Sample records for nasa-johnson space center

  1. Networking at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  2. Johnson Space Center

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....

  3. NASA's "Webb-cam" Captures Engineers at Work on Webb at Johnson Space Center

    NASA Image and Video Library

    2017-05-30

    Now that NASA's James Webb Space Telescope has moved to NASA's Johnson Space Center in Houston, Texas, a special Webb camera was installed there to continue providing daily video feeds on the telescope's progress. Space enthusiasts, who are fascinated to see how this next generation space telescope has come together and how it is being tested, are able to see the telescope’s progress as it happens by watching the Webb-cam feed online. The Web camera at NASA’s Johnson Space Center can be seen online at: jwst.nasa.gov/, with larger views of the cams available at: jwst.nasa.gov/webcam.html. Read more: go.nasa.gov/2rQYpT2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    NASA Technical Reports Server (NTRS)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  5. NASA Johnson Space Center's Energy and Sustainability Efforts

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2008-01-01

    This viewgraph presentation reviews the efforts that NASA is making to assure a sustainable environment and energy savings at the Johnson Space Center. Sustainability is defined as development that meets the needs of present generations without compromising the ability of future generations to meet their own needs. The new technologies that are required for sustainable closed loop life support for space exploration have uses on the ground to reduce energy, greenhouse gas emissions, and water use. Some of these uses are reviewed.

  6. Nanomaterials Work at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  7. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  8. NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a spectacular flight of the X-38 prototype for a crew recovery vehicle that may be built for the International Space Station. The X-38 tested atmospheric flight characteristics on December 13, 2001, in a descent from 45,000 feet to Rogers Dry Lake at the NASA Dryden Flight Research Center/Edwards Air Force Base complex in California.

  9. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  10. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  11. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  12. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  13. Johnson Space Center Overview

    NASA Technical Reports Server (NTRS)

    Gafka, Tammy; Terrier, Doug; Smith, James

    2011-01-01

    This slide presentation is a review of the work of Johnson Space Center. It includes a section on technology development areas, (i.e., composite structures, non-destructive evaluation, applied nanotechnology, additive manufacturing, and fracture and fatigue analytical methods), a section on structural analysis capabilities within NASA/JSC and a section on Friction stir welding and laser peening.

  14. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  15. Renewable Energy at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    McDowall, Lindsay

    2014-01-01

    NASA's Johnson Space Center has implemented a great number of renewable energy systems. Renewable energy systems are necessary to research and implement if we humans are expected to continue to grow and thrive on this planet. These systems generate energy using renewable sources - water, wind, sun - things that we will not run out of. Johnson Space Center is helping to pave the way by installing and studying various renewable energy systems. The objective of this report will be to examine the completed renewable energy projects at NASA's Johnson Space Center for a time span of ten years, beginning in 2003 and ending in early 2014. This report will analyze the success of each project based on actual vs. projected savings and actual vs. projected efficiency. Additionally, both positive and negative experiences are documented so that lessons may be learned from past experiences. NASA is incorporating renewable energy wherever it can, including into buildings. According to the 2012 JSC Annual Sustainability Report, there are 321,660 square feet of green building space on JSC's campus. The two projects discussed here are major contributors to that statistic. These buildings were designed to meet various Leadership in Energy and Environmental Design (LEED) Certification criteria. LEED Certified buildings use 30 to 50 percent less energy and water compared to non-LEED buildings. The objectives of this project were to examine data from the renewable energy systems in two of the green buildings onsite - Building 12 and Building 20. In Building 12, data was examined from the solar photovoltaic arrays. In Building 20, data was examined from the solar water heater system. By examining the data from the two buildings, it could be determined if the renewable energy systems are operating efficiently. Objectives In Building 12, the data from the solar photovoltaic arrays shows that the system is continuously collecting energy from the sun, as shown by the graph below. Building 12

  16. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  17. NASA Johnson Space Center Biomedical Research Resources

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.

    1999-01-01

    Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.

  18. NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  19. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  20. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  1. NASA Johnson Style_ Gangnam Style Parody

    NASA Image and Video Library

    2012-12-14

    NASA Johnson Style is a volunteer outreach video project created by the students of NASA's Johnson Space Center. It was created as an educational parody of Psy's Gangnam Style. The lyrics and scenes in the video have been re-imagined in order to inform the public about the amazing work going on at NASA and the Johnson Space Center. Special thanks to astronauts Tracy Caldwell Dyson, Mike Massimino and Clay Anderson Special thanks to Mr. Mike Coats, Dr. Ellen Ochoa, and all supporting senior staff members

  2. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  3. Johnson Space Center: Workmanship Training

    NASA Technical Reports Server (NTRS)

    Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Becky

    2015-01-01

    Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Agency-wide NASA Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include "hands-on" training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, surface mount technology (SMT), crimping, conformal coating, and fiber-optic terminations.

  4. Hybrid vision activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1990-01-01

    NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.

  5. History of the Animal Care Program at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    NASA has a rich history of scientific research that has been conducted throughout our numerous manned spaceflight programs. This scientific research has included animal test subjects participating in various spaceflight missions, including most recently, Space Shuttle mission STS-131. The Animal Care Program at Johnson Space Center (JSC) in Houston, Texas is multi-faceted and unique in scope compared to other centers within the agency. The animal care program at JSC has evolved from strictly research to include a Longhorn facility and the Houston Zoo's Attwater Prairie Chicken refuge, which is used to help repopulate this endangered species. JSC is home to more than 300 species of animals including home of hundreds of white-tailed deer that roam freely throughout the center which pose unique issues in regards to population control and safety of NASA workers, visitors and tourists. We will give a broad overview of our day to day operations, animal research, community outreach and protection of animals at NASA Johnson Space Center.

  6. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2012-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory.

  7. Capability of the Gas Analysis and Testing Laboratory at the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Broerman, Craig; Jimenez, Javier; Sweterlitsch, Jeff

    2011-01-01

    The Gas Analysis and Testing Laboratory is an integral part of the testing performed at the NASA Johnson Space Center. The Gas Analysis and Testing Laboratory is a high performance laboratory providing real time analytical instruments to support manned and unmanned testing. The lab utilizes precision gas chromatographs, gas analyzers and spectrophotometers to support the technology development programs within the NASA community. The Gas Analysis and Testing Laboratory works with a wide variety of customers and provides engineering support for user-specified applications in compressed gas, chemical analysis, general and research laboratory

  8. Alternative Fuels Data Center: Johnson Space Center Explores Alternative

    Science.gov Websites

    Fuel Vehicles Johnson Space Center Explores Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Johnson Space Center Explores Alternative Fuel Vehicles on

  9. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  10. NASA Johnson Space Center: Total quality partnership

    NASA Technical Reports Server (NTRS)

    Harlan, Charlie; Boyd, Alfred A.

    1992-01-01

    The development of and benefits realized from a joint NASA, support contractor continuous improvement process at the Johnson Space Center (JSC) is traced. The joint effort described is the Safety, Reliability, and Quality Assurance Directorate relationship with its three support contractors which began in early 1990. The Continuous Improvement effort started in early 1990 with an initiative to document and simplify numerous engineering change evaluation processes. This effort quickly grew in scope and intensity to include process improvement teams, improvement methodologies, awareness, and training. By early 1991, the support contractor had teams in place and functioning, program goals established and a cultural change effort underway. In mid-l991 it became apparent that a major redirection was needed to counter a growing sense of frustration and dissatisfaction from teams and managers. Sources of frustration were isolated to insufficient joint participation on teams, and to a poorly defined vision. Over the next year, the effort was transformed to a truly joint process. The presentation covers the steps taken to define vision, values, goals, and priorities and to form a joint Steering Committee and joint process improvement teams. The most recent assessment against the President's award criteria is presented as a summary of progress. Small, but important improvement results have already demonstrated the value of the joint effort.

  11. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  12. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  13. Suddenly, tomorrow came... A history of the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Dethloff, Henry C.

    1993-01-01

    This book chronicles the history of the Johnson Space Center into 17 chapters with a forward written by Donald K. Slayton. Photographs and illustrations are provided. This book becomes part of the NASA history series.

  14. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  15. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  16. Artificial recharge for subsidence abatement at the NASA-Johnson Space Center, Phase I

    USGS Publications Warehouse

    Garza, Sergio

    1977-01-01

    Regional decline of aquifer head due to ground-water withdrawal in the Houston area has caused extensive land-surface subsidence. The NASA-Johnson Space Center (NASA-JSC) in southeastern Harris County, Texas, was about 13 to 19 feet above mean sea level in 1974 and sinking at a rate of more than 0.2 foot per year. NASA-JSC officials, concerned about the hurricane flooding hazard, requested the U.S. Geological Survey to study the feasibility of artificially recharging the aquifers for subsidence abatement. Hydrologic digital models were developed for theoretical determinations of quantities of water needed, under various well-array plans, for artificial recharge of the Chicot and Evangeline aquifers in order to halt the local subsidence at NASA-JSC. The programs for the models were developed for analysis of three-dimensional ground-water flow. Total injection rates of between 2,000 and 14,000 gallons per minute under three general well-array plans were determined for a range of residual clay pore pressures of 10 to 70 feet of hydraulic head. The space distributions of the resultant hydraulic heads, illustrated for injection rates of 3,600 and 8 ,400 gallons per minute, indicated that, for the same rate, increasing the number and spread of the injection locations reduces the head gradients within NASA-JSC. (Woodard-USGS)

  17. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  18. Space Shuttle Endeavour flies by Johnson Space Center

    NASA Image and Video Library

    2008-12-11

    JSC2008-E-154359 (11 Dec. 2008) --- The Space Shuttle Endeavour flies over the Clear Lake area and the Johnson Space Center after having spent the night at a stopover in Tarrant County, while mounted on a modified Boeing 747 shuttle carrier aircraft. Endeavour landed in California on Nov. 30 and was en route back to Florida. This photo, taken from the rear station of a NASA T-38 aircraft, shows the main part of the 1625-acre JSC site. The extremely clear weather allows viewing all the way to Houston's central business district. Harris County Domed Stadium and the Houston NFL franchise's stadium are visible in the upper left quadrant of the photo.

  19. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  20. Johnson Space Center Research and Technology 1997 Annual Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights key projects and technologies at Johnson Space Center for 1997. The report focuses on the commercial potential of the projects and technologies and is arranged by CorpTech Major Products Groups. Emerging technologies in these major disciplines we summarized: solar system sciences, life sciences, technology transfer, computer sciences, space technology, and human support technology. Them NASA advances have a range of potential commercial applications, from a school internet manager for networks to a liquid metal mirror for optical measurements.

  1. Evolution of the Behavioral Sciences Branch of the Space Medicine and Health Care Systems Office at the Johnson Space Center.

    PubMed

    Fiedler, Edna R; Carpenter, Frank E

    2005-06-01

    This paper presents a brief history of psychology and psychiatry roles in psychological selection and how these roles have evolved into the Behavioral Sciences Branch at the Johnson Space Center USC), Houston, TX. Since the initial selection of the Mercury Seven, the first United States astronauts, psychologists and psychiatrists have been involved in astronaut selection activities. Initially very involved in psychological selection of astronauts, the role of behavioral health specialists waned during the Gemini and Apollo years. With the onset of the NASA/Mir/International Space Station Program, the introduction of payload and mission specialists, and international collaboration, the evolving need for behavioral health expertise became apparent. Medical and psychological selection processes were revisited and the Johnson Space Center developed a separate operational unit focused on behavioral health and performance. This work unit eventually became the Behavioral Sciences branch of the Space Medicine and Health Care Systems Office. Research was allocated across groups at JSC, other NASA space centers, and the National Space Biomedical Research Institute, and was funded by NASA Headquarters. The current NASA focus on human space exploration to the Moon and beyond re-emphasizes the importance of the human-centered approach.

  2. Johnson Space Center Research and Technology 1993 Annual Report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Center research and technology accomplishments during fiscal year 1993 are described and principle researchers and technologists are identified as contacts for further information. Each of the four sections gives a summary of overall progress in a major discipline, followed by detailed, illustrated descriptions of significant tasks. The four disciplines are Life Sciences, Human Support Technology, Solar Systems Sciences, and Space Systems Technology. The report is intended for technical and management audiences throughout the NASA and worldwide aerospace community. An index lists project titles, funding codes, and principal investigators.

  3. The Johnson Space Center management information systems: User's guide to JSCMIS

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at the NASA Johnson Space Center which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. The User's Guide to JSCMIS is the supplement to the JSCMIS Research Report which details the objectives, the architecture, and implementation of the interface. It is a tutorial on how to use the interface and a reference for details about it. The guide is structured like an extended JSCMIS session, describing all of the interface features and how to use them. It also contains an appendix with each of the standard FORMATs currently included in the interface. Users may review them to decide which FORMAT most suits their needs.

  4. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox willmore » provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.« less

  5. Taxonomy, Ontology and Semantics at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  6. NASA Johnson Space Center: Mini AERCam Testing with GSS6560

    NASA Technical Reports Server (NTRS)

    Cryant, Scott P.

    2004-01-01

    This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.

  7. Research and technology, Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1984 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  8. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  9. Research and technology of the Lyndon Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1988 are highlighted. This year, reports are grouped in sections Space System Technology, Solar System Sciences, Space Transportation Technology, and Medical Sciences. Summary sections describing the role of Johnson Space Center in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. The 1990 Johnson Space Center bibliography of scientific and technical papers

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals.

  11. Thermal Testing of Ablators in the NASA Johnson Space Center Radiant Heat Test Facility

    NASA Technical Reports Server (NTRS)

    Del Papa, Steven; Milhoan, Jim; Remark, Brian; Suess, Leonard

    2016-01-01

    A spacecraft's thermal protection system (TPS) is required to survive the harsh environment experienced during reentry. Accurate thermal modeling of the TPS is required to since uncertainties in the thermal response result in higher design margins and an increase in mass. The Radiant Heat Test Facility (RHTF) located at the NASA Johnson Space Center (JSC) replicates the reentry temperatures and pressures on system level full scale TPS test models for the validation of thermal math models. Reusable TPS, i.e. tile or reinforced carbon-carbon (RCC), have been the primary materials tested in the past. However, current capsule designs for MPCV and commercial programs have required the use of an ablator TPS. The RHTF has successfully completed a pathfinder program on avcoat ablator material to demonstrate the feasibility of ablator testing. The test results and corresponding ablation analysis results are presented in this paper.

  12. Development of the CELSS emulator at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  13. NASA Johnson Space Center Small Business Innovation Research (SBIR) Successes, Infusion and Commercializations and Potential International Partnering Opportunities

    NASA Technical Reports Server (NTRS)

    Packard, Kathryn; Goodman, Doug; Whittington, James

    2016-01-01

    The NASA Small Business Innovation Research (SBIR) Program has served as a beneficial funding vehicle to both US small technology businesses and the Federal Agencies that participate in the program. This paper, to the extent possible, while observing Intellectual Property (IP) laws, will discuss the many SBIR and STTR (SBIR Technology Transfer) successes in the recent history of the NASA Johnson Space Center (JSC). Many of the participants of the International Conference on Environmental Systems (ICES) have based their research and papers on technologies that were made possible by SBIR/STTR awards and post award funding. Many SBIR/STTR successes have flown on Space Shuttle missions, Space X Dragons, and other spacecraft. SBIR/STTR technologies are currently infused on the International Space Station (ISS) and satellites, one of which was a NASA/JAXA (Japanese Space Agency) joint venture. Many of these companies have commercialized their technologies and grown as businesses while helping the economy through the creation of new jobs. In addition, this paper will explore the opportunity for international partnership with US SBIR/STTR companies as up to 49% of the makeup of the company is not required to be American owned. Although this paper will deal with technical achievements, it does not purport to be technical in nature. It will address the many requests for information on successes and opportunities within NASA SBIR and the virtually untapped potential of international partnering.

