Sample records for nasa-marshall space flight

  1. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  2. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  3. NASA Marshall Space Flight Center solar observatory

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1988-01-01

    A description is provided of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and a summary is given of its observations and data reduction during Jan. to Mar. 1988. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer center. The data are represented by longitudinal contours with azimuth plots.

  4. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  5. NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.

    2004-01-01

    The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

  6. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    NASA Technical Reports Server (NTRS)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  7. Marshall Space Flight Center's Education Department

    NASA Technical Reports Server (NTRS)

    Henderson, Arthur J., Jr.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    Marshall Space Flight Center's Education Department is a resource for Educator, Students and Lifelong Learners. This paper will highlight the Marshall Space Flight Center's Education Department with references to other NASA Education Departments nationwide. The principal focus will be on the responsibilities of the Pre-college Education Team which is responsible for supporting K- 12 teachers highlighting how many of the NASA Pre-college Offices engage teachers and their students in better understanding NASA's inspiring missions, unique facilities, and specialized workforce to carryout these many agency-wide tasks, goals and objectives. Attendee's will learn about the Marshall Educational Alliance Teams, as well, which is responsible for using NASA's unique assets to support all types of learning. All experience and knowledge levels, all grades K-12, and teachers in these specified groupings will gain a true appreciation of what is available for them, through Marshall Space Flight Center's Education Department. An agency-wide blue directory booklet will be distributed to all attendees, for future references and related points of contact.

  8. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-09-08

    President Dwight D. Eisenhower and Mrs. George C. Marshall unveil the bronze bust of General George C. Marshall during the dedication of the Marshall Space Flight Center. Eisenhower signed an Executive Order on October 21, 1959 directing the transfer of persornel from the Redstone Arsenal's Army Ballistic Missile Agency Development Operations Division to NASA. On March 15, 1960, another Executive Order announced that the space complex formed within the boundaries of Redstone Arsenal would become the George C. Marshall Space Flight Center. The Center was activated on July 1, 1960, with dedication ceremonies taking place September 8, 1960.

  9. NASA Marshall Space Flight Center solar observatory report, January - June 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January-June 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  10. NASA Marshall Space Flight Center Solar Observatory report, July - October 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during June-October 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  11. NASA Marshall Space Flight Center Solar Observatory report, January - June 1992

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during Jan. to Jun. 1992. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code.

  12. NASA Marshall Space Flight Center Solar Observatory report, March - May 1994

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  13. NASA Marshall Space Flight Center Solar Observatory report, January - June 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1990-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is presented and a summary of its observations and data reduction is given. The systems that make up the facility are a magnetograph telescope, an H alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  14. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    The Marshall Space Flight Center, a NASA field installation, was established at Huntsville, Alabama, in 1960. The Center was named in honor of General George C. Marshall, the Army Chief of Staff during World War II, Secretary of State, and Nobel Prize Wirner for his world-renowned Marshall Plan.

  15. NASA Marshall Space Flight Center Solar Observatory report, October - December 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is provided, and a summary of its observations and data reduction during Oct. - Dec. 1990 is presented. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  16. NASA Marshall Space Flight Center solar observatory report, January - December 1987

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1989-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January to December 1987. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  17. NASA Marshall Space Flight Center Solar Observatory report, July - September 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    A description of the NASA Marshall Space Flight C nter's Solar Vector Magnetograph Facility is provided and gives a summary of its observations and data reduction during Jul. - Sep. 1990. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  18. NASA Marshall Space Flight Center Solar Observatory Report, July to December 1992

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July-December 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  19. Capabilities of NASA/Marshall Space Flight Center's Impact Testing Facility

    NASA Technical Reports Server (NTRS)

    Hovater, Mary; Hubbs, Whitney; Finchum, Andy; Evans, Steve; Nehls, Mary

    2006-01-01

    The Impact Testing Facility (ITF) serves as an important installation for materials science at Marshall Space Flight Center (MSFC). With an array of air, powder, and two-stage light gas guns, a variety of projectile and target types and sizes can be accommodated. The ITF allows for simulation of impactors from rain to micrometeoroids and orbital debris on materials being investigated for space, atmospheric, and ground use. Expendable, relatively simple launch assemblies are used to obtain well-documented results for impact conditions comparable to those from ballistic and rocket sled ranges at considerably lower cost. In addition, for applications requiring study of impacts at speeds in excess of those attainable by gun launches, hydrocode simulations, validated by test data, can be used to extend the velocity range. In addition to serving various NASA directorates, the ITF has performed testing on behalf of the European and Russian space agencies, as well as the Department of Defense, and academic institutions. The m s contributions not only enable safer space flight for NASA s astronauts, but can help design materials and structures to protect soldiers and civilians on Earth, through advances in body armor, aircraft survivability, and a variety of other applications.

  20. George C. Marshall Space Flight Center Research and Technology Report 2014

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler)

    2015-01-01

    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.

  1. Marshall Space Flight Center Technology Capabilities for Use in Space Situational Awareness Activities

    NASA Technical Reports Server (NTRS)

    Gagliano, Larry; McLeod, Todd; Hovater, Mary A.

    2017-01-01

    Marshall performs research, integrates information, matures technologies, and enhances science to bring together a diverse portfolio of products and services of interest for Space Situational Awareness (SSA) and Space Asset Management (SAM), all of which can be accessed through partnerships with Marshall. Integrated Space Situational Awareness and Asset Management (ISSAAM) is an initiative of NASA's Marshall Space Flight Center to improve space situational awareness and space asset management through technical innovation, collaboration, and cooperation with U.S. Government agencies and the global space community. Marshall Space Flight Center provides solutions for complex issues with in-depth capabilities, a broad range of experience, and expertise unique in the world, and all available in one convenient location. NASA has longstanding guidelines that are used to assess space objects. Specifically, Marshall Space Flight Center has the capabilities, facilities and expertise to address the challenges that space objects, such as near-Earth objects (NEO) or Orbital Debris pose. ISSAAM's three pronged approach brings together vital information and in-depth tools working simultaneously toward examining the complex problems encountered in space situational awareness. Marshall's role in managing, understanding and planning includes many projects grouped under each prong area: Database/Analyses/Visualization; Detection/Tracking/ Mitigation/Removal. These are not limited to those listed below.

  2. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  3. Marshall Space Flight Center Materials and Processes Laboratory

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  4. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  5. Gene Kranz Visits Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center's (MSFC's) 2006 Annual Safety Day program. The best selling author of 'Failure Is Not An Option' and past Apollo flight director was featured during a morning session called 'Coffee and Kranz'. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  6. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1960-07-01

    The Marshall Space Flight Center was activated on July 1, 1960 as a part of NASA, which had been established on October 1, 1958 by Congressional passage of the National Aeronautics and Space Act. The nucleus of NASA was the Advisory Committee for Aeronautics later named the National Advisory Committee for Aeronauts (NACA). The NACA was founded in 1915 to study the problems of flight and to recommend practical solutions to basic aircraft design and construction problems. NACA's wind turnels and other research facilities made NACA technical reports the basis for aviation progress for more than 40 years.

  7. Vice President Visits Marshall Space Flight Center on This Week @NASA – September 29, 2017

    NASA Image and Video Library

    2017-09-29

    Vice President Mike Pence visited our Marshall Space Flight Center on Sept. 25 to thank employees working on NASA’s human spaceflight programs. He also spoke to the three NASA astronauts currently serving onboard the International Space Station. During a tour, the Vice President also saw progress being made on our Space Launch System rocket, that will send astronauts in our Orion spacecraft on missions around the Moon and ultimately to Mars. Also, NASA Data and Tech Aid in Disaster Relief, Congressional Hearing on August 21 Solar Eclipse, OSIRIS-REx Views Earth During Flyby, and “Bladed Terrain” on Pluto Made of Frozen Methane!

