an understanding of what humans need to know (and when) in order to perform their tasks. This talk will focus on some of the challenges in getting this right as well as on the type of research and development that results in successful human-autonomy teaming. Brief Bio: Dr. Alonso Vera is Chief of the Human Systems Integration Division at NASA Ames Research Center. His expertise is in human-computer interaction, information systems, artificial intelligence, and computational human performance modeling. He has led the design, development and deployment of mission software systems across NASA robotic and human space flight missions, including Mars Exploration Rovers, Phoenix Mars Lander, ISS, Constellation, and Exploration Systems. Dr. Vera received a Bachelor of Science with First Class Honors from McGill University in 1985 and a Ph.D. from Cornell University in 1991. He went on to a Post-Doctoral Fellowship in the School of Computer Science at Carnegie Mellon University from 1990-93.

  2. Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Technical Reports Server (NTRS)

    Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia

    2015-01-01

    Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.

  3. NASA Ames Research Center Air Traffic Management Research Overview

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2017-01-01

    This is a presentation to the Owl Feather Society, a group of people who are retired from NASA Ames Research Center. I am providing a summary of the ATM research here at NASA Ames to this group as part of a lunch time talk series. The presentation will be at Michael's Restaurant in Mountain View, CA on July 18.

  4. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  5. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Meets with

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Meets with Roberto Cruz, National Hispanic University (left) at Amesto sign the educational MOU between NHU and Ames.

  6. Center Overview and UAV Highlights at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Feng, Deborah; Yan, Jerry Chi Yiu

    2017-01-01

    The PowerPoint presentation gives an overview of NASA Ames Research Center and its core competencies, as well as some of the highlights of Unmanned Aerial Vehicle (UAV) and Unmanned Aircraft Systems (UAS) accomplishments and innovations by researchers at Ames.

  7. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  8. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  9. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCIL𔃻N This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California

  10. NASA Ames 2016 Highlights

    NASA Image and Video Library

    2016-12-28

    2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!

  11. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    From Left to Right: Ashley Karp (NASA JPL), Hunjoo Kim (NASA JPL), Brian Schratz (NASA JPL) and Kyle Botteon (NASA JPL) Testing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (building N249, OARF) at NASA’s Ames Research Center.

  12. ARC-2009-ACD09-0141-016

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  13. ARC-2009-ACD09-0141-015

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  14. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    From Left to Right: 1. Hunjoo Kim (NASA JPL) 2. Kyle Botteon (NASA JPL) 3. Ashley Karp (NASA JPL) 4. Brian Schratz (NASA JPL) Testing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (building N249, OARF) at Ames Research Center.

  15. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful in fostering cross-organizational collaborations, soliciting participation of non-technical innovations, and increasing employee engagement in influencing the future of NASA Ames Research Center. The grassroots component of the Innovation Fair has been bench marked by the agency as a solid foundation for increasing employee engagement in the development of game changing aerospace technology and processes in support of NASA's mission.

  16. ARC-2008-ACD08-0205-060

    NASA Image and Video Library

    2008-09-16

    NASA's 50th Anniversay year. Panel discussion with four of NASA AMES's past center directors on how their tenure effected Ames and NASA. On the projects they pushed for and/or pushed forward and the culture of the center and the agency and how that worked for or against Ames, as well as major contributions of the time made by Ames Research Center. Panel L-R; Hans Mark, Sy Syvertson, Dale Compton, Scott Hubbard and Pete Worden, present director. (Past Directors served for periods from 1969 thru 2006) at a round table in the Boyd Room of N-200.

  17. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  18. NASA Administrator Visits Ames Research Center (Reporter Pkg - May 2013)

    NASA Image and Video Library

    2013-05-24

    NASA Administrator Charles Bolden and Congressman Mike Honda (D-San Jose, CA) were special guests at Ames Research Center recently. During their visit, they visited the SpaceShop, where they were shown demonstrations of Ames' contributions to the PhoneSat nano-satellite mission and 3D printing activity

  19. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    Ashley Karp, NASA JPL (Left) and Hunjoo Kim, NASA JPL (Right) attaching heat sensors the Peregrine Hybrid Rocket Engine prior to its test at the Outdoor Aerodynamic Research Facility (OARF, N-249) at NASA's Ames Research Center.

  20. ARC-2007-ACD07-0145-023

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. (with front right, Eric James, NASA-EX on camera, Ed Schilling, NASA video producer in distance with Astrid Olson, NASA Ames PAO)

  1. Perceptual Performance Impact of GPU-Based WARP and Anti-Aliasing for Image Generators

    DTIC Science & Technology

    2016-06-29

    with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator. This 15-channel, 150...ABSTRACT In 2012 the U.S. Air Force School of Aerospace Medicine, in partnership with the Air Force Research Laboratory (AFRL) and NASA AMES...with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator to evaluate the

  2. Bacteriorhodopsin films for optical signal processing and data storage

    NASA Technical Reports Server (NTRS)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  3. Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.

    2011-12-01

    Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these vegetation types is projected to increase to 808 MMtC. Our results indicate that future C storage in Arizona is highly dependent on precipitation. Given that most climate models for the Southwest predict a more arid future, it is likely that C storage will decrease in Arizona ecosystems, as it has in response to recent droughts, reducing mitigation of rising human emissions.

  4. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Parimal Kopardekar, NASA Ames Senior Engineer for Ait Transportation Systems gave an overview of UTM (Left). Huy Tran, NASA Ames Aeronautics Director, presents NASA UTM Project Overview.

  5. A Striking Perspective

    NASA Image and Video Library

    2015-04-16

    This image from NASA MESSENGER spacecraft provides a perspective view of the center portion of Carnegie Rupes, a large tectonic landform, which cuts through Duccio crater. The image shows the terrain (variations in topography) as measured by the MLA instrument and surface mapped by the MDIS instrument. The image was color-coded to highlight the variations in topography (red = high standing terrain, blue = low lying terrain). Tectonic landforms such as Carnegie Rupes form on Mercury as a response to interior planetary cooling, resulting in the overall shrinking of the planet. To make this graphic, 48 individual MDIS images were used as part of the mosaic. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Latitude: 57.1° Longitude: 304.0° E Scale: Duccio crater has a diameter of roughly 105 kilometers (65 miles) Height: Portions of Carnegie Rupes are nearly 2 kilometers (1.2 miles) in height Orientation: North is roughly to the left of the image http://photojournal.jpl.nasa.gov/catalog/PIA19422

  6. Climatic and topographical factors affecting the vegetative carbon stock of rangelands in arid and semiarid regions of China

    USGS Publications Warehouse

    Zhengchao, Ren; Huazhong, Zhu; Shi, Hua; Xiaoni, Liu

    2016-01-01

    Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001–2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500–3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for explaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.

  7. Taking climate, land use, and social economy into estimation of carbon budget in the Guanzhong-Tianshui Economic Region of China.

    PubMed

    Li, Ting; Li, Jing; Zhou, Zixiang; Wang, Yanze; Yang, Xiaonan; Qin, Keyu; Liu, Jingya

    2017-04-01

    Carbon sequestration is an indispensable ecosystem service provided by soil and vegetation, so mapping and valuing the carbon budget by considering both ecological and social factors is an important trend in evaluating ecosystem services. In this work, we established multiple scenarios to evaluate the impacts of land use change, population growth, carbon emission per capita, and carbon markets on carbon budget. We quantified carbon sinks (aboveground and belowground) under different scenarios, using the Carnegie-Ames-Stanford Approach (CASA) model and an improved carbon cycle process model, and studied carbon sources caused by human activities by analyzing the spatial distribution of human population and carbon emission per capita. We also assessed the net present value (NPV) for carbon budgets under different carbon price and discount rate scenarios using NPV model. Our results indicate that the carbon budget of Guanzhong-Tianshui Economic Region is surplus: Carbon sinks range from 1.50 × 10 10 to 1.54 × 10 10  t, while carbon sources caused by human activities range from 2.76 × 10 5 to 7.60 × 10 5  t. And the NPV for carbon deficits range from 3.20 × 10 11 RMB to 1.52 × 10 12 RMB. From the perspective of ecological management, deforestation, urban sprawl, population growth, and excessive carbon consumption are considered as the main challenges in balancing carbon sources and sinks. Levying carbon tax would be a considerable option when decision maker develops carbon emission reduction policies. Our results provide a scientific and credible reference for harmonious and sustainable development in the Guanzhong-Tianshui Economic Region of China.

  8. Assessing the impact of Amazonia logging with a new ecosystem model

    NASA Astrophysics Data System (ADS)

    Huang, M.; Asner, G. P.; Keller, M.; Berry, J. A.; Bustamante, M. M.

    2006-12-01

    Old-growth Amazonian forests play a fundamental role in the global climate and carbon cycle. Land use in old- growth tropical forests contributes to the accumulation of CO2 in the atmosphere and can alter the hydrological cycle, locally, regionally, and globally. Although deforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide (Houghton et al., 2000), other forest disturbances such as the selective logging have also increased in frequency and extent. Selective logging causes widespread collateral damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, erosion, fire, carbon storage, and plant and animal species. In this study, the impact of selective logging on the carbon budget of the Brazil Amazon region is assessed with a new 3-D version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model, which features: (1) an alternative way of estimating absorbed photosynthetically-active radiation (APAR) by taking advantage of new high-resolution maps of forest canopy gap fraction; (2) a pulse disturbance module to realistically modify the carbon pools after timber harvest; (3) a regrowth module considering changes in community composition; and (4) a radiative transfer module for charactering the dynamic 3-D light environment above the canopy and within gaps after logging. The model was calibrated and validated with field observations from the Large-scale Biosphere Atmosphere Experiment (LBA) and its sensitivity was evaluated with Monte Carlo simulations. The impacts of selected logging on regional carbon budget of the Brazilian Amazon were then assessed under different future climate change scenarios. Results from this study quantify the gross and net carbon storage effects of widespread logging practices throughout the Brazilian Amazon.

  9. ARC-2010-ACD10-0244-003

    NASA Image and Video Library

    2010-10-18

    From left, Giovanni Minelli with the NASA's Ames Research Center; Center: Kitty Sedam with Aerospace Corp.; and Charlie Friedericks with Ames inspect the packing list and instructions for the Ames-managed O/OREOS and NanoSail-D from NASA's Marshall Space Flgith Center nano satellites at Kodiak Launch Complex, Alaska . Image credit: U.S. Air Force/Lou Hernandez

  10. Task Allocation for Single Pilot Operations: A Role for the Ground

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Lachter, Joel; Feary, Mike; Comerford, Doreen; Battiste, Vernol; Mogford, Richard

    2012-01-01

    Researchers at NASA Ames Research Center and NASA Langley Research Center are jointly investigating issues associated with potential configurations for an environment in which a single pilot, or reduced crew, might operate. The research summarized in this document represents several of the efforts being put forth at NASA Ames Research Center. Specifically, researchers at NASA Ames Research Center coordinated and hosted a technical interchange meeting in order to gain insight from members of the aviation community. A description of this meeting and the findings are presented first. Thereafter, plans for ensuing research are presented.

  11. Harrison Ford Tapes Climate Change Show at Ames (Reporter Package)

    NASA Image and Video Library

    2014-04-11

    Hollywood legend Harrison Ford made a special visit to NASA's Ames Research Center to shoot an episode for a new documentary series about climate change called 'Years of Living Dangerously.' After being greeted by Center Director Pete Worden, Ford was filmed meeting with NASA climate scientists and discussed global temperature prediction data processed using one of the world's fastest supercomputers at Ames. Later he flew in the co-pilot seat in a jet used to gather data for NASA air quality studies.

  12. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  13. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely guided them, represents them to NASA headquarters and the world outside, then steps out of the way before they get run over.

  14. ARC-2007-ACD07-0145-001

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Dolores Beasley, Director NASA Ames PAO

  15. ARC-2007-ACD07-0145-002

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Dolores Beasley, Director NASA Ames PAO

  16. ARC-2002-ACD02-0015-070

    NASA Image and Video Library

    2002-02-01

    NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  17. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    (Left): Kyle Botteon (front) and Hunjpp Kim (Behind), NASA JPL. (Right): Gregory Zilliac, Advance Propulsion Technician. NASA Ames, preparing the Peregrine Hybrid Rocket Engine at the Outdoor Aerodynamic Research Facility (OARF, N-249).

  18. ARC-1985-AC85-0186-2

    NASA Image and Video Library

    1985-03-12

    XV-15 Tilt Rotor (NASA-703) in flight at Ames Research Center Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 122

  19. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  20. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  1. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  2. ACD16-0001-043

    NASA Image and Video Library

    2016-01-06

    Senior executives from the Renault-Nissan Alliance, including Carlos Ghosn, chairman and CEO of Nissan, and Jose Munoz, chairman of Nissan North America, visited Ames for meetings and a showcase of the technical partnership between NASA and Nissan North America. Shown here on left is Carlos Ghosn, CEO, Nissan on right Eugene Tu, Ames Center Director in front to the NASA sign at the VMS Facility at Ames Research Center ,CA.

  3. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  4. ARC-2006-ACD06-0216-010

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel Note: Eric Land of NASA/AMES video crew in lower left corner providing sound support for event

  5. ARC-1982-AC82-0253-11

    NASA Image and Video Library

    1982-04-07

    Sikorsky Rotor Systems Research Aircraft ' RSRA' (72-001 NASA-740) compound configuration in flight: NASA Ames Research Center, Hangar and 40x 80x120ft W.T. in the background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 132

  6. ARC-2007-ACD07-0145-018

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. with John Bluck, NASA Ames PAO officer

  7. The IBM PC at NASA Ames

    NASA Technical Reports Server (NTRS)

    Peredo, James P.

    1988-01-01

    Like many large companies, Ames relies very much on its computing power to get work done. And, like many other large companies, finding the IBM PC a reliable tool, Ames uses it for many of the same types of functions as other companies. Presentation and clarification needs demand much of graphics packages. Programming and text editing needs require simpler, more-powerful packages. The storage space needed by NASA's scientists and users for the monumental amounts of data that Ames needs to keep demand the best database packages that are large and easy to use. Availability to the Micom Switching Network combines the powers of the IBM PC with the capabilities of other computers and mainframes and allows users to communicate electronically. These four primary capabilities of the PC are vital to the needs of NASA's users and help to continue and support the vast amounts of work done by the NASA employees.

  8. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  9. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  10. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore, the NASA-ASEE- Ames/Dryden-Stanford Program has met its goals very well and every effort will be made to continue to do so in the future.

  11. Technical paper contest for women 1992. Space challenges: Earth and beyond

    NASA Technical Reports Server (NTRS)

    Orans, Robin (Editor)

    1993-01-01

    Two of the major concerns of the NASA Ames Research Center (NASA ARC) Advisory Committee for Women (ACW) are that recruitment of women scientists, engineers, and technicians needs to increase and that barriers to advancement need to be removed for improved representation of women in middle and upper management and scientific positions. One strategy that addressed this concern was the ACW sponsorship of a Technical Paper Contest for Women at Ames Research Center. Other sponsors of the Contest were the Ames Equal Opportunity Council and the Ames Contractor Council. The Technical Paper Contest for Women greatly increased the visibility of both the civil service women and the women who work for contractors at Ames. The women had the opportunity to hone their written and oral presentation skills. Networking among Ames women increased.

  12. ARC-2011-ACD11-0021-029

    NASA Image and Video Library

    2011-02-11

    NASA Ames Tweetup and tour of center by invitation of the NASA Ames Public Affairs Office. Tweeter group visit the Kepler Science Ops Center (SOC), while there recieve a overview and participate in a Q & A from Jeff Van Cleve.

  13. Partnering with NASA: An Overview

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  14. ARC-1957-A-23438

    NASA Image and Video Library

    1957-12-30

    H. Julian 'Harvey' Allen in front of the NASA Ames 8_x_7 foot Supersonic Wind Tunnel test section. A blunt body model mounted in the test section is ready for testing . The 8_X_7_foot is part of the Unitary Plan WInd Tunnel Complex Note: printed in 60 year at NASA Ames Research Center by Glenn Bugos NASA SP-2000-4314

  15. We Are Ames

    NASA Image and Video Library

    2015-01-26

    Ames Research Center, one of NASA's ten field Centers, is located in the heart of California's Silicon Valley. For 75 years, Ames has led the Agency and the country in conducting world-class research and development. Let some of Ames' employees tell you about the work that they do.

  16. ARC-2008-ACD08-0260-007

    NASA Image and Video Library

    2008-11-05

    K-10 'Red' planetary rover in the Nasa Ames Marscape: operations tests at Marscape (Ames Mars Yard) with remote operations from Ames Future Flight Centeral (FFC) Simulator with Susan Y. Lee observing.