  14. Example of Occupational Surveillance in a Telemedicine Setting: Application of Epidemiologic Methods at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, Adriana; Ruffaner, Lanie M.; Wear, Mary L.; Crucian, Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary

    2016-01-01

    In 2010, NASA implemented Lifetime Surveillance of Astronaut Health, a formal occupational surveillance program for the U.S. astronaut corps. Because of the nature of the space environment, space medicine presents unique challenges and opportunities for epidemiologists. One such example is the use of telemedicine while crewmembers are in flight, where the primary source of information about crew health is verbal communication between physicians and their crewmembers. Due to restricted medical capabilities, the available health information is primarily crewmember report of signs and symptoms, rather than diagnoses. As epidemiologists at NASA, Johnson Space Center, we have shifted our paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one in which we also incorporate reported symptomology as potential antecedents of disease. In this presentation we describe how characterization of reported signs and symptoms can be used to establish incidence rates for inflight immunologic events. We describe interdisciplinary data sources of information that are used in combination with medical information to analyze the data. We also delineate criteria for symptom classification inclusion. Finally, we present incidence tables and graphs to illustrate the final outcomes. Using signs and symptoms reported via telemedicine, the epidemiologists provide summary evidence regarding incidence of potential inflight medical conditions. These results inform our NASA physicians and scientists, and support evaluation of the occupational health risks associated with spaceflight.

  15. Research and technology at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1983 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Advanced Programs tasks funded by the Office of Space Flight; and Solar System Explorations, Life Sciences, and Earth Sciences and Applications research funded by the Office of Space Sciences and Applications. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  16. Research and technology of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1987 are highlighted. Included are research projects funded by the Office of Aeronautics and Space Technology, Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications, and advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  17. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  18. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  19. Johnson Space Center's Solar and Wind-Based Renewable Energy System

    NASA Technical Reports Server (NTRS)

    Vasquez, A.; Ewert, M.; Rowlands, J.; Post, K.

    2009-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas has a Sustainability Partnership team that seeks ways for earth-based sustainability practices to also benefit space exploration research. A renewable energy gathering system was installed in 2007 at the JSC Child Care Center (CCC) which also offers a potential test bed for space exploration power generation and remote monitoring and control concepts. The system comprises: 1) several different types of photovoltaic panels (29 kW), 2) two wind-turbines (3.6 kW total), and 3) one roof-mounted solar thermal water heater and tank. A tie to the JSC local electrical grid was provided to accommodate excess power. The total first year electrical energy production was 53 megawatt-hours. A web-based real-time metering system collects and reports system performance and weather data. Improvements in areas of the CCC that were detected during subsequent energy analyses and some concepts for future efforts are also presented.

  20. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  1. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  2. Affirmative action as organization development at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tryman, Mfanya Donald L.

    1987-01-01

    The role of affirmative actions is investigated as an interventionist Organization Development (OD) strategy for insuring equal opportunities at the NASA/Johnson Space Center. In doing so, an eclectic and holistic model is developed for the recruiting and hiring of minorities and females over the next five years. The strategy, approach, and assumptions for the model are quite different than those for JSC's five year plan. The study concludes that Organization development utilizing affirmative action is a valid means to bring about organizational change and renewal processes, and that an eclectic model of affirmative action is most suitable and rational in obtaining this end.

  3. Study of Lyndon B. Johnson Space Center utility systems

    NASA Technical Reports Server (NTRS)

    Redding, T. E.; Huber, W. C.

    1977-01-01

    The results of an engineering study of potential energy saving utility system modifications for the NASA Lyndon B. Johnson Space Center are presented. The objective of the study was to define and analyze utility options that would provide facility energy savings in addition to the approximately 25 percent already achieved through an energy loads reduction program. A systems engineering approach was used to determine total system energy and cost savings resulting from each of the ten major options investigated. The results reported include detailed cost analyses and cost comparisons of various options. Cost are projected to the year 2000. Also included are a brief description of a mathematical model used for the analysis and the rationale used for a site survey to select buildings suitable for analysis.

  4. Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.

  5. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  6. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    NASA Technical Reports Server (NTRS)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  7. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  8. Research and technology: 1986 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1986 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  9. Research and technology: 1985 annual report of the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Johnson Space Center accomplishments in new and advanced concepts during 1985 are highlighted. Included are research funded by the Office of Aeronautics and Space Technology; Solar System Exploration and Life Sciences research funded by the Office of Space Sciences and Applications; and Advanced Programs tasks funded by the Office of Space Flight. Summary sections describing the role of the Johnson Space Center in each program are followed by one-page descriptions of significant projects. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.

  10. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  11. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  12. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu

    1993-01-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  13. Behavioral Health and Performance Operations at the NASA Johnson Space Center: A Comprehensive Program that Addresses Flight and Spaceflight Duty Adaptability

    NASA Technical Reports Server (NTRS)

    Beven, G. E.

    2017-01-01

    NASA astronauts on active status require medical certification for aircraft flying duties as well as readiness for long duration spaceflight training, launch to the International Space Station (ISS), and mission continuation during spaceflight operations. Behavioral fitness and adaptability is an inherent component of medical certification at NASA and requires a unique approach that spans the professional life-span of all active astronauts. TOPIC: This presentation will address the Behavioral Health and Performance (BHP) operations program at the Johnson Space Center. Components of BHP operations include astronaut selection, as well as annual, elective, preflight, inflight, and postflight BHP assessments. Each aspect of the BHP operations program will be discussed, with a focus on behavioral fitness determination and resultant outcomes. Specifically, astronaut selection generates a rating of suitability for long duration spaceflight as well as psychiatric qualification; annual, preflight and postflight BHP assessments provoke a decision regarding the presence of any aeromedical concerns; and inflight assessment requires a conclusion pertaining to mission impact. The combination of these elements provide for a unique, comprehensive approach to flight and spaceflight adaptability. APPLICATIONS: Attendees will understand the differing facets of NASA's comprehensive BHP operations program that occurs over the course of an astronaut's career and be able to compare and contrast this to the Adaptability Rating for Military Aviation (ARMA) and proposed models presented by others on this panel.

  14. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  15. Unique strategies for technical information management at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Krishen, Vijay

    1994-01-01

    In addition to the current NASA manned programs, the maturation of Space Station and the introduction of the Space Exploration programs are anticipated to add substantially to the number and variety of data and documentation at NASA Johnson Space Center (JSC). This growth in the next decade has been estimated at five to ten fold compared to the current numbers. There will be an increased requirement for the tracking and currency of space program data and documents with National pressures to realize economic benefits from the research and technological developments of space programs. From a global perspective the demand for NASA's technical data and documentation is anticipated to increase at local, national, and international levels. The primary users will be government, industry, and academia. In our present national strategy, NASA's research and technology will assume a great role in the revitalization of the economy and gaining international competitiveness. Thus, greater demand will be placed on NASA's data and documentation resources. In this paper the strategies and procedures developed by DDMS, Inc., to accommodate the present and future information utilization needs are presented. The DDMS, Inc., strategies and procedures rely on understanding user requirements, library management issues, and technological applications for acquiring, searching, storing, and retrieving specific information accurately and quickly. The proposed approach responds to changing customer requirements and product deliveries. The unique features of the proposed strategy include: (1) To establish customer driven data and documentation management through an innovative and unique methods to identify needs and requirements. (2) To implement a structured process which responds to user needs, aimed at minimizing costs and maximizing services, resulting in increased productivity. (3) To provide a process of standardization of services and procedures. This standardization is the central

  16. President Barack Obama Visit to Kennedy Space Center

    NASA Image and Video Library

    2011-04-29

    President Barack Obama holds hands with his daughter Malia as they walk under the space shuttle Atlantis during a tour the first family received of the the NASA Orbital Processing Facility given by Director of Flight Crew Operations for the Johnson Space Center and Astronaut, Janet Kavandi, right, at the NASA Kennedy Space Center in Cape Canaveral, Fla., Friday, April 29, 2011. Photo Credit: (NASA/Bill Ingalls)

  17. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  18. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  19. The Hayabusa Curation Facility at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction

  20. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  1. NASA Cribs: Human Exploration Research Analog

    NASA Image and Video Library

    2017-07-20

    Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents

  2. Zeoponic Plant Growth Substrate Development at the Johnson Space Center and Possible Use at a Martian Outpost

    NASA Technical Reports Server (NTRS)

    Gruener, John E.; Ming, Douglas W.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) is developing a substrate, termed zeoponics, that will slowly release all of the essential nutrients into solution for plant growth experiments in advanced life support system testbeds. This substrate is also potentially useful in the near future on the Space Shuttle and International Space Station and could eventually be used at an outpost on Mars. Chemical analyses of the Martian soil by the Viking and Mars Pathfinder missions have indicated that several of the elements required for plant growth are available in the soil. It may be possible to use the martian soil as the bulk substrate for growing food crops, while using smaller amounts of zeoponic substrate as an amendment to rectify any nutrient deficiencies.

  3. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    NASA Technical Reports Server (NTRS)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  4. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  5. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  6. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    NASA Technical Reports Server (NTRS)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  7. NASA's New Astronauts to Conduct Research Off the Earth , For the Earth and Deep Space Missions

    NASA Image and Video Library

    2017-06-07

    After receiving a record-breaking number of applications to join an exciting future of space exploration, NASA has selected its largest astronaut class since 2000. Rising to the top of more than 18,300 applicants, NASA chose 12 women and men as the agency’s new astronaut candidates. Vice President Mike Pence joined Acting NASA Administrator Robert Lightfoot, Johnson Space Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly to welcome the new astronaut candidates during an event June 7 at the agency’s Johnson Space Center in Houston. The astronaut candidates will return to Johnson in August to begin two years of training. Then they could be assigned to any of a variety of missions: performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and departing for deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

  8. President Barack Obama Visit to Kennedy Space Center

    NASA Image and Video Library

    2011-04-29

    Terry White, United Space Alliance project lead for thermal protection systems, left, shows President Barack Obama and his family, from left, First Lady Michelle Obama, Malia, Marian Robinson and Sasha, how tiles work on the space shuttle during their visit to the Orbital Processing Facility at the NASA Kennedy Space Center in Cape Canaveral, Fla., Friday, April 29, 2011. Looking on is Director of Flight Crew Operations for the Johnson Space Center and Astronaut, Janet Kavandi. Photo Credit: (NASA/Bill Ingalls)

  9. INFINITY at NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  10. INFINITY at NASA Stennis Space Center

    NASA Image and Video Library

    2010-11-17

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  11. Thermoelectric applications as related to biomedical engineering for NASA Johnson Space Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, C.D.

    1997-07-01

    This paper presents current NASA biomedical developments and applications using thermoelectrics. Discussion will include future technology enhancements that would be most beneficial to the application of thermoelectric technology. A great deal of thermoelectric applications have focused on electronic cooling. As with all technological developments within NASA, if the application cannot be related to the average consumer, the technology will not be mass-produced and widely available to the public (a key to research and development expenditures and thermoelectric companies). Included are discussions of thermoelectric applications to cool astronauts during launch and reentry. The earth-based applications, or spin-offs, include such innovations asmore » tank and race car driver cooling, to cooling infants with high temperatures, as well as, the prevention of hair loss during chemotherapy. In order to preserve the scientific value of metabolic samples during long-term space missions, cooling is required to enable scientific studies. Results of one such study should provide a better understanding of osteoporosis and may lead to a possible cure for the disease. In the space environment, noise has to be kept to a minimum. In long-term space applications such as the International Space Station, thermoelectric technology provides the acoustic relief and the reliability for food, as well as, scientific refrigeration/freezers. Applications and future needs are discussed as NASA moves closer to a continued space presence in Mir, International Space Station, and Lunar-Mars Exploration.« less

  12. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  13. KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, processes one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  14. KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, works with one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - Dr. Dennis Morrison, NASA Johnson Space Center, works with one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  15. CFD Modeling Activities at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel

    2007-01-01

    A viewgraph presentation on NASA Stennis Space Center's Computational Fluid Dynamics (CFD) Modeling activities is shown. The topics include: 1) Overview of NASA Stennis Space Center; 2) Role of Computational Modeling at NASA-SSC; 3) Computational Modeling Tools and Resources; and 4) CFD Modeling Applications.

  16. The Johnson Space Center Management Information Systems (JSCMIS). 1: Requirements Definition and Design Specifications for Versions 2.1 and 2.1.1. 2: Documented Test Scenario Environments. 3: Security Design and Specifications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Johnson Space Center Management Information System (JSCMIS) is an interface to computer data bases at NASA Johnson which allows an authorized user to browse and retrieve information from a variety of sources with minimum effort. This issue gives requirements definition and design specifications for versions 2.1 and 2.1.1, along with documented test scenario environments, and security object design and specifications.

  17. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  18. The results of an agricultural analysis of the ERTS-1 MSS data at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Bizzell, R. M.; Wade, L. C.; Prior, H. L.; Spiers, B.

    1973-01-01

    The initial analysis of the ERTS-1 multispectral scanner (MSS) data at the Johnson Space Center (JSC), Houston, Texas is discussed. The primary data set utilized was the scene over Monterey Bay, California, on July 25, 1972, NASA ERTS ID No. 1002-18134. It was submitted to both computerized and image interpretative processing. An area in the San Joaquin Valley was submitted to an intensive evaluation of the ability of the data to (1) discriminate between crop types and (2) to provide a reasonably accurate area measurement of agricultural features of interest. The results indicate that the ERTS-1 MSS data is capable of providing the identifications and area extent of agricultural lands and field crop types.

  19. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  20. Katherine Johnson Legacy

    NASA Image and Video Library

    2016-05-05

    Following a naming dedication ceremony May 5, 2016 - the 55th anniversary of Alan Shepard's historic rocket launch - NASA Langley Research Center's newest building is known as the Katherine G. Johnson Computational Research Facility, honoring the "human computer" who successfully calculated the trajectories for America's first space flights.

  1. Analysis of the lettuce data from the variable pressure growth chamber at NASA Johnson Space Center: A three-stage nested design model

    NASA Technical Reports Server (NTRS)

    Lee, Tze-San

    1992-01-01

    A model of three-stage nested experimental design was applied to analyze the lettuce data obtained from the variable pressure growth chamber test bed at NASA-Johnson Space Center. From the results of an application of the analysis of variance and covariance on the data set, it was noted that all of the (uncontrollable) factors, Side, Zone, Height and (controllable) PAR (photosynthetically active radiation), had nonhomogeneous effects on the dry weight of the edible biomass of lettuce per pot. Incidentally, the variations accountable to the (uncontrollable) factorial heterogeneities are merely 9 percent and 17 percent of the total variation for both the first and second crop test, respectively. After adjusting for the PAR as a covariate in the no-intercept model, the accountable variations to all the four factors are 94 percent and 92 percent for the first and the second crop test, respectively. With the use of a no-intercept simple linear regression model, the accountable variations to the factor PAR are 92 percent and 90 percent for the first and the second crop test, respectively. Evidently, the (controllable) factor PAR is the dominating one.

  2. Senator Barbara Mikulski visits NASA Goddard Space Flight Center.

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: http://www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mikulski-visits-nasa-goddard Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram   N

  3. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  4. President Barack Obama Visit to Kennedy Space Center

    NASA Image and Video Library

    2011-04-29

    President Barack Obama and First Lady Michelle Obama meet with STS-134 space shuttle Endeavor commander Mark Kelly, right, and shuttle astronauts, from left, Andrew Feustel, European Space Agency’s Roberto Vittori, Michael Fincke, Gregory H. Johnson, and Greg Chamitoff, after their launch was scrubbed, Friday, April 29, 2011, at Kennedy Space Center in Cape Canaveral, Fla. Photo Credit: (NASA/Bill Ingalls)

  5. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  6. Proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Barger, G. L.