  8. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  9. Improving System Engineering Excellence at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Takada, Pamela Wallace; Newton, Steve; Gholston, Sampson; Thomas, Dale (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center (MSFC) management feels that sound system engineering practices are essential for successful project management, NASA studies have concluded that recent project failures could be attributed in part to inadequate systems engineering. A recent survey of MSFC project managers and system engineers' resulted in the recognition of a need for training in Systems Engineering Practices, particularly as they relate to MSFC projects. In response to this survey, an internal pilot short-course was developed to reinforce accepted practices for system engineering at MSFC. The desire of the MSFC management is to begin with in-house training and offer additional educational opportunities to reinforce sound system engineering principles to the more than 800 professionals who are involved with system engineering and project management. A Systems Engineering Development Plan (SEDP) has been developed to address the longer-term systems engineering development needs of MSFC. This paper describes the survey conducted and the training course that was developed in response to that survey.

  10. Vice President Pence Visits NASA's Marshall Space Flight Center

    NASA Image and Video Library

    2017-09-25

    Vice President Mike Pence offered his thanks Monday to employees working on NASA’s human spaceflight programs during a tour of the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Vice President saw the progress being made on NASA’s Space Launch System (SLS), the world’s most powerful deep space rocket, that will send astronauts on missions around the Moon and ultimately to Mars. He also visited Marshall’s Payload Operations Integration Center, where the agency manages all research aboard the International Space Station.

  11. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  12. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  13. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  14. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  15. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  16. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  17. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  18. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  19. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  20. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  1. Astronaut Shane Kimbrough Visits Marshall Space Flight Center

    NASA Image and Video Library

    2017-08-31

    NASA astronaut Shane Kimbrough presents highlights from his Expedition 49-50 mission aboard the International Space Station Sept. 19 to students from theU.S. Space & Rocket Center's Space Camp and team members at NASA's Marshall Space Flight Center. While serving as commander of the station, Kimbrough conducted four spacewalks, during which he installed new batteries and relay boxes, and helped move a pressurized mating adapter for future commercial crew spacecraft visiting the outpost. He also contributed to hundreds of experiments in biology, biotechnology, physical science and Earthobservations. One of these experiments was the Microgravity Expanded Stem Cells investigation, results of which could lead to the treatment of diseases andinjury in space and provide a way to improve stem cell production for medical therapies on Earth.

  2. Science Outreach at NASA's Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  3. Science Outreach at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lebo, George

    2002-01-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  4. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  5. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    NASA Technical Reports Server (NTRS)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  6. Power to Explore: A History of the Marshall Space Flight Center, 1960-1990

    NASA Technical Reports Server (NTRS)

    Dunar, Andrew J.; Waring, Stephen P.

    1999-01-01

    This scholarly study of NASA's Marshall Space Flight Center places the institution in social, political, scientific and technological context. It traces the evolution of Marshall, located in Huntsville, Alabama, from its origins as an Army missile development organization to its status in 1990 as one of the most diversified of NASA's field Center. Chapters discuss military rocketry programs in Germany and the United States, Apollo-Saturn, Skylab, Space shuttle, Spacelab, the Space Station, and various scientific and technical projects including the Hubble Space Telescope. It sheds light not only on the history of space technology, science and exploration, but also on the Cold War, federal politics and complex organizations.

  7. Current Activities and Capabilities of the Terrestrial Environment Group at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Batts, Wade

    1997-01-01

    The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).

  8. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  9. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  10. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  11. Overview of the NASA/Marshall Space Flight Center (MSFC) CFD Consortium for Applications in Propulsion Technology

    NASA Astrophysics Data System (ADS)

    McConnaughey, P. K.; Schutzenhofer, L. A.

    1992-07-01

    This paper presents an overview of the NASA/Marshall Space Flight Center (MSFC) Computational Fluid Dynamics (CFD) Consortium for Applications in Propulsion Technology (CAPT). The objectives of this consortium are discussed, as is the approach of managing resources and technology to achieve these objectives. Significant results by the three CFD CAPT teams (Turbine, Pump, and Combustion) are briefly highlighted with respect to the advancement of CFD applications, the development and evaluation of advanced hardware concepts, and the integration of these results and CFD as a design tool to support Space Transportation Main Engine and National Launch System development.

  12. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  13. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  14. Styx tours Marshall Space Flight Center

    NASA Image and Video Library

    2017-04-27

    Keith Parrish, left, of the Space Systems Department at NASA’s Marshall Space Flight Center, discusses the process of the Environmental Control and Life Support System with Marshall Center Director Todd May, second from left, and members of the legendary rock band Styx during a tour of Marshall April 27. Inspired by NASA’s goal of sending humans to Mars in the 2030s, the band’s upcoming album, "The Mission," musically chronicles a futuristic, crewed mission to Mars. While Styx’s mission may be only realized through their iconic sound, NASA’s mission is well underway with the new Space Launch System

  15. Spacecraft Chemical Propulsion Systems at NASA's Marshall Space Flight Center: Heritage and Capabilities

    NASA Technical Reports Server (NTRS)

    McRight, Patrick S.; Sheehy, Jeffrey A.; Blevins, John A.

    2005-01-01

    NASA Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V and the Space Shuttle. This paper highlights a lesser known but equally rich side of MSFC - its heritage in spacecraft chemical propulsion systems and its current capabilities for in-space propulsion system development and chemical propulsion research. The historical narrative describes the efforts associated with developing upper-stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology, X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and several technology development activities. Also discussed are MSFC chemical propulsion research capabilities, along with near- and long-term technology challenges to which MSFC research and system development competencies are relevant.

  16. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  17. NASA. Marshall Space Flight Center Hydrostatic Bearing Activities

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.

    1991-01-01

    The basic approach for analyzing hydrostatic bearing flows at the Marshall Space Flight Center (MSFC) is briefly discussed. The Hydrostatic Bearing Team has responsibility for assessing and evaluating flow codes; evaluating friction, ignition, and galling effects; evaluating wear; and performing tests. The Office of Aerospace and Exploration Technology Turbomachinery Seals Tasks consist of tests and analysis. The MSFC in-house analyses utilize one-dimensional bulk-flow codes. Computational fluid dynamics (CFD) analysis is used to enhance understanding of bearing flow physics or to perform parametric analysis that are outside the bulk flow database. As long as the bulk flow codes are accurate enough for most needs, they will be utilized accordingly and will be supported by CFD analysis on an as-needed basis.

  18. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  19. RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Sanders, Timothy M.

    1990-01-01

    This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.

  20. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  1. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  2. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  3. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  4. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a side view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  5. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; hide

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  6. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    Twelve scientific specialists of the Peenemuende team at the front of Building 4488, Redstone Arsenal, Huntsville, Alabama. They led the Army's space efforts at ABMA before transfer of the team to National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC). (Left to right) Dr. Ernst Stuhlinger, Director, Research Projects Office; Dr. Helmut Hoelzer, Director, Computation Laboratory: Karl L. Heimburg, Director, Test Laboratory; Dr. Ernst Geissler, Director, Aeroballistics Laboratory; Erich W. Neubert, Director, Systems Analysis Reliability Laboratory; Dr. Walter Haeussermarn, Director, Guidance and Control Laboratory; Dr. Wernher von Braun, Director Development Operations Division; William A. Mrazek, Director, Structures and Mechanics Laboratory; Hans Hueter, Director, System Support Equipment Laboratory;Eberhard Rees, Deputy Director, Development Operations Division; Dr. Kurt Debus, Director Missile Firing Laboratory; Hans H. Maus, Director, Fabrication and Assembly Engineering Laboratory

  7. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  8. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  9. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  10. Creating a rocket-building institution - The history of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Wright, Michael D.