  17. Peregrine Rocket Motor Test at the Ames Outdoor Aerodynamic Rese

    NASA Image and Video Library

    2017-02-15

    Hunjoo Kim, NASA JPL (Left) and Ashley Karp, NASA JPL (Right) attaching heat sensors the Peregrine Hybrid Rocket Engine prior to its test at the Outdoor Aerodynamic Research Facility (OARF, N-249) at NASA’s Ames Research Center.

  18. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  19. ARC-2009-ACD09-0054-005

    NASA Image and Video Library

    2009-04-09

    Yuri's Night 2009 held at the California Acaemy of Sciences in San Francisco, California from left in blue NASA jacket Mark Leon, Pete Worden, Lew Braxton, and Dana Bolles of Ames look over the the NASA Ames robotics team the Cheesy Poofs robot)

  20. Photographer: N/A Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Photographer: N/A Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet Field Navy Hangar and Ames VMS in background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 133

  1. SOFIA Aircraft Visits NASA Ames, Reporter Package for TWAN/Web

    NASA Image and Video Library

    2011-10-19

    Taking a break from its science mission flights, the Stratospheric Observatory For Infrared Astronomy or SOFIA came to NASA Ames Research Center to offer tours to employees and VIP's alike. For two days, the aircraft was opened up so that dignitaries, members of the media, NASA employees and the general public could take self-guided tours of the aircraft.

  2. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  3. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  4. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  5. ARC-1985-AC85-0569-2

    NASA Image and Video Library

    1985-08-12

    Boeing CH-47B (USA 66-19138 NASA-737) Chinook in-flight simulator with Moffet Field Navy Hangar and Ames VMS in background. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 133

  6. ARC-2006-ACD06-0230-018

    NASA Image and Video Library

    2006-12-15

    Kick-off event for Google NASA collaboration (held in the Ames Exploration Center 943A) with Chris Kemp, Ames Business Development (L) Ames Center Director Pete Worden (M) and Dan Clancy, Director of engineering Google (R)

  7. ARC-2006-ACD06-0230-019

    NASA Image and Video Library

    2006-12-15

    Kick-off event for Google NASA collaboration (held in the Ames Exploration Center 943A) with Chris Kemp, Ames Business Development (L) Ames Center Director Pete Worden (M) and Dan Clancy, Director of engineering Google (R)

  8. ARC-2006-ACD06-0113-012

    NASA Image and Video Library

    2006-06-28

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. On the Ames end we find the Girl Csouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR Center Director works with 'SpaceCookie' sending commands to Zoe.

  9. ARC-2006-ACD06-0113-015

    NASA Image and Video Library

    2006-06-28

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. On the Ames end we find the Girl Csouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR Center Director works with 'SpaceCookie' sending commands to Zoe.

  10. ARC-2006-ACD06-0113-014

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. On the Ames end we find the Girl Csouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR Center Director works with 'SpaceCookie' sending commands to Zoe.

  11. ARC-2006-ACD06-0113-013

    NASA Image and Video Library

    2006-06-28

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. On the Ames end we find the Girl Csouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR Center Director works with 'SpaceCookie' sending commands to Zoe.

  12. Test Data Report, Low-Speed Wind Tunnel Drag Test of a 2/5 Scale Lockheed AH-56 Cheyenne Door-Hinge Hub

    DTIC Science & Technology

    2016-07-01

    the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research Center in Moffett Field, CA. The purpose of the test was to quantify the drag...drag test of a non-rotating 2/5 scale Lockheed AH-56 Cheyenne main rotor hub in the U.S. Army 7– by 10–foot Wind Tunnel located at NASA Ames Research...the U.S. Army 7– by 10–foot wind tunnel at NASA Ames Research Center 5 2.3 Perspective view of the hub mounted with major dimensions and model

  13. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  14. ARC-2007-ACD07-0145-021

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Bill Moede and Jim Taylor, Ames (Planners) Video crew and Ed Schilling, NASA video producer in distance

  15. ARC-2008-ACD08-0175-004

    NASA Image and Video Library

    2008-08-07

    Dr Aubrey de Grey presents a Director's Colloquium to the NASA Ames Research Center staff entitled 'Prospects for defeating aging altogether' Dr. de Grey is a British bomedical gerontologist educated at Cambridge University in the UK. A video of the presentation is currently available at the NASA Ames Library.

  16. ARC-2008-ACD08-0175-006

    NASA Image and Video Library

    2008-08-07

    Dr Aubrey de Grey presents a Director's Colloquium to the NASA Ames Research Center staff entitled 'Prospects for defeating aging altogether' Dr. de Grey is a British bomedical gerontologist educated at Cambridge University in the UK. A video of the presentation is currently available at the NASA Ames Library.

  17. ARC-2008-ACD08-0175-009

    NASA Image and Video Library

    2008-08-07

    Dr Aubrey de Grey presents a Director's Colloquium to the NASA Ames Research Center staff entitled 'Prospects for defeating aging altogether' Dr. de Grey is a British bomedical gerontologist educated at Cambridge University in the UK. A video of the presentation is currently available at the NASA Ames Library.

  18. ARC-2008-ACD08-0175-007

    NASA Image and Video Library

    2008-08-07

    Dr Aubrey de Grey presents a Director's Colloquium to the NASA Ames Research Center staff entitled 'Prospects for defeating aging altogether' Dr. de Grey is a British bomedical gerontologist educated at Cambridge University in the UK. A video of the presentation is currently available at the NASA Ames Library.

  19. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  20. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    Alan Boss, an astrophyscist at the Carnegie Institution at the Department of Terrestrial Magnetism speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  1. ARC-2009-ACD09-0261-006

    NASA Image and Video Library

    2009-12-10

    Korean High Level Delegation Visit Ames Certer Director and variou Senior staff: from left to right; Gary Martin, Director of New Ventures and Communication, NASA. Ames, Chris Giulietti, NASA Headquarters, Soon-Duk Bae, Deputy Director, Big Science Policy Division, Ministry of Educaiton, Science Technology, Young-Mok Hyun, Deputy Director, Space Development Division, Ministry of Educaiton, Science Technology, Yvonne Pendleton, Director of Lunar Science Institute, Terry Pagaduan, Ames Government Relations/Legislative Affairs Office, Seorium Lee, Senior Researcher, International Relations Korea Aerospace Research Institute

  2. RIACS FY2002 Annual Report

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    2002-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. Operated by the Universities Space Research Association (a non-profit university consortium), RIACS is located at the NASA Ames Research Center, Moffett Field, California. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in September 2003. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology (IT) Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1) Automated Reasoning for Autonomous Systems; 2) Human-Centered Computing; and 3) High Performance Computing and Networking. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains including aerospace technology, earth science, life sciences, and astrobiology. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  3. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River.

  4. ARC-2010-ACD10-0037-165

    NASA Image and Video Library

    2010-08-03

    Construction of the new NASA Ames Green Building dubbed Sustainability Base located on the Ames Research Center campus at Moffett Field, CA. Construction Sign. 'Future home of for NASA's Collaborative Support Facility' in partnership with AECOM & William McDonough + Partners and Swinerton Builders ....Sustainability Base ..window to the future on Earth.

  5. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  6. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  7. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  8. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  9. ARC-2006-ACD06-0113-010

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  10. ARC-2006-ACD06-0113-003

    NASA Image and Video Library

    2006-06-28

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  11. ARC-2006-ACD06-0113-001

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  12. ARC-2006-ACD06-0113-005

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  13. ARC-2006-ACD06-0113-009

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  14. ARC-2006-ACD06-0113-002

    NASA Image and Video Library

    2006-06-28

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  15. ARC-2006-ACD06-0113-007

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  16. ARC-2006-ACD06-0113-011

    NASA Image and Video Library

    2006-07-05

    Spaceward Bound Program in Atacama Desert; shown here is a realtime webcast from Yungay, Chile vis satellite involving NASA Scientists and seven NASA Explorer school teachers. On the Ames end we find the Girl Scouts Space cookines robotic team. The robot nicknamed Zoe is looking for life in extreme environments in preparation for what might be encounter on Mars. see full text on the NASA-Ames News - Research # 04-91AR

  17. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  18. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1989-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. Some research projects as well as some applications are highlighted. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  19. ARC-2010-ACD10-0066-004

    NASA Image and Video Library

    2010-04-09

    Netherlands Memorandum of Record (MOR) agreement signing the NASA Ames Research Center, Mofffett Field, California. Signing the MOR are on left Dr. Louis B.J.Vertegaal, Director of Physical Sciences, Chemistry, and Advanced Chemical Technologies for Sustainability, of the Netherlands Organisation for Scientific Research (NWO) and on right Dr. S. Pete Worden, Director NASA Ames Research Center

  20. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  1. ARC-2006-ACD06-0230-021

    NASA Image and Video Library

    2006-12-15

    Kick-off event for Google NASA collaboration (held in the Ames Exploration Center 943A) with Chris Kemp, Ames Business Development (L) Ames Center Director Pete Worden (L-M) Tiffany Montage, Project Manager Engineering, Google (R-M) and Dan Clancy, Director of engineering Google (R)

  2. Sesquinaries, Magnetics and Atmospheres: Studies of the Terrestrial Moons and Exoplanets

    DTIC Science & Technology

    2016-12-01

    support provided by Red Sky Research, LLC. Computational support was provided by the NASA Ames Mission Design Division (Code RD) for research...Systems Branch (Code SST), NASA Ames Research Center, provided supercomputer access and computational resources for the work in Chapter 5. I owe a...huge debt of gratitude to Dr. Pete Worden, Dr. Steve Zornetzer, Dr. Alan Weston ( NASA ), and Col. Carol Welsch, Lt. Col Joe Nance and Lt. Col Brian

  3. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  4. ARC-1969-AC90-0178-97

    NASA Image and Video Library

    1990-06-04

    Bell NAH-1G (USA 70-15979 NASA-736) FLITE Cobra helicopter hovering on Ames ramp is successor to the original FLITE Cobra. It has been used extensively in joint NASA/Army human factors research in the areas of night vision displays and voice communications since its arrival in 1987. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 140

  5. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  6. NASA in Silicon Valley Live - Episode 02 - Self-driving Robots, Planes and Automobiles

    NASA Image and Video Library

    2018-01-26

    NASA in Silicon Valley Live is a live show streamed on Twitch.tv that features conversations with the various researchers, scientists, engineers and all around cool people who work at NASA to push the boundaries of innovation. In this episode livestreamed on January 26, 2018, we explore autonomy, or “self-driving” technologies with Terry Fong, NASA chief roboticist, and Diana Acosta, technical lead for autonomous systems and robotics. Video credit: NASA/Ames Research Center NASA's Ames Research Center is located in California's Silicon Valley. Follow us on social media to hear about the latest developments in space, science, technology and aeronautics.

  7. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  8. ARC-1968-A-41727-6-4

    NASA Image and Video Library

    1968-10-24

    Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed a review room in its headquarters building where, in the graphical style that prevailed in the 1960's, Ames leadership could review progress against schedule, budget and performance measures. Shown, in October 1965 is Merrill Mead chief of Ames' program and resources office. (for H Julian Allen Retirement album)

  9. ARC-1969-AC-31031

    NASA Image and Video Library

    1963-06-11

    Ames aerodynamicists tested a wide variety of VTOL aircraft and helicopters during the 1960's. Here the Hiller rotorcycle YROE-1, made by Hiller Helicopter in nearby PaloAlto, California, hovers in front of the Ames Hangar. (4020, 4021, 4024) Published in NASA SP Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology and Ames 60yr History Atmosphere of Freedom.

  10. NASA Ames Hosts Viewing Party for Final Shuttle Launch (Reporter Package)

    NASA Image and Video Library

    2011-07-12

    The public was invited to NASA's Ames Research Center to observe a live televised broadcast of the final space shuttle launch on July 8, 2011. The STS-135 mission is the final flight of NASA's Space Shuttle Program. The orbiter Atlantis is carrying a system to investigate the potential for robotically refueling existing spacecraft and bring back a failed ammonia pump to help NASA better understand and improve pump designs for future systems. It also will deliver spare parts to sustain space station operations after the shuttles retire from service.

  11. NASA Ames Helps Re-enter the Dragon (Centerpiece for TWAN and Web)

    NASA Image and Video Library

    2012-05-14

    When the SpaceX Dragon spacecraft returns to Earth after its mission to the International Space Station, it will depend on a heat shield material called PICA-X to protect it during reentry. The heat shield material, called Phenolic Impregnated Carbon Ablator or PICA-X, was developed in partnership with NASA Ames Research Center.

  12. The Earth Science Unmanned Aerial System (UAS) Demonstration in the Rover Scape at NASA's Ames Research Center.

    NASA Image and Video Library

    2016-09-30

    Flight Test in the Roverscape (N-269) at NASA's Ames Research Center, the project team tests the DJI Matrice 600 Unmanned Aerial Vehicle (UAV) equipped with a radio tracking receiver to study the invasive asian carp in the Mississippi River. Rick, Kolyer, Jonas Jonsson, Ethan, Pinsker, Bob Dahlgren.

  13. NASA quiet short-haul research aircraft experimenters' handbook

    NASA Technical Reports Server (NTRS)

    Mccracken, R. C.

    1980-01-01

    A summary of guidelines and particulars concerning the use of the NASA-Ames Research Center Quiet Short-Haul Research Aircraft for applicable flight experiments is presented. Procedures for submitting experiment proposals are included along with guidelines for experimenter packages, an outline of experiment selection processes, a brief aircraft description, and additional information regarding support at Ames.

  14. ARC-1964-AC-32745

    NASA Image and Video Library

    1964-09-19

    XV-5A airplane installed in 40x80ft Subsonic Wind Tunnel at NASA Ames Research Center with Tom Mills. The propulsive lift system was tested to determine power-on performance characteristics in preparation for flight tests. Used in Memoiors of an Aeronautical Engineer, Flight Tests at Ames Research Center 1940-1970 NASA-SP-2002-4526 (Seth B. Anderson)

  15. Determination and Correction of Persistent Biases in Quantum Annealers

    DTIC Science & Technology

    2016-08-25

    programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames...The quantum annealers used for this study are of the second generation of D-Wave devices, also called D-Wave Two2: one located at NASA Ames Research...Center in Moffett Field, California, (“ NASA device”), and another located at D-Wave Systems in Burnaby, Canada (“Burnaby device”). These consist of 64

  16. NASA Ames Contributes to Orion / EFT-1 Test Flight (Reporter Pkg)

    NASA Image and Video Library

    2014-12-03

    NASA's Orion spacecraft is built to take humans farther than they've ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA's Ames Research Center played a critical role in the development and preparation for the flight test designated Exploration Flight Test 1, or EFT-1.

  17. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  18. ARC-2007-ACD07-0065-028

    NASA Image and Video Library

    2007-04-12

    Ames Video group during interviewing Dave Lathem, Harvard Smithsonian Center for Astrophysics, Cambridge, MR at the SETI Institute during a NASA Ames Kepler Mission conference. Dave Maurantonio, Ed Schilling, Bill Moede, and Eric Land, Ames/Planners Video crew (Kepler a search for habitable planets was selected for Discovery Program)

  19. ARC-2012-ACD12-0020-005

    NASA Image and Video Library

    2012-02-10

    Then and Now: These images illustrate the dramatic improvement in NASA computing power over the last 23 years, and its effect on the number of grid points used for flow simulations. At left, an image from the first full-body Navier-Stokes simulation (1988) of an F-16 fighter jet showing pressure on the aircraft body, and fore-body streamlines at Mach 0.90. This steady-state solution took 25 hours using a single Cray X-MP processor to solve the 500,000 grid-point problem. Investigator: Neal Chaderjian, NASA Ames Research Center At right, a 2011 snapshot from a Navier-Stokes simulation of a V-22 Osprey rotorcraft in hover. The blade vortices interact with the smaller turbulent structures. This very detailed simulation used 660 million grid points, and ran on 1536 processors on the Pleiades supercomputer for 180 hours. Investigator: Neal Chaderjian, NASA Ames Research Center; Image: Tim Sandstrom, NASA Ames Research Center

  20. Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS

    NASA Technical Reports Server (NTRS)

    Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George

    2016-01-01

    This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.

  1. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  2. Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Melillo, J.M.; Randerson, J.T.; Parton, W.J.; Heimann, Martin; Meier, R.A.; Clein, Joy S.; Kicklighter, D.W.; Sauf, W.

    2000-01-01

    Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2) at high latitude monitoring stations during the nongrowing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 ??C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30??N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations, in comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.