    1975-01-01

    The proceedings of the 1974 Lyndon B. Johnson Space Center Wheat-Yield Conference are presented. The state of art of wheat-yield forecasting and the feasibility of incorporating remote sensing into this forecasting were discussed with emphasis on formulating common approach to wheat-yield forecasting, primarily using conventional meteorological measurements, which can later include the various applications of remote sensing. Papers are presented which deal with developments in the field of crop modelling.

  7. The NASA Clinic System

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Williams, Richard

    2009-01-01

    NASA maintains on site occupational health clinics at all Centers and major facilities NASA maintains an on-site clinic that offers comprehensive health care to astronauts at the Johnson Space Center NASA deploys limited health care capability to space and extreme environments Focus is always on preventive health care

  8. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  9. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  10. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows the X-38 Vehicle 201, intended for spaceflight testing, under construction at NASA Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  11. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  12. NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.

    2004-01-01

    The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

  13. KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  14. Lead Paint Exposure Assessment in High Bays of Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stanch, Penney; Plaza, Angel; Keprta, Sean

    2008-01-01

    This slide presentation reviews the program to assess the possibility of lead paint exposure in the high bays of some of the Johnson Space Center buildings. Some of the buildings in the Manned Space Flight Center (MSC) were built in 1962 and predate any considerations to reduce lead in paints and coatings. There are many of these older buildings that contain open shops and work areas that have open ceilings, These shops include those that had operations that use leaded gasoline, batteries, and lead based paints. Test were planned to be conducted in three phases: (1) Surface Dust sampling, (2) personal exposure montioring, and (3) Ceiling paint Sampling. The results of the first two phases were reviewed. After considering the results of the first two phases, and the problems associated with the retrieval of samples from high ceilings, it was determined that the evaluation of ceiling coatings would be done on a project by project and in response to a complaint.

  15. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  16. Leah Robson, Bridgette Puljiz and Zachary Johnson(back to camera) in the flight deck of NASA's 747 shuttle carrier during Take Your Children to Work Day

    NASA Image and Video Library

    2004-06-22

    Leah Robson and Bridgette Puljiz of Tehachapi (seated) and Zachary Johnson of Palmdale (back to camera) look over the maze of dials and switches in the flight deck of NASA's modified Boeing 747 space shuttle carrier aircraft during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.

  17. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  18. Environmental Physiology at the Johnson Space Center: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2007-01-01

    This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.

  19. Hidden Figures and Katherine Johnson

    NASA Image and Video Library

    2016-12-23

    Katherine Johnson and other "Human Computers" played an integral role in the early days of America's space program. With a slide rule and a pencil, Katherine was responsible for calculating orbital trajectories of numerous space flights, including Alan Shepard, the first American in space and the Apollo 11 flight to the Moon. Her brilliance and perseverance still resonate with employees at NASA's Ames Research Center today!

  20. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  1. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  2. Recent Measurements of the Orbital Debris Environment at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stansbery, E. G.; Settecerri, T. J.; Africano, J. L.

    1999-01-01

    Space debris presents many challenges to current space operations. Although, the probability of collision between an operational spacecraft and a piece of space debris is quite small, the potential losses can be quite high. Prior to 1990, characterization of the orbital debris environment was divided into two categories. Objects larger than 10 cm are monitored by the United States Space Surveillance Network (SSN) and documented in the U.S. Space Command (USSPACECOM) catalog. Knowledge of debris smaller than 0.1 cm has come from the analyses of returned surfaces. The lack of information about the debris environment in the size range from 0.1 to 1 0 cm led to a joint NASA-DOD effort for orbital debris measurements using the Haystack radar and the unbuilt Haystack Auxiliary (HAX) radars. The data from these radars have been critical to the design of shielding for the International Space Station and have been extensively used in the creation of recent models describing the orbital debris environment. Recent debris campaigns have been conducted to verify and validate through comparative measurements, the results and conclusions drawn from the Haystack/HAX measurements. The Haystack/HAX measurements and results will be described as well as the results of the recent measurement campaigns.

  3. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  4. NASA Lewis' Telescience Support Center Supports Orbiting Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Hawersaat, Bob W.

    1998-01-01

    The Telescience Support Center (TSC) at the NASA Lewis Research Center was developed to enable Lewis-based science teams and principal investigators to monitor and control experimental and operational payloads onboard the International Space Station. The TSC is a remote operations hub that can interface with other remote facilities, such as universities and industrial laboratories. As a pathfinder for International Space Station telescience operations, the TSC has incrementally developed an operational capability by supporting space shuttle missions. The TSC has evolved into an environment where experimenters and scientists can control and monitor the health and status of their experiments in near real time. Remote operations (or telescience) allow local scientists and their experiment teams to minimize their travel and maintain a local complement of expertise for hardware and software troubleshooting and data analysis. The TSC was designed, developed, and is operated by Lewis' Engineering and Technical Services Directorate and its support contractors, Analex Corporation and White's Information System, Inc. It is managed by Lewis' Microgravity Science Division. The TSC provides operational support in conjunction with the NASA Marshall Space Flight Center and NASA Johnson Space Center. It enables its customers to command, receive, and view telemetry; monitor the science video from their on-orbit experiments; and communicate over mission-support voice loops. Data can be received and routed to experimenter-supplied ground support equipment and/or to the TSC data system for display. Video teleconferencing capability and other video sources, such as NASA TV, are also available. The TSC has a full complement of standard services to aid experimenters in telemetry operations.

  5. NASA Marshall Space Flight Center solar observatory

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1988-01-01

    A description is provided of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and a summary is given of its observations and data reduction during Jan. to Mar. 1988. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer center. The data are represented by longitudinal contours with azimuth plots.

  6. Media and staff in the NASA News Center at Kennedy Space Center

    NASA Image and Video Library

    2007-06-22

    Media and staff in the NASA News Center at Kennedy Space Center applaud the successful landing of Atlantis, visible on the television screens, at NASA's Dryden Flight Research Center at Edwards Air Force Base in California. Returning from mission STS-117, Atlantis touched down on runway 22 at Edwards on orbit 219 after 13 days, 20 hours and 12 minutes in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Main gear touchdown was at 3:49:38 p.m. EDT on runway 22. Nose gear touchdown was at 3:49:49 p.m. and wheel stop was at 3:50:48 p.m. This was the 51st landing for the Space Shuttle Program at Edwards Air Force Base. The mission to the International Space Station was a success, installing the S3/S4 truss. The returning crew of seven includes astronaut Sunita Williams, who was flight engineer on the Expedition 15 crew. She achieved a new milestone, a record-setting flight at 194 days, 18 hours and 58 minutes, the longest single spaceflight ever by a female astronaut or cosmonaut.

  7. KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  8. James Webb Space Telescope in NASA's giant thermal vacuum chamber

    NASA Image and Video Library

    2015-04-20

    Inside NASA's giant thermal vacuum chamber, called Chamber A, at NASA's Johnson Space Center in Houston, the James Webb Space Telescope's Pathfinder backplane test model, is being prepared for its cryogenic test. Previously used for manned spaceflight missions, this historic chamber is now filled with engineers and technicians preparing for a crucial test. Exelis developed and installed the optical test equipment in the chamber. "The optical test equipment was developed and installed in the chamber by Exelis," said Thomas Scorse, Exelis JWST Program Manager. "The Pathfinder telescope gives us our first opportunity for an end-to-end checkout of our equipment." "This will be the first time on the program that we will be aligning two primary mirror segments together," said Lee Feinberg, NASA Optical Telescope Element Manager. "In the past, we have always tested one mirror at a time but this time we will use a single test system and align both mirrors to it as though they are a single monolithic mirror." The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2006-01-01

    NASA embarked on a PEM fuel cell power plant development program beginning in 2001. This five-year program was conducted by a three-center NASA team of Glenn Research Center (lead), Johnson Space Center, and Kennedy Space Center. The program initially was aimed at developing hardware for a Reusable Launch Vehicle (RLV) application, but more recently had shifted to applications supporting the NASA Exploration Program. The first phase of the development effort, to develop breadboard hardware in the 1-5 kW power range, was conducted by two competing vendors. The second phase of the effort, to develop Engineering Model hardware at the 10 kW power level, was conducted by the winning vendor from the first phase of the effort. Both breadboard units and the single engineering model power plant were delivered to NASA for independent testing. This poster presentation will present a summary of both phases of the development effort, along with a discussion of test results of the PEM fuel cell engineering model under simulated mission conditions.

  10. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  11. Pharmacy in a New Frontier - The First Five Years at the Johnson Space Center Pharmacy

    NASA Technical Reports Server (NTRS)

    Bayuse, Tina

    2008-01-01

    A poster entitled "Space Medicine - A New Role for Clinical Pharmacists" was presented in December 2001 highlighting an up-and-coming role for pharmacists at the Johnson Space Center (JSC) in Houston, Texas. Since that time, the operational need for the pharmacy profession has expanded with the administration s decision to open a pharmacy on site at JSC to complement the care provided by the Flight Medicine and Occupational Medicine Clinics. The JSC Pharmacy is a hybrid of traditional retail and hospital pharmacy and is compliant with the ambulatory care standards set forth by the Joint Commission. The primary charge for the pharmacy is to provide medication management for JSC. In addition to providing ambulatory care for both clinics, the pharmacists also practice space medicine. A pharmacist had been involved in the packing of both the Space Shuttle and International Space Station Medical Kits before the JSC Pharmacy was established; however, the role of the pharmacist in packing medical kits has grown. The pharmacists are now full members of the operations team providing consultation for new drug delivery systems, regulations, and patient safety issues. As the space crews become more international, so does the drug information provided by the pharmacists. This presentation will review the journey of the JSC Pharmacy as it celebrated its five year anniversary in April of 2008. The implementation of the pharmacy, challenges to the incorporation of the pharmacy into an existing health-care system, and the current responsibilities of a pharmacist at the Johnson Space Center will be discussed.

  12. User and Task Analysis of the Flight Surgeon Console at the Mission Control Center of the NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, Kathy A.; Shek, Molly

    2003-01-01

    Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.

  13. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  14. Johnson Space Center's Free Range Bicycle Program.- Fall 2015 Intern Report

    NASA Technical Reports Server (NTRS)

    Lee-Stockton, Willem

    2015-01-01

    NASA's Johnson Space Center is a big place, encompassing 1,620 acres and more than a hundred buildings. Furthermore, there are reportedly 15 thousand employees, all of which have somewhere to be. To facilitate the movement of all these people JSC has historically relied on human power. Pedaling their way towards deep space, bicycles have been the go to method. Currently there are about 200 Free Range Bicycles at JSC. Free Range Bicycles belong to nobody, except NASA, and are available for anybody to use. They are not to be locked or hidden (although frequently are) and the intention is that there will always be a bike to hop on to get where you're going (although it may not be the bike you rode in on). Although not without its own shortcomings, the Free Range Bicycle Program has continued to provide low cost, simple transportation for NASA's JSC. In addition to the approximately 200 Free Range Bicycles, various larger divisions (like engineering) will often buy a few dozen bikes for their team members to use or individuals will bring their own personal bike to either commute or use on site. When these bicycles fall into disrepair or are abandoned (from retirees etc) they become a problem at JSC. They are an eye sore, create a safety hazard and make it harder to find a working bike in a time of need. The Free Range Program hopes to address this first problem by "tagging out" abandoned or out of service bicycles. A bright orange "DO NOT OPERATE" tag is placed on the bike and given a serial number for tracking purposes. See picture to the right. If the bike has an active owner with intentions to repair the bike the bottom of the tag has instructions for how to claim the abandoned bicycle. After being tagged the owner of the bicycle has 30 days to claim the bicycle and either haul it off site or get it repaired (and labeled) in accordance with Johnson's Bicycle Policy. If the abandoned bicycle is not claimed within 30 days it becomes the property of the Government. The

  15. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  16. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  17. NASA Langley Teacher Resource Center at the Virginia Air and Space Center

    NASA Technical Reports Server (NTRS)

    Maher, Kim L.

    1999-01-01

    Nation's education goals through expanding and enhancing the scientific an technological competence of students and educators. To help disseminate NASA instructional materials and educational information, NASA's Education Division has established the Educator Resource Center Network. Through this network (ERCN), educators are provided the opportunity to receive free instructional information, materials, consultation, and training workshops on NASA educational products. The Office of Education at NASA Langley Research Center offers an extension of its Precollege Education program by supporting the NASA LARC Educator Resource Center at the Virginia Air & Space Center, the official visitor center for NASA LARC. This facility is the principal distribution point for educators in the five state service region that includes Virginia, West Virginia, Kentucky, North Carolina and South Carolina. The primary goal, to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA's unique mission and results, has been accomplished. This ERC had 15,200 contacts and disseminated over 190,000 instructional items during the period of performance. In addition the manager attended 35 conferences, workshops, and educational meetings as an GR, presenter, or participant. The objective to demonstrate and facilitate the use of educational technologies has been accomplished through the following: The ERC's web page has been developed as a cyber-gateway to a multitude of NASA and other educational resources as well as to Our own database of current resource materials. NASA CORE CD-ROM technology is regularly demonstrated and promoted using the center's computers. NASA TV is available, demonstrated to educators, and used to facilitate the downlinking of NASA educational programming.

  18. Proceedings of the NASA Conference on Space Telerobotics, volume 5

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center.

  19. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  20. NASA Hosts News Conference with Crew Launching to Space Station in June

    NASA Image and Video Library

    2018-02-14

    NASA astronaut Serena Auñón-Chancellor, along with Alexander Gerst of ESA (European Space Agency), and Sergey Prokopyev of the Russian space agency Roscosmos, participated in a news conference Feb. 14, at NASA’s Johnson Space Center in Houston. The trio is scheduled to launch to the International Space Station in June and will be part of Expeditions 56 and 57. This will be the first trip to the space station for Auñón-Chancellor and Prokopyev, and the second for Gerst.

  1. Johnson Space Center Health and Medical Technical Authority

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer A.

    2010-01-01

    1.HMTA responsibilities: a) Assure program/project compliance with Agency health and medical requirements at identified key decision points. b) Certify that programs/projects comply with Agency health and medical requirements prior to spaceflight missions. c) Assure technical excellence. 2. Designation of applicable NASA Centers for HMTA implementation and Chief Medical Officer (CMO) appointment. 3. Center CMO responsible for HMTA implementation for programs and projects at the center. JSC HMTA captured in "JSC HMTA Implementation Plan". 4. Establishes specifics of dissenting opinion process consistent with NASA procedural requirements.

  2. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1990-01-01

    The University of Arizona and NASA have joined to form the UA/NASA Space Engineering Research Center. The purpose of the Center is to discover, characterize, extract, process, and fabricate useful products from the extraterrestrial resources available in the inner solar system (the moon, Mars, and nearby asteroids). Individual progress reports covering the center's research projects are presented and emphasis is placed on the following topics: propellant production, oxygen production, ilmenite, lunar resources, asteroid resources, Mars resources, space-based materials processing, extraterrestrial construction materials processing, resource discovery and characterization, mission planning, and resource utilization.

  3. BioServe space technologies: A NASA Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    1992-01-01

    BioServe Space Technologies, a NASA Center for the Commercial Development of Space (CCDS), was established in 1987. As is characteristic of each CCDS designated by NASA, the goals of this commercial center are aimed at stimulating high technology research that takes advantage of the space environment and at leading in the development of new products and services which have commercial potential or that contribute to possible new commercial ventures. BioServe's efforts in these areas focus upon space life science studies and the development of enabling devices that will facilitate ground-based experiments as well as the conversion of such to the microgravity environment. A direct result of BioServe's hardware development and life sciences studies is the training of the next generation of bioengineers who will be knowledgeable and comfortable working with the challenges of the space frontier.