    1990-01-01

    This paper will examine the early history of NASA Marshall Space Flight Center to identify major changes in the Center during the period that it was responsible for developing the Saturn family of launch vehicles. The principal conclusion is that the unique change experienced by Marshall during the Saturn era was its shift from an in-house, self-sustaining organization to an institution responsible for managing the Saturn-related performance of a nationwide network of aerospace contractors.

  11. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  12. Marshall Space Flight Center and the Reactor-in-Flight Stage: A Look Back at Using Nuclear Propulsion to Power Space Vehicles in the 1960's

    NASA Technical Reports Server (NTRS)

    Wright, Mike

    2003-01-01

    This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.

  13. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  14. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  15. X-Ray Astronomy Research at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Austin, Robert A.

    1999-01-01

    For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.

  16. Marshall Space Flight Center's Solar Wind Facility

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Whittlesey, P. L.

    2017-01-01

    Historically, NASA's Marshall Space Flight Center (MSFC) has operated a Solar Wind Facility (SWF) to provide long term particle and photon exposure to material samples. The requirements on the particle beam details were not stringent as the cumulative fluence level is the test goal. Motivated by development of the faraday cup instrument on the NASA Solar Probe Plus (SPP) mission, the MSFC SWF has been upgraded to included high fidelity particle beams providing broadbeam ions, broadbeam electrons, and narrow beam protons or ions, which cover a wide dynamic range of solar wind velocity and flux conditions. The large vacuum chamber with integrated cryo-shroud, combined with a 3-axis positioning system, provides an excellent platform for sensor development and qualification. This short paper provides some details of the SWF charged particle beams characteristics in the context of the Solar Probe Plus program requirements. Data will be presented on the flux and energy ranges as well as beam stability.

  17. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-02-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  18. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  19. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  20. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  1. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  2. 2016 Year in Review Video- NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2016-12-22

    The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.

  3. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  4. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  5. Brian Dunlap Tours Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    W. Brain Dunlap (left), high school student from Youngstown, Ohio, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  6. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  7. Thermal Stir Welding Development at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  8. The Process of Science Communications at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  9. NASA Hispanic Heritage Month Employee Profile- Gustavo Martinez - Marshall Space Flight Center

    NASA Image and Video Library

    2016-10-19

    In observance of National Hispanic Heritage Month, Gustavo Martinez, a propulsion engineer at NASA’s Marshall Space Flight Center, is featured in this video profile. Martinez, a first-generation American of Mexican descent, earned his bachelors and masters in mechanical engineering from the University of Texas at El Paso. He works in the Liquid Engine System Branch of Marshall’s Propulsion Systems Department, supporting RS-25 engine systems analysis and test preparations for NASA’s Space Launch System. National Hispanic Heritage Month honors the cultures and contributions of Americans whose ancestors originated from Spain, Mexico, the Caribbean and Central and South America. The observation started in 1968 as Hispanic Heritage Week under President Lyndon Johnson and was expanded into law by President Ronald Reagan in 1988.

  10. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  11. Marshall Space Flight Center Small Business Opportunities

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn

    2007-01-01

    This viewgraph presentation reviews the small business opportunities that are available with the Marshall Space Flight Center. It includes information on all forms of opportunities available and information sources: subcontracting, websites, contacts and a separate section on Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR) Programs

  12. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  13. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  14. A Decade of Friction Stir Welding R and D at NASA's Marshall Space Flight Center and a Glance into the Future

    NASA Technical Reports Server (NTRS)

    Ding, Jeff; Carter, Bob; Lawless, Kirby; Nunes, Arthur; Russell, Carolyn; Suites, Michael; Schneider, Judy

    2006-01-01

    Welding at NASA's Marshall Space Flight Center (MSFC), Huntsville, Alabama, has taken a new direction through the last 10 years. Fusion welding processes, namely variable polarity plasma arc (VPPA) and tungsten inert gas (TIG) were once the corner stone of welding development in the Space Flight Center's welding laboratories, located in the part of MSFC know as National Center for Advanced Manufacturing (NCM). Developed specifically to support the Shuttle Program's External Tank and later International Space Station manufacturing programs, was viewed as the paragon of welding processes for joining aluminum alloys. Much has changed since 1994, however, when NASA's Jeff Ding brought the FSW process to the NASA agency. Although, at that time, FSW was little more than a "lab curiosity", NASA researchers started investigating where the FSW process would best fit NASA manufacturing programs. A laboratory FSW system was procured and the first welds were made in fall of 1995. The small initial investment NASA made into the first FSW system has certainly paid off for the NASA agency in terms of cost savings, hardware quality and notoriety. FSW is now a part of Shuttle External Tank (ET) production and the preferred weld process for the manufacturing of components for the new Crew Launch Vehicle (CLV) and Heavy Lift Launch Vehicle (HLLV) that will take this country back to the moon. It is one of the solid state welding processes being considered for on-orbit space welding and repair, and is of considerable interest for Department of Defense @OD) manufacturing programs. MSFC involvement in these and other programs makes NASA a driving force in this country's development of FSW and other solid state welding technologies. Now, a decade later, almost the entire on-going welding R&D at MSFC now focuses on FSW and other more advanced solid state welding processes.

  15. J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reynolds, D. C.; Hormonzian, Carlo

    2010-01-01

    NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.

  16. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  17. 107 Range Commanders Council Meteorology Group Meeting (RCC-MG): NASA Marshall Space Flight Center Range Report

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2016-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Mission Systems Office (ZP).

  18. Marshall Space Flight Center Research and Technology Report 2016

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)

    2017-01-01

    Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.

  19. Initiating Sustainable Operations at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Orrell, Josh

    2003-01-01

    Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.

  20. The NASA light-emitting diode medical program-progress in space flight and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen

    2000-01-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .

  1. Friction Stir Welding Development at NASA, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Gentz, Steve (Technical Monitor)

    2001-01-01

    Friction stir welding (FSW) is a solid state process that pan be used to join materials without melting. The process was invented by The Welding Institute (TWI), Cambridge, England. Friction stir welding exhibits several advantages over fusion welding in that it produces welds with fewer defects and higher joint efficiency and is capable of joining alloys that are generally considered non-weldable with a fusion weld process. In 1994, NASA-Marshall began collaborating with TWI to transform FSW from a laboratory curiosity to a viable metal joining process suitable for manufacturing hardware. While teamed with TWI, NASA-Marshall began its own FSW research and development effort to investigate possible aerospace applications for the FSW process. The work involved nearly all aspects of FSW development, including process modeling, scale-up issues, applications to advanced materials and development of tooling to use FSW on components of the Space Shuttle with particular emphasis on aluminum tanks. The friction stir welding process involves spinning a pin-tool at an appropriate speed, plunging it into the base metal pieces to be joined, and then translating it along the joint of the work pieces. In aluminum alloys the rotating speed typically ranges from 200 to 400 revolutions per minute and the translation speed is approximately two to five inches per minute. The pin-tool is inserted at a small lead angle from the axis normal to the work piece and requires significant loading along the axis of the tool. An anvil or reaction structure is required behind the welded material to react the load along the axis of the pin tool. The process requires no external heat input, filler material, protective shielding gas or inert atmosphere typical of fusion weld processes. The FSW solid-state weld process has resulted in aluminum welds with significantly higher strengths, higher joint efficiencies and fewer defects than fusion welds used to join similar alloys.