  3. Trade-offs among ecosystem services in a typical Karst watershed, SW China.

    PubMed

    Tian, Yichao; Wang, Shijie; Bai, Xiaoyong; Luo, Guangjie; Xu, Yan

    2016-10-01

    Nowadays, most research results on ecosystem services in Karst areas are limited to a single function of an ecosystem service. Few scholars conduct a comparative study on the mutual relationships among ecosystem services, let alone reveal the trade-off and synergic relationships in typical Karst watershed. This research aims to understand and quantitatively evaluate the relationships among ecosystem services in a typical Karst watershed, broaden the depth and width of trade-off and synergic relationships in ecosystem services and explore a set of technical processes involved in these relationships. With the Shibantang Karst watershed in China as the research site, we explore the trade-off and synergic relationships of net primary productivity (NPP), water yield, and sediment yield by coupling Soil and Water Assessment Tool (SWAT) and Carnegie-Ames-Stanford Approach (CASA), and simulating and evaluating these three ecosystem services between 2000 and 2010. Results of this study are as follows. (1) The annual average water yield decreased from 528mm in 2000 to 513mm in 2010, decreasing by 2.84%. (2) The annual average sediment yield decreased from 26.15t/ha in 2000 to 23.81t/ha in 2010, with an average annual reduction of 0.23t/ha. (3) The annual average NPP increased from 739.38gCm(-2)a(-1) in 2000 to 746.25gCm(-2)a(-1) in 2010, increasing by 6.87gCm(-2)a(-1) . (4) Water yield and sediment yield are in a synergic relationship. The increase of water yield can accumulate the soil erosion amount. NPP is in a trade-off relationship with water yield and sediment yield. The improvement of NPP is good for decreasing water yield and soil erosion amount and increasing soil conservation amount. This study provides policy makers and planners an approach to develop an integrated model, as well as design mapping and monitoring protocols for land use change and ecosystem service assessments. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ames Research Center Publications-1976

    NASA Technical Reports Server (NTRS)

    Sherwood, B.

    1978-01-01

    Bibliography of the publications of Ames Research Center authors and contractors, which appeared in formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports. Covers 1976.

  5. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  6. NASA Beechcraft KingAir #801 in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA 801 Beechcraft Beech Super KingAir in flight. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  7. NASA KingAir #801 during takeoff

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA KingAir N801NA during takeoff. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. Dryden assumed the mission and aircraft in September 1996. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  8. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  9. Catalog of Space Shuttle Earth Observations Handheld Photography. Space Transportation System 39 (STS-39) Mission Dates: April 28 Through May 6, 1991

    DTIC Science & Technology

    1991-10-01

    Albuquerque, NM 87131 Telephone: (505) 277-3622 Media Services Branch Still Photography Library NASA Lyndon B. Johnson Space Center P.O. Box 58425...organizations similarly equipped are the NASA Ames Research Center, California; the Library of Congress; the University of California at Santa Barbara; the Lunar...219 (M.S. 240-6) NASA Ames Research Center Moffett Field, CA 94305 (415) 604-6252 U.S. GOVERNMENT - LIBRARY OF CONGRESS Geography & Map Division Rm. B

  10. Destination Innovation: Episode 4 CheMin

    NASA Image and Video Library

    2012-08-02

    Destination Innovation is a new series that explores the research, science and other projects underway at the NASA Ames Research Center. Episode 4 focuses on the CheMin instrument aboard the Mars Science Laboratory, NASA' s latest robotic explorer to visit Mars. CheMin, short for 'Chemistry and Mineralogy,' was developed at NASA Ames Research Center and is one of 10 instruments aboard the rover Curiosity. The instrument is an x-ray diffractometer, which will be able to identify minerals in the Martial rock and soil.

  11. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  12. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  13. Aerial View Of The Site From The 40x80 Foot Wind Tunnel At Nasa Ames Research Center.

    NASA Image and Video Library

    1943-03-12

    (03/12/1943) Aerial view of the site from the 40x80 wind tunnel At NASA Ames Research Center. Site includes the 16 foot and 7x10 wind tunnels in the background. Building 200 also under construction. Framing for the drive fans of the 40x80 in scene.

  14. A survey of planning and scheduling research at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1988-01-01

    NASA Ames Research Center has a diverse program in planning and scheduling. This paper highlights some of our research projects as well as some of our applications. Topics addressed include machine learning techniques, action representations and constraint-based scheduling systems. The applications discussed are planetary rovers, Hubble Space Telescope scheduling, and Pioneer Venus orbit scheduling.

  15. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  16. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  17. N-232 Sustainability Base Construction

    NASA Image and Video Library

    2011-11-10

    Construction of the new NASA Ames Green Building dubbed Sustainability Base located on the Ames Research Center campus at Moffett Field, CA. Bloom Energy, Inc. powers the building. Bloom Energy equipment

  18. Continuous Risk Management Course. Revised

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.

    1999-01-01

    This document includes a course plan for Continuous Risk Management taught by the Software Assurance Technology Center along with the Continuous Risk Management Guidebook of the Software Engineering Institute of Carnegie Mellon University and a description of Continuous Risk Management at NASA.

  19. 1/50 Scale Model Of The 80X120 Foot Wind Tunnel Model (NFAC) In The Test Section Of The 40X80 Wind Tunnel At Nasa Ames.

    NASA Image and Video Library

    1976-03-12

    (03/12/1976) Overhead view of 1/50 scale model of the 80x120 foot wind tunnel model (NFAC) in the test section of the 40x80 wind tunnel at NASA Ames. Model mounted on a rotating ground board designed for this test.

  20. Landing and Rollout STS-135 Crew Training on the Vertical Motion Simulator (VMS) at NASA Ames (Reporter Pkg)

    NASA Image and Video Library

    2011-07-05

    Every Space Shuttle flight crew has trained for the final phase of a Shuttle mission, landing and rollout, using the VMS at NASA Ames. This story follows at the crew of STS-135, the final Space Shuttle mission, as they train on the VMS. Includes an interview with Chris Ferguson, the STS-135 mission commander.

  1. Simulator sickness research program at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Cook, Anthony M.

    1987-01-01

    The simulator sickness syndrome is receiving increased attention in the simulation community. NASA-Ames Research Center has initiated a program to facilitate the exchange of information on this topic among the tri-services and other interested government organizations. The program objectives are to identify priority research issues, promote efficient research strategies, serve as a repository of information, and disseminate information to simulator users.

  2. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  3. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  4. N-232 Sustainability Base Construction

    NASA Image and Video Library

    2011-11-10

    Construction of the new NASA Ames Green Building dubbed Sustainability Base located on the Ames Research Center campus at Moffett Field, CA. interior view as cubicles are being set up and open spaces arranged.

  5. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  6. 48 CFR 1802.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Acquisition Internet Service (NAIS) means the Internet service (URL: hhtp://procurement.nasa.gov) NASA uses to... Administrator or Deputy Administrator of NASA. Contracting activity in NASA includes the NASA Headquarters installation, the NASA Shared Services Center, and the following field installations: Ames Research Center...

  7. 48 CFR 1802.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Acquisition Internet Service (NAIS) means the Internet service (URL: hhtp://procurement.nasa.gov) NASA uses to... Administrator or Deputy Administrator of NASA. Contracting activity in NASA includes the NASA Headquarters installation, the NASA Shared Services Center, and the following field installations: Ames Research Center...

  8. 48 CFR 1802.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Acquisition Internet Service (NAIS) means the Internet service (URL: hhtp://procurement.nasa.gov) NASA uses to... Administrator or Deputy Administrator of NASA. Contracting activity in NASA includes the NASA Headquarters installation, the NASA Shared Services Center, and the following field installations: Ames Research Center...

  9. 48 CFR 1802.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Acquisition Internet Service (NAIS) means the Internet service (URL: hhtp://procurement.nasa.gov) NASA uses to... Administrator or Deputy Administrator of NASA. Contracting activity in NASA includes the NASA Headquarters installation, the NASA Shared Services Center, and the following field installations: Ames Research Center...

  10. 48 CFR 1802.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Acquisition Internet Service (NAIS) means the Internet service (URL: hhtp://procurement.nasa.gov) NASA uses to... Administrator or Deputy Administrator of NASA. Contracting activity in NASA includes the NASA Headquarters installation, the NASA Shared Services Center, and the following field installations: Ames Research Center...

  11. Energy Remote Sensing Applications Projects at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Likens, W. C.; Mouat, D. A.

    1982-01-01

    The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.

  12. Administrator Bolden visits Ames on This Week @NASA – February 19, 2016

    NASA Image and Video Library

    2016-02-19

    NASA Administrator Charles Bolden visited Ames Research Center at Moffett Field, California to thank employees for the work they do on behalf of the agency to improve aviation. President Obama’s Fiscal Year 2017 budget proposal for NASA calls for a multi-year investment in aeronautics research that will enable the agency to test, demonstrate and validate cutting-edge technologies designed to make aviation cleaner, greener, safer, and quieter. Also, Cygnus leaves the space station, New astrophysics mission, X-ray astronomy mission launches, and NEAR Shoemaker anniversary!

  13. Data Mining at NASA: From Theory to Applications

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.

    2009-01-01

    This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.

  14. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  15. ARC-2011-ACD11-0016-006

    NASA Image and Video Library

    2011-02-03

    The 14 member 2009 class of NASA astronauts, Japan Aerospace Explortion Agency (JAXA) astronauts and Canadian Space Agency astronauts visit Ames Research Center. Pete Worden, Ames Center Director joins the candidates during the round table.

  16. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  17. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  18. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  19. Airships 101: Rediscovering the Potential of Lighter-Than-Air (LTA)

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Hochstetler, Ronald D.

    2012-01-01

    An overview of airships past, present, and future is provided in a Powerpoint-formatted presentation. This presentation was requested for transfer to the British MOD by Paul Espinosa of NASA Ames, Code PX. The presentation provides general information about airships divided into four main categories: the legacy of NASA Ames in LTA (Lighter-Than-Air), LTA taxonomy and theory, LTA revival and missions, and LTA research and technology.

  20. ARC-2008-ACD08-0147-023

    NASA Image and Video Library

    2008-07-14

    California Governor Arnold Schwarzenegger during a press briefing following a visit to Ames Earth Science Division for a briefing by Steve Hipskind on NASA Ames remote sensing fire fighting efforts. Also shown left to right, Mike Freilich, Director, NASA Earth Sceinces Division, Steve Hipskind, Pete Worden, Governor Schwarzenegger, Chief Del Walters, Assistant Region Fire Chief, California Department of Forestry and Fire Protection, Tom Maruyama, Deputy Director, Office of Emergency Services

  1. Visualization of fluid dynamics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1989-01-01

    The hardware and software currently used for visualization of fluid dynamics at NASA Ames is described. The software includes programs to create scenes (for example particle traces representing the flow over an aircraft), programs to interactively view the scenes, and programs to control the creation of video tapes and 16mm movies. The hardware includes high performance graphics workstations, a high speed network, digital video equipment, and film recorders.

  2. The 1979 Ames Research Center Publications: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, and International Aerospace Abstracts in 1979. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, Personal Author, Corporate Source, Contract Number, and Report/Accession Number Indexes are provided.

  3. Ames Research Center publications: A continuing bibliography, 1978

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Abstracts, Limited Scientific and Technical Aerospace Abstracts, and International Aerospace Abstracts in 1978. Citations are arranged by directorate, type of publication and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  4. NASA's Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Evans, Cody; Mogford, Richard; Wing, David; Stallmann, Summer L.

    2017-01-01

    NASA's working with airlines and industry partners to introduce innovative concepts and new technology. This presentation will describe some of the research efforts at NASA Ames and NASA Langley and discuss future projects and research in aviation.

  5. Ames research center publications, 1975

    NASA Technical Reports Server (NTRS)

    Sherwood, B. R. (Compiler)

    1977-01-01

    This bibliography cites 851 documents by Ames Research Center personnel and contractors which appeared in formal NASA publications, journals, books, patents, and contractor reports in 1975, or not included in previous annual bibliographies. An author index is provided.

  6. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  7. Public-Private Partnerships: NASA as Your Business Partner

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  8. ARC-1958-A-23928

    NASA Image and Video Library

    1958-05-21

    NACA Photographer Thrust reverser on F-94C-1 (AF50-956 NACA 156) Starfire (l to R) Air Force Major E. Sommerich; Ames Engineer Seth Anderson, Lt. Col. Tavasti; and Ames Chief test pilot George Cooper discussing phases of flight evaluation tests. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 91

  9. The 1980-81 AFOSR-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 2. Taxonomies, Reporters’ Summaries, Evaluation, and Conclusions

    DTIC Science & Technology

    1981-09-01

    247-1 Moffett Field, CA 94035li W. Kordulla "NASA-Ames Research Center Mail Stop 202A-1 "Moffett Field, CA 94035 -. E. Krause Aerodynamiaches Inatitut...University Stanford, CA 94305 Wolfgang Rodi SFB 80 Universitat Karlsruhe Kaiserstrasse 12 D-75 Karlsruhe 1, W. Germany Robert Rogallo NASA-Ames Research Cntr

  10. Ames Research Center publications: A continuing bibliography, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, contractor reports, and computer programs that were issued by Ames Research Center and indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, International Aerospace Abstracts, and Computer Program Abstracts in 1980. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  11. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  12. ARC-2013-ACD13-0061-007

    NASA Image and Video Library

    2013-04-18

    Kepler News Briefing, held in the Syvertson auditorium at the NASA Ames Research Center. The briefing presented discoveries from the continuing Kepler mission (K2). The team discovered some of the smallest planets found in the habitable zone of two newly discovered planetary systems. Bill Borucki (left), Kepler Scientist, Principal Investigator, NASA Ames Lisa Kaltengger (right), Research Group Leader, Max Planck Institute for Astronomy, Heidelberg Germany and Research Associate, Harvard-Smithsonian Center for Astrophysics, Cambridge Massachusetts.

  13. Public Watches IRIS Launch Broadcast at NASA Ames (Reporter Pkg)

    NASA Image and Video Library

    2013-06-27

    Crowds of space enthusiasts gathered at Ames Research Center to witness the broadcast of NASA's Interface Region Imaging Spectrograph or IRIS Mission as it launched from an aircraft out of Vandenberg Air Force Base in California. Speakers shared insights about the IRIS Mission and attendees cheered as the Pegasus rocket successfully separated from the L-1011 launch aircraft and proceeded to fire its rockets and launch into a polar orbit around the Earth.

  14. Mentoring for 2000 and beyond

    NASA Technical Reports Server (NTRS)

    Guerra, K. M.; Farrance, M. A.

    1994-01-01

    Today, more than 40 percent of the United States workforce are women. However, only a small percentage of working women are employed in science or engineering fields. The numbers of women in engineering and math professions have actually decreased since 1984. Last year, a mentoring program was created at NASA Ames Research Center aimed at encouraging young girls to stay in school, increasing their self confidence and helping them perform better academically. Teachers at the Ronald McNair Intermediate School matched fifth through eighth grade students with women engineers at NASA Ames. Results from a year-end survey submitted by the mentees indicated that the program was successful in achieving its first-year goals; more than one student reported that she felt 'really special' because of her mentor's efforts. The NASA Ames Mentor program has continued into the 1992-93 academic year with both returning mentor/mentee pairs and new participants.

  15. COTSAT Small Spacecraft Cost Optimization for Government and Commercial Use

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Bui, David; Dallara, Christopher; Ghassemieh, Shakib; Hanratty, James; Jackson, Evan; Klupar, Pete; Lindsay, Michael; Ling, Kuok; Mattei, Nicholas; hide

    2009-01-01

    Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT-1) is an ongoing spacecraft research and development project at NASA Ames Research Center (ARC). The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft. The COTSAT-1 team is committed to realizing the challenging goal of building a fully functional spacecraft for $500K parts and $2.0M labor. The project's efforts have resulted in significant accomplishments within the scope of a limited budget and schedule. Completion and delivery of the flight hardware to the Engineering Directorate at NASA Ames occurred in February 2009 and a cost effective qualification program is currently under study. The COTSAT-1 spacecraft is now located at NASA Ames Research Center and is awaiting a cost effective launch opportunity. This paper highlights the advancements of the COTSAT-1 spacecraft cost reduction techniques.

  16. ARC-2007-ACD07-0145-014

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. (with Mike Mewhinney, Ames PAO (news chief) Officer)

  17. N-232 Sustainability Base Construction

    NASA Image and Video Library

    2011-11-10

    Construction of the new NASA Ames Green Building dubbed Sustainability Base located on the Ames Research Center campus at Moffett Field, CA. interior view as cubicles are being set up and open spaces arranged. skylights, artifical lighting and windows

  18. N-232 Sustainability Base Construction

    NASA Image and Video Library

    2011-11-10

    Construction of the new NASA Ames Green Building dubbed Sustainability Base located on the Ames Research Center campus at Moffett Field, CA. interior view as cubicles are being set up and open spaces arranged. artifical lighting, skylights and windows

  19. Sensors for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Smith, Brandon

    2015-01-01

    This is a chart for the NASA Ames Instrumentation Workshop scheduled for 16-Sept-2015. The workshop template was used to make the chart. The purpose is to communicate STAR lab capabilities to the larger Ames instrumentation community.