  4. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  5. The Johnson Space Center Experimental Impact Lab: Contributions Toward Understanding the Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    See, T. H.; Montes, R.

    2012-01-01

    Impact is the most common and only weathering phenomenon affecting all the planetary bodies (e.g., planets, satellites, asteroids, comets, etc.) in the solar system. NASA Johnson Space Center s Experimental Impact Laboratory (EIL) includes three accelerators that are used in support of research into the effects of impact on the formation and evolution of the solar system. They permit researchers to study a wide variety of phenomena associated with high-velocity impacts into a wide range of geologic targets and materials relevant to astrobiological studies. By studying these processes, researchers can investigate the histories and evolution of planetary bodies and the solar system as a whole. While the majority of research conducted in the EIL addresses questions involving planetary impacts, work involving spacecraft components has been performed on occasion. An example of this is the aerogel collector material flown on the Stardust spacecraft that traveled to Comet Wild-2. This capture medium was tested and flight qualified using the 5 mm Light-Gas Gun located in the EIL.

  6. 75 FR 18240 - NASA Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-042)] NASA Advisory Council; Meeting... Space Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, April 28, 2010, 8 a.m.-5 p.m. CDT; Thursday, April 29, 2010, 8 a.m.-3 p.m. CDT ADDRESSES: NASA Johnson Space Center...

  7. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  8. NASA Discusses Recent Testing of the James Webb Space Telescope

    NASA Image and Video Library

    2018-01-10

    Members of the media were invited to NASA’s Johnson Space Center in Houston on Jan. 10, to hear about the results of recent cryogenic vacuum tests on the James Webb Space Telescope, and the next steps on the observatory’s path to space. Webb was tested as a complete optical system in Chamber A at Johnson, which mimics the space environment the telescope will experience during its mission. Built in 1965 to conduct thermal-vacuum testing on the Apollo command and service modules, Chamber A is the largest structure of its kind in the world and is a listed National Historic Landmark. The James Webb Space Telescope is the world’s premier infrared space observatory of the next decade. Webb will help to solve mysteries of our solar system, look to distant worlds orbiting other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, the ESA (European Space Agency) and the Canadian Space Agency.

  9. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  10. NASA(Field Center Based) Technology Commercialization Centers

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under the direction of the IC(sup 2) Institute, the Johnson Technology Commercialization Center has met or exceeded all planned milestones and metrics during the first two and a half years of the NTCC program. The Center has established itself as an agent for technology transfer and economic development in- the Clear Lake community, and is positioned to continue as a stand-alone operation. This report presents data on the experimental JTCC program, including all objective measures tracked over its duration. While the metrics are all positive, the data indicates a shortage of NASA technologies with strong commercial potential, barriers to the identification and transfer of technologies which may have potential, and small financial return to NASA via royalty-bearing licenses. The Center has not yet reached the goal of self-sufficiency based on rental income, and remains dependent on NASA funding. The most important issues raised by the report are the need for broader and deeper community participation in the Center, technology sourcing beyond JSC, and the form of future funding which will be appropriate.

  11. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  12. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    NASA Technical Reports Server (NTRS)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  13. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  14. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director and former astronaut Robert Cabana, left, presents a space-program memento to six-year-old Connor Johnson in the Kennedy Space Center Visitor Complex' Rocket Garden to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  15. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director and former astronaut Robert Cabana, left, presents a space patch and other mementos to six-year-old Connor Johnson at the Kennedy Space Center Visitor Complex' Rocket Garden to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  16. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson, right, show his delight at being presented with space mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut, by NASA Kennedy Space Center Director and former astronaut Robert Cabana in the Kennedy Space Center Visitor Complex' Rocket Garden. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  17. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  18. Former President George H.W. Bush paid a visit to NASA's Johnson Space Center to speak with Expedition 46 Commander Scott Kelly and Flight Engineer Tim Kopra and take a tour of the Space Vehicle Mockup Facility. Kelly���s twin brother, Mark Kelly and his wife, former Congresswoman Gabrielle Giffords were also present. Photo Date: February 5, 2016. Location: Building 30 - ISS Flight Control Room. Photographer: Robert Markowitz

    NASA Image and Video Library

    2016-02-05

    Former President George H.W. Bush paid a visit to NASA's Johnson Space Center to speak with Expedition 46 Commander Scott Kelly and Flight Engineer Tim Kopra and take a tour of the Space Vehicle Mockup Facility. Kelly’s twin brother, Mark Kelly and his wife, former Congresswoman Gabrielle Giffords were also present. Photo Date: February 5, 2016. Location: Building 30 - ISS Flight Control Room. Photographer: Robert Markowitz

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  4. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  5. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  6. Space Debris Modeling at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the

  7. NASA and Me

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2010-01-01

    Topics in this student project report include: biography, NASA history and structure, overview of Johnson Space Center facilities and major projects, and an overview of the Usability Testing and Analysis Facility (UTAF). The UTAF section slides include space habitat evaluations with mockups, crew space vehicle evaluations, and human factors research.

  8. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  9. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  10. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  11. Strategic Project Management at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  12. Author Steven Johnson, How We Got to Now, Innovative Initiatives workshop, Innovative Technology Partnerships Office (IPTO)

    NASA Image and Video Library

    2014-11-13

    NASA's Goddard Space Flight Center welcomed Steven Johnson, author of How We Got to Now: Six Innovations That Made the Modern World, to the Innovative Initiatives workshop on Thursday, November 13, 2014 Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Author Steven Johnson, How We Got to Now, Innovative Initiatives workshop, Innovative Technology Partnerships Office (IPTO)

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center welcomed Steven Johnson, author of How We Got to Now: Six Innovations That Made the Modern World, to the Innovative Initiatives workshop on Thursday, November 13, 2014 Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Octavia Spencer, who portrays Dorothy Vaughan in the film, Taraji P. Henson, who portrays Katherine Johnson, Janelle Monáe, who portrays Mary Jackson, Pharrell Williams, musician and producer of “Hidden Figures," Ted Melfi, writer and director of “Hidden Figures,” center director Bob Cabana, and Janet Petro, deputy center director. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  15. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  16. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  17. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson, right, discusses his interest in the space program with NASA Kennedy Space Center Director and former astronaut Robert Cabana during a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden. During the ceremony, Cabana will present Connor with mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  18. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director and former astronaut Robert Cabana, left, discusses the future of the space program with six-year-old Connor Johnson during a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden. During the ceremony, Cabana will present Connor with mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  19. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson gives a big thumbs up following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden during which NASA Kennedy Space Center Director and former astronaut Robert Cabana presented him with space mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Behind Connor are representatives of the news and social media who attended the event. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  20. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson gives a big thumbs up following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden during which NASA Kennedy Space Center Director and former astronaut Robert Cabana presented him with space mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. From left are Connor's brother Liam, Cabana and Connor. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  1. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  2. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  3. Martian Analogue Sample Characterization and Spectral Library Development at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2002-01-01

    An extensive collection of Martian analogue samples housed at the Johnson Space Center is the focus of ongoing research by the JSC Mars soil genesis group and their collaborators. Because the major element composition of Martian meteorites and in situ analyses of Martian soils and rocks indicate that Mars is predominantly an iron-rich basaltic world, the focus of active sample collection and analysis is basaltic materials and their hydrolytic (both aqueous and hydrothermal) and sulfatetic alteration products. Described below are the scope of the JSC Mars analogue sample collection, the characterization process, and plans to incorporate the data into spectral libraries for the Mars 2003 Mars Exploration Rover (MER) and Mars 2005 Mars Reconnaissance Orbiter (MRO) CRISM missions.

  4. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  5. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson gives a big thumbs up following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden in which NASA Kennedy Space Center Director and former astronaut Robert Cabana presented him with mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. From left are Connor's brother Liam, Cabana and Connor. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  6. Analysis and Assessment of Peak Lightning Current Probabilities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Vaughan, W. W.

    1999-01-01

    This technical memorandum presents a summary by the Electromagnetics and Aerospace Environments Branch at the Marshall Space Flight Center of lightning characteristics and lightning criteria for the protection of aerospace vehicles. Probability estimates are included for certain lightning strikes (peak currents of 200, 100, and 50 kA) applicable to the National Aeronautics and Space Administration Space Shuttle at the Kennedy Space Center, Florida, during rollout, on-pad, and boost/launch phases. Results of an extensive literature search to compile information on this subject are presented in order to answer key questions posed by the Space Shuttle Program Office at the Johnson Space Center concerning peak lightning current probabilities if a vehicle is hit by a lightning cloud-to-ground stroke. Vehicle-triggered lightning probability estimates for the aforementioned peak currents are still being worked. Section 4.5, however, does provide some insight on estimating these same peaks.

  7. The Space Shuttle Atlantis centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California

    NASA Image and Video Library

    2001-02-26

    The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  8. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  9. Napoleon Johnson: From NASA to TV to Community College Teaching.

    ERIC Educational Resources Information Center

    Neal, John

    1994-01-01

    Describes the life and career of Napoleon Johnson, who currently teaches journalism at Houston Community College's Central Campus. Describes Johnson's experiences as a technical writer for NASA and as a television news correspondent, highlighting the positive effects of these experiences on his career as a college instructor. (MAB)

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  11. NASA Johnson Space Center Life Sciences Data System

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  12. Johnson Space Center's strategic game plan: Charting a course to the year 2000 and beyond

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Johnson Space Center has established five major goals to meet the Nation's expectation of maintaining U.S. preeminence in space. The first three are technical in nature. They define the basic mission-the reason for being. The two goals relating to the Space Shuttle and Space Station are obviously the most demanding in their immediate claim for major resources. The third goal is equally important in that the technical competence must be maintained and enhanced. The remaining two goals address the two critical success factors required for achieving the first three. One goal pertains to maintaining and enhancing the highly skilled work force. The other goal concerns the important relations with other key members of the U.S. space team. Each goal is listed along with a proposed strategy or approach for implementing each goal. Subsequently, each goal is accompanied by a brief explanation and a set of objectives. These objectives provide the specific targets of opportunity for focusing the immediate efforts.

  13. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a

  14. An Analysis of Applications Development Systems for Remotely Sensed, Multispectral Data for the Earth Observations Division of the NASA Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Vanrooy, D. L.; Smith, R. M.; Lynn, M. S.

    1974-01-01

    An application development system (ADS) is examined for remotely sensed, multispectral data at the Earth Observations Division (EOD) at Johnson Space Center. Design goals are detailed, along with design objectives that an ideal system should contain. The design objectives were arranged according to the priorities of EOD's program objectives. Four systems available to EOD were then measured against the ideal ADS as defined by the design objectives and their associated priorities. This was accomplished by rating each of the systems on each of the design objectives. Utilizing the established priorities, it was determined how each system stood up as an ADS. Recommendations were made as to possible courses of action for EOD to pursue to obtain a more efficient ADS.

  15. Endeavour sitting atop NASA's Shuttle Carrier Aircraft (SCA)

    NASA Image and Video Library

    2012-09-19

    Space Shuttle Endeavour is ferried by NASA's Shuttle Carrier Aircraft (SCA) over the Johnson Space Center in Houston, Texas on September 19, 2012. NASA pilots Jeff Moultrie and Bill Rieke are at the controls of the Shuttle Carrier Aircraft. Photo taken by NASA photographer Sheri Locke in the backseat of a NASA T-38 chase plane with NASA pilot Thomas E. Parent at the controls. Photo Credit: NASA/ Sheri Locke

  16. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  17. Corrosion Activities at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2002-01-01

    This report documents summer faculty fellow efforts in the corrosion test bed at the NASA Kennedy Space Center. During the summer of 2002 efforts were concentrated on three activities: a short course on corrosion control for KSC personnel, evaluation of commercial wash additives used for corrosion control on Army aircraft, and improvements in the testing of a new cathodic protection system under development at KSC.

  18. NASA Space Engineering Research Center Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1990-01-01

    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers.

  19. LRC-Katherine-Johnson-interview-2017-0914

    NASA Image and Video Library

    2017-09-14

    Sept. 14, 2017: An interview with Katherine Johnson discussing her career and her reaction to the dedication of the Katherine G. Johnson Computational Research Facility at NASA's Langley Research Center in Hampton, Va., in her honor.

  20. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson, left, is welcomed to the Kennedy Space Center Visitor Complex in Florida by NASA Kennedy Space Center Director and former astronaut Robert Cabana for a ceremony in which he will present Connor with space mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor is accompanied by his parents Eric and Lauren and younger brother Liam, in the background. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  1. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson gives a big thumbs up following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden during which NASA Kennedy Space Center Director and former astronaut Robert Cabana presented him with space mementos to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Behind Connor is Cabana, second from left, and representatives of news and social media who attended the event. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  2. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Andrea Farmer, public relations manager for the Kennedy Space Center Visitor Complex concessionaire Delaware North Companies Parks & Resorts, welcomes representatives of the news and social media to the complex' Rocket Garden for a ceremony honoring six-year-old Connor Johnson. During the ceremony, Connor will be presented with space mementos by NASA Kennedy Space Center Director and former astronaut Robert Cabana to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  3. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  4. KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  6. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  7. Antarctic Martian Meteorites at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Funk, R. C.; Satterwhite, C. E.; Righter, K.; Harrington, R.

    2018-01-01

    This past year marked the 40th anniversary of the first Martian meteorite found in Antarctica by the ANSMET Antarctic Search for Meteorites) program, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET program making for a total of 15 Martian meteorites in the U. S. Antarctic meteorite collection at Johnson Space Center (JSC). Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate samples. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottite in 1982. This meteorite has been allocated to 137 scientists for research and there are 180.934 g remaining at JSC. Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain noble gas and nitrogen compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 205 scientists for research and 5,298.435 g of sample is available.

  8. The Astromaterials X-Ray Computed Tomography Laboratory at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Coleff, D. M.; McCubbin, F. M.

    2017-01-01

    The Astromaterials Acquisition and Curation Office at NASA's Johnson Space Center (hereafter JSC curation) is the past, present, and future home of all of NASA's astromaterials sample collections. JSC curation currently houses all or part of nine different sample collections: (1) Apollo samples (1969), (2) Lunar samples (1972), (3) Antarctic meteorites (1976), (4) Cosmic Dust particles (1981), (5) Microparticle Impact Collection (1985), (6) Genesis solar wind atoms (2004); (7) Stardust comet Wild-2 particles (2006), (8) Stardust interstellar particles (2006), and (9) Hayabusa asteroid Itokawa particles (2010). Each sample collection is housed in a dedicated clean room, or suite of clean rooms, that is tailored to the requirements of that sample collection. Our primary goals are to maintain the long-term integrity of the samples and ensure that the samples are distributed for scientific study in a fair, timely, and responsible manner, thus maximizing the return on each sample. Part of the curation process is planning for the future, and we also perform fundamental research in advanced curation initiatives. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of sample collections, or getting new results from existing sample collections [2]. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples. As part of these advanced curation efforts we are augmenting our analytical facilities as well. A micro X-Ray computed tomography (micro-XCT) laboratory dedicated to the study of astromaterials will be coming online this spring within the JSC Curation office, and we plan to add additional facilities that will enable nondestructive (or minimally-destructive) analyses of astromaterials in the near

  9. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  10. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  11. Surveillance in a Telemedicine Setting: Application of Epidemiologic Methods at NASA Johnson Space Center Adriana

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, Adriana; Ruffaner, Lanie; Wear, Mary; Crucian Brian; Sams, Clarence; Lee, Lesley R.; Van Baalen, Mary

    2016-01-01

    Space medicine presents unique challenges and opportunities for epidemiologists, such as the use of telemedicine during spaceflight. Medical capabilities aboard the International Space Station (ISS) are limited due to severe restrictions on power, volume, and mass. Consequently, inflight health information is based heavily on crewmember (CM) self-report of signs and symptoms, rather than formal diagnoses. While CM's are in flight, the primary source of crew health information is verbal communication between physicians and crewmembers. In 2010 NASA implemented the Lifetime Surveillance of Astronaut Health, an occupational surveillance program for the U.S. Astronaut corps. This has shifted the epidemiological paradigm from tracking diagnoses based on traditional terrestrial clinical practice to one that incorporates symptomatology and may gain a more population-based understanding of early detection of disease process.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.