  2. An illustrated chronology of the NASA Marshall Center and MSFC programs 1960-1973

    NASA Technical Reports Server (NTRS)

    Akens, D. S.

    1974-01-01

    The role that NASA's Marshall Space Flight Center played in the space program during the past 13 years is highlighted with pictures and text, plus background information concerning events that were important in the center's formation.

  3. Stress Analysis and Testing at the Marshall Space Flight Center to Study Cause and Corrective Action of Space Shuttle External Tank Stringer Failures

    NASA Technical Reports Server (NTRS)

    Wingate, Robert J.

    2012-01-01

    After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.

  4. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  5. Robotic and automatic welding development at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  6. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.

  7. Walt Disney visited Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  8. Marshall Space Flight Center 1990 annual chronology of events

    NASA Technical Reports Server (NTRS)

    Wright, Michael

    1991-01-01

    A chronological listing is provided of the major events for the Marshall Space Flight Center for the calendar year 1990. The MSFC Historian, Management Operations Office, compiled the chronology from various sources and from supplemental information provided by the major MSFC organizations.

  9. Marshall Space Flight Center 1989 annual chronology of events

    NASA Technical Reports Server (NTRS)

    Wright, Michael

    1990-01-01

    A chronological listing of the major events for the Marshall Space Flight Center for the calendar year 1989 is provided. The MSFC Historian, Management Operations Office, compiled the chronology from various sources and from supplemental information provided by the major MSFC organizations.

  10. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  11. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  12. Marshall Space Flight Center 1960-1985: 25th anniversary report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Marshall Space FLight Center marks its 25th aniversary with a record of notable achievements. These accomplishments are the essence of the Marshall Center's history. Behind the scenes of the space launches and missions, however, lies the story of challenges faced and problems solved. The highlights of that story are presented. The story is organized not as a straight chronology but as three parallel reviews of the major assignments: propulsion systems and launch vehicles, space science research and technology, and manned space systems. The general goals were to reach space, to know and understand the space environment, and to inhabit and utilize space for the benefit of mankind. Also included is a chronology of major events, presented as a fold-out chart for ready reference.

  13. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  14. Around Marshall

    NASA Image and Video Library

    1994-01-25

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  15. Climate Variability and Impact at NASA's Marshal Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smoot, James L.; Jedlovec, Gary; Williams, Brett

    2013-01-01

    Climate analysis for the Southeast U. S. has indicated that inland regions have experienced an average temperature increase of 2F since 1970. This trend is generally characterized by warmer winters with an indication of increased precipitation in the Fall season. Extended periods of limited rainfall in the Spring and Summer periods have had greater areal coverage and, at other times the number of precipitation events has been increasing. Climate model projections for the next 10-70 years indicate warmer temperatures for the Southeast U.S., particularly in the Spring and Summer, with some indication of more extremes in temperature and precipitation as shown in the table below. The realization of these types of regional climate changes in the form of extended heat waves and droughts and their subsequent stress on facilities, infrastructure, and workforce could have substantial impact on the activities and functions of NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This presentation will present the results of an examination of the 100 year temperature and precipitation record for MSFC. Local warming has cause an increase in daily maximum and minimum temperatures by nearly 3F, with a substantial increase in the number of maximum temperatures exceeding 90F and a decrease in the number of days with minimum temperatures below freezing. These trends have substantial impact of the number of heating / cooling degree days for the area. Yearly precipitation totals are inversely correlated with the change in mean temperature and the frequency of heavy rain events has remain consistent with the changes in yearly totals. An extended heat wave index was developed which shows an increase in frequency of heat waves over the last 35 years and a subsequent reduction in precipitation during the heat waves. This trend will contribute to more intense drought conditions over the northern Alabama region, increasing the potential of destructive wildfires in and around

  16. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  17. 108 Range Commanders Council Meteorology Group Meeting (RCC-MG) NASA Marshall Space Flight Center Range Report - April 2017

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2017-01-01

    The following is a summary of the major meteorological/atmospheric projects and research that have been or currently are being accomplished at Marshall Space Flight Center (MSFC). Listed below are highlights of work done during the past 6 months in the Engineering Directorate (ED) and in the Science and Technology Office (ST).

  18. NASA EVEX Experiment Launches from the Marshall Islands

    NASA Image and Video Library

    2017-12-08

    Red and white vapor clouds filled the skies over the Marshall Islands as part of NASA’s Equatorial Vortex Experiment (EVEX). The red cloud was formed by the release of lithium vapor and the white tracer clouds were formed by the release of trimethyl aluminum (TMA). These clouds allowed scientists on the ground from various locations in the Marshall Islands to observe the neutral winds in the ionosphere. Credit: NASA/Jon Grant --- The Equatorial Vortex Experiment (EVEX) was successfully conducted during the early morning hours (eastern time) May 7 from Roi Namur, Republic of the Marshall Islands. A NASA Terrier-Oriole sounding rocket was launched at 3:39 a.m. EDT and was followed by a launch of Terrier-Improved Malemute sounding rocket 90 seconds later. Preliminary indications are that both rockets released their vapor clouds of lithium or trimethyl aluminum, which were observed from various locations in the area, and all science instruments on the rockets worked as planned. More information on EVEX can be found at www.nasa.gov/mission_pages/sounding-rockets/news/evex.html These were the second and third rockets of four planned for launch during this year’s campaign in the Marshall Islands. The first and fourth rockets are supporting the Metal Oxide Space Cloud experiment (MOSC), which is studying radio frequency propagation. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Future Nanotube Commercialization Opportunities at the NASA Marshall Space Flight Center and the US Army Aviation and Missile Command

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Shah, Sandeep; Kaul, Raj; Zhu, Shen; Vandiver, Terry; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Nanotube technology has broad applicability to programs at both the NASA Marshall Space Flight Center (MSFC) and the US Army Aviation and Missile Command (AMCOM). MSFC has interest in applications of nanotubes as sensors and high strength lightweight materials for propulsion system components, avionic systems, and scientific instruments. MSFC is currently pursuing internal programs to develop nanotube temperature sensors, heat pipes, and metal matrix composites. In support of these application areas MSFC is interested in growth of long nanotubes, growth of nanotubes in the microgravity environment, and nanotubes fabricated from high temperature materials such as Boron Nitride or Silicon Carbide. AMCOM is similarly interested in nanotube applications which take advantage of the nanotube thermal conductance properties, high strength, and lightweight. Applications of interest to AMCOM include rocket motor casing structures, rocket nozzles, and lightweight structure and aeronautic skins.

  20. The Marshall Space Flight Center Development of Mirror Modules for the ART-XC Instrument aboard the Spectrum-Roentgen-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V.; Ramsey, B.; ODell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-01-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 sq cm at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  1. The Marshall Space Flight Center development of mirror modules for the ART-XC instrument aboard the Spectrum-Roentgen-Gamma mission

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; McCracken, J.; Pavlinsky, M.; Tkachenko, A.; Lapshov, I.

    2012-09-01

    The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.

  2. Marshall Space Flight Center Black History Month Program

    NASA Image and Video Library

    2018-02-21

    The Black History Month program was presented at Marshall Space Flight Center with guest speaker Lt. General Stayce Harris. General Harris is the Inspector General of the Air Force and she is the first African American female Lieutenant General in the American military. The topic of her presentation was "African Americans in Times of War". The presentation was followed by an ethnic food sampling.

  3. Around Marshall

    NASA Image and Video Library

    1968-04-24

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man’s shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine’s first visit to the center since assuming the NASA post on February 1, 1968.