  20. Estimation of Mangrove Net Primary Production and Carbon Sequestration service using Light Use Efficiency model in the Sunderban Biosphere region, India

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Sen, Somnath; Paul, Saikat

    2016-04-01

    Net Primary Production (NPP) of mangrove ecosystem and its capacity to sequester carbon from the atmosphere may be used to quantify the regulatory ecosystem services. Three major group of parameters has been set up as BioClimatic Parameters (BCP): (Photosynthetically Active Radiation (PAR), Absorbed PAR (APAR), Fraction of PAR (FPAR), Photochemical Reflectance Index (PRI), Light Use Efficiency (LUE)), BioPhysical Parameters (BPP) :(Normalize Difference Vegetation Index (NDVI), scaled NDVI, Enhanced Vegetation Index (EVI), scaled EVI, Optimised and Modified Soil Adjusted Vegetation Index (OSAVI, MSAVI), Leaf Area Index (LAI)), and Environmental Limiting Parameters (ELP) (Temperature Stress (TS), Land Surface Water Index (LSWI), Normalize Soil Water Index (NSWI), Water Stress Scalar (WS), Inversed WS (iWS) Land Surface Temperature (LST), scaled LST, Vapor Pressure Deficit (VPD), scaled VPD, and Soil Water Deficit Index (SWDI)). Several LUE models namely Carnegie Ames Stanford Approach (CASA), Eddy Covariance - LUE (EC-LUE), Global Production Efficiency Model (GloPEM), Vegetation Photosynthesis Model (VPM), MOD NPP model, Temperature and Greenness Model (TG), Greenness and Radiation model (GR) and MOD17 was adopted in this study to assess the spatiotemporal nature of carbon fluxes. Above and Below Ground Biomass (AGB & BGB) was calculated using field based estimation of OSAVI and NDVI. Microclimatic zonation has been set up to assess the impact of coastal climate on environmental limiting factors. MODerate Resolution Imaging Spectroradiometer (MODIS) based yearly Gross Primary Production (GPP) and NPP product MOD17 was also tested with LUE based results with standard model validation statistics: Root Mean Square of Error (RMSE), Mean Absolute Error (MEA), Bias, Coefficient of Variation (CV) and Coefficient of Determination (R2). The performance of CASA NPP was tested with the ground based NPP with R2 = 0.89 RMSE = 3.28 P = 0.01. Among the all adopted models, EC-LUE and VPM models has explained the maximum variances (>80%) in comparison to the other model. Study result has also showed that the BPP has explained the maximum model variances (>93%) followed by BCP (>65%) and ELP (>50%). Scaled WS, iWS, LST, VPD, NDVI was performed better in a minimum ELP condition whereas surface moisture and wetness was highly correlated with the AGB and NPP (R2 = 0.86 RMSE = 1.83). During this study period (2000-2013), it was found that there was a significantly declining trend (R2 = 0.32 P = 0.05) of annual NPP and the maximum decrease was found in the eastern part where built-up area was mainly accounted for reduction of NPP. BCP are explained higher variances (>80%) in the optimum climatic condition exist along the coastal stretches in comparison to the landward extent (>45%).

  1. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  2. NASA Ames Sonic Boom Testing

    NASA Technical Reports Server (NTRS)

    Durston, Donald A.; Kmak, Francis J.

    2009-01-01

    Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.

  3. Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.

  4. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  5. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  6. ARC-2007-ACD07-0145-024

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Bill Moede and Jim Taylor, Ames (Planners) Video crew

  7. ARC-2011-ACD11-0206-036

    NASA Image and Video Library

    2011-12-01

    Neil DeGrasse Tyson, Astrophysicist with Hayden Planetarium, the American Museum of Natural History, visits the Ames Kepler Science Team during the 1000 days since Launch Review. at reception speaking with Dr. David Morrison, Ames Serior Scientist, NASA Astrobiology, on right.

  8. ARC-1958-A-23753

    NASA Image and Video Library

    1958-01-30

    Shadowgraph of Finned Hemispherical model in free-flight show shock waves produced by blunt bodies (H. Julian Allen blunt nose theory) (Used in NASA/AMES publication 'Adventures in Research' A history of Ames Research Center 1940 - 1965 by Edwin P. Hartman - SP-4302)

  9. Ames Research Center Publications, July 1971 through December 1973

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A bibliography of the publications of Ames Research Center authors and contractors which appeared as formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports is presented. Years covered are July 1971 through December 1973.

  10. Building Climate Resilience at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the anticipated energy usage as climate changes, the Ames CASI team is collecting historical energy usage data from Ames facilities, historical weather data, and projected future weather parameters from the CASI Climate subgroup. This data will be incorporated into the RETScreen model to predict how energy usage at Ames will change over the coming century.

  11. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  12. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These experiment descriptions and data can be accessed online via the public LSDA website (http://lsda.jsc.nasa.gov) and information can be requested via the Data Request form at http://lsda.jsc.nasa.gov/common/dataRequest/dataRequest.aspx or by contacting the ALSDA Office at: Alison.J.French@nasa.gov

  13. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to increasing mean sea level. We examine the implications in the face of the CMIP5 projections. Storm intensification may result in increased flooding hazards at Ames. We analyze how the changes in precipitation intensity will impact the storm drainage system at Ames through continuous stormwater modeling of runoff with the EPA model SWMM 5 and projected downscaled daily precipitation data. Although extreme events will not adversely affect wetland habitats, adaptation projects--especially levee construction and improvement--will require filling of wetlands. Federal law mandates mitigation for fill placed in wetlands. We are currently calculating the potential mitigation burden by habitat type.

  14. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Bonnett, W. S.; Medan, R. T.

    1976-01-01

    A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

  15. Computerized Biophysical Data Acquisition System for Motion Sickness Studies.

    DTIC Science & Technology

    1984-12-01

    biofeedback in Autogenic Feedback Training (AFT). Dr. Patricia Cowings of 1- 1 NASA-Ames Research Center has also successfully used AFT in her studies (7...analysis can be completed. Summary of Current Knowledge Researchers have approached the problem of motion sick- ness in several ways. One approach is to...that the technique is not "black magic" (17). Despite apparent successes by Dr. Levy and others, notably Dr. Patricia Cowings of the NASA-Ames Research

  16. Update on the NSF PAARE Program at SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Ajello, Marco; Brittain, Sean D.; Cash, Jennifer; Hartmann, Dieter; Ho, Shirley; Howell, Steve B.; King, Jeremy R.; Leising, Mark D.; Smith, Daniel M.

    2017-01-01

    We report on results from our NSF PAARE program during Year 2 of the project. Our partnership under this PAARE award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) as well as individual investigators at NASA Ames and Carnegie Mellon University. Our recent work on variable and peculiar stars, work with the Kepler Observatory and our educational products in cosmology for non-STEM majors will be presented. We have successfully piloted sharing our teaching resources by offering an upper-level astrophysics course taught at Clemson via video conferencing , allowing a graduating senior from SC State to take a course not available through his home institution. Additionally, we are working on a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Our curriculum work includes new web-based cosmology activities and laboratory experiments. SC State undergraduates are reporting at this conference on their work with the light curves of semiregular variables using Kepler data. Additionally, we are heavily involved in the Citizen CATE Experiment. A PAARE scholarship student from SC State and the PAARE PI traveled to Indonesia for the March 2016 solar eclipse. Their results are also being presented elsewhere at this conference (see Myles McKay’s poster). Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Additional support has been provided by the South Carolina Space Grant Consortium and from NASA to SC State under awards NNX11AB82G and NNX13AC24G. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu

  17. The Biology and Space Exploration Video Series

    NASA Technical Reports Server (NTRS)

    William, Jacqueline M.; Murthy, Gita; Rapa, Steve; Hargens, Alan R.

    1995-01-01

    The Biology and Space Exploration video series illustrates NASA's commitment to increasing the public awareness and understanding of life sciences in space. The video series collection, which was initiated by Dr. Joan Vernikos at NASA headquarters and Dr. Alan Hargens at NASA Ames Research Center, will be distributed to universities and other institutions around the United States. The video series parallels the "Biology and Space Exploration" course taught by NASA Ames scientists at Stanford University, Palo Alto, California. In the past, students have shown considerable enthusiasm for this course and have gained a much better appreciation and understanding of space life sciences and exploration. However, due to the unique nature of the topics and the scarcity of available educational materials, most students in other universities around the country are unable to benefit from this educational experience. Therefore, with the assistance of Ames experts, we are producing a video series on selected aspects of life sciences in space to expose undergraduate students to the effects of gravity on living systems. Additionally, the video series collection contains space flight footage, graphics, charts, pictures, and interviews to make the materials interesting and intelligible to viewers.

  18. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  19. ARC-2009-ACD09-0049-174

    NASA Image and Video Library

    2009-03-14

    FIRST Robotics Competition 'Lunacy' hosted by NASA at San Jose State University Event Center. For Inspiration and Recognition of Science and Technology let the games begin. with Mark Leon, Ames Research Robotics Alliance Project Lead encourages the Ames Space Cookies team #1868

  20. ARC-2007-ACD07-0145-016

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. (with Kelly Humphries, JSC - on detail to Ames PAO '07-'08)

  1. 2016 Summer Series Highlights - Inspire the Imagination

    NASA Image and Video Library

    2017-01-20

    Highlights of the 2016 Summer Series of lectures at NASA's Ames Research Center in Silicon Valley. Sponsored by the Ames Office of the Chief Scientist, the talks are designed to generate innovative discussion, as well as inspire and catalyze scientific progress.

  2. NASA's Planetary Aeolian Laboratory: Status and Update

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Smith, J. K.

    2017-05-01

    This presentation provides a status update on the operational capabilities and funding plans by NASA for the Planetary Aeolian Laboratory located at NASA Ames Research Center, including details for those proposing future wind tunnel experiments.

  3. OVERFLOW-Interaction with Industry

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; George, Michael W. (Technical Monitor)

    1996-01-01

    A Navier-Stokes flow solver, OVERFLOW, has been developed by researchers at NASA Ames Research Center to use overset (Chimera) grids to simulate the flow about complex aerodynamic shapes. Primary customers of the OVERFLOW flow solver and related software include McDonnell Douglas and Boeing, as well as the NASA Focused Programs for Advanced Subsonic Technology (AST) and High Speed Research (HSR). Code development has focused on customer issues, including improving code performance, ability to run on workstation clusters and the NAS SP2, and direct interaction with industry on accuracy assessment and validation. Significant interaction with NAS has produced a capability tailored to the Ames computing environment, and code contributions have come from a wide range of sources, both within and outside Ames.

  4. 76 FR 41825 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-066)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council (NAC). The agenda topics for the....-12 p.m., Local Time. ADDRESSES: NASA Ames Conference Center (Building 3), Ballroom, 500 Severyns...

  5. ARC-2008-ACD08-0186-005

    NASA Image and Video Library

    2008-07-30

    NASA Ames Robotics Academy Interns at the Lunar Science Institute (LSI) building 17 Interns: David Black, Michael Zwach, Guy Chriqui, Mark Mordarski Jr., Katy Levinson, Daniela Buchman, Scott Strutner, Patrick Crownover, Neil Bhateja, Michael Buchman, John Mueller, Michelle Grau, Ben Silver, Jacques Dolan, Alex Golec Windell Jones, Colin Wilson, Joe DeBlasio, Nick Hayes, Jordan Olive, William Shaw, Ames Education Dept., Mark Leon, Ames Robotics, Josh Weiner, jack Biesiadecki, Andrew Pilloud

  6. Some innovations and accomplishments of Ames Research Center since its inception

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The innovations and accomplishments of Ames Research Center from 1940 through 1966 are summarized and illustrated. It should be noted that a number of accomplishments were begun at the NASA Dryden Flight Research Facility before that facility became part of the Ames Research Center. Such accomplishments include the first supersonic flight, the first hypersonic flight, the lunar landing research vehicle, and the first digital fly-by-wire aircraft.

  7. X-Wing RSRA - 80 Knot Taxi Test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Rotor Systems Research Aircraft/X-Wing, a vehicle that was used to demonstrate an advanced rotor/fixed wing concept called X-Wing, is shown here during high-speed taxi tests at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, on 4 November 1987. During these tests, the vehicle made three taxi tests at speeds of up to 138 knots. On the third run, the RSRA/X-Wing lifted off the runway to a 25-foot height for about 16 seconds. This liftoff maneuver was pre-planned as an aid to evaluations for first flight. At the controls were NASA pilot G. Warren Hall and Sikorsky pilot W. Faull. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  8. X-Wing Research Vehicle in Hangar

    NASA Technical Reports Server (NTRS)

    1987-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  9. X-Wing Research Vehicle

    NASA Technical Reports Server (NTRS)

    1986-01-01

    One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on 25 September 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.

  10. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  11. HSR Model Deformation Measurements from Subsonic to Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.

    1999-01-01

    This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.

  12. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    DTIC Science & Technology

    2014-09-01

    simulation time frame from 30 days to one year. This was enabled by porting the simulation to the Pleiades supercomputer at NASA Ames Research Center, a...including the motivation for changes to our past approach. We then present the software implementation (3) on the NASA Ames Pleiades supercomputer...significantly updated since last year’s paper [25]. The main incentive for that was the shift to a highly parallel approach in order to utilize the Pleiades

  13. ARC-1961-A-28249

    NASA Image and Video Library

    1961-09-12

    Lockheed NC-130B (AF58-712) Aircraft. A Study of STOL Operational Techniques; landing approach. Nose-low pitch attitude of the aircraft was required in wave-off (or go-around) at 85 knots with flaps 70 degrees. An increase in stall-speed margin could be required to produce a more positive climb angle. (Nov 1962) Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 104; 60yrs at Ames, Atmosphere of Freedom NASA SP-2000-4314

  14. Experimental program for real gas flow code validation at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul

    1989-01-01

    The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.

  15. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    NASA Technical Reports Server (NTRS)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  16. Aeronautical Decision Making - Cockpit Resource Management

    DTIC Science & Technology

    1989-01-01

    perspective, the development of CRM concepts as seen in the kickoff workshop held at the NASA Ames Research Center (Cooper, White, and Lauber, 1979...something to put in the place of worrying a pleasant thought. A though stoppage (Stop negative thought patterns by shouting words like ’stop’ or ’no’ in the...the Situation." In: G.E. Cooper, M.D. White, and J.K. Lauber (Eds) Resource management in the cockpit. Moffett Field, CA: NASA Ames Research Center

  17. The Suitport's Progress

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M.

    1995-01-01

    NASA-Ames Research Center developed the Suitport as an advanced space suit airlock to support a Space Station suit based on the AX-5 hard suit. Several third parties proposed their own variations of the Suitport on the moon and Mars. The Suitport recently found its first practical use as a terrestrial application in the NASA-Ames Hazmat vehicle for the clean-up of hazardous and toxic materials. In the Hazmat application, the Suitport offers substantial improvements over conventional hazard suits by eliminating the necessity to decontaminate before doffing the suit.

  18. ARC-2010-ACD10-0242-018

    NASA Image and Video Library

    2010-12-17

    German Deligation visits Ames SOFIA Science Office for briefing and enjoy a Ames tour. .Jochen Homann, Sectretary of State, Federal Ministry of Economics and Technology, speaks with Robert R. 'Bob' Meyer, NASA SOFIA Program Manager (based at the Dryden Aircraft Operations Facility, DAOF, Palmdale, California).

  19. ARC-1965-AC-36014

    NASA Image and Video Library

    1965-12-15

    6 degree V/STOL Control Systems Research All Axes, Simulator (simulator pilot: Richard K Greif) at the Ames Research Center, Moffett Field, CA Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 113

  20. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  1. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  2. Software Sharing Enables Smarter Content Management

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In 2004, NASA established a technology partnership with Xerox Corporation to develop high-tech knowledge management systems while providing new tools and applications that support the Vision for Space Exploration. In return, NASA provides research and development assistance to Xerox to progress its product line. The first result of the technology partnership was a new system called the NX Knowledge Network (based on Xerox DocuShare CPX). Created specifically for NASA's purposes, this system combines Netmark-practical database content management software created by the Intelligent Systems Division of NASA's Ames Research Center-with complementary software from Xerox's global research centers and DocuShare. NX Knowledge Network was tested at the NASA Astrobiology Institute, and is widely used for document management at Ames, Langley Research Center, within the Mission Operations Directorate at Johnson Space Center, and at the Jet Propulsion Laboratory, for mission-related tasks.

  3. 1993 Technical Paper Contest for Women. Gear Up 2000: Women in Motion

    NASA Technical Reports Server (NTRS)

    Orans, Robin (Editor); Duckett, Sophie (Editor); White, Susan (Editor)

    1994-01-01

    The NASA Ames Research Center Advisory Committee for Women (ACW) sponsored the second ACW Technical paper Contest for Ames women in order to increase the visibility of, and to encourage writing for publication by Ames women scientists, engineers, and technicians. The topics of the contest paper mirrored in the topics of the 1993 Society for Women Engineers (SWE) National Convention, which included technological, workplace, global, and family issues.

  4. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Huy Tran, NASA Ames Aeronautics Director gives a NASA UTM Project Overview.