  13. NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

  14. NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services

    NASA Technical Reports Server (NTRS)

    Sierra, Albert; Beddel, Darren

    1999-01-01

    The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.

  15. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  16. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020615 (9 Feb. 2010) --- NASA astronauts Nicole Stott, Tim Kopra (center) and Michael Barratt, all STS-133 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  17. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020630 (9 Feb. 2010) --- NASA astronaut Nicole Stott, Tim Kopra (center) and Michael Barratt, all STS-133 mission specialists, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  18. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  19. Next space station crew discusses mission on This Week @NASA – September 25, 2015

    NASA Image and Video Library

    2015-09-25

    A news conference was held on Sept. 24 at NASA’s Johnson Space Center with the next crew launching to the International Space Station, including NASA astronaut Tim Kopra. ESA astronaut Timothy Peake, cosmonaut Yuri Malenchenko of the Russian Federal Space Agency and Kopra will launch to the station aboard a Soyuz spacecraft on Dec. 15 from the Baikonur Cosmodrome in Kazakhstan. They’re currently scheduled to return to Earth in May 2016. Also, The rich colors of Pluto, Anniversary of MAVEN’s arrival at Mars, Fall IceBridge missions at both poles, New aviation technology and Robotics team on Capitol Hill!

  20. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    NASA Technical Reports Server (NTRS)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The objective of the NASA/ASEE program were: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent 10 weeks at Johnson Space Center engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. A compilation is presented of the final reports on the research projects done by the fellows during the summer of 1987. This is volume 1 of a 2 volume report.

  2. NASA Shared Services Center breaks ground

    NASA Image and Video Library

    2006-02-24

    NASA officials and elected leaders were on hand for the groundbreaking ceremony of the NASA Shared Services Center Feb. 24, 2006, on the grounds of Stennis Space Center. The NSSC provides agency centralized administrative processing, human resources, procurement and financial services. From left, Louisiana Economic Development Secretary Mike Olivier, Stennis Space Center Director Rick Gilbrech, Computer Sciences Corp. President Michael Laphen, NASA Deputy Administrator Shana Dale, Rep. Gene Taylor, Sen. Trent Lott, Mississippi Gov. Haley Barbour, NASA Administrator Mike Griffin and Shared Services Center Executive Director Arbuthnot use golden shovels to break ground at the site.

  3. NASA Shared Services Center breaks ground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA officials and elected leaders were on hand for the groundbreaking ceremony of the NASA Shared Services Center Feb. 24, 2006, on the grounds of Stennis Space Center. The NSSC provides agency centralized administrative processing, human resources, procurement and financial services. From left, Louisiana Economic Development Secretary Mike Olivier, Stennis Space Center Director Rick Gilbrech, Computer Sciences Corp. President Michael Laphen, NASA Deputy Administrator Shana Dale, Rep. Gene Taylor, Sen. Trent Lott, Mississippi Gov. Haley Barbour, NASA Administrator Mike Griffin and Shared Services Center Executive Director Arbuthnot use golden shovels to break ground at the site.

  4. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020620 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (center), STS-133 commander; Eric Boe, pilot; and Nicole Stott, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  5. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020617 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (center), STS-133 commander; Eric Boe, pilot; and Nicole Stott, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  6. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020618 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (right), STS-133 commander; Eric Boe (center), pilot; and Alvin Drew, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  7. NASA Goddard Space Flight Center Supply Chain Management Program

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  8. HUNCH Student Culinary Competition at USSRC's Davidson Center

    NASA Image and Video Library

    2018-02-08

    High Schools United with NASA to Create Hardware (HUNCH) students from 6 schools meet at the U.S. Space and Rocket center in order to participate in the annual culinary challenge where students create meals suitable for astronaut use in space. Students in 2018 created different dishes for breakfast dining. Other NASA centers also participate in this program with the top 10 voted recipes being judged at Johnson Space Center.

  9. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  10. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  11. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  12. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  13. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  14. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  15. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    NASA Johnson Space Center Director of Flight Crew Operations, and Astronaut, Janet Kavandi speaks at an event where NASA Administrator Charles Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  16. Preparing for Orion Recovery Test on This Week @NASA - August 1, 2014

    NASA Image and Video Library

    2014-08-01

    NASA and the U.S. Navy were busy recently – preparing for tests scheduled off the coast of San Diego, California. Crews will run through the procedures to recover NASA's Orion spacecraft from the ocean, following its water landing from deep space missions. Kennedy Space Center, Johnson Space Center, and Lockheed Martin Space Operations are all involved in the recovery effort. Also, Mars 2020 rover and beyond, Opportunity: 25 miles and counting, Updated K-Rex rover, Automated Transfer Vehicle launch and NASA Technology Days!

  17. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020622 (9 Feb. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  18. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020623 (9 Feb. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  19. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson examines one of the space mementos presented to him by Kennedy Space Center Director and former astronaut Robert Cabana to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut, following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  20. NASA's engineering research centers and interdisciplinary education

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  1. Shaping NASA's Kennedy Space Center Safety for the Future

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; McDaniel, Laura; Smith, Maynette

    2011-01-01

    With the completion of the Space Shuttle Program, the Kennedy Space Center (KSC) safety function will be required to evolve beyond the single launch vehicle launch site focus that has held prominence for almost fifty years. This paper will discuss how that evolution is taking place. Specifically, we will discuss the future of safety as it relates to a site that will have multiple, very disparate, functions. These functions will include new business; KSC facilities not under the control of NASA; traditional payload and launch vehicle processing; and, operations conducted by NASA personnel, NASA contractors or a combination of both. A key element in this process is the adaptation of the current KSC set of safety requirements into a multi-faceted set that can address each of the functions above, while maintaining our world class safety environment. One of the biggest challenges that will be addressed is how to protect our personnel and property without dictating how other Non-NASA organizations protect their own employees and property. The past history of KSC Safety will be described and how the lessons learned from previous programs will be applied to the future. The lessons learned from this process will also be discussed as information for other locations that may undergo such a transformation.

  2. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  3. The space shuttle Discovery atop NASA's modified 747 is captured over the Mojave Desert while being ferried from NASA Dryden to the Kennedy Space Center

    NASA Image and Video Library

    2005-08-19

    The space shuttle Discovery atop NASA's modified 747 is captured over the Mojave Desert while being ferried from NASA Dryden to the Kennedy Space Center. NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Discovery on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take two days, with stops at several intermediate points for refueling. Space shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  4. NASA Stennis Space Center Test Technology Branch Activities

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2000-01-01

    This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.

  5. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana welcomes community leaders, business executives, educators, community organizers, and state and local government leaders to the Kennedy Space Center Visitor Complex Debus Center for the Kennedy Space Center Director Update. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  6. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana addresses the community leaders, business executives, educators, community organizers, and state and local government leaders attending the Kennedy Space Center Director in the Kennedy Space Center Visitor Complex Debus Center. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  7. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana briefs the community leaders, business executives, educators, community organizers, and state and local government leaders attending the Kennedy Space Center Director in the Kennedy Space Center Visitor Complex Debus Center. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  8. NASA Participates in Scout Jamboree

    NASA Image and Video Library

    2017-07-25

    Greg “Box” Johnson, executive director of Center for the Advancement of Science in Space (CASIS) and former astronaut, foreground, and NASA Acting Chief Technologist Douglas Terrier watch as attendees of the Boy Scouts of America National Jamboree launch a weather balloon, Tuesday, July 25, 2017 at the Summit Bechtel Reserve in Glen Jean, West Virginia. Photo Credit: (NASA/Bill Ingalls)

  9. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  10. NASA Hispanic Heritage Month Employee Profile- Gustavo Martinez - Marshall Space Flight Center

    NASA Image and Video Library

    2016-10-19

    In observance of National Hispanic Heritage Month, Gustavo Martinez, a propulsion engineer at NASA’s Marshall Space Flight Center, is featured in this video profile. Martinez, a first-generation American of Mexican descent, earned his bachelors and masters in mechanical engineering from the University of Texas at El Paso. He works in the Liquid Engine System Branch of Marshall’s Propulsion Systems Department, supporting RS-25 engine systems analysis and test preparations for NASA’s Space Launch System. National Hispanic Heritage Month honors the cultures and contributions of Americans whose ancestors originated from Spain, Mexico, the Caribbean and Central and South America. The observation started in 1968 as Hispanic Heritage Week under President Lyndon Johnson and was expanded into law by President Ronald Reagan in 1988.

  11. Kennedy Space Center's NASA/Contractor Team-Centered Total Quality Management Seminar: Results, methods, and lessons learned

    NASA Technical Reports Server (NTRS)

    Kinlaw, Dennis C.; Eads, Jeannette

    1992-01-01

    It is apparent to everyone associated with the Nation's aeronautics and space programs that the challenge of continuous improvement can be reasonably addressed only if NASA and its contractors act together in a fully integrated and cooperative manner that transcends the traditional boundaries of proprietary interest. It is, however, one thing to assent to the need for such integration and cooperation; it is quite another thing to undertake the hard tasks of turning such a need into action. Whatever else total quality management is, it is fundamentally a team-centered and team-driven process of continuous improvement. The introduction of total quality management at KSC, therefore, has given the Center a special opportunity to translate the need for closer integration and cooperation among all its organizations into specific initiatives. One such initiative that NASA and its contractors have undertaken at KSC is a NASA/Contractor team-centered Total Quality Management Seminar. It is this seminar which is the subject of this paper. The specific purposes of this paper are to describe the following: Background, development, and evolution of Kennedy Space Center's Total Quality Management Seminar; Special characteristics of the seminar; Content of the seminar; Meaning and utility of a team-centered design for TQM training; Results of the seminar; Use that one KSC contractor, EG&G Florida, Inc. has made of the seminar in its Total Quality Management initiative; and Lessons learned.

  12. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Ted Melfi, writer and director of “Hidden Figures,” Octavia Spencer, who portrays Dorothy Vaughan in the film, Taraji P. Henson, who portrays Katherine Johnson, Pharrell Williams, musician and producer of “Hidden Figures," and Janelle Monáe, who portrays Mary Jackson. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  13. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  14. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi-Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the life-cycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reachback support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-ofthe- art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  15. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  16. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during KSC Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  17. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  18. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine

    NASA Technical Reports Server (NTRS)

    Rodenberg, H.; Myers, K. J.

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  19. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine.

    PubMed

    Rodenberg, H; Myers, K J

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  20. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2012-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  1. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2013-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  2. Development and Implementation of NASA's Lead Center for Rocket Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Dawson, Michael C.

    2001-01-01

    With the new millennium, NASA's John C. Stennis Space Center (SSC) continues to develop and refine its role as rocket test service provider for NASA and the Nation. As Lead Center for Rocket Propulsion Testing (LCRPT), significant progress has been made under SSC's leadership to consolidate and streamline NASA's rocket test infrastructure and make this vital capability truly world class. NASA's Rocket Propulsion Test (RPT) capability consists of 32 test positions with a replacement value in excess of $2B. It is dispersed at Marshall Space Flight Center (MSFC), Johnson Space Center (JSC)-White Sands Test Facility (WSTF), Glenn Research Center (GRC)-Plum Brook (PB), and SSC and is sized appropriately to minimize duplication and infrastructure costs. The LCRPT also provides a single integrated point of entry into NASA's rocket test services. The RPT capability is managed through the Rocket Propulsion Test Management Board (RPTMB), chaired by SSC with representatives from each center identified above. The Board is highly active, meeting weekly, and is key to providing responsive test services for ongoing operational and developmental NASA and commercial programs including Shuttle, Evolved Expendable Launch Vehicle, and 2nd and 3rd Generation Reusable Launch Vehicles. The relationship between SSC, the test provider, and the hardware developers, like MSFC, is critical to the implementation of the LCRPT. Much effort has been expended to develop and refine these relationships with SSC customers. These efforts have met with success and will continue to be a high priority to SSC for the future. To data in the exercise of its role, the LCRPT has made 22 test assignments and saved or avoided approximately $51M. The LCRPT directly manages approximately $30M annually in test infrastructure costs including facility maintenance and upgrades, direct test support, and test technology development. This annual budges supports rocket propulsion test programs which have an annual budget

  3. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    NASA Technical Reports Server (NTRS)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  4. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020626 (9 Feb. 2010) --- NASA astronauts Steve Lindsey, STS-133 commander; and Nicole Stott, mission specialist, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  5. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020629 (9 Feb. 2010) --- NASA astronauts Steve Lindsey (right), STS-133 commander; and Eric Boe, pilot, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  6. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  7. NASA Space Engineering Research Center for VLSI systems design

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  8. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - NASA Kennedy Space Center Director Robert Cabana, second from right, welcomes community leaders, business executives, educators, community organizers, and state and local government leaders to the Kennedy Space Center Visitor Complex Debus Center for the Kennedy Space Center Director Update. At far right is Brevard County District 1 Commissioner Robin Fisher. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  9. NREL and NASA Receive Regional FLC Award for Notable Technology | News |

    Science.gov Websites

    NREL and NASA Receive Regional FLC Award for Notable Technology NREL and NASA Receive Regional FLC Award for Notable Technology August 25, 2016 NASA Johnson Space Center (JSC) and the National Group Manager Ahmad Pesaran, along with NASA Scientist and collaborator Eric Darcy, will be honored

  10. KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

  11. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Rob Mueller, senior technologist, talks with attendees at the Swamp Works display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  12. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Rob Mueller, a senior technologist, talks to an attendee about Kennedy’s Swamp Works Laboratory. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  13. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020628 (9 Feb. 2010) --- NASA astronauts Michael Barratt (right) and Tim Kopra, both STS-133 mission specialists, are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center.

  14. Vice President Pence Visits NASA's Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.

  15. Ceremony Honoring Connor Johnson

    NASA Image and Video Library

    2014-03-15

    CAPE CANAVERAL, Fla. – Six-year-old Connor Johnson shows off space mementos presented to him by Kennedy Space Center Director and former astronaut Robert Cabana to inspire the youngster to continue the dream he has had since the age of three of becoming an astronaut, following a ceremony in the Kennedy Space Center Visitor Complex' Rocket Garden. From left are Connor's brother Liam, Cabana and Connor. Connor, of Denver, Colo., gained national attention for having the "right stuff" when he launched an online petition on the White House website in December 2013 to save NASA’s funding from budget cuts. One of the mementos, a piece of space history, was a bolt used to hold the International Space Station's Unity module in place in space shuttle Endeavour's payload bay on the STS-88 mission, the first station assembly mission and Cabana's fourth and final spaceflight. Connor and his family were the guests of Delaware North Companies Parks & Resorts, the concessionaire managing the visitor complex. During his visit, Connor had the opportunity to meet with astronauts, see space vehicles and witness the Robot Rocket Rally underway in the complex' Rocket Garden over the weekend. To learn more about the educational activities available daily at the Kennedy Space Center Visitor Complex, visit http://www.kennedyspacecenter.com. Photo credit: NASA/Dan Casper

  16. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  17. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  18. Participating in commercial space ventures: Introduction to NASA Centers for the Commercial Development of Space and the Cooperative Agreements Programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to a Presidential directive, NASA has implemented a space policy which actively supports and encourages U.S. industry investment and participation in commercial space ventures. NASA's Office of Commercial Programs (OCP) has played a significant role in stimulating the growth of commercial space activity. Through a variety of programs, OCP encourages commercial interest and involvement in space endeavors by providing access to NASA resources and opportunities for the emerging space industry to reduce the technical, financial, and business risks associated with space-related activities. This manual describes NASA's Commercial Uses of Space Program and introduces participants to four major OCP Commercial programs: Technology Utilization (TU), Small Business Innovation Research (SBIR), Centers for the Commercial Development of Space Flight Agreement (CCDSFA), and Cooperative Agreements Programs. The objective of this manual is to assist U.S. industry identify and pursue the appropriate agreement for participation in a commercial space venture.