  4. NASA Marshall Engineering Thermosphere Model. 2.0

    NASA Technical Reports Server (NTRS)

    Owens, J. K.

    2002-01-01

    This Technical Memorandum describes the NASA Marshall Engineering Thermosphere Model-Version 2.0 (MET-V 2.0) and contains an explanation on the use of the computer program along with an example of the MET-V 2.0 model products. The MET-V 2.0 provides an update to the 1988 version of the model. It provides information on the total mass density, temperature, and individual species number densities for any altitude between 90 and 2,500 km as a function of latitude, longitude, time, and solar and geomagnetic activity. A description is given for use of estimated future 13-mo smoothed solar flux and geomagnetic index values as input to the model. Address technical questions on the MET-V 2.0 and associated computer program to Jerry K. Owens, Spaceflight Experiments Group, Marshall Space Flight Center, Huntsville, AL 35812 (256-961-7576; e-mail Jerry.Owens@msfc.nasa.gov).

  5. Vehicle Engineering Development Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; Champion, Robert H., Jr.

    1999-01-01

    New initiatives in the Space Transportation Directorate at the Marshall Space Flight Center include an emphasis on Vehicle Engineering to enhance the strong commitment to the Directorate's projects in the development of flight hardware and flight demonstrators for the advancement of space transportation technology. This emphasis can be seen in the activities of a newly formed organization in the Transportation Directorate, The Vehicle Subsystems Engineering Group. The functions and type of activities that this group works on are described. The current projects of this group are outlined including a brief description of the status and type of work that the group is performing. A summary section is included to describe future activities.

  6. Powered by a laser beam directed at it from a pedestal, a model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    Powered by a laser beam directed at it from a center pedestal, a lightweight model plane makes the first flight of an aircraft powered by laser energy inside a building at NASA's Marshall Space Flight Center.

  7. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  8. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  9. Around Marshall

    NASA Image and Video Library

    2003-01-16

    After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

  10. With a laser beam centered on its panel of photovoltaic cells, a model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall.

    NASA Image and Video Library

    2003-09-18

    With a laser beam centered on its panel of photovoltaic cells, a lightweight model plane makes the first flight of an aircraft powered by a laser beam inside a building at NASA Marshall Space Flight Center.

  11. NASA Marshall Space Flight Center solar observatory report, January to December 1989

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1990-01-01

    A description is provided of the NASA-Marshall's Solar Vector Magnetograph Facility and a summary of its observations and data reduction during January to December 1989 is given. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  12. Overview of Marshall Space Flight Center Activities for the Combustion Stability Tool Development Program

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Greene, W. D.

    2016-01-01

    This presentation covers the overall scope, schedule, and activities associated with the NASA - Marshall Space Flight Center (MSFC) involvement with the Combustion Stability Tool Development (CSTD) program. The CSTD program is funded by the Air Force Space & Missile Systems Center; it is approximately two years in duration and; and it is sponsoring MSFC to: design, fabricate, & execute multi-element hardware testing, support Air Force Research Laboratory (AFRL) single element testing, and execute testing of a small-scale, multi-element combustion chamber. Specific MSFC Engineering Directorate involvement, per CSTD-sponsored task, will be outlined. This presentation serves a primer for the corresponding works that provide details of the technical work performed by individual groups within MSFC.

  13. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.

    1990-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line-of-sight accuracy. In order for these concepts to become operational it is imperative that the benefits of active vibration control be practically demonstrated in ground based experiments. The results of the experiment successfully demonstrate active vibration control for a flexible structure. The testbed is the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  14. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand

  15. The NASA, Marshall Space Flight Center drop tube user's manual

    NASA Technical Reports Server (NTRS)

    Rathz, Thomas J.; Robinson, Michael B.

    1990-01-01

    A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.

  16. 2018_Marshall_DOR

    NASA Image and Video Library

    2018-01-25

    NASA's Marshall Space Flight Center in Huntsville, Alabama payed tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA colleagues, during the agency's Day of Remembrance on Jan. 25. NASA's Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. This year, NASA payed special remembrance to the crew of Columbia on the 15th anniversary of the accident. Remarks were made by Marshall Director Todd May, former astronaut, Rick Burt, Marshall Safety and Mission Assurance Director, and retired Army Brig. Gen. Robert Stewart and other Marshall officials during a candle-lighting observance in the lobby of Building 4200. Deputy Director Jody Singer lit the remembrance candle. POC: Jennifer Stanfield – 256-541-7199

  17. Range Commanders Council Meteorology Group 88th Meeting: NASA Marshall Space Flight Center Task Report, 2004

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2004-01-01

    Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.

  18. Space power system automation approaches at the George C. Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Weeks, D. J.

    1987-01-01

    This paper discusses the automation approaches employed in various electrical power system breadboards at the Marshall Space Flight Center. Of particular interest is the application of knowledge-based systems to fault management and dynamic payload scheduling. A description of each major breadboard and the automation approach taken for each is given.

  19. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  20. Marshall Space Flight Center Black History Month Program

    NASA Image and Video Library

    2018-02-21

    The Black History Month program was presented at Marshall Space Flight Center with guest speaker Lt. General Stayce Harris. General Harris is the Inspector General of the Air Force and she is the first African American female Lieutenant General in the American military. The topic of her presentation was "African Americans in Times of War". The presentation was followed by an ethnic food sampling. General Harris is pictured here with local area Air Force JROTC cadets who attended the program.

  1. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  2. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  3. Orbiter Enterprise at Marshall Space Flight Center for testing

    NASA Image and Video Library

    2002-10-29

    In this view, the Shuttle Orbiter Enterprise is seen heading South on Rideout Road with Marshall Space Flight Center's (MSFC'S) administrative 4200 Complex in the background, as it is being transported to MSFC's building 4755 for later Mated Vertical Ground Vibration tests (MVGVT) at MSFC's Dynamic Test Stand. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  4. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  5. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  6. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  7. Marshall Space Flight Center Engineering Directorate Overview: Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Miley, Steven C.

    2009-01-01

    The Marshall Small Business Association (MSBA) serves as a central point of contact to inform and educate small businesses interested in pursuing contracting and subcontracting opportunities at the Marshall Space Flight Center. The MSBA meets quarterly to provide industry with information about how to do business with Marshall and to share specific information about Marshall s mission, which allows private businesses to envision how they might contribute. For the February 19 meeting, the Engineering Directorate will give an overview of its unique capabilities and how it is organized to provide maximum support for the programs and projects resident at Marshall, for example, the Space Shuttle Propulsion Office, Ares Projects Office, and Science and Mission Systems Office. This briefing provides a top-level summary of the work conducted by Marshall s largest organization, while explaining how resources are deployed to perform the volume of work under Marshall s purview.

  8. General George C. Marshall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Marshall Space Flight Center, a NASA field installation, was established at Huntsville, Alabama, in 1960. The Center was named in honor of General George C. Marshall, the Army Chief of Staff during World War II, Secretary of State, and Nobel Prize Wirner for his world-renowned Marshall Plan.

  9. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  10. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  11. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.

  12. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors. Decatur Mayor Tab Bowling chats with NASA retiree Don Odum

  13. General George C. Marshall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a portrait of General George C. Marshall in Army uniform. The Marshall Space Flight Center, a NASA field installation, was established in Huntsville, Alabama, in 1960. The Center was named in honor of General George C. Marshall, the Army Chief of Staff during World War II, Secretary of State, and Nobel Prize Wirner for his world-renowned Marshall Plan.

  14. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  15. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. OSAC Director Johnny Stephenson talks about Marshall's Mission areas to audience

  16. Environmental control and life support testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  17. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  18. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  19. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts. MSFC Director Todd May and Decatur Mayor Tab Bowling enjoy a light moment.