  5. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-087)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., 2010, 8 a.m. to 12:30 p.m.; Local Time. ADDRESSES: NASA Ames Conference Center, Building 3, 500...

  6. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  7. North Twin Peak in super resolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This pair of images shows the result of taking a sequence of 25 identical exposures from the Imager for Mars Pathfinder (IMP) of the northern Twin Peak, with small camera motions, and processing them with the Super-Resolution algorithm developed at NASA's Ames Research Center.

    The upper image is a representative input image, scaled up by a factor of five, with the pixel edges smoothed out for a fair comparison. The lower image allows significantly finer detail to be resolved.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    The super-resolution research was conducted by Peter Cheeseman, Bob Kanefsky, Robin Hanson, and John Stutz of NASA's Ames Research Center, Mountain View, CA. More information on this technology is available on the Ames Super Resolution home page at

    http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ group/super-res/

  8. Assessing UAS Flight Testing and It's Importance for Beyond-Line-of-Sight UAS Control in Cooperation with Partnering Organizations

    NASA Technical Reports Server (NTRS)

    de Jong, Daphne

    2015-01-01

    From the 1st of June until the 21st of August, the internship has been conducted at NASA Ames Research Center as part of the Master of Space Studies at the International Space University. The main activities consisted of doing research on UAV flight-­-testing and the assessing of safety with respect to Beyond-­-Line-­-Of-­-Sight operations. Further activities consisted of accommodating international partners and potential partners at the NASA Ames site, in order to identify mutual interest and future collaboration. Besides those activities, the report describes the planning process of the ISU Space Coast Trip to 10 different space related companies on the west-­-coast of California. Key words: UAS, UAV, BLOS, Ames, ISU Trip

  9. Avation Safety Reporting System (ASRS) 40th Anniversary.

    NASA Image and Video Library

    2016-09-28

    Avation Safety Reporting System (ASRS) 40th Anniversary lunch and open house at the Sunnyvale office. Linda J. Connell, ASRS Program Director (Left); Thomas A Edwards, Deputy Center Director NASA Ames; Dr. John Lauber, Resident Scientist and pioneer of the ASRS at Ames from 1972-1985 (Right).

  10. ARC-1956-A-21303

    NASA Image and Video Library

    1956-04-05

    Douglas F4D-1 (Bu. No. 134759) Skyray Plan view of airplane with Ames Pilot Don R. Heinle, Engineer L. Stewart Rolls and Crew Chief Walter Liewar. Note: Used in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig.28

  11. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  12. An updated history of NACA/NASA rotary-wing aircraft research 1915-1984

    NASA Technical Reports Server (NTRS)

    Ward, J.

    1984-01-01

    Highlights are drawn from 'A History of NACA/NASA Rotating-Wing Aircraft Research, 1915-1970' by F. Gustafson to build an historical base upon which to build an extension from 1970-1984. Fundamental changes in how NASA conducted rotary-wing research in the early 1970s included an increasing level of contract research and closer ties with research conducted by the U.S. Army. The work done at the Army Research Laboratories at Ames, Langley, and Lewis Research Centers during 1970-1976 is briefly reviewed. In 1976 the Ames Research Center was assigned the Lead Center responsibility for helicopter research, though Langley retained research roles in structures, noise, dynamics, and aeroelasticity in support of rotorcraft. By 1984, NASA Rotorcraft Program Funding reached $35 million per year.

  13. ARC-2010-ACD10-0110-076

    NASA Image and Video Library

    2010-06-09

    2010 NASA Honor Awards Awards Group Achievement Award to VMS Space Shuttle Visual Database Development Team. Boris M. Rabin accepting. Presenters are on left Mr. Charles H. Scales, NASA Associate Deputy Administrator, on right Dr. S. Pete Worden, Director, NASA Ames Research Center.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper Sixty Eight, Who is Managing Knowledge? The Implications for Knowledge Production and Management of Global Strategic Alliances in Knowledge-Dependent Industries

    DTIC Science & Technology

    1998-03-01

    United States. Pittsburgh, PA: Carnegie Mellon University Press (August). Cohen, S.S., S . Halimi , and J. Zysman. 1986. "Institutions, Politics, and...San Marcos 333 S . Twin Oaks Valley Rd. San Marcos, CA 92096-0001 vgolich@csusm.edu Thomas E. Pinelli Technology & Distance Learning Officer NASA...1991; Chesnais, 1993; Cohen 1977; Cohen, Halimi , and Zysman, 1986 Crossland, 1975; Gillispie, 1980; Gilpin 1968; Golich

  15. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  16. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  17. M2-F3 with test pilot John A. Manke

    NASA Image and Video Library

    1972-12-20

    NASA research pilot John A. Manke is seen here in front of the M2-F3 Lifting Body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F5D, F-111 and C-47. After leaving the Marine Corps in 1960, Manke worked for Honeywell Corporation as a test engineer for two years before coming to NASA. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984.

  18. The design of a joined wing flight demonstrator aircraft

    NASA Technical Reports Server (NTRS)

    Smith, S. C.; Cliff, S. E.; Kroo, I. M.

    1987-01-01

    A joined-wing flight demonstrator aircraft has been developed at the NASA Ames Research Center in collaboration with ACA Industries. The aircraft is designed to utilize the fuselage, engines, and undercarriage of the existing NASA AD-1 flight demonstrator aircraft. The design objectives, methods, constraints, and the resulting aircraft design, called the JW-1, are presented. A wind-tunnel model of the JW-1 was tested in the NASA Ames 12-foot wind tunnel. The test results indicate that the JW-1 has satisfactory flying qualities for a flight demonstrator aircraft. Good agreement of test results with design predictions confirmed the validity of the design methods used for application to joined-wing configurations.

  19. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  20. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  1. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  2. ARC-2012-ACD12-0016-004

    NASA Image and Video Library

    2012-01-25

    Dr. Brauch Blumberg portrait unveiling ceremony held at the Syverston Auditorium (N-201) NASA Ames Researc Center, Moffett Field, CA. Lynn Harper and Estelle Dotson (of NASA Astrobilolgy Institute) unveil portrait.

  3. NASA/NSF Workshop on Antarctic Research

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.

    1990-01-01

    Viewgraphs that accompanied an Ames Research Center presentation address Ames' currently-supported life sciences activities. These include crew factor issues such as human, automation, and telecommunication systems; strategic behavior and workloads; sleep, fatigue, and circadian rhythms; and virtual reality and spatial instrumentation. The need, background, and examples of pertinent research are provided.

  4. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  5. Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Gross, Anthony R.

    1987-01-01

    The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.

  6. 2014 Summer Series - Lewis Braxton III - Lessons Learned Enroute to Becoming Deputy Center Director

    NASA Image and Video Library

    2014-07-01

    This talk will take you on a journey of Mr. Lewis Braxton's successful career through the lens of an African American. You will gain insights to his success as he shares the wisdom he gained through personal and professional experiences. He will walk you through his early childhood, education, NASA internship at Dryden Flight Research Center (DFRC), and his transition to Ames as he developed and matured into a senior leader. Mr. Braxton will also provide a special focus on his CFO and Deputy Director roles at NASA Ames.

  7. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  8. Global biology - An interdisciplinary scientific research program at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Colin, L.

    1983-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  9. Global Biology: An Interdisciplinary Scientific Research Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Colin, Lawrence

    1984-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  10. The Human Appropriation of Ecosystem Service Values (HAESV) in the Sundarban Biosphere Region Using Biophysical Quantification Approach

    NASA Astrophysics Data System (ADS)

    Sannigrahi, S.; Paul, S. K.; Sen, S.

    2017-12-01

    Human appropriation, especially unusual changes in land-use and land cover, significantly affects ecosystem services and functions. Driven by the growth of the population and the economy, human demands on earth's land surface have increased dramatically in the past 50 - 100 years. The area studied was divided into six major categories; cropland, mangrove forest, sparse vegetation, built-up urban area, water bodies and sandy coast, and the land coverage was calculated for the years 1973, 1988, 2002 and 2013. The spatial explicit value of the primary regulatory and supporting ecosystem services (climate regulation, raw material production, water regulation) were quantified through the indirect market valuation approach. A light use efficiency based ecosystem model, i.e. Carnegie- Ames-Stanford-Approach (CASA) was employed to estimate the carbon sequestration and oxygen production services of the ecosystem. The ArcGIS matrix transform approach calculated LULC dynamics among the classes. Investigation revealed that the built-up urban area increased from 42.9 km2 in 1973 to 308 km2 in 2013 with a 6.6 km2 yr-1 expansion rate. Similarly, water bodies (especially inland water bodies increased dramatically in the north central region) increased from 3392.1 sq.km in 1973 to 5420 sq.km in 2013 at the expense of semi-natural and natural land resulting in significant changes of ecological and ecosystem services. However, the area occupied by dense mangrove forest decreased substantially during the 40 years (1973 -2013); it was recorded to cover 2294 km2 in 1973 and 1820 km2 in 2013. The results showed that the estimated regulatory and supporting ecosystem services respond quite differently to human appropriation across the regions in both the economic and ecological dimensions. While evaluating the trade-of between human appropriation and ecosystem service changes, it has been estimated that the ecosystem service value of organic matter provision services decreased from 755 US ha-1 in 2000 to 608 US ha-1 in 2013. Therefore, the rigorous and centralised policy for sustainable and regionally balanced land-use planning has been essential in the recent era for economic viability, and ecosystem preservation, to prevent undesirable outcomes.

  11. NASA and Public-Private Partnerships

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2010-01-01

    This slide presentation reviews ways to build public-private partnerships with NASA, and the many efforts that Ames Research Center is engaged in in building partnerships with private businesses, not profit organizations and universities.

  12. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  13. KSC-2012-3323

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – A panel session for participants in the International Space University's Space Studies Program 2012, or SSP, is held in the Operations Support Building II at NASA’s Kennedy Space Center in Florida. From left are Pete Worden, director, NASA Ames Research Center Yvonne Pendleton, observational astronomer, NASA Ames Research Center Scott Hubbard, professor, Stanford University Bill Nye, CEO, The Planetary Society and George Tahu, NASA program executive, Planetary Science Division, NASA Headquarters. The Soffen Memorial Panel session provided the opportunity for participants to engage with today's leaders in the planetary science field. The panel session is named in honor of Gerald Soffen, NASA scientist and leader of NASA's Viking Mars mission. The nine-week intensive SSP course is designed for post-graduate university students and professionals during the summer. The program is hosted by a different country each year, providing a unique educational experience for participants from around the globe. NASA Kennedy Space Center and Florida Tech are co-hosting this year's event which runs from June 4 to Aug. 3. For more information about the International Space University, visit http://www.isunet.edu. Photo credit: NASA/Tim Jacobs

  14. NASAs B377SGT Super Guppy Turbine Cargo Airplane lands at Moffett Field at NASA Ames.

    NASA Image and Video Library

    2016-01-25

    NASA N941NA Superguppy at Moffett Field. Cargo is loaded into the Super Guppy when the aircraft's "fold-away" nose rotates 110 degrees to the left, allowing unobstructed access to the 25 foot diameter fuselage.

  15. How NASA's Technology Can Help the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.; Worden, Simon Peter

    2015-01-01

    Presentation describes how automobile companies developing self-driving cars and NASA face similar challenges which can be solved using similar technologies. To provide context, the presentation also describes how NASA Ames is working with automobile companies, such as Nissan, to research and development relevant technologies.

  16. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  17. ARC-2008-ACD08-0200-020

    NASA Image and Video Library

    2008-09-11

    September 11th remembrance ceremony held in front of NASA Research Park Bldg-17 (Lunar Science Institute) hosted by the American Legion, Post 881, Moffett Field. Remarks by NASA Ames Center Director Pete Worden

  18. ARC-2009-ACD09-0208-029

    NASA Image and Video Library

    2009-09-15

    Obama Administration launches Cloud Computing Initiative at Ames Research Center. Vivek Kundra, White House Chief Federal Information Officer (right) and Lori Garver, NASA Deputy Administrator (left) get a tour & demo NASAS Supercomputing Center Hyperwall.

  19. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Scientific and administrative activities are summarized. The status of the NASA-Ames vertical gun is reported. The organization and role of NASA's Research and Analysis Program in space and Earth sciences are described.

  20. ARC-2006-ACD06-0216-008

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  1. ARC-2006-ACD06-0216-003

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth working with sample encased in aerogel

  2. ARC-2006-ACD06-0216-024

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  3. ARC-2006-ACD06-0216-025

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  4. HPCCP/CAS Workshop Proceedings 1998

    NASA Technical Reports Server (NTRS)

    Schulbach, Catherine; Mata, Ellen (Editor); Schulbach, Catherine (Editor)

    1999-01-01

    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey.

  5. NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report presents the essential features and highlights of the 1996 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellow's technical accomplishments are enclosed. Of the 32 participating fellows, 27 were at Ames and 5 were at Dryden.

  6. Vanguard 2C VTOL Airplane Tested in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1960-02-01

    Vanguard 2C vertical take-off and landing (VTOL) airplane, wind tunnel test. Front view from below, model 14 1/2 feet high disk off. Nasa Ames engineer Ralph Maki in photo. Variable height struts and ground plane, low pressure ratio, fan in wing. 02/01/1960.

  7. ACD16-0001-020

    NASA Image and Video Library

    2016-01-06

    Senior executives from the Renault-Nissan Alliance, including Carlos Ghosn, chairman and CEO of Nissan, and Jose Munoz, chairman of Nissan North America, visited Ames for meetings and a showcase of the technical partnership between NASA and Nissan North America. Shown here on left is Eugene Tu, Ames Center Director on right is Carlos Ghosn, CEO, Nissan

  8. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  9. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  10. The Pilot Land Data System (PLDS) at the Ames Research Center manages aircraft data in collaboration with an ecosystem research project

    NASA Technical Reports Server (NTRS)

    Angelici, Gary; Popovici, Lidia; Skiles, Jay

    1991-01-01

    The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.

  11. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  12. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  13. Sea Level Rise in Santa Clara County

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina

    2005-01-01

    Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.

  14. The Situation Awareness Weighted Network (SAWN) Model

    DTIC Science & Technology

    2014-06-01

    Administration Task Load Index (NASA- TLX ), a validated research instrument [Human Performance Research Group 1988]. The participants were asked to rate their...analysis”, Human Factors 40(2): 254–276. 17 Human Performance Research Group (1988) NASA- TLX , NASA Ames Research Center, Moffett Field, CA. Jin, Y. and

  15. NASAs B377SGT Super Guppy Turbine Cargo Airplane lands at Moffett Field at NASA Ames.

    NASA Image and Video Library

    2016-01-08

    NASA N941NA Superguppy lands at the Moffett Field. Cargo is loaded into the Super Guppy when the aircraft's "fold-away" nose rotates 110 degrees to the left, allowing unobstructed access to the 25 foot diameter fuselage.

  16. Pegasus5 is Co-Winner of NASA's 2016 Software of the Year Award

    NASA Image and Video Library

    2016-11-04

    Shareable video highlighting the Pegasus5 software, which was the co-winner of the NASA's 2016 Software of the Year award. Developed at NASA Ames, it helps in the simulation of air flow around space vehicles during launch and re-entry.

  17. ARC-2008-ACD08-0065-051

    NASA Image and Video Library

    2008-04-11

    Lunar Science Institute (LSI) Grand Opening. Ribbon Cutting, L-R: James Green, Director, Planetary Programs, NASA Headquarters, Mike Honda, U.S. Congressman,15th District, Apollo Astronaut Buzz Aldrin, S. Pete Worden, Director, NASA Ames Research Center, David Morrison, Interiu Director, NASA Lunar Science Institute. David Morse at podium.

  18. ARC-2009-ACD09-0208-023

    NASA Image and Video Library

    2009-09-15

    Obama Administration launches Cloud Computing Initiative at Ames Research Center. Vivek Kundra, White House Chief Federal Information Officer (right) and Lori Garver, NASA Deputy Administrator (left) get a tour & demo NASAS Supercomputing Center Hyperwall by Chris Kemp.

  19. ARC-2009-ACD09-0144-057

    NASA Image and Video Library

    2009-07-19

    MoonFest: From Apollo to LCROSS and Beyond public event at NASA'S Ames Researc Center, Moffett Field, Calif. For the sing along 'Water on the Moon' lurics and music by John Mormiel, NASA LCROSS Deputy Project Manager.