  19. NASA Specialized Center for Research and Training (NSCORT) in space environmental health

    NASA Technical Reports Server (NTRS)

    Clarkson, Thomas W.; Utell, Mark J.; Morgenthaler, George W.; Eberhardt, Ralph; Rabin, Robert

    1992-01-01

    Activities of the Center for Space Environmental Health (CSEH), one of several NSCORTs supported by NASA in order to advance knowledge in environmental health in space habitats, are reviewed. Research in environmental health will define the standards or requirements needed to protect human health. This information will affect mission plans and the design of space habitats. This reseach will study unique contaminant stresses and lead to risk models for human health and performance.

  20. Space Shuttle Placement Announcement

    NASA Image and Video Library

    2011-04-12

    From left, Pilot of the first space shuttle mission, STS-1, Bob Crippen, NASA Administrator Charles Bolden, NASA Johnson Space Center Director of Flight Crew Operations, and Astronaut, Janet Kavandi, NASA Kennedy Space Center Director and former astronaut Bob Cabana, and Endeavour Vehicle Manager for United Space Alliance Mike Parrish pose for a photograph outside of the an Orbiter Processing Facility with the space shuttle Atlantis shortly after Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)

  1. Atmospheric sciences program at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Nicholson, James R.; Jafferis, William

    1988-01-01

    A very keen awareness of the impact of lightning threat on ground operations exists at NASA Kennedy Space Center (KSC) because of the high frequency of thunderstorm occurrences in Florida. The majority of thunder events occur in the summertime, initiated by solar heating of the land. Merritt Island, where KSC is located, produces its own thunderstorms under light flow conditions; because some are small, their importance might be unappreciated at first glance. The impress of these facts, and others of pertinence, on the KSC atmospheric sciences development program will be discussed, priorities enumerated, and a review of development projects presented.

  2. NASA Marshall Space Flight Center solar observatory report, January - June 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January-June 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  3. NASA Marshall Space Flight Center Solar Observatory report, July - October 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during June-October 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  4. NASA Marshall Space Flight Center Solar Observatory report, January - June 1992

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during Jan. to Jun. 1992. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code.

  5. NASA Marshall Space Flight Center Solar Observatory report, March - May 1994

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  6. NASA Standard Measures Overview

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.

    2008-01-01

    Due to the limited in-flight resources available for human physiological research in the foreseeable future, NASA has increased its reliance on head-down bed rest. NASA has created the Bed Rest Project at the Johnson Space Center, which is implemented on the 6th floor of the Children's Hospital at UTMB. It has been conducted for three years. The overall objective of the Project is to use bed rest to develop and evaluate countermeasures for the ill effects of space flight before flight resources are requested for refinement and final testing.

  7. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  8. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. At left, Susan Fernandez from the Office of Senator Marco Rubio talks with another attendee near the Education display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  9. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees mingled and visited various displays, including Ground Systems Development and Operations Program and Education Office displays. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  10. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with engineers Jason Hopkins and Lisa Lutz, at the Ground Systems Development and Operations display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  11. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with Scott Thurston, Kennedy deputy of the spacecraft office at the Commercial Crew Program display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  12. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with Trent Smith, program manager, and Tammy Belk, a program specialist, at the ISS Ground Processing and Research Office display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  13. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. From left, Scott Thurston, Kennedy deputy of the spacecraft office of the Commercial Crew Program, talks with Scott Colloredo, director of the Center Planning and Development Directorate. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  14. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talk with Trey Carlson, Kennedy Master Planner, at the Center Planning and Development Directorate, or CPDD, display. In the background is Mario Busacca, chief of CPDD’s Spaceport Planning Office. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  15. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session at the Kennedy Space Center Visitor Complex. From the left are Pharrell Williams, musician and producer of “Hidden Figures," Taraji P. Henson, who portrays Katherine Johnson in the film, Janelle Monáe, who portrays Mary Jackson, and Octavia Spencer, who portrays Dorothy Vaughan. They are seated in front of the original consoles of the Mercury Mission Control room with the world map that was used to follow the path of capsules between tracking stations. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  16. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  17. Proceedings of the Ninth Annual Summer Conference: NASA/USRA University Advanced Aeronautics Design Program and Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.

  18. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    Gen. C. Robert Kehler, Commander, Air Force Space Command, left, NASA Deputy Administrator Lori Garver, 2nd from left, NASA Kennedy Space Center Director Bob Cabana, and Col. Burke E. Wilson is the Commander, 45th Space Wing, right, welcome the arrival of Air Force One and President Barack Obama to the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  19. Capabilities of NASA/Marshall Space Flight Center's Impact Testing Facility

    NASA Technical Reports Server (NTRS)

    Hovater, Mary; Hubbs, Whitney; Finchum, Andy; Evans, Steve; Nehls, Mary

    2006-01-01

    The Impact Testing Facility (ITF) serves as an important installation for materials science at Marshall Space Flight Center (MSFC). With an array of air, powder, and two-stage light gas guns, a variety of projectile and target types and sizes can be accommodated. The ITF allows for simulation of impactors from rain to micrometeoroids and orbital debris on materials being investigated for space, atmospheric, and ground use. Expendable, relatively simple launch assemblies are used to obtain well-documented results for impact conditions comparable to those from ballistic and rocket sled ranges at considerably lower cost. In addition, for applications requiring study of impacts at speeds in excess of those attainable by gun launches, hydrocode simulations, validated by test data, can be used to extend the velocity range. In addition to serving various NASA directorates, the ITF has performed testing on behalf of the European and Russian space agencies, as well as the Department of Defense, and academic institutions. The m s contributions not only enable safer space flight for NASA s astronauts, but can help design materials and structures to protect soldiers and civilians on Earth, through advances in body armor, aircraft survivability, and a variety of other applications.

  20. NASA News Center

    NASA Image and Video Library

    2003-10-31

    The NASA News Center, seen here, is the hub of news operations for the media, providing information and contacts about Space Shuttle processing and other activities around KSC. News Center staff also conduct media tours, escorting journalists and photo/videographers to key sites such as the launch pads and Vehicle Assembly Building as needed.

  1. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    Air Force One is seen as it prepares to depart from the NASA SHuttle Landing Facility (SLF) after President Barack Obama delivered a speech at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy Space Center to deliver remarks on the bold new course the Administration is charting for NASA and the future of U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  2. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama delivers a speech at the Operations and Checkout Building at NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy Space Center to deliver remarks on the bold new course the Administration is charting for NASA and the future of U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  4. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama delivers a speech at the Operations and Checkout Building at NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy Space Center to deliver remarks on the bold new course the Administration is charting for NASA and the future of U.S. leadership in human space flight. Photo Credit: (NASA/Paul E. Alers)

  5. NASA's Software Bank (CLIPS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    C Language Integrated Production System (CLIPS) is a NASA Johnson Space Center developed software shell for developing expert systems, is used by researchers at Ohio State University to determine solid waste disposal sites to assist in historic preservation. The program has various other applications and has even been included in a widely-used textbook.

  6. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  7. NASA Marshall Space Flight Center Solar Observatory report, January - June 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1990-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is presented and a summary of its observations and data reduction is given. The systems that make up the facility are a magnetograph telescope, an H alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  8. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Reports covering the period from 1 Nov. 1991 to 31 Oct. 1992 and documenting progress at the NASA Space Engineering Research Center are included. Topics covered include: (1) processing of propellants, volatiles, and metals; (2) production of structural and refractory materials; (3) system optimization discovery and characterization; (4) system automation and optimization; and (5) database development.

  9. Mission to Mars: Connecting Diverse Student Groups with NASA Experts

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Jones, David; Sadowski-Fugitt, Leslie; Kowrach, Nicole

    2012-01-01

    The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion.

  10. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  11. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-01

    JSC2010-E-017955 (4 Feb. 2010) --- Flight directors for the STS-130/20A mission pose for a preflight group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Pictured from the left are Chris Edelen, Norm Knight, Kwatsi Alibaruho and Gary Horlacher.

  12. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-04

    JSC2010-E-017954 (4 Feb. 2010) --- Flight directors for the STS-130/20A mission pose for a preflight group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Pictured from the left are Chris Edelen, Norm Knight, Kwatsi Alibaruho and Gary Horlacher.

  13. KSC-20170217-VP_DNG03-0001_SpaceX_CRS-10_Prelaunch_News_Conference-3146081

    NASA Image and Video Library

    2017-02-17

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for the SpaceX CRS-10 commercial resupply services mission to the International Space Station. From left are: George Diller of NASA Communications; Dan Hartman, deputy manager for the International Space Station Program at NASA's Johnson Space Center in Texas; Jessica Jensen, director of Dragon mission management for SpaceX; and Tara Ruttley, associate scientist for the International Space Station Program at Johnson.

  14. NASA Marshall Space Flight Center Solar Observatory report, October - December 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is provided, and a summary of its observations and data reduction during Oct. - Dec. 1990 is presented. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  15. NASA Marshall Space Flight Center solar observatory report, January - December 1987

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1989-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January to December 1987. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  16. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  17. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    Members of the press watch on monitors as President Barack Obama delivers a speech at the Operations and Checkout Building at NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy Space Center to deliver remarks on the bold new course the Administration is charting for NASA and the future of U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  18. 14 CFR 1206.401 - Location of NASA Information Centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Location of NASA Information Centers. 1206... § 1206.401 Location of NASA Information Centers. (a) NASA will maintain the following Information Centers... which copies of Agency forms may be obtained: (1) NASA Headquarters (HQ) Information Center, National...

  19. 14 CFR 1206.401 - Location of NASA Information Centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Location of NASA Information Centers. 1206... § 1206.401 Location of NASA Information Centers. (a) NASA will maintain the following Information Centers... which copies of Agency forms may be obtained: (1) NASA Headquarters (HQ) Information Center, National...

  20. 14 CFR 1206.401 - Location of NASA Information Centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Location of NASA Information Centers. 1206... § 1206.401 Location of NASA Information Centers. (a) NASA will maintain the following Information Centers... which copies of Agency forms may be obtained: (1) NASA Headquarters (HQ) Information Center, National...

  1. 14 CFR 1206.401 - Location of NASA Information Centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Location of NASA Information Centers. 1206... § 1206.401 Location of NASA Information Centers. (a) NASA will maintain the following Information Centers... which copies of Agency forms may be obtained: (1) NASA Headquarters (HQ) Information Center, National...

  2. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  3. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  4. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  5. News Conference Features with Next Space Station Crew

    NASA Image and Video Library

    2017-12-07

    A NASA news conference was held Dec. 7 at Johnson Space Center in Houston with the next crew launching to the International Space Station. NASA astronauts A.J. (Drew) Feustel, Ricky Arnold, and Oleg Artemyev of the Russian space agency Roscosmos will launch to the space station aboard a Soyuz MS-08 spacecraft in March 2018, from the Baikonur Cosmodrome in Kazakhstan.

  6. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.

  7. Space Shuttle interactive meteorological data system study

    NASA Technical Reports Server (NTRS)

    Young, J. T.; Fox, R. J.; Benson, J. M.; Rueden, J. P.; Oehlkers, R. A.

    1985-01-01

    Although focused toward the operational meteorological support review and definition of an operational meteorological interactive data display systems (MIDDS) requirements for the Space Meteorology Support Group at NASA/Johnson Space Center, the total operational meteorological support requirements and a systems concept for the MIDDS network integration of NASA and Air Force elements to support the National Space Transportation System are also addressed.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  9. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  10. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  11. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  12. NASA Marshall Space Flight Center Solar Observatory Report, July to December 1992

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July-December 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  13. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME number 2048 mounted on an SSME engine Handler. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. NASA Stennis Space Center integrated system health management test bed and development capabilities

    NASA Astrophysics Data System (ADS)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-05-01

    Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.

  15. KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) learns about the Japanese Experiment Module (JEM) from Jennifer Goldsmith (center), with United Space Alliance at Johnson Space Center, and Louise Kleba (right), with USA at KSC. Crew members are at KSC to become familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  16. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (right) learns about the Japanese Experiment Module (JEM) from Louise Kleba (left), with United Space Alliance at KSC, and Jennifer Goldsmith (center), with USA at Johnson Space Center. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard; Ryan, Harry

    2007-01-01

    This viewgraph presentation gives a general overview of the design and analysis division of NASA John C. Stennis Space Center. This division develops and maintains propulsion test systems and facilities for engineering competencies.

  18. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  19. Robb Kulin/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; SpaceX senior manager for flight reliability Robb Kulin talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  20. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  1. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  2. Final space shuttle crew training session in the NBL

    NASA Image and Video Library

    2011-06-13

    JSC2011-E-054081 (13 June 2011) --- NASA astronaut Doug Hurley (right), STS-135 pilot, participates in a training session in the simulation control area in the Neutral Buoyancy Laboratory (NBL) at the Sonny Carter Training Facility near NASA's Johnson Space Center. Photo credit: NASA

  3. Space Shuttle Program

    NASA Image and Video Library

    2012-09-12

    Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.

  4. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).

  5. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME 2052 and 2051 mounted on their SSME Engine Handlers. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Technicians attach the tail cone to the Space Shuttle Atlantis in preparation for its return to NASA's Kennedy Space Center in Florida

    NASA Image and Video Library

    2007-06-28

    Technicians attach the tail cone, which helps reduce aerodynamic drag and turbulence during its ferry flight, to the Space Shuttle Atlantis in preparation for its return to NASA's Kennedy Space Center in Florida. After the tail-cone is installed, Discovery will be mounted on NASA's modified Boeing 747 Shuttle Carrier Aircraft, or SCA, for the return flight.

  7. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  8. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. STEM Mentor Breakfast at Debus Center

    NASA Image and Video Library

    2017-05-25

    Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. Briefings Set for Launch of Next "Great Observatory" in Space

    NASA Astrophysics Data System (ADS)

    1999-06-01

    NASA's next Space Shuttle flight will provide astronomers with a new look at the universe and make history with NASA's first female mission commander. Reporters can get an overview of the mission at a series of briefings July 7. The briefings will begin at 9 a.m. EDT at NASA's Johnson Space Center in Houston. The five-day flight is scheduled for launch no earlier than July 20. STS-93 will be led by U.S. Air Force Colonel Eileen Collins, the first woman to command an American space mission. The flight's primary objective will be to deploy the Chandra X-Ray Observatory, the third of NASA's Great Observatories. Collins and her crew of four will carry Chandra, the heaviest payload ever deployed from the shuttle, into orbit and deploy it approximately seven hours after launch. An upper stage will carry the observatory to its final orbit, more than one-third of the way to the Moon. Chandra will allow scientists to obtain unprecedented X-ray images of exploding stars, black holes and other exotic environments to help them understand the structure and evolution of the universe. The first two briefings will provide an overview of mission operations and science to be conducted by Chandra. The NASA Television Video File will follow at noon. The crew press conference will begin at 2 p.m. EDT. The briefings will be carried live on NASA Television, with question-and-answer capability for reporters covering the event from participating NASA centers. NASA Television is available on transponder 9C of the GE-2 satellite at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Media planning to attend the briefings must notify the Johnson Space Center newsroom by June 28 to ensure proper badging. Each reporter's name, affiliation and country of citizenship should be faxed to the newsroom at 281/483-2000. IMPORTANT NOTE: Reporters can schedule in-person or telephone interviews STS-93 crew. These interviews will begin at about 3:15 p.m. EDT. Media

  12. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  13. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-08

    JSC2010-E-019461 (8 Feb. 2010) --- STS-131 crew members participate in a training session in an International Space Station mock-up/trainer in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left (foreground) are NASA astronaut Stephanie Wilson, Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki and NASA astronaut Clayton Anderson, all mission specialists. Pictured from the left (background) are NASA astronauts Alan Poindexter, commander; along with Dorothy Metcalf-Lindenburger and Rick Mastracchio, both mission specialists. Instructor Jeremy Owen (right foreground) assisted the crew members. Not pictured is NASA astronaut James P. Dutton Jr., pilot.