  20. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors. Decatur Mayor Tab Bowling greets David Brock.

  1. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. City of Hartselle Mayor Randy Garrison welcomes attendees to conference.

  2. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts. MSFC Director Todd May shares opening remarks.

  3. "Launch Your Business with NASA" conference in Decatur, Alabama.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. Decatur Mayor Tab Bowling welcomes attendees.

  4. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.

    1990-01-01

    An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  5. Marshall Space Flight Center's role in EASE/ACCESS mission management

    NASA Technical Reports Server (NTRS)

    Hawkins, Gerald W.

    1987-01-01

    The Marshall Space Flight Center (MSFC) Spacelab Payload Project Office was responsible for the mission management and development of several successful payloads. Two recent space construction experiments, the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS), were combined into a payload managed by the center. The Ease/ACCESS was flown aboard the Space Shuttle Mission 61-B. The EASE/ACCESS experiments were the first structures assembled in space, and the method used to manage this successful effort will be useful for future space construction missions. The MSFC mission management responsibilities for the EASE/ACCESS mission are addressed and how the lessons learned from the mission can be applied to future space construction projects are discussed.

  6. David Brock addresses the "How to Launch Your Business with NASA" forum.

    NASA Image and Video Library

    2017-10-18

    The Morgan County Economic Development Association and the City of Decatur, in Partnership with the NASA/Marshall Space Flight Center (MSFC), hosted a business forum on, How to Launch Your Business with NASA, Wednesday, October 18, 2017, at the Alabama Center for the Arts in downtown Decatur, AL. The event was open to all businesses allowed them to connect with Senior NASA representatives and their prime contractors. The program guided businesses through the process of working with NASA as a supplier, subcontractor, and/or a service provider. The Marshall Space Flight Center’s projected procurement budget in FY 2018 is approximately $2.2 billion and numerous procurement opportunities are available for small business participation each fiscal year. The program included Todd May, Director of Marshall Space Flight Center; Johnny Stephenson, Director of Marshall Space Flight Center’s Office of Strategic Analysis and Communication; David Brock, Small Business Specialist with Marshall Space Flight Center; and Lynn Garrison, Small Business Specialist Technical Advisor with Marshall Space Flight Center. Additionally, there was a prime contractor panel consisting of representatives from five NASA prime contractors. The event included a dedicated networking session with those prime contractors. The “Launch Your Business With NASA” event provides those in attendance the opportunity to network with key Marshall Space Flight Center procurement and technical personnel, and representatives of several major Marshall Space Flight Center prime contractors.Arts.. David Brock, head of Marshall's Small Business Office talks about doing business with Marshall.

  7. The NRC Research Associateship Program has Greatly Enhanced the Solar Research at Marshall Space Flight Center During the Last Quarter Century

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    2003-01-01

    Under the educational Resident Research Associateships (RRA) program, NASA Headquarters funds post-doctoral research scientists through a contract with the National Research Council (NRC). This short article reviews the important influence that the RRAs have had on solar research at NASA s Marshall Space Flight Center (MSFC). Through the RRA program the National Research Council under the National Academy of Sciences has provided the Marshall Space Flight Center s Solar Physics Group with 29 post-doctorial research associateships since 1975. This starting date corresponds with the increased research activity in solar physics at MSFC. A number of MSFC scientists had been working on and supporting NASA s Skylab Mission in operation from May 1973 until February 1974. This scientific effort included the development MSFC s X-ray telescope SO56 and the development of the United States first full-vector magnetograph. Numerous engineers and scientists at MSFC supported the development and operation of the cluster of solar telescopes on the Apollo Telescope Mount (ATM), a principal part of the Skylab orbiting workshop. With the enormous volume of new and exciting solar data of the solar corona, MSFC dedicated a group of scientists to analyze these data and develop new solar instruments and programs. With this new initiative, came the world- renowned solar prominence expert, Dr. Einar Tandberg-Hanssen, from the High Altitude Observatory in Boulder, Colorado and the support of the first two RRAs in support of solar physics research.

  8. Associate Administrator, Robert Lightfoot address the Marshall Association.

    NASA Image and Video Library

    2015-07-28

    NASA ASSOCIATE ADMINISTRATOR ROBERT LIGHTFOOT SHARED HIS PERSONAL REFLECTIONS ON LEADERSHIP WITH MARSHALL ASSOCIATION MEMBERS AND GUESTS DURING A LUNCHEON JULY 28 AT NASA’S MARSHALL SPACE FLIGHT CENTER.

  9. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  10. Crowd-Sourced Radio Science at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  11. Python-Based Scientific Analysis and Visualization of Precipitation Systems at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.

    2015-01-01

    At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a

  12. Around Marshall

    NASA Image and Video Library

    2006-10-19

    On October 19, 2006, former NASA director of Mission Operations Gene Kranz was a keynote speaker at the Marshall Space Flight Center’s (MSFC’s) 2006 Annual Safety Day program. The best selling author of “Failure Is Not An Option” and past Apollo flight director was featured during a morning session called “Coffee and Kranz”. Marshall employees hung on his every word as he told the fascinating story of Apollo 13. Kranz was the acting flight director during the Apollo 13 mission, a mission that seemed doomed to fail due to an onboard explosion. Kranz and his flight control team worked around the clock relentlessly, solving problem after problem, until the crew was returned safely to Earth.

  13. Development of a NEW Vector Magnetograph at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Hagyard, Mona; Gary, Allen; Smith, James; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the Experimental Vector Magnetograph that has been developed at the Marshall Space Flight Center (MSFC). This instrument was designed to improve linear polarization measurements by replacing electro-optic and rotating waveplate modulators with a rotating linear analyzer. Our paper will describe the motivation for developing this magnetograph, compare this instrument with traditional magnetograph designs, and present a comparison of the data acquired by this instrument and original MSFC vector magnetograph.

  14. The Marshall Center: Its place in NASA

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The organizational structure and facilities available at the Marshall Space Flight Center are described and the role of the Center in NASA program management is demonstrated in a review of the Center's past history and current development projects. Particular attention is given to space shuttle and the space transportation system; the preparation of experiments and management of Spacelab missions; and the development of the space telescope. Energy related activities discussed include the automatic guidance and control of the longwall shearing machine for coal extraction, systems for the solar heating and cooling of buildings, and the design of the solar power satellite. Products developed by Center personnel highlighted include the power factor controller to reduce electrical consumption by motors and the image enhancement process being used to restore early historical photographs. A free flying solar power source to increase mission duration of the orbiter and its payloads; techniques for the orbital assembly of large space structures; facilities for materials processing in space; the orbit transfer vehicle, solar electric propulsion systems; and the preparation of science and applications payloads are also described.

  15. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards

  16. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  17. Senator Barbara Mikulski visits NASA Goddard Space Flight Center.

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: http://www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mikulski-visits-nasa-goddard Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram   N

  18. Large space structures controls research and development at Marshall Space Flight Center: Status and future plans

    NASA Technical Reports Server (NTRS)

    Buchanan, H. J.

    1983-01-01

    Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.

  19. Rocket Science in 60 Seconds: Insulating NASA's New Deep-space Rocket

    NASA Image and Video Library

    2018-02-09

    Rocket Science in 60 Seconds gives you an inside look at work being done at NASA to explore deep space like never before. In the first episode, we take a look at the thermal protection application on the launch vehicle stage adapter for the first flight of NASA's new rocket, the Space Launch System. Engineer Amy Buck takes us behind the scenes at Marshall Space Flight Center in Huntsville, Alabama, for a peek at how she is helping build the rocket and protect it as extreme hot and cold collide during launch! For more information about SLS and the OSA, visit nasa.gov/sls.