  20. Parachute Testing for Mars Science Laboratory

    NASA Image and Video Library

    2007-12-20

    The team developing the landing system for NASA Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

  1. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  2. Aviation Simulators for the Desktop: Panel and Demonstrations

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Rosekind, Marl R. (Technical Monitor)

    1997-01-01

    Panel Members are: Christine M. Mitchell (Georgia Tech), Michael T. Palmer (NASA Langley), Greg Pisani (NASA Ames), and Amy R. Pritchett (MIT). The Panel members are affiliated with aviation human factors groups from NASA Ames, NASA Langley, MITCHELL Department of Aerospace and Aeronautical Engineering, and Georgia Technics Center for Human-Machine Systems Research. Panelists will describe the simulator(s) used in their respective institutions including a description of the FMS aircraft models, software, hardware, and displays. Panelists will summarize previous, on-going, and planned empirical studies conducted with the simulators. Greg Pisanich will describe two NASA Ames simulation systems: the Stone Soup Simulator (SSS), and the Airspace Operations Human Factors Simulation Laboratory. The the Stone Soup Simulator is a desktop-based, research flight simulator that includes mode control, flight management, and datalink functionality. It has been developed as a non-proprietary simulator that can be easily distributed to academic and industry researchers who are collaborating on NASA research projects. It will be used and extended by research groups represented by at least two panelists (Mitchell and Palmer). The Airspace Operations Simulator supports the study of air traffic control in conjunction with the flight deck. This simulator will be used provide an environment in which many AATT and free flight concepts can be demonstrated and evaluated. Mike Palmer will describe two NASA Langley efforts: The Langley Simulator and MD-11 extensions to the NASA Amesbury simulator. The first simulator is publicly available and combines a B-737 model with a high fidelity flight management system. The second simulator enhances the S3 simulator with MD-11 electronic flight displays together with modifications to the flight and FMS models to emulate MD-11 dynamics and operations. Chris Mitchell will describe GT-EFIRT (Georgia Tech-Electronic Flight Instrument Research Tool) and B-757 enhancements to the NASA Ames S3. GT-EFIRT is a medium fidelity simulator used to conduct preliminary studies of the CATS (crew activity tracking system). Like the Langley efforts with S3, the Georgia Tech enhancements will allow it to emulate the dynamics and operations of a widely used glass cockpit. Amy Pritchett will describe the MIT simulator(s) that have been used in a range of research investigating cockpit displays, warning devices, and flight deck-ATC interaction.

  3. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  4. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  5. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  6. NASA Ames Hosts 2017 Breakthrough Prize

    NASA Image and Video Library

    2016-12-08

    NASA's Ames Research Center in Silicon Valley was the location of the 5th annual Breakthrough Prize ceremony, honoring scientific achievement. Researchers and engineers rubbed shoulders with Hollywood actors, Top-40 musicians, astronauts, sports heroes and Silicon Valley luminaries on the red carpet. Winners were honored with $3 million dollar prizes in the categories of physics, life sciences and mathematics with more than $25 million dollars awarded during the ceremony. The prizes were created by Sergey Brin, co-founder of Google and Anne Wojcicki, founder of 23 and Me; Mark Zuckerberg and Priscilla Chan of Facebook, and Yuri and Julia Milner.

  7. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1988-01-01

    Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

  8. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  9. Flow visualization techniques for flight research

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Meyer, Robert R., Jr.

    1989-01-01

    In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids were obtained. Off-surface flow visualization of vortical flow was obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.

  10. Flow Visualization Techniques for Flight Research

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Meyer, Robert R., Jr.

    1988-01-01

    In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.

  11. Simulation of a synergistic six-post motion system on the flight simulator for advanced aircraft at NASA-Ames

    NASA Technical Reports Server (NTRS)

    Bose, S. C.; Parris, B. L.

    1977-01-01

    Motion system drive philosophy and corresponding real-time software have been developed for the purpose of simulating the characteristics of a typical synergistic Six-Post Motion System (SPMS) on the Flight Simulator for Advanced Aircraft (FSAA) at NASA-Ames which is a non-synergistic motion system. This paper gives a brief description of these two types of motion systems and the general methods of producing motion cues of the FSAA. An actuator extension transformation which allows the simulation of a typical SPMS by appropriate drive washout and variable position limiting is described.

  12. Development of a Flexible Framework of Common Hypersonic Navier-Strokes Meshes for the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.

    2003-01-01

    A flexible framework for the development of block structured volume grids for hypersonic Navier-Stokes flow simulations was developed for analysis of the Shuttle Orbiter Columbia. The development of the flexible framework, resulted in an ability to quickly generate meshes to directly correlate solutions contributed by participating groups on a common surface mesh, providing confidence for the extension of the envelope of solutions and damage scenarios. The framework draws on the experience of NASA Langely and NASA Ames Research Centers in structured grid generation, and consists of a grid generation process that is implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (CAI) team, Ames developing the surface grids that described the computational volume about the orbiter, and Langely improving grid quality of Ames generated data and constructing the final volume grids. Distributing the work among the participants in the Aerothermodynamic CIA team resulted in significantly less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand for new meshes to explore new damage scenarios within a aggressive timeline.

  13. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  14. A study of low mass x-ray binaries

    NASA Technical Reports Server (NTRS)

    Catura, Richard C.

    1994-01-01

    The entire effort under this contract during the period through January 1992 was devoted to a study of the cost and schedule required to put an upgraded Aries payload on the ASTRO-SPAS carrier provided by the German space agency, DARA. The ASTRO-SPAS is flown on the Space Shuttle, deployed by the crew for 5 to 7 days of free-flying observations and then recovered and returned to Earth. The spectrograph was to be provided by a collaboration involving the Lockheed Palo Alto Research Laboratory (LPARL), the Center for Astrophysics and Space Astronomy (CASA) at the U. of Colorado and the Mullard Space Science Laboratory (MSSL) in England. The payload for the ASTRO-SPAS mission included our own spectrograph and an instrument provided by Dr. Joachim Trumper of the Max Planck Institute (MPI) in Garching, Germany. A meeting was held in late July, 1991 with German scientists, DARA representatives and MBB, the ASTRO-SPAS spacecraft contractor. Sufficient information was exchanged to allow us to complete the study and the name LEXSA (Low Energy X-ray Spectrograph on ASTRO-SPAS) was given to our instrument and HERTA (High Energy x-Ray Telescope on ASTR0-SPAS) to the German instrument. The combination was called SPECTRO-SPAS. On October 1, 1991 CASA and LPARL submitted a cost and brief technical proposal to NASA on results of the study. The total cost over 4 fiscal years was 6.16 M dollars including CASA costs. NASA Headquarters was briefed on 3 October on details of the proposal. They found our costs reasonable, but indicated that the NASA FY '92 budget is extremely tight, they could not readily identify where the -S2.3M for LEXSA could be found and it was not clear that FY '93 would improve.

  15. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  16. NASAs B377SGT Super Guppy Turbine Cargo Airplane lands at Moffett Field at NASA Ames.

    NASA Image and Video Library

    2016-01-08

    NASA N941NA parked in front of Hangar 1 at Moffett Field. Cargo is loaded into the Super Guppy when the aircraft's "fold-away" nose rotates 110 degrees to the left, allowing unobstructed access to the 25 foot diameter fuselage.

  17. Smoot Cosmology Group

    Science.gov Websites

    annually at Nasa Ames Research Center, in the heart of Silicon Valley, for 10 weeks of discussions on how _____________________________________________________________________________________ Hawking, NASA Head, Nobel Winners Visit The African Institute for Mathematical Sciences (AIMS) AIMS Stephen Hawking, the NASA Administrator Michael Griffin, and the winners of the 2004 and 2006 Nobel Prizes

  18. ARC-1976-AC76-1267

    NASA Image and Video Library

    1976-08-01

    NASA Art by Rick Guidice The Torus Wheel from 'Space Settlements; A Design Study' in colonization sponsored by NASA Ames, ASEE and Stanford University in the summer of 1975 to look at all aspects of sustained life in space. (ref: NASA SP-413, library of congress catalog card number 76-600068)

  19. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040201 (2 March 2011) --- NASA astronaut Doug Hurley pilots a simulated landing at the Kennedy Space Center as the STS-135 crew trains in the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, Calif. on March 2, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  20. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040199 (2 March 2011) --- NASA astronaut Rex Walheim, STS-135 mission specialist, exits the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, Calif. after what is scheduled to be the crew's final training session in the simulator March 2, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  1. Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd

    2005-01-01

    Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.

  2. Guidelines for testing and release procedures

    NASA Technical Reports Server (NTRS)

    Molari, R.; Conway, M.

    1984-01-01

    Guidelines and procedures are recommended for the testing and release of the types of computer software efforts commonly performed at NASA/Ames Research Center. All recommendations are based on the premise that testing and release activities must be specifically selected for the environment, size, and purpose of each individual software project. Guidelines are presented for building a Test Plan and using formal Test Plan and Test Care Inspections on it. Frequent references are made to NASA/Ames Guidelines for Software Inspections. Guidelines are presented for selecting an Overall Test Approach and for each of the four main phases of testing: (1) Unit Testing of Components, (2) Integration Testing of Components, (3) System Integration Testing, and (4) Acceptance Testing. Tools used for testing are listed, including those available from operating systems used at Ames, specialized tools which can be developed, unit test drivers, stub module generators, and the use of format test reporting schemes.

  3. Feeling Well Rested and Wide Awake When it Counts

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Responding to a congressional concern about aviation safety, NASA's Ames Research Center created the Ames Fatigue/Jet Lag Program in 1980 to examine the extent to which fatigue, sleep loss, and circadian disruption affect pilot performance. The program s primary research was conducted in field settings, as well as in a variety of aviation, controlled laboratory, and full-mission flight-simulation environments, to study fatigue factors and circadian disruption in short-haul, long-haul, military, cargo, and helicopter operations. In 1990, NASA changed the program s name to the Fatigue Countermeasures Group, to provide a greater emphasis on the development and evaluation of countermeasures that would mitigate the adverse effects of fatigue and maximize flight crew performance and alertness. The research conducted by this group at Ames included field studies of cockpit rest, quantity and quality of onboard sleep, and performance changes associated with long-haul flights.

  4. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  5. NASA AMES Remote Operations Center for 2001

    NASA Technical Reports Server (NTRS)

    Sims, M.; Marshall, J.; Cox, S.; Galal, K.

    1999-01-01

    There is a Memorandum of Agreement between NASA Ames, JPL, West Virginia University and University of Arizona which led to funding for the MECA microscope and to the establishment of an Ames facility for science analysis of microscopic and other data. The data and analysis will be by agreement of the Mars Environmental Compatibility Assessment (MECA), Robotic Arm Camera (RAC) and other PI's. This facility is intended to complement other analysis efforts with one objective of this facility being to test the latest information technologies in support of actual mission science operations. Additionally, it will be used as a laboratory for the exploration of collaborative science activities. With a goal of enhancing the science return for both Human Exploration and Development of Space (HEDS) and Astrobiology we shall utilize various tools such as superresolution and the Virtual Environment Vehicle Interface (VEVI) virtual reality visualization tools. In this presentation we will describe the current planning for this facility.

  6. ARC-2008-ACD08-0217-001

    NASA Image and Video Library

    2008-09-24

    Aeronautics Technical Seminar series: Pilot Force Measurement with Inertia and Gravity Compensation by Rodger A. Mueller (offering an interesting behind-the-scenes look at some of the research that goes into creating high-fedelity, pilot-control loader simulation experiences for pilots and astronauts using the world renowned NASA Ames Vertical Motion Simulator) Series audio on file in Ames Library

  7. ARC-2008-ACD08-0217-002

    NASA Image and Video Library

    2008-09-24

    Aeroanutics Technical Seminar series: Pilot Force Measurement with Inertia and Gravity Compensation by Rodger A. Mueller (offering an interesting behind-the-scenes look at some of the research that goes into creating high-fedelity, pilot-control loader simulation experiences for pilots and astronauts using the world renowned NASA Ames Vertical Motion Simulator) Series audio on file in Ames Library

  8. ARC-2008-ACD08-0217-003

    NASA Image and Video Library

    2008-09-24

    Aeroanutics Technical Seminar series: Pilot Force Measurement with Inertia and Gravity Compensation by Rodger A. Mueller (offering an interesting behind-the-scenes look at some of the research that goes into creating high-fedelity, pilot-control loader simulation experiences for pilots and astronauts using the world renowned NASA Ames Vertical Motion Simulator) Series audio on file in Ames Library

  9. AI at Ames: Artificial Intelligence research and application at NASA Ames Research Center, Moffett Field, California, February 1985

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E. (Editor)

    1985-01-01

    Charts are given that illustrate function versus domain for artificial intelligence (AI) applications and interests and research area versus project number for AI research. A list is given of project titles with associated project numbers and page numbers. Also, project descriptions, including title, participants, and status are given.

  10. Record Number of Summer Students Work at Ames in 2014

    NASA Image and Video Library

    2014-09-16

    NASA's Ames Research Center concluded the 2014 summer student program session that featured a record number of participants from around the globe. More than 1,100 students with high school- to graduate-level education took part in a wide variety of science activities. Some of the activities included robotics, aeronautics, biology, computer science, engineering and astrophysics.

  11. ARC-2009-ACD09-0208-013

    NASA Image and Video Library

    2009-09-15

    Obama Administration launches Cloud Computing Initiative at Ames Research Center. Vivek Kundra, White House Chief Federal Information Officer (left) and Lori Garver, NASA Deputy Administrator (ctr) get a tour of the NASA Nebula Infrastructure with Bobby Cates (right).

  12. ARC-2009-ACD09-0208-012

    NASA Image and Video Library

    2009-09-15

    Obama Administration launches Cloud Computing Initiative at Ames Research Center. Vivek Kundra, White House Chief Federal Information Officer (ctr) and Lori Garver, NASA Deputy Administrator (right) get a tour of the NASA Nebula Infrastructure with Bobby Cates (on left).

  13. ARC-2006-ACD06-0216-006

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel

  14. ARC-2006-ACD06-0216-009

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel

  15. Big Data on the Big Screen

    NASA Image and Video Library

    2013-10-17

    The center of the Milky Way galaxy imaged by NASA Spitzer Space Telescope is displayed on a quarter-of-a-billion-pixel, high-definition 23-foot-wide 7-meter LCD science visualization screen at NASA Ames Research Center.

  16. ARC-1984-AC82-0198-26

    NASA Image and Video Library

    1984-03-12

    Sikorsky RSRA - Rotor Systems Research Aircraft (72-002 NASA 741) in helicopter configuration flight. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 131

  17. ARC-2012-ACD12-0022-003

    NASA Image and Video Library

    2012-02-02

    Kepler Program VIP's from left Jon Jenkins, Natalie Batalha, and Bill Borucki pointing at the NASA Ames Hyperwall in the NAS (NASA Advanced Supercomputing) facility filled with exo-planets discovered during Kepler Mission. Moffett Field, CA (for aviation week)

  18. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  19. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-03-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  20. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  1. Earth Observations taken by the Expedition 17 Crew

    NASA Image and Video Library

    2008-05-03

    ISS017-E-006184 (3 May 2008) --- NASA Ames Research Center, Moffett Field, CA is featured in this image photographed by an Expedition 17 crewmember on the International Space Station. This view illustrates the diverse built environment surrounding NASA's Ames Research Center, or ARC located at the southernmost end of the San Francisco Bay. Founded in 1939 as an aircraft research laboratory, Ames became a NASA facility in 1958. Its original aircraft research focus was enhanced by the adjacent Moffett Field -- an active Naval Air Station until 1994 and original home of the Navy dirigible U.S.S. Macon. The large hanger for docking the U.S.S. Macon is still present at Moffett Field, and is visible in this image (center). Today, NASA ARC includes the former Naval Air Station, and continues its focus on aeronautics in addition to nanotechnology, information technology, fundamental space biology, biotechnology, thermal protection systems, and human factors research. Land use and land cover in the southern San Francisco Bay area is a diverse mix of industrial, institutional, and residential patterns. Industrial lots -- characterized by lack of green vegetation and large buildings with highly reflective white rooftops -- border NASA ARC to the west, east, and south. The city of Mountain View directly to the south appears as a dense gray-brown network of streets and residential properties with interspersed green parks. The northern boundary of NASA ARC consists of former salt ponds in the process of being returned to tidal wetlands (right). Drainage channels that predate the salt pond levees are visible at right.

  2. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  3. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  4. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  5. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  6. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  7. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  8. Bibliography of Doctor Chul Park

    NASA Technical Reports Server (NTRS)

    Gochberg, Lawrence A.; Venkatapathy, Ethiraj; Park, Chul

    1995-01-01

    This document contains a comprehensive bibliography of the published works, and a short biography, of Dr. Chul Park. The contents of this bibliography were compiled primarily from the NASA RECON data base. The RECON citations have been modified to appear in a uniform format with all other listed citations . These other citations were located by computer searches in the INSPEC, NTIS, COMPENDEX, and Chemical Abstracts data bases, as well as through the cooperation of Dr. Chul Park, and his associates in the Reacting Flow Environments Branch at NASA Ames Research Center. All citations are presented in an approximate reverse chronological order from the present date. This work was created to honor the occasion of Dr. Chul Park's retirement on December 14, 1994, after 27 years of distinguished government service at the NASA Ames Research Center.