  14. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  15. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens of cartilage tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Constructs grown on Mir (A) tended to become more spherical, whereas those grown on Earth (B) maintained their initial disc shape. These findings might be related to differences in cultivation conditions, i.e., videotapes showed that constructs floated freely in microgravity but settled and collided with the rotating vessel wall at 1g (Earth's gravity). In particular, on Mir the constructs were exposed to uniform shear and mass transfer at all surfaces such that the tissue grew equally in all directions, whereas on Earth the settling of discoid constructs tended to align their flat circular areas perpendicular to the direction of motion, increasing shear and mass transfer circumferentially such that the tissue grew preferentially in the radial direction. A and B are full cross sections of constructs from Mir and Earth groups shown at 10-power. C and D are representative areas at the construct surfaces enlarged to 200-power. They are stained red with safranin-O. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Photo credit: Proceedings of the National Academy of Sciences.

  16. NASA Briefing Previews Upcoming Spacewalks on ISS

    NASA Image and Video Library

    2017-10-02

    On Oct. 2, NASA held a briefing at the Johnson Space Center in Houston, to preview a trio of spacewalks in October to perform maintenance outside the International Space Station. Expedition 53 Commander Randy Bresnik of NASA will lead all three spacewalks, joined on Oct. 5 and 10 by Flight Engineer Mark Vande Hei, also of NASA. Flight Engineer Joe Acaba of NASA will join Bresnik on Oct. 18 for the third spacewalk. NASA TV coverage of the spacewalks will begin at 6:30 a.m. on Oct. 5, 10 and 18. Each spacewalk is scheduled to start at approximately 8:05 a.m., however, the spacewalks may begin earlier if the crew is running ahead of schedule.

  17. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. From left, are Stephanie Schierholz, of NASA Communications; Jessica Jensen, director, Dragon Mission Management, SpaceX; Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; and Mike McAleenan, weather officer, 45th Weather Squadron. Joining on the phone is Joel Montalbano, deputy manager, ISS Program at Johnson. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  18. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  19. Clean Room at Goddard Space Flight Center

    NASA Image and Video Library

    2010-03-10

    This panorama shows the inside of Goddard's High Bay Clean Room, as seen from the observation deck. Credit: NASA/Goddard Space Flight Center/Chris Gunn Go into a NASA Clean Room Daily with the Webb Telescope via NASA's 'Webb-cam' here: www.jwst.nasa.gov/webcam.html For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  1. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  2. Current Activities and Capabilities of the Terrestrial Environment Group at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Batts, Wade

    1997-01-01

    The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).

  3. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  4. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  5. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  6. 14 CFR 1201.402 - NASA Industrial Applications Centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false NASA Industrial Applications Centers. 1201... ORGANIZATION AND GENERAL INFORMATION General Information § 1201.402 NASA Industrial Applications Centers. (a... and innovative technology to nonaerospace sectors of the economy—NASA operates a network of Industrial...

  7. Senator John Glenn visit to Johnson Space Center (JSC)

    NASA Image and Video Library

    1995-05-30

    Senator John Glenn visit to Johnson Space Center (JSC). Views of Glenn sitting in cockpit of T-38 in Hangar 276 with John Young, George Abbey, David Leestma and Mark Polansky observing (11150). An engineer explains SPIFEX experiment hardware to Abby, Young and Glenn in Bldg 13 (11151, 11153). Glenn talks with astronaut Terrence T. Henricks and employees in Bldg 9C, Virtual reality lab (11152). Lunch in Bldg 17 Flight Crew support division with Dr. Ellen Baker, Robert "Hoot" Gibson and John Glenn (11154). Linda Godwin, Robert Cabana, Abbey, Young, Baker, Gibson and Glenn at lunch (11155). Astronaut Mark Lee shows Glenn and his aide how to use the virtural reality helmets (11156-7). Glenn shakes the hand of Franklin Chang-Diaz with his plasma rocket in the background in the Sonny Carter Training Facility (SCTF) (11158). Glenn in the Manipulator Development Facility (MDF) Remote Manipulator System (RMS) station mock-up in Bldg 9A with Abbey, Young and aide (11159, 11186). Glenn signs a book for Thomas D. Jones as Frederick Sturckow and Linda Godwin look on (11160). Glenn inside visual-vestibular trainer in Bldg 9B (11161). In conference room meeting with astronaut corps in Bldg 4S, Glenn shakes Robert Cabana's hand (11162). John Glenn and John Young pose for a group shot with Bldg 17 Food lab personnel (11163). Glenn thanks the food lab personnel (11164). Glenn visits Bldg 5 Fixed Base (FB) middeck simulator with astronauts Terrence Henricks and Mary Ellen Weber (11165). Glenn with Charles T. Bourland (11166). STS-70 crew Donald Thomas, Terrence Henricks, Mary Ellen Weber, Nancy Currie and Kevin Kregel with Glenn's advisor (11167). STS-70 crew Thomas, Henricks, Weber, Currie and Kregel with John Glenn (11175). Glenn with Thomas, Kregel, Weber, Henricks and trainer (11176-7). David J. Homan assists Glenn's aide with virtual reality goggles (11168) and Glenn (11174). John Young in Bldg 9C equilibrium trainer (11169). Glenn with Carl Walz in flight deck mock-up of MDF in

  8. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama, center, back to camera, shakes hands with NASA Administrator Charles Bolden, right, as U.S. Sen. Bill Nelson, D-Fla., looks on prior to Obama's speech outlining the bold new course the administration is charting to maintain U.S. leadership in human space flight at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Photo Credit: (NASA/Paul E. Alers)

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-08

    JSC2010-E-019040 (8 Feb. 2010) --- Brent Jett, director, flight crew operations, watches a monitor at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-130 launch. John McCullough (seated), chief of the flight director office, is at right.

  11. Catalog of Space Shuttle Earth Observations Handheld Photography. Space Transportation System 39 (STS-39) Mission Dates: April 28 Through May 6, 1991

    DTIC Science & Technology

    1991-10-01

    Albuquerque, NM 87131 Telephone: (505) 277-3622 Media Services Branch Still Photography Library NASA Lyndon B. Johnson Space Center P.O. Box 58425...organizations similarly equipped are the NASA Ames Research Center, California; the Library of Congress; the University of California at Santa Barbara; the Lunar...219 (M.S. 240-6) NASA Ames Research Center Moffett Field, CA 94305 (415) 604-6252 U.S. GOVERNMENT - LIBRARY OF CONGRESS Geography & Map Division Rm. B

  12. Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Erickson, L. K.

    1999-09-01

    Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.

  13. 14 CFR § 1206.401 - Location of NASA Information Centers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Location of NASA Information Centers. Â... § 1206.401 Location of NASA Information Centers. (a) NASA will maintain the following Information Centers... which copies of Agency forms may be obtained: (1) NASA Headquarters (HQ) Information Center, National...

  14. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Ted Melfi, writer and director of “Hidden Figures,” and Octavia Spencer, who portrays Dorothy Vaughan in the film. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  15. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043875 (29 April 2011) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA

  16. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2011-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA s extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."

  17. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2010-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.

  18. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robotics

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an objective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  19. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    NASA Technical Reports Server (NTRS)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  20. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  1. Detail view of the Waste Management System, the space potty, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Waste Management System, the space potty, onboard the Orbiter Discovery. It is located on the aft wall on the port side of the mid deck of the orbiter. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  3. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  4. NASA Space Day in Mississippi - Senate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi Lt. Gov. Phil Bryant (at rear podium) and Gulf Coast delegation members in Mississippi Senate chambers during NASA Space Day in Mississippi activities at the Capitol on January 30.

  5. NASA Space Day in Mississippi - Senate

    NASA Image and Video Library

    2008-01-30

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi Lt. Gov. Phil Bryant (at rear podium) and Gulf Coast delegation members in Mississippi Senate chambers during NASA Space Day in Mississippi activities at the Capitol on January 30.

  6. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  7. Comprehensive Software Simulation on Ground Power Supply for Launch Pads and Processing Facilities at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Victor, Elias; Vasquez, Angel L.; Urbina, Alfredo R.

    2017-01-01

    A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket.

  8. Vice President Visits Marshall Space Flight Center on This Week @NASA – September 29, 2017

    NASA Image and Video Library

    2017-09-29

    Vice President Mike Pence visited our Marshall Space Flight Center on Sept. 25 to thank employees working on NASA’s human spaceflight programs. He also spoke to the three NASA astronauts currently serving onboard the International Space Station. During a tour, the Vice President also saw progress being made on our Space Launch System rocket, that will send astronauts in our Orion spacecraft on missions around the Moon and ultimately to Mars. Also, NASA Data and Tech Aid in Disaster Relief, Congressional Hearing on August 21 Solar Eclipse, OSIRIS-REx Views Earth During Flyby, and “Bladed Terrain” on Pluto Made of Frozen Methane!

  9. Lessons Learned JSC Micro-Wireless Instrumentation Systems on Space Shuttle and International Space Station CANEUS 2006

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.

  10. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  11. Jessica Watkins/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Caltech postdoctoral fellow Jessica Watkins talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  12. Warren Hoburg/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; MIT assistant professor Warren Hoburg talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  13. Frank Rubio/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Army Major Frank Rubio talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  14. Jasmin Moghbeli/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Marine Corps Major Jasmin Moghbeli talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  15. Zena Cardman/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-21

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; National Science Foundation graduate research fellow Zena Cardman talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  16. Raja Chari/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-21

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; U.S. Air Force Lieutenant Colonel Raja Chari talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  17. Jonny Kim/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Dr. Jonny Kim talks about how he became interested in science, technology, engineering and math, why he wanted to become an astronaut and where he was when he got the news that he’d achieved his dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  18. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  19. Space Shuttle operational logistics plan

    NASA Technical Reports Server (NTRS)

    Botts, J. W.

    1983-01-01

    The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  1. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  2. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020616 (9 Feb. 2010) --- STS-133 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured (seated back to front) are NASA astronauts Alvin Drew, mission specialist; Eric Boe, pilot; Steve Lindsey, commander; Nicole Stott, Tim Kopra and Michael Barratt, all mission specialists.

  3. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020619 (9 Feb. 2010) --- STS-133 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured (back to front) are NASA astronauts Alvin Drew, mission specialist; Eric Boe, pilot; Steve Lindsey, commander; Nicole Stott, Tim Kopra and Michael Barratt, all mission specialists.

  4. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020627 (9 Feb. 2010) --- STS-133 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured seated from the left are NASA astronauts Alvin Drew, mission specialist; Eric Boe, pilot; Steve Lindsey, commander; Nicole Stott, Tim Kopra and Michael Barratt, all mission specialists.

  5. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020614 (9 Feb. 2010) --- STS-133 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Alvin Drew, mission specialist; Eric Boe, pilot; Steve Lindsey, commander; Nicole Stott, Tim Kopra and Michael Barratt, all mission specialists.

  6. CONSTELLATION Images from other centers - February 2010

    NASA Image and Video Library

    2010-02-09

    JSC2010-E-020632 (9 Feb. 2010) --- STS-133 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured seated from the left are NASA astronauts Alvin Drew, mission specialist; Eric Boe, pilot; Steve Lindsey, commander; Nicole Stott, Tim Kopra and Michael Barratt, all mission specialists.

  7. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    -0031 in advance of the mission to make arrangements for special support, such as telephone service, and uplink or remote truck parking. Covering from the Kennedy Space Center The Kennedy Space Center, Fla., news center is primarily responsible for disseminating information about the Shuttle countdown and launch. However, media relations officers knowledgeable about Chandra will be present at the Kennedy news center through launch. Additionally, some members of the Chandra management and science team will be at the Kennedy Space Center and available for interviews through launch. Media interested in covering the Chandra launch from the Kennedy Space Center should contact its Public Affairs Office at (407) 867-2468. Prior accreditation is required. Covering from the Johnson Space Center The Johnson Space Center, Houston, Texas, news center has responsibility for disseminating information about STS-93 flight operations. Media interested in covering the mission from the Johnson Space Center should contact its Public Affairs Office at (281) 483-5111. Prior accreditation is required. Status Reports During the STS-93 Space Shuttle mission to launch Chandra, NASA will issue twice-daily status reports from the Chandra Operations Control Center in Cambridge, Mass. Following the Shuttle mission, through Chandra's on-orbit checkout period, reports will be issued weekly. These reports are available via the Internet at: http://chandra.msfc.nasa.gov Press Briefings During the Space Shuttle mission to launch the observatory, NASA will conduct daily press briefings on the status of the observatory. These briefings will be conducted at the Chandra Operations Control Center in Cambridge, Mass. Media briefings will be broadcast on NASA Television (see below). Media without access to NASA Television may monitor the briefings by calling (256) 544-5300 and asking to be connected to the NASA Television audio feed. A briefing schedule will be released before launch and updated as appropriate

  8. In-situ resource utilization activities at the NASA Space Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1992-01-01

    The paper describes theoretical and experimental research activities at the NASA Space Engineering Research Center aimed at realizing significant cost savings in space missions through the use of locally available resources. The fundamental strategy involves idea generation, scientific screening, feasibility demonstrations, small-scale process plant design, extensive testing, scale-up to realistic production rates, associated controls, and 'packaging', while maintaining sufficient flexibility to respond to national needs in terms of specific applications. Aside from training, the principal activities at the Center include development of a quantitative figure-of-merit to quickly assess the overall mission impact of individual components that constantly change with advancing technologies, extensive tests on a single-cell test bed to produce oxygen from carbon dioxide, and the use of this spent stream to produce methane.

  9. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    NASA Administrator Charles Bolden (center) presents Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, a NASA montage in honor of the Reimbursable Space Act Agreement (RSAA) signed between the two agencies, Monday, March 18, 2013 at NASA Headquarters in Washington. Leland Melvin (right), NASA Associate Administrator for Education looks on. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  10. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  13. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043869 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A model of a space shuttle is in the foreground. Photo credit: NASA

  14. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  15. NASA Johnson Space Center Aircraft Operations Division

    NASA Technical Reports Server (NTRS)

    Bakalyar, John A.

    2018-01-01

    This presentation provides a high-level overview of JSC aircraft and missions. The capabilities, including previous missions and support team, for the Super Guppy Transport (SGT) aircraft are highlighted.

  16. NASA Johnson Space Center Medical Licensing Opportunities

    NASA Technical Reports Server (NTRS)

    Hernandez-Moya, Sonia

    2009-01-01

    This presentation reviews patented medical items that are available for licensing in the areas of Laboratory Technologies, Medical Devices, Medical Equipment and other technologies that are of interest to the medical community.

  17. General view in the Vertical Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view shows a SSME Rotating Sling in the foreground right and SSME 2056 in the foreground and SSMEs 2050, 2062 and 2054 in succession towards the background. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Remote Sensing Product Verification and Validation at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas M.