  20. Environmental statement for the George C. Marshall Space Flight Center and Mississippi Test Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environmental impact was investigated for the George C. Marshall Space Flight Center, and the Mississippi Test Facility. The installations are described, and the missions, environmental impact, and commitment of resources are discussed. It is concluded that there are negligible adverse environmental effects related to these two installations.

  1. Marshall (MSFC) 3D Printing Media Resource

    NASA Image and Video Library

    2018-06-12

    Edited b-roll video from NASA’s Marshall Space Flight Center in Huntsville, Ala. Engineers at Marshall are pioneering and advancing new additive manufacturing techniques that can greatly reduce costs and development of rocket engines and other spacecraft components. Marshall teams also managed the development of the International Space Station’s first 3D printer. For more information and/or more detailed footage please contact the Marshall Office of Communications. PAO: Jennifer Stanfield, 256-544-0034, Jennifer.stanfield@nasa.gov

  2. Assessment of MSFC's supervisory training programs and courses. [marshall space flight center

    NASA Technical Reports Server (NTRS)

    Brindley, T. A.

    1982-01-01

    Courses and special programs to train supervisors at Marshall Space Flight Center (MSFC) were to determine the adequacy of the present MSFC Supervisory Training Program and to recommend changes, if appropriate. The content, procedures, and student evaluations of the required Office of Personnel Management (OPM) 80 hours training for supervisors, the optional 120 hours, the MSFC Management Development Program (MDP), NASA's Management Education Program (MEP), various OPM and special contract programs, pertinent procedural guidelines, regulations, and letters, as well as various MSFC computer reports which indicate who took what training were analyzed. Various interviews with MSFC personnel involved in training are included. Recommendations consist of: (1) the choice of courses selected for the basic required OPM 80 hours be improved; (2) the optional 120 hours be discontinued and a shorter module be developed dealing with managerial decision making and human relations skills; (3) the MDP and MEP be continued as at present; and (4) that a broad array of developmental strategies be incorporated to provide a variety of opportunities for supervisory improvement.

  3. The George C. Marshall Space Flight Center's 14 X 14-Inch Trisonic Wind Tunnel: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Springer, A.

    1994-01-01

    A history of the National Aeronautics and Space Administration (NASA) George C. Marshall Space Flight Center's (MSFC) 14 x 14-Inch Trisonic Wind Tunnel is presented. Its early and continuing role in the United States space program is shown through highlights of the tunnel's history and the major programs tested in the tunnel over the past 40 years. The 14-Inch Tunnel has its beginning with the Army in the late 1950's under the Army Ballistic Missile Agency (ABMA). Such programs as the Redstone, Jupiter, Pershing, and early Saturn were tested in the 14-Inch Tunnel in the late 1950's. America's first launch vehicle, the Jupiter C, was designed and developed using the 14-Inch Wind Tunnel. Under NASA, the 14-Inch Wind Tunnel has made large contributions to the Saturn, Space Transportation System, and future launch vehicle programs such as Shuttle-C and the National Launch System. A technical description of the tunnel is presented for background information on the type and capabilities of the 14-Inch Wind Tunnel. The report concludes in stating: the 14-Inch Wind Tunnel as in speed of sound; transonic, at or near the speed of sound the past, will continue to play a large but unseen role in he development of America's space program.

  4. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  5. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  6. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  7. The George C. Marshall Space Flight Center High Reynolds Number Wind Tunnel Technical Handbook

    NASA Technical Reports Server (NTRS)

    Gwin, H. S.

    1975-01-01

    The High Reynolds Number Wind Tunnel at the George C. Marshall Space Flight Center is described. The following items are presented to illustrate the operation and capabilities of the facility: facility descriptions and specifications, operational and performance characteristics, model design criteria, instrumentation and data recording equipment, data processing and presentation, and preliminary test information required.

  8. SLS Engine Section Test Article Arrives at Marshall on NASA Barge Pegasus

    NASA Image and Video Library

    2017-05-16

    The NASA barge Pegasus made it’s first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article will be moved to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  9. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    NASA and its commercial industry team achieved significant progress in 2016 in manufacturing and testing of the Block 1 vehicle for the first launch of the Space Launch System (SLS). Test and flight article hardware for the liquid hydrogen fuel tank as well as the engine section for the core stage were completed at Michoud Assembly Facility (MAF) in New Orleans. Test stands neared completion at Marshall Space Flight Center for the propellant tanks, engine section, intertank and payload section. Stennis Space Center completed major structural renovations on the B2 test stand, where the core stage "green run" test program will be conducted. The SLS team completed a hotfire test series at Stennis to successfully demonstrate the ability of the RS-25 engine to operate under SLS environments and performance conditions. The team also test fired the second qualification five-segment solid rocket motor and cast the first six motor segments for the first SLS mission. The Interim Cryogenic Propulsion Stage (ICPS) test article was delivered to Marshall for structural tests, and work is nearly finished on the flight stage. Flight software testing completed at Marshall included power quality and command and data handling. In 2017, that work continues. SLS completed Preliminary Design Review (PDR) on the Exploration Upper Stage (EUS), a powerful, human-rated spacecraft that will propel explorers to cis-lunar space. In 2017, hardware will continue to be integrated at MAF for core stage structural test articles and the first two operational flights. RS-25 hotfire testing will continue to explore engine performance, as well as test flight-like software and four new Engine Controller Units (ECUs) for the first mission. Production of development components for a more affordable RS-25 design is underway. Core stage structural test articles have begun arriving at Marshall. While engineering challenges typical of a new development are possible, SLS is working toward launch readiness in

  10. The Quest for Engineering Innovation at NASA's Marshall Space Flight (MSFC)

    NASA Technical Reports Server (NTRS)

    Turner, James E.

    2017-01-01

    A recent NASA team, chartered to examine innovation within the Agency, captured the meaning of the word innovation as the "application of creative ideas to improve and generate value for the organization". The former NASA Administrator Charles Bolden shared his own thoughts about innovation in a memo with all employees that stated, "At NASA, we are dedicated to innovation, bold ideas, and excellence." Innovation turns out to be one of the major driving forces behind the work produced at NASA. It seems failure is often what has driven NASA to be more innovative. Fifty years ago, the Apollo 1 tragedy killed three astronauts when fire erupted in their command module. NASA had to bear the responsibility of such loss and at the same time work smarter in order to obtain the dream to reach the moon by the end of the 1960s. Through this circumstance, NASA engineers developed a revolutionary replacement for the combustible nylon astronaut suits so the Apollo program could continue. A material called Beta Cloth was born. This material was used to produce noncombustible space suits for all Apollo astronauts, enabling the United States to ultimately land 12 Americans on the moon. Eventually this material was used as the roof system in the Denver International Airport, showing relevance and applications of NASA innovations to real-world need. Innovative ideas are also driven by the need to accomplish NASA missions and to improve the way we produce our products. MSFC engineers are advancing technologies in additive manufacturing of liquid rocket engines in order to reduce the number of parts, design time, and the cost of the engines. NASA is working with academia to eliminate the need for miles of sensor cables by investigating innovations in wireless sensors. In order to enable future exploration missions to Mars, MSFC engineers are pursuing innovative approaches in diverse areas such as the use of ionic liquids for life support systems and composite cryogenic tanks, very low

  11. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  12. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  13. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  14. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  15. Around Marshall

    NASA Image and Video Library

    1970-01-01

    Dr. Eberhard Rees served as director of the Marshall Space Flight Center from March 1, 1970 until January 19, 1973 when he retired from NASA. Prior to his appointment as Director, Rees served as the Center's deputy director under Dr. Wernher von Braun, 1960-1970. Rees came to the United States as part of the Dr. Wernher von Braun's German Rocket team following World War II. He transferred to Huntsville, Alabama from Fort Bliss, Texas in 1950 to work for the Army's rocket program at Redstone Arsenal. From 1956 to 1960 he served as deputy director of development operations at the Army Ballistic Missile Agency under von Braun. In 1960 Rees was transferred to NASA's Marshall Center.

  16. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  17. EUV Solar Instrument Development at the Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Cirtain, J. W.; Davis, J. M.; West, E.; Golub, L.; Korreck, K. E.; Tsuneta, S.; Bando, T.

    2009-12-01

    The three sounding rocket instrument programs currently underway at the NASA Marshall Space Flight Center represent major advances in solar observations, made possible by improvements in EUV optics and detector technology. The Solar Ultraviolet Magnetograph Instrument (SUMI) is an EUV spectropolarimeter designed to measure the Zeeman splitting of two chromospheric EUV lines, the 280 nm MgII and 155 nm CIV lines. SUMI directly observes the magnetic field in the low-beta region where most energetic phenomena are though to originate. In conjunction with visible-light magnetographs, this observation allows us to track the evolution of the magnetic field as it evolves from the photosphere to the upper chromosphere. SUMI incorporates a normal incidence Cassegrain telescope, a MgF2 double-Wollaston polarizing beam splitter and two TVLS (toroidal varied line space) gratings, and is capable of observing two orthogonal polarizations in two wavelength bands simultaneously. SUMI has been fully assembled and tested, and currently scheduled for launch in summer of 2010. The High-resolution Coronal Imager is a normal-incidence EUV imaging telescope designed to achieve 0.2 arcsecond resolution, with a pixel size of 0.1 arcsecond. This is a factor of 25 improvement in aerial resolution over the Transition Region And Coronal Explorer (TRACE). Images obtained by TRACE indicate presence of unresolved structures; higher resolution images will reveal the scale and topology of structures that make up the corona. The telescope mirrors are currently being fabricated, and the instrument has been funded for flight. In addition, a Lyman alpha spectropolarimeter is under development in collaboration with the National Astronomical Observatory of Japan. This aims to detect the linear polarization in the chromosphere caused by the Hanle effect. Horizontal magnetic fields in the chromosphere are expected to be detectable as polarization near disk center, and off-limb observations will reveal the

  18. New Marshall Center Test Stand 4697 Construction Time-Lapse

    NASA Image and Video Library

    2016-09-27

    In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)

  19. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  20. In-situ Thermal Treatment of Trichloroethene at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Cole, Jason; McElroy, William J.; Glasgow, Jason; Heron, Gorm; Galligan, Jim; Parker, Ken; Davis, E. F.

    2008-01-01

    This viewgraph presentation describes the in-situ thermal treatment of trichloroethene at Marshall space Flight Center. The contents include: 1) Background 1 and 2; 2) Source Area-13; 3) In-situ Thermal Treatment; 4) SA-13 Lithology; 5) SA-13 In-Situ Thermal TS; 6) SA-13 ISTD System Components; 7) ISTD Overview; 8) Heaters; 9) SA-13 ISTD Wellfield Layout; 10) SA-13 Well Field; 11) ISTD Process and Instrumentation; 12) Treatment Zone Temperature; 13) SA-13 System Removals; 14) SA-13 DNAPL (typical photos); 15) Treatment Results 1-5; and 16) SA-13 TCE Removal Summary.

  1. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  2. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected

  3. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  4. Around Marshall

    NASA Image and Video Library

    1999-07-17

    Outside of Building 4200 at Marshall Space Flight Center, a courtyard was constructed in memory of Dr. Wernher von Braun and his contributions to the U. S. Space program. In the middle of the courtyard a fountain was built. The fountain was made operational prior to the 30th arniversary celebration of the Apollo 11 lunar landing. Attending the dedication ceremony were visiting Apollo astronauts and NASA's Safety and Assurance Director Rothenberg.

  5. Green Monopropellant Status at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pierce, Charles W.; Pedersen, Kevin W.

    2016-01-01

    NASA Marshall Space Flight Center is continuing investigations into the use of green monopropellants as a replacement for hydrazine in spacecraft propulsion systems. Work to date has been to push technology development through multiple activities designed to understand the capabilities of these technologies. Future work will begin to transition to mission pull as these technologies are mature while still keeping a solid goal of pushing technology development as opportunities become available. The AF-M315E activities began with hot-fire demonstration testing of a 1N monopropellant thruster in FY 14 and FY15. Following successful completion of the preliminary campaign, changes to the test stand to accommodate propellant conditioning capability and better control of propellant operations was incorporated to make testing more streamlined. The goal is to conduct hot-fire testing with warm and cold propellants using the existing feed system and original thruster design. Following the 1N testing, a NASA owned 100 mN thruster will be hot-fire tested in the same facility to show feasibility of scaling to smaller thrusters for cubesat applications. The end goal is to conduct a hot-fire test of an integrated cubesat propulsion system using an SLM printed propellant tank, an MSFC designed propulsion system electronic controller and the 100 mN thruster. In addition to the AF-M315E testing, MSFC is pursuing hot-fire testing with LMP-103S. Following our successful hot-fire testing of the 22N thruster in April 2015, a test campaign was proposed for a 440N LMP-103S thruster with Orbital ATK and Plasma Processes. This activity was funded through the Space Technology Mission Directorate (STMD) ACO funding call in the last quarter of CY15. Under the same funding source a test activity with Busek and Glenn Research Center for testing of 5N AF-M315E thrusters was proposed and awarded. Both activities are in-work with expected completion of hot-fire testing by the end of FY17. MSFC is

  6. Using the World Wide Web for GIDEP Problem Data Processing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    McPherson, John W.; Haraway, Sandra W.; Whirley, J. Don

    1999-01-01

    Since April 1997, Marshall Space Flight Center has been using electronic transfer and the web to support our processing of the Government-Industry Data Exchange Program (GIDEP) and NASA ALERT information. Specific aspects include: (1) Extraction of ASCII text information from GIDEP for loading into Word documents for e-mail to ALERT actionees; (2) Downloading of GIDEP form image formats in Adobe Acrobat (.pdf) for internal storage display on the MSFC ALERT web page; (3) Linkage of stored GRDEP problem forms with summary information for access from the MSFC ALERT Distribution Summary Chart or from an html table of released MSFC ALERTs (4) Archival of historic ALERTs for reference by GIDEP ID, MSFC ID, or MSFC release date; (5) On-line tracking of ALERT response status using a Microsoft Access database and the web (6) On-line response to ALERTs from MSFC actionees through interactive web forms. The technique, benefits, effort, coordination, and lessons learned for each aspect are covered herein.

  7. Around Marshall

    NASA Image and Video Library

    2002-06-01

    This photograph shows Justin Varnadore, son of a Marshall TV employee, at the controls of one of the many displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a "real" Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  8. Marshall Space Flight Center Autumn 2005

    NASA Technical Reports Server (NTRS)

    Allen, Mike; Clar, Harry E.

    2006-01-01

    The East Test Area at Marshall Space Flight Center has five major test stands, each of which has two or more test positions, not counting the SSME and RD-180 engine test facilities in the West Test Area. These research and development facilities are capable of testing high pressure pumps, both fuel and oxidizer, injectors, chambers and sea-level engine assemblies, as well as simulating deep space environments in the 12, 15 and 20 foot