  9. NASA Participates in 5th Annual California Aerospace Week

    NASA Image and Video Library

    2016-03-03

    The fifth annual California Aerospace Days event was recently held at the Capitol in Sacramento. It was an opportunity for NASA's Ames Research Center to showcase some of its key achievements and innovations in the Golden State.

  10. ARC-2012-ACD12-0016-022

    NASA Image and Video Library

    2012-01-25

    Dr. Brauch Blumberg portrait unveiling ceremony held at the Syverston Auditorium (N-201) NASA Ames Researc Center, Moffett Field, CA. From left Mrs. Jean Blumberg, Dolores Beasley, NASA stand by the Brauch Blumberg portrait with artist Elizabeth Zanzinger on right.

  11. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  12. Testing a Parachute for Mars in World Largest Wind Tunnel

    NASA Image and Video Library

    2007-12-20

    The team developing the landing system for NASA Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

  13. ARC-2009-ACD09-0218-009

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Shown here is Steve Dunagan, NASA Ames scientist. Cabin viewof instrument operaor Steve Dunagan, Pilot Katharing 'Kate' Board.

  14. Astrobiology Student Intern Program at Lassen Volcanic National Park

    NASA Astrophysics Data System (ADS)

    Dueck, S. L.; Zachary, S.; Michael, D.; Parenteau, M.; Kubo, M.; Jahnke, L. L.; Scalice, D.; Des Marais, D. J.

    2010-04-01

    The NASA Astrobiology Institute (NAI) Ames Team has partnered with Lassen Volcanic National Park and Red Bluff High School to engage high school students in the collection of scientific data for NASA astrobiologists and the National Park Service.

  15. ARC-2012-ACD12-0022-007

    NASA Image and Video Library

    2012-02-02

    Kepler Program VIP's from left Natalie Batalha, Bill Borucki and Jon Jenkins in front of a NASA Ames Hyperwall display of newly discovered planet K-22B art at the NAS (NASA Advanced Supercomputing) Facility, Moffett Field, CA (for aviation week)

  16. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  17. ARC-1995-95-HC-379

    NASA Image and Video Library

    1995-01-01

    'Fluid Dynamics,' mixed media by Tina York depicts fluid dynamics studies at the Ames Research Center. The purpose of such studies is to learn more about what happens to an object when it encounters the friction of atmospheric resistence (such as a plane encountering resistance as it speeds through the air). used in Ames 60 year history by Glenn Bugos NASA SP-4314

  18. Mars Technologies Spawn Durable Wind Turbines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  19. Implementation of a Computerized Maintenance Management System

    NASA Technical Reports Server (NTRS)

    Shen, Yong-Hong; Askari, Bruce

    1994-01-01

    A primer Computerized Maintenance Management System (CMMS) has been established for NASA Ames pressure component certification program. The CMMS takes full advantage of the latest computer technology and SQL relational database to perform periodic services for vital pressure components. The Ames certification program is briefly described and the aspects of the CMMS implementation are discussed as they are related to the certification objectives.

  20. Kaman K-16 in 40x80 Foot Wind Tunnel at Ames Research Center.

    NASA Image and Video Library

    1962-09-19

    Test No. 175 Kaman K-16 being lowered into the 40x80 foot wind tunnel at NASA's Ames Research Center, viewed from the front. Kaman K-16B was an experimental tilt wing aircraft, it used the fuselage of a JRF-5 and was powered by two General Electric YT58-GE-2A engines.

  1. Managing Content in a Matter of Minutes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA software created to help scientists expeditiously search and organize their research documents is now aiding compliance personnel, law enforcement investigators, and the general public in their efforts to search, store, manage, and retrieve documents more efficiently. Developed at Ames Research Center, NETMARK software was designed to manipulate vast amounts of unstructured and semi-structured NASA documents. NETMARK is both a relational and object-oriented technology built on an Oracle enterprise-wide database. To ensure easy user access, Ames constructed NETMARK as a Web-enabled platform utilizing the latest in Internet technology. One of the significant benefits of the program was its ability to store and manage mission-critical data.

  2. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  3. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  4. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  5. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  6. Aerodynamic characteristics of the 40- by 80/80- by 120-foot wind tunnel at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Corsiglia, V. R.; Olson, L. E.; Falarski, M. D.

    1984-01-01

    The design and testing of vane sets and air-exchange inlet for the 40 x 80/80 x 120-ft wind tunnel at NASA Ames are reported. Boundary-layer analysis and 2D and 3D inviscid panel codes are employed in computer models of the system, and a 1/10-scale 2D facility and a 1/50-scale 3D model of the entire wind tunnel are used in experimental testing of the vane sets. The results are presented in graphs, photographs, drawings, and diagrams are discussed. Generally good agreement is found between the predicted and measured performance.

  7. Planning Image-Based Measurements in Wind Tunnels by Virtual Imaging

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Schairer, Edward T.

    2011-01-01

    Virtual imaging is routinely used at NASA Ames Research Center to plan the placement of cameras and light sources for image-based measurements in production wind tunnel tests. Virtual imaging allows users to quickly and comprehensively model a given test situation, well before the test occurs, in order to verify that all optical testing requirements will be met. It allows optimization of the placement of cameras and light sources and leads to faster set-up times, thereby decreasing tunnel occupancy costs. This paper describes how virtual imaging was used to plan optical measurements for three tests in production wind tunnels at NASA Ames.

  8. Results of a Pressure Loads Investigation on a 0.030-scale Model (47-OTS) of the Integrated Space Shuttle Vehicle Configuration 5 in the NASA Ames Research Center 11 by 11 Foot Leg of the Unitary Plan Wind Tunnel (IA81A), Volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    Results of wind tunnel tests on a 0.030-scale model of the integrated space shuttle vehicle configuration 5 are presented. Testing was conducted in the NASA Ames Research Center 11 x 11 foot leg of the Unitary Plan Wind Tunnel to investigate pressure distributions for airloads analyses at Mach numbers from 0.9 through 1.4. Angles of attack and sideslip were varied from -6 to +6 degrees.

  9. ARC-2008-ACD08-0196-015

    NASA Image and Video Library

    2008-09-07

    NASA Day at AT&T Park: NASA and the San Francisco Giants share a day to celebrate the 50 year anniversaries. Ames New Ventures and Communication staff (L-R) Dolores Beasley, Lori and Kim Newton enjoy the sun and fun at the game.

  10. ARC-1974-AC74-4562-13

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft in flight over Sunnyvale golf course. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  11. The International Heat Pipe Experiment. [international cooperation zero g experiment

    NASA Technical Reports Server (NTRS)

    Mcintosh, R.; Ollendorf, S.; Harwell, W.

    1976-01-01

    The aims of the experiment are outlined. Flight experiments included in this program were provided by NASA, Goddard Space Flight Center, ESA (European Space Agency), the German Ministry of Technology, Hughes Aircraft Company and NASA, Ames Research Center.

  12. ARC-1978-AC78-1040-172

    NASA Image and Video Library

    1978-11-14

    Lockheed YO-3A (USA 69-18010 NASA 718) A/C & BELL COBRA HELICOPTER FLIGHT & GROUND TESTS AT EDWARDS AIR FORCE BASE. Rotorcraft Research. NASA SP-1998-3300 Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology Fig. 143

  13. Cloud Computing for DoD

    DTIC Science & Technology

    2012-05-01

    cloud computing 17 NASA Nebula Platform •  Cloud computing pilot program at NASA Ames •  Integrates open-source components into seamless, self...Mission support •  Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research •  Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 •  NASA Nebula (2010). Retrieved from

  14. Development of a Flexible Framework for Hypersonic Navier-Stoke Space Shuttle Orbiter Meshes

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.

    2004-01-01

    A flexible framework constructing block structured volume grids for hypersonic Navier-Strokes flow simulations was developed for the analysis of the Shuttle Orbiter Columbia. The development of the framework, which was partially basedon the requirements of the primary flow solvers used resulted in an ability to directly correlate solutions contributed by participating groups on a common surface mesh. A foundation was built through the assessment of differences between differnt solvers, which provided confidence for independent assessment of other damage scenarios by team members. The framework draws on the experience of NASA Langley and NASA Ames Research Centers in structured grid generation, and consists of a grid generation, and consist of a grid generation process implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (ACAI) team, Ames developing the surface grids that described the computational volume about the Orbiter, and Langley improving grid quality of Ames generated data and constructing the final computational volume grids. Distributing the work among the participant in th ACAI team resulted in significantl less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand of for five new meshes to explore new damage scenarios within an aggressive time-line.

  15. Wind-tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4

    NASA Technical Reports Server (NTRS)

    Larson, Terry J.; Moes, Timothy R.; Siemers, Paul M., III

    1990-01-01

    Flush pressure orifices installed on the nose section of a 1/7-scale model of the F-14 airplane were evaluated for use as a flush airdata system (FADS). Wing-tunnel tests were conducted in the 11- by 11-ft Unitary Wind Tunnel at NASA Ames Research Center. A full-scale FADS of the same configuration was previously tested using an F-14 aircraft at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden). These tests, which were published, are part of a NASA program to assess accuracies of FADS for use on aircraft. The test program also provides data to validate algorithms for the shuttle entry airdata system developed at the NASA Langley Research Center. The wind-tunnel test Mach numbers were 0.73, 0.90, 1.05, 1.20, and 1.39. Angles of attack were varied in 2 deg increments from -4 deg to 20 deg. Sideslip angles were varied in 4 deg increments from -8 deg to 8 deg. Airdata parameters were evaluated for determination of free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and Mach number. These parameters are, in most cases, the same as the parameters investigated in the flight test program. The basic FADS wind-tunnel data are presented in tabular form. A discussion of the more accurate parameters is included.

  16. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  17. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    Jon Morse, NASA's Astrophysics Division Director, left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March asWilliam Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, looks on. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  18. NASA Conference on Aircraft Operating Problems: A Compilation of the Papers Presented

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This compilation includes papers presented at the NASA Conference on Aircraft Operating Problems held at the Langley Research Center on May 10 - 12, 1965. Contributions were made by representatives of the Ames Research Center, the Flight Research Center, end the Langley Research Center of NASA, as well as by representatives of the Federal Aviation Agency.

  19. pre COBE history

    Science.gov Websites

    that insted of a balloon, we could try to fly from an airplane instead -- the C-141 run by NASA for infrared measurements. George went to NASA Ames to investigate. It looked difficult, since the hatch in the a memo format that might appeal to NASA. For the first time, Terry and George were added as co

  20. 2014 California Aerospace Week Highlights NASA Research (Reporter Package)

    NASA Image and Video Library

    2014-04-02

    The State Capitol in Sacramento was the scene of the 3rd Annual California Aerospace Week. It provided the opportunity for the three California-based NASA Centers (Ames Research Center, Armstrong Flight Research Center and the Jet Propulsion Laboratory) to educate lawmakers and the public about the importance NASA research and their contributions to the state's aerospace industry.

  1. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Parimal Kopardekar, NASA Ames Senior Engineer for Ait Transportation Systems gave an overview of UTM (Left). Maril Mora (Podium), President / CEO of the Reno -Tahoe Airport Authority welcomes NASA and Partners.

  2. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040193 (2 March 2011) --- NASA astronaut Chris Ferguson (left), STS-135 commander, confers with astronaut Rex Walheim, mission specialist, as the Atlantis crew participates in a briefing before a training session in the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, Calif. March 2, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  3. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040202 (2 March 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, departs from the Moffett Field (Calif.) flight operations center for his trip home to Houston after he and his crew trained in the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, March 2, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  4. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040204 (2 March 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, prepares for departure from Moffett Field in a T-38 trainer home to Houston after the crew of STS-135 trained in the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, Calif. on March 2, 2011, Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  5. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Parimal Kopardekar, NASA Ames Senior Engineer for Ait Transportation Systems gave an overview of UTM (Left).

  6. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Parimal Kopardekar, NASA Ames Senior Engineer for Ait Transportation Systems gave an overview of UTM.

  7. ARC-1993-AC93-0010-17

    NASA Image and Video Library

    1993-01-11

    Sikorsky UH-60 (USA 82-23748 NASA-748) Airloads research aircraft - Blackhawk helicopter with MUX-Bucket in flight over Livermore, CA. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135

  8. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1992-01-01

    Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).

  9. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat

    2005-01-01

    The Bay Area Environmental Research Institute (BAER) scientists have worked with the NASA Ames Research Center sunphotometer group led by Dr. Philip Russell for many years researching the climatic effects of aerosol particles in the stratosphere and troposphere. We have continued to work with the NASA Ames sunphotometer group in research activities representing funded, peer-reviewed proposals to NASA, NOAA and DOE. The activities are described in those proposals and also in the documents provided to the Grants Office earlier. This is the final report from January 1,2002 - June 30, 2005. The report consists of a compilation of 41 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 43 first-authored conference presentations. To save paper, reprints are not included but will, of course, be provided upon request.

  10. Dynamic response of NASA Rotor Test Apparatus and Sikorsky S-76 hub mounted in the 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Hoque, Muhammed S.

    1994-01-01

    A shake test was conducted in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center, using the NASA Ames Rotor Test Apparatus (RTA) and the Sikorsky S-76 rotor hub. The primary objective of this shake test was to determine the modal properties of the RTA, the S-76 rotor hub, and the model support system installed in the wind tunnel. Random excitation was applied at the rotor hub, and vibration responses were measured using accelerometers mounted at various critical locations on the model and the model support system. Transfer functions were computed using the load cell data and the accelerometer responses. The transfer function data were used to compute the system modal parameters with the aid of modal analysis software.

  11. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  12. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  13. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  14. Current Testing Capabilities at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Ramsey, Alvin; Tam, Tim; Bogdanoff, David; Gage, Peter

    1999-01-01

    Capabilities for designing and performing ballistic range tests at the NASA Ames Research Center are presented. Computational tools to assist in designing and developing ballistic range models and to predict the flight characteristics of these models are described. A CFD code modeling two-stage gun performance is available, allowing muzzle velocity, maximum projectile base pressure, and gun erosion to be predicted. Aerodynamic characteristics such as drag and stability can be obtained at speeds ranging from 0.2 km/s to 8 km/s. The composition and density of the test gas can be controlled, which allows for an assessment of Reynolds number and specific heat ratio effects under conditions that closely match those encountered during planetary entry. Pressure transducers have been installed in the gun breech to record the time history of the pressure during launch, and pressure transducers have also been installed in the walls of the range to measure sonic boom effects. To illustrate the testing capabilities of the Ames ballistic ranges, an overview of some of the recent tests is given.

  15. ARC-1974-AC74-4562-14

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  16. ARC-1974-AC74-4562-15

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  17. NASA in Silicon Valley Uses Eclipses to Study Our Galaxy

    NASA Image and Video Library

    2017-08-11

    The August 2017 total solar eclipse seen across the United States was an epic event. However, scientists and researchers at NASA's Ames Research Center use different types of eclipses every day to learn about the mysteries of our sun and our galaxy!

  18. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Kutler, Paul (Technical Monitor)

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technology are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotechnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  19. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  20. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  1. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, speaks during a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March as Jon Morse, NASA's Astrophysics Division Director, left, looks on. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  2. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  3. Wireless Subsurface Microsensors for Health Monitoring of Thermal Protection Systems on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, David G.; Pallix, Joan B.; Bahr, Alfred J.; Huestis, David L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to develop inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and SRI International to develop 'SensorTags,' radio frequency identification devices coupled with event-recording sensors, that can be embedded in the thermal protection system to monitor temperature or other quantities of interest. Two prototype SensorTag designs containing thermal fuses to indicate a temperature overlimit are presented and discussed.

  4. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  5. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  6. Juling Crater

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows where ice has been detected in the northern wall of Ceres' Juling Crater, which is in almost permanent shadow. Dawn acquired the picture with its framing camera on Aug. 30, 2016, and it was processed with the help of NASA Ames Stereo Pipeline (ASP), to estimate the slope of the cliff. https://photojournal.jpl.nasa.gov/catalog/PIA21918

  7. 2018 USA Science and Engineering Festival

    NASA Image and Video Library

    2018-04-06

    Tom Barclay, Director of the Kepler/K2 Guest Observer Office at NASA's Ames Research Center, speaks about exoplanets and NASA's next exoplanet mission during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)

  8. Robot Rocket Rally

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – Bruce Yost of NASA's Ames Research Center discusses a small satellite, known as PhoneSat, during the Robot Rocket Rally. The three-day event at Florida's Kennedy Space Center Visitor Complex is highlighted by exhibits, games and demonstrations of a variety of robots, with exhibitors ranging from school robotics clubs to veteran NASA scientists and engineers. Photo credit: NASA/Kim Shiflett

  9. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  10. ARC-2009-ACD09-0218-012

    NASA Image and Video Library

    2009-10-06

    NASA Conducts Airborne Science Aboard Zeppelin Airship: equipped with two imaging instruments enabling remote sensing and atmospheric science measurements not previously practical. Cabin view of Instrument Operator Steve Dunagan, NASA Ames, Pilot Katharine 'Kate' Board, (left) and Crew Chief Matthew Kilkerr (in flight suit) preforming pre-flight checkouts.

  11. NASA Public Affairs and NUANCE Lab News Conference at Reno-Stead Airport.

    NASA Image and Video Library

    2016-10-19

    News Conference following the test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. Joseph Rios, NASA Ames Aerospace Engineer and UTM Technical Lead, describes the purpose of the test and flight scenarios.

  12. Physiological Metrics of Mental Workload: A Review of Recent Progress

    DTIC Science & Technology

    1990-06-01

    been found to be more resistant to vigilance decrements than stabiles ( Hastrup , 1979; Sostek, 1978; Vossel & Rossman, 1984), respond more quickly in...NASA workload ratings: A paper and pencil package (NASA Technical Report). Moffett Field, CA: Ames Research Center. Hastrup , J. (1979). Effects of

  13. ARC-1969-A-33200-4

    NASA Image and Video Library

    1964-08-27

    R4D-6 (Bu. No. 99827 NACA 18, NASA 701). TAKE-OFF MONITOR TEST, EDWARDS AIR FORCE BASE. Gunsight Tracking and Guidance and Control Displays. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 76

  14. Avrocar Test in Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1961-04-03

    Rear view of the Avrocar with tail, mounted on variable height struts. Overhead doors of the wind tunnel test section open. The first Avrocar, S/N 58-7055 (marked AV-7055), after tethered testing, became the "wind tunnel" test model at NASA Ames, where it remained in storage from 1961 until 1966, when it was donated to the National Air and Space Museum, in Suitland, Maryland.

  15. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J.

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysismore » called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.« less

  16. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  17. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  18. Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent

    2014-01-01

    During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.

  19. Aerospace Human Factors

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin

    1999-01-01

    The following contains the final report on the activities related to the Cooperative Agreement between the human factors research group at NASA Ames Research Center and the Psychology Department at San Jose State University. The participating NASA Ames division has been, as the organization has changed, the Aerospace Human Factors Research Division (ASHFRD and Code FL), the Flight Management and Human Factors Research Division (Code AF), and the Human Factors Research and Technology Division (Code IH). The inclusive dates for the report are November 1, 1984 to January 31, 1999. Throughout the years, approximately 170 persons worked on the cooperative agreements in one capacity or another. The Cooperative Agreement provided for research personnel to collaborate with senior scientists in ongoing NASA ARC research. Finally, many post-MA/MS and post-doctoral personnel contributed to the projects. It is worth noting that 10 former cooperative agreement personnel were hired into civil service positions directly from the agreements.

  20. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  1. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  2. Shortwave Hyperspectral Observations During MAGIC Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, P. J.; Marshak, A.; Yang, W.

    The Marine ARM GPCI1 Investigation of Clouds (MAGIC) field campaign was initiated to improve our understanding of low-level marine clouds that have a significant influence on the Earth’s climate. The campaign was conducted using an ARM mobile facility deployed on a commercial ship traveling between Honolulu, Hawaii, and Los Angeles, California, from October 2012 to September 2013. The solar spectral flux radiometer (SSFR) was deployed on July 6, 2013, through the end of the campaign. The SSFR was calibrated and installed by Warren Gore of NASA Ames Research Center, and the data is and will be analyzed by Drs. Alexandermore » Marshak and Weidong Yang of NASA Goddard Space Flight Center, Dr. Samuel LeBlanc of NASA Ames Research Center, Dr. Sebastian Schmidt of the University of Colorado-Boulder, and Dr. Patrick McBride of Atmospheric & Space Technology Research Associates in Boulder, Colorado.« less

  3. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  4. Development of the Surface Management System Integrated with CTAS Arrival Tools

    NASA Technical Reports Server (NTRS)

    Jung, Yoon C.; Jara, Dave

    2005-01-01

    The Surface Management System (SMS) developed by NASA Ames Research Center in coordination with the Federal Aviation Administration (FAA) is a decision support tool to help tower traffic coordinators and Ground/Local controllers in managing and controlling airport surface traffic in order to increase capacity, efficiency, and flexibility. SMS provides common situation awareness to personnel at various air traffic control facilities such as airport traffic control towers (ATCT s), airline ramp towers, Terminal Radar Approach Control (TRACON), and Air Route Traffic Control Center (ARTCC). SMS also provides a traffic management tool to assist ATCT traffic management coordinators (TMCs) in making decisions such as airport configuration and runway load balancing. The Build 1 of the SMS tool was installed and successfully tested at Memphis International Airport (MEM) and received high acceptance scores from ATCT controllers and coordinators, as well as airline ramp controllers. NASA Ames Research Center continues to develop SMS under NASA s Strategic Airspace Usage (SAU) project in order to improve its prediction accuracy and robustness under various modeling uncertainties. This paper reports the recent development effort performed by the NASA Ames Research Center: 1) integration of Center TRACON Automation System (CTAS) capability with SMS and 2) an alternative approach to obtain airline gate information through a publicly available website. The preliminary analysis results performed on the air/surface traffic data at the DFW airport have shown significant improvement in predicting airport arrival demand and IN time at the gate. This paper concludes with recommendations for future research and development.

  5. Continuous Risk Management: A NASA Program Initiative

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

  6. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such as the vehicle track, science markers, and locations of video snapshots. The actual vehicle was driven either from within the virtual environment or through a telepresence interface. All vehicle functions could be controlled remotely over the satellite link.

  7. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  8. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    NASA Technical Reports Server (NTRS)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  9. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  10. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  11. RIACS

    NASA Technical Reports Server (NTRS)

    Moore, Robert C.

    1998-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: (1) Automated Reasoning. (2) Human-Centered Computing. and (3) High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.

  12. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    NASA Technical Reports Server (NTRS)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique scientific opportunities for temporal assessment across historical missions. Support from the NASA Space Biology Program and the NASA Human Research Program is gratefully acknowledged.

  13. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  14. PhoneSat 2.4 Launches to Orbit aboard Minotaur-1 Rocket (Reporter Package)

    NASA Image and Video Library

    2013-11-21

    On November 19, NASA's PhoneSat 2.4 successfully launched into space on board a Minotaur-1 rocket from the Wallops Flight Facility in Virginia. Built at NASA's Ames Research Center, the smartphone-based cubesat is an improved version of the previous PhoneSat satellites.

  15. ARC-2011-ACD11-0030-016

    NASA Image and Video Library

    2011-02-27

    10th Anniversary of Reachout for the Rainbow after School Science Festival highlighting NASA Ames and the Traveling Space Museum exhibits and activities at the South San Francisco Bayview Opera House. NASA Astronaut Yvonne Cagle signing autographs after speaking at event, shown here with Stephen Horsley. photo release on file

  16. STS-135_VMS

    NASA Image and Video Library

    2011-03-02

    JSC2011-E-040200 (2 March 2011) --- The landing approach to the Kennedy Space Center is seen in a heads up display as the STS-135 crew trains in the Vertical Motion Simulator (VMS) at NASA's Ames Research Center in Mountain View, Calif., on March 2, 2011. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  17. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; O'Brien, Raymond

    2015-01-01

    Cloud computing capabilities have rapidly expanded within the private sector, offering new opportunities for meteorological applications. Collaborations between NASA Marshall, NASA Ames, and contractor partners led to evaluations of private (NASA) and public (Amazon) resources for executing short-term NWP systems. Activities helped the Marshall team further understand cloud capabilities, and benchmark use of cloud resources for NWP and other applications

  18. 2018 USA Science and Engineering Festival

    NASA Image and Video Library

    2018-04-06

    Tom Barclay, Director of the Kepler/K2 Guest Observer Office at NASA's Ames Research Center, speaks about exoplanets and NASA's next exoplanet mission, the Transiting Exoplanet Survey Satellite, during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)

  19. Complexity and Safety (FAA)

    DTIC Science & Technology

    2016-10-27

    Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 © 2016 Carnegie Mellon University [DISTRIBUTION STATEMENT A: This... Carnegie Mellon University [DISTRIBUTION STATEMENT A: This material has been approved for public release and unlimited distribution] Copyright 2016 Carnegie ... Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by

  20. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Douglas R. Cooke, Associate Administrator for Exploration Systems Mission Directorate, at podium, addresses the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Seated from left on the panel is Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. Photo Credit: (NASA/Paul E. Alers)

  1. Dante's Inferno

    NASA Astrophysics Data System (ADS)

    Researchers decided last week to make a second rescue attempt of NASA's Dante II robot from the grips of Alaska's active volcano Mt. Spurr. After completing a successful mission earlier this month to explore depths of the crater where no human would venture, the eight-legged robot was disabled as it was working its way out of the crater. A first rescue attempt last Wednesday by helicopter failed to recover the $1.7-million robot. Nonetheless, NASA and Carnegie Mellon researchers, who developed the robot, maintain that Dante IPs trek shows that robots can do research in places—on Earth and in space—that may be too dangerous for human exploration.

  2. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  3. The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison

    NASA Technical Reports Server (NTRS)

    TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.

  4. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Qi, Nan; LeVan, M. Douglas; Finn, Cory K.; Finn, John E.; Luna, Bernadette (Technical Monitor)

    2000-01-01

    A regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an. adsorbent column into a closed oxidation loop is under development through cooperative R&D between Vanderbilt University and NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. Recent work has focused on fabrication and operation of a RAPS breadboard at NASA Ames, and on measurement of adsorption isotherm data for several important organic compounds at Vanderbilt. These activities support the use and validation of RAPS modeling software also under development at Vanderbilt, which will in turn be used to construct a prototype system later in the project.

  5. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  6. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  7. Human-Robot Teaming: Communication, Coordination, and Collaboration

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    In this talk, I will describe how NASA Ames has been studying how human-robot teams can increase the performance, reduce the cost, and increase the success of a variety of endeavors. The central premise of our work is that humans and robots should support one another in order to compensate for limitations of automation and manual control. This principle has broad applicability to a wide range of domains, environments, and situations. At the same time, however, effective human-robot teaming requires communication, coordination, and collaboration -- all of which present significant research challenges. I will discuss some of the ways that NASA Ames is addressing these challenges and present examples of our work involving planetary rovers, free-flying robots, and self-driving cars.

  8. NASA Activity Update for the 2013 Unmanned Vehicle Systems International (UVSI) Yearbook

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2013-01-01

    This year s report offers a high level perspective on some of the UAS related activities in which NASA is involved, both internal and external to the agency. Internally, NASA issued UAS operational policy on certification of NASA UAS and aircrew. A team of NASA UAS experts and operators analyzed all current procedures and best practices to design the policy. An update to the agencies Aircraft Operations Management Manual incorporated a new chapter to address UAS planning, preflight operations, flight operations, flight crew requirements, airworthiness and flight safety reviews. NASA UAS are classified into three categories based on weight and airspeed. Aircrews, including observers, are classified by how they interface with the UAS, and the policy defines qualifications, training, and currency. The NASA flight readiness approval process identifies risks and mitigations in order to reduce the likelihood and/or consequence of the risk to an acceptable level. The UAS operations process incorporates all aspects of airworthiness, flight standards and range safety exactly the same processes used for NASA manned aircraft operations. NASA has two internal organizations that routinely operate UAS. The Science Mission Directorate utilizes UAS as part of its Airborne Science Program and is the most frequent operator of NASA UAS in both national and international airspace. The Aeronautics Research Mission Directorate conducts UAS flight operations in addition to conducting research important to the UAS community. This past year the Science Mission Directorate supported the Hurricane and Severe Storm Sentimental (HS3) Mission with two NASA Global Hawk platforms. HS3 is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation. During the 2012 portion of this mission the Global Hawk overflew hurricanes Leslie and Nadine in the Atlantic Ocean completing 6 flights and accumulating more than 148 flight hours. Another multi-year mission was initiated last year when the Sensor Integrated Environmental Remote Research Aircraft (SIERRA) UAS began surveying faults in California s Surprise Valley. A team of scientists and engineers from the United States Geological Survey (USGS), NASA Ames Research Center, Central Washington University, and Carnegie Mellon University will measure magnetic fields using ground surveys and the SIERRA to map the geophysics below the surface of Surprise Valley. The data collected will be used to generate 3D maps of the geophysical data of the area. The Aeronautics Mission Directorate continues its collaboration with Boeing to conduct UAS flight operations of the X-48C, a modified version of the X-48B originally built by Cranfield Aerospace, United Kingdom. The Aeronautics Mission Directorate utilizes vehicles of this size for a wide variety of research studies. Most of these operations are conducted within restricted airspace. The Aeronautics Research Mission Directorate also sponsors the UAS in the National Airspace System (NAS) Project, which is working in close cooperation with the Federal Aviation Administration (FAA) to address critical challenges associated with routine UAS operations in civil airspace. The project is focused on separation assurance and collision avoidance systems and algorithms, command and control for non-military operations including spectrum allocation requirements, human system interaction issues, and safety and certification topics.

  9. Kepler Press Conference

    NASA Image and Video Library

    2009-08-05

    William Bo-Ricki, Kepler principal investigator at NASA's Ames Research Center, second from left, is joined by Jon Morse, left, Sara Seager, and Alan Boss while speaking at a press conference, Thursday, Aug. 6, 2009, at NASA Headquarters in Washington about the scientific observations coming from the Kepler spacecraft that was launched this past March. Kepler is NASA's first mission that is capable of discovering earth-sized planets in the habitable zones of stars like our Sun. Photo Credit: (NASA/Paul E. Alers)

  10. Extraterrestrial intelligence? The search is on

    NASA Technical Reports Server (NTRS)

    Coulter, Gary R.

    1991-01-01

    NASA's SETI-Microwave Observing Project, beginning on October 12, 1992, will search the closest solar-type stars for radio signals from extraterrestrial civilizations. When completed in the year 2000, the NASA search will have surpassed the search volume of all prior searches by a factor of 10 exp 10. The world's largest radio telescopes will be employed, in conjunction with the NASA Deep Space Network communications antennas. The program will be led by NASA-Ames, with substantial contribution by JPL.

  11. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  12. Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1995-01-01

    Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.

  13. Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)

    1995-01-01

    Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed to resolve the model and overset onto a main grid which discretizes the interior of the tunnel test section. Individual grid components axe not required to have mesh boundaries joined in any special way to each other or to the main tunnel grid. Programs have been developed to rotate the model about the tunnel pivot point and rotation axis, similar to that of the tunnel turntable mechanism for adjusting the pitch of the physical model in the test section.

  14. Improving Security in Software Acquisition and Runtime Integration With Data Retention Specifications

    DTIC Science & Technology

    2016-04-30

    Data Retention Specifications Daniel Smullen, Research Assistant, Carnegie Mellon University Travis Breaux, Assistant Professor, Carnegie Mellon... Carnegie Mellon University Travis Breaux, Assistant Professor, Carnegie Mellon University Cybersecurity Figure of Merit CAPT Brian Erickson, USN, SPAWAR...Integration With Data Retention Specifications Daniel Smullen—is a Research Assistant enrolled in the software engineering PhD program at Carnegie Mellon

  15. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  16. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  17. ARC-2002-ACD02-0104-001

    NASA Image and Video Library

    2002-05-29

    Memorandum of Understanding (MOU) to establish a Unmanned Aerial Vehicles (UAV) Applications Center at NASA Research Park (NRP) was signed into being by (L-R) John Bassett Clark University, Worcester, Mass., Dr. Henry McDonald, Director of Ames Research Center and Paul Coleman, Girvan Institute (a non-profit organization lockated in NASA Research Park).

  18. NOAA Climate Test Bed: CFSv.3 Planning Meeting (August 25-26, 2011)

    Science.gov Websites

    : Experience of porting CFSv2 NASA Ames SGI ICE platform (Marx) 12:30-14:00 Breakout discussion (1) Group 1A :00 NASA (Suarez) 09:00-09:20 GFDL (Rosati) 09:20-09:40 ECMWF (Molteni) 09:40-10:00 CMCC (Navarra) 10 modeling efforts at other modeling centers (e.g., GFDL, NCAR, NASA, COLA, DOE, ECMWF). Meeting Format: The

  19. The Shock and Vibration Bulletin. Part 4. Damping and Machinery Dynamics

    DTIC Science & Technology

    1983-05-01

    Y. S. Shin, Naval Postgraduate School, Monterey, CA and M. K. Chargin, NASA Ames Research Center, Moffett Field, CA FLUID-STRUCTURE INTERACTION BY...Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, and J. R. McGehee, NASA Langley Research Center, Hampton, VA ON THE MODAL... NASA Langley Missile Command, Redstone Arsenal, AL Research Center, Hampton, VA Mr. R. E. Seely, Naval Weapons Handlinj Center. Earle, Colts

  20. A white paper: NASA virtual environment research, applications, and technology

    NASA Technical Reports Server (NTRS)

    Null, Cynthia H. (Editor); Jenkins, James P. (Editor)

    1993-01-01

    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed.

Top