    2005-01-01

    Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.

  19. A Case Study: Using Delmia at Kennedy Space Center to Support NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Kickbusch, Tracey; Humeniuk, Bob

    2010-01-01

    The presentation examines the use of Delmia (Digital Enterprise Lean Manufacturing Interactive Application) for digital simulation in NASA's Constellation Program. Topics include an overview of the Kennedy Space Center (KSC) Design Visualization Group tasks, NASA's Constellation Program, Ares 1 ground processing preliminary design review, and challenges and how Delmia is used at KSC, Challenges include dealing with large data sets, creating and maintaining KSC's infrastructure, gathering customer requirements and meeting objectives, creating life-like simulations, and providing quick turn-around on varied products,

  20. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  1. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  2. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama, left, Air Force Col. Lee Rosen, Commander, 45th Launch Group, center, and SpaceX CEO Elon Musk talk with Dr. John P. Holdren is Assistant to the President for Science and Technology during a tour of the commercial rocket processing facility of Space Exploration Technologies, known as SpaceX, at Cape Canaveral Air Force Station, Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama also visited the NASA Kennedy Space Center to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  3. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  4. Loral O’Hara/NASA 2017 Astronaut Candidate

    NASA Image and Video Library

    2017-08-22

    The ranks of America’s Astronaut Corps grew by a dozen today! The twelve new NASA Astronaut Candidates have reported for duty at the Johnson Space Center in Houston to begin two years of training. Before they got to Houston we video-chatted with them all; Woods Hole Oceanographic Institution research engineer Loral O’Hara talks about how she became interested in science, technology, engineering and math, why she wanted to become an astronaut and where she was when she got the news that she’d achieved her dream. Learn more about the new space heroes right here: nasa.gov/2017astronauts

  5. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  6. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  7. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043876 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim (mostly out of frame at right), both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA

  8. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  9. Vice President Mike Pence visits Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence, second from right; NASA Acting Administrator Robert Lightfoot, left; Deputy Director, Kennedy Space Center, Janet Petro, second from left; NASA astronaut Reid Wiseman, center; and Director, Kennedy Space Center, Robert Cabana, right, look at the Orion capsule that will fly on the first integrated flight with the Space Launch System rocket in 2019, during a tour of the Kennedy Space Center's Operations and Checkout Building.

  10. Improving System Engineering Excellence at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Takada, Pamela Wallace; Newton, Steve; Gholston, Sampson; Thomas, Dale (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center (MSFC) management feels that sound system engineering practices are essential for successful project management, NASA studies have concluded that recent project failures could be attributed in part to inadequate systems engineering. A recent survey of MSFC project managers and system engineers' resulted in the recognition of a need for training in Systems Engineering Practices, particularly as they relate to MSFC projects. In response to this survey, an internal pilot short-course was developed to reinforce accepted practices for system engineering at MSFC. The desire of the MSFC management is to begin with in-house training and offer additional educational opportunities to reinforce sound system engineering principles to the more than 800 professionals who are involved with system engineering and project management. A Systems Engineering Development Plan (SEDP) has been developed to address the longer-term systems engineering development needs of MSFC. This paper describes the survey conducted and the training course that was developed in response to that survey.

  11. Graphics Technology in Space Applications (GTSA 1989)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1989-01-01

    This document represents the proceedings of the Graphics Technology in Space Applications, which was held at NASA Lyndon B. Johnson Space Center on April 12 to 14, 1989 in Houston, Texas. The papers included in these proceedings were published in general as received from the authors with minimum modifications and editing. Information contained in the individual papers is not to be construed as being officially endorsed by NASA.

  12. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    From left, Pete Hasbrook, associate program scientist, International Space Station Program at NASA's Johnson Space Center in Houston; Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications; Marie Lewis, moderator, Kennedy Space Center; and Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speak to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  13. SpaceCast_Weekly_075_1030_628917

    NASA Image and Video Library

    2018-03-16

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  14. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. NASA Trained Alabama Lead Teachers, (LtoR) Jacquelyn Adams, Arlinda Davis,Timothy Johnson,Laura Crowe demonstrate how rocket boosters work.

  15. NASA News Center Building at the Press Site

    NASA Image and Video Library

    2017-05-03

    This is the NASA News Center at Kennedy Space Center in Florida, where reporters from television, radio, print and online media outlets have monitored countless launches, landings and other space events in order to deliver the news to the world.

  16. KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O’Keefe (center) is welcomed to the Central Florida Research Park, near Orlando. Central Florida leaders are proposing the research park as the site for the new NASA Shared Services Center. The center would centralize NASA’s payroll, accounting, human resources, facilities and procurement offices that are now handled at each field center. The consolidation is part of the One NASA focus. Six sites around the U.S. are under consideration by NASA.

    NASA Image and Video Library

    2004-02-19

    KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O’Keefe (center) is welcomed to the Central Florida Research Park, near Orlando. Central Florida leaders are proposing the research park as the site for the new NASA Shared Services Center. The center would centralize NASA’s payroll, accounting, human resources, facilities and procurement offices that are now handled at each field center. The consolidation is part of the One NASA focus. Six sites around the U.S. are under consideration by NASA.

  17. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  18. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-114 Mission Specialist Stephen Robinson (left) looks at an area overhead in the Japanese Experiment Module (JEM). In the center is Jennifer Goldsmith, with United Space Alliance at Johnson Space Center, and at right is Louise Kleba, with USA at KSC. Crew members are at KSC becoming familiar with Shuttle and mission equipment. The mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  19. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  20. The History of the Animal Care Program at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    This slide presentation reviews the work of the Animal Care Program (ACP). Animals have been used early in space exploration to ascertain if it were possible to launch a manned spacecraft. The program is currently involved in many studies that assist in enhancing the scientific knowledge of the effect of space travel. The responsibilities of the ACP are: (1) Organize and supervise animal care operations & activities (research, testing & demonstration). (2) Maintain full accreditation by the International Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) (3) Ensure protocol compliance with IACUC recommendations (4) Training astronauts for in-flight animal experiments (5) Maintain accurate & timely records for all animal research testing approved by JSC IACUC (6) Organize IACUC meetings and assist IACUC members (7) Coordinate IACUC review of the Institutional Program for Humane Care and Use of Animals (every 6 mos)

  1. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    NASA Technical Reports Server (NTRS)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  2. Space Station redesign option A: Modular buildup concept

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1993, President Clinton mandated that NASA look at lower cost alternatives to Space Station Freedom. He also established an independent advisory committee - the Blue Ribbon Panel - to review the redesign work and evaluate alternatives. Daniel Goldin, NASA Administrator, established a Station Redesign Team that began operating in late March from Crystal City, Virginia. NASA intercenter teams - one each at Marshall Space Flight Center, Johnson Space Center, and Langley Research Center provided engineering and other support. The results of the Option A study done at Marshall Space Flight Center are summarized. Two configurations (A-1 and A-2) are covered. Additional data is provided in the briefing package MSFC SRT-001, Final System Review to SRT-002, Space Station Option A Modular Buildup Concept, Volumes 1-5, Revision B, June 10, 1993. In June 1993, President Clinton decided to proceed with a modular concept consistent with Option A, and asked NASA to provide an Implementation Plan by September. All data from the Option A redesign activity was provided to NASA's Transition Team for use in developing the Implementation Plan.

  3. Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1990-01-01

    Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.

  4. Vice President Mike Pence Arrival at Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Accompanied by a White House staffer, left, NASA Kennedy Space Center Director Robert Cabana, Acting NASA Administrator Robert Lightfoot and Kennedy Space Center Deputy Director Janet Petro watch as Air Force Two, carrying Vice President Mike Pence, approaches on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. During his visit to Kennedy, Pence spoke inside the iconic Vehicle Assembly Building, where he thanked employees for advancing American leadership in space.

  5. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    NASA Administrator Charles Bolden, right, gives introductory remarks as US Senator Bill Nelson (D-FL) listens on during an event where President Barack Obama outlined a bold new course the administration is charting to maintain U.S. leadership in human space flight at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Photo Credit: (NASA/Bill Ingalls)

  6. NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students

  7. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    NASA Technical Reports Server (NTRS)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  8. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  9. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  10. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  11. Closeup view looking into the nozzle of the Space Shuttle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Aerial view of the Kennedy Space Center Visitor Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Shuttle/Gantry mockup and Post Show Dome anchor the northeast corner of the Kennedy Space Center Visitor Complex. The Astronaut Memorial is located just above. Sprawling across 70 acres on Florida's Space Coast, the complex is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. The building at the upper left is the Theater Complex. Other exhibits and buildings on the site are the Center for Space Education, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, Ticket Pavilion and Center for Space Education.

  13. STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups

    NASA Image and Video Library

    2011-04-29

    JSC2011-E-043872 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A crew instructor (right) assisted Magnus and Walheim. Photo credit: NASA

  14. Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-02-20

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  15. SpaceCast_Weekly_2018_0413_1423_640008

    NASA Image and Video Library

    2018-04-13

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  16. SpaceCast_Weekly_2018_110_1500_643169

    NASA Image and Video Library

    2018-04-24

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  17. SpaceCastWeekly_2018_089_1500__634356

    NASA Image and Video Library

    2018-03-30

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  18. SpaceCast_Weekly_2018_082_1500__631237

    NASA Image and Video Library

    2018-03-23

    SpaceCast Weekly is a NASA Television broadcast from the Johnson Space Center in Houston featuring stories about NASA’s work in human spaceflight, including the International Space Station and its crews and scientific research activities, and the development of Orion and the Space Launch System, the nextgeneration American spacecraft being built to take humans farther into space than they’ve ever gone before.

  19. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  20. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-23

    The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  1. Overview of the NASA space radiation laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  2. Overview of the NASA space radiation laboratory

    DOE PAGES

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  3. KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy (center) makes a presentation to NASA and other officials about the benefits of locating NASA’s new Shared Services Center in the Central Florida Research Park, near Orlando. Central Florida leaders are proposing the research park as the site for the NASA Shared Services Center. The center would centralize NASA’s payroll, accounting, human resources, facilities and procurement offices that are now handled at each field center. The consolidation is part of the One NASA focus. Six sites around the U.S. are under consideration by NASA.

    NASA Image and Video Library

    2004-02-19

    KENNEDY SPACE CENTER, FLA. - KSC Director Jim Kennedy (center) makes a presentation to NASA and other officials about the benefits of locating NASA’s new Shared Services Center in the Central Florida Research Park, near Orlando. Central Florida leaders are proposing the research park as the site for the NASA Shared Services Center. The center would centralize NASA’s payroll, accounting, human resources, facilities and procurement offices that are now handled at each field center. The consolidation is part of the One NASA focus. Six sites around the U.S. are under consideration by NASA.

  4. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    NASA Deputy Administrator Lori Garver shakes hands with President Barack Obama as she and NASA Kennedy Space Center Director Bob Cabana, left, welcome the President to Kennedy in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  5. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama takes the stage after being introduced by NASA Administrator Charles Bolden, right, and US Senator Bill Nelson (D-FL) during an event where Obama outlined a bold new course the administration is charting to maintain U.S. leadership in human space flight at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Photo Credit: (NASA/Bill Ingalls)

  6. NASA personnel and facilities involved in Hurricane Katrina medical evacuation

    NASA Image and Video Library

    2005-09-02

    JSC2005-E-36144 (2 September 2005) --- NASA Johnson Space Center Aircraft Operations Hangar 990 at Ellington Field, Houston, has been used as a triage location this week for medical patients evacuated by air from New Orleans to pass through on their way to Houston-area medical facilities. Hundreds of patients have passed through the location so far, as the transfer operations, led by the Veterans Administration and supported by NASA and other agencies, continue.

  7. NASA Space Day in Mississippi - House of Representatives

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Astronaut Michael Foale (center) and Stennis Space Center officials met with Mississippi House of Representatives Gulf Coast delegation, including Speaker William 'Billy' McCoy (far right), during NASA Space Day in Mississippi on January 30.

  8. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama tours the commercial rocket processing facility of Space Exploration Technologies, known as SpaceX, along with Elon Musk, SpaceX CEO at Cape Canaveral Air Force Station, Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama also visited the NASA Kennedy Space Center to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  9. Workshop on Mercury: Space Environment, Surface, and Interior

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  12. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama waves farewell after speaking at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama visited Kennedy to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  13. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  14. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-01-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  15. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-02-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  16. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a 'lifeboat' for the International Space Station based on X-38 research.

  17. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a "lifeboat" for the International Space Station based on X-38 research.

  18. KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  19. KENNEDY SPACE CENTER, FLA. - Dryden Flight Research Center Director Kevin Peterson talks about One NASA during the rollout of the Agency initiative at KSC. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Peterson, were KSC Director Jim Kennedy, James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

    NASA Image and Video Library

    2003-08-20

    KENNEDY SPACE CENTER, FLA. - Dryden Flight Research Center Director Kevin Peterson talks about One NASA during the rollout of the Agency initiative at KSC. The event was held at the IMAX Theater® where NASA leaders discussed One NASA with selected employees. Explaining how their respective centers contribute to One NASA, along with Peterson, were KSC Director Jim Kennedy, James Jennings, NASA’s associate deputy administrator for institutions and asset management; Ed Weiler, associate administrator for Space Science; Kevin Peterson, Dryden Flight Research Center director; incoming KSC Deputy Director Woodrow Whitlow; and implementation team lead Johnny Stevenson. Glenn Research Center Director Dr. Julian Earls gave a motivational speech during the luncheon held at the Visitor Complex Debus Conference Center.

  20. Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor)

    1992-01-01

    Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions.

  1. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  2. Science Outreach at NASA's Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  3. Science Outreach at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lebo, George

    2002-01-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  4. Liquid hydrogen production and economics for NASA Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  5. First NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammond, Ahmad (Compiler); Stavnes, Mark W. (Compiler)

    1994-01-01

    This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document.

  6. Meteorological regimes for the classification of aerospace air quality predictions for NASA-Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Sloan, J. C.

    1976-01-01

    A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

  7. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  8. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  9. Closeup view of a Space Shuttle Main Engine (SSME) installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  11. Overview of the NASA space radiation laboratory.

    PubMed

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam

    2016-11-01

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. Copyright © 2016 The Committee on Space Research (COSPAR). All rights reserved.

  12. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  13. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    US Senator Bill Nelson (D-FL) gives introductory remarks during an event where President Barack Obama outlined a bold new course the administration is charting to maintain U.S. leadership in human space flight at the NASA Kennedy Space Center in Cape Canaveral, Fla. on Thursday, April 15, 2010. Photo Credit: (NASA/Bill Ingalls)

  14. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-25

    Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  15. Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2005-01-01

    The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

  16. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  17. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  18. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  19. STS-55 Columbia, OV-102, crew members board STA NASA 948 at Ellington Field

    NASA Image and Video Library

    1993-03-17

    S93-30754 (September 1992) --- Astronaut Catherine G. Coleman, who had recently begun a year?s training and evaluation program at the Johnson Space Center (JSC), sits in the rear station of a T-38 jet trainer. She was about to take a familiarization flight in the jet. Coleman was later named mission specialist for NASA?s STS-73/United States Microgravity Laboratory (USML-2) mission.

  20. NASA Invites Artists to Visit James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Witness History: Be inspired by giant, golden, fully-assembled James Webb Space Telescope mirror on display at NASA Goddard. Read more: go.nasa.gov/2dUOmSX Are you an artist? If so, we have a unique opportunity to view the amazing and aesthetic scientific marvel that is the James Webb Space Telescope. Because of Webb’s visually striking appearance, we are hosting a special viewing event on Wednesday, Nov. 2, 2016, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Artists are invited to apply to attend. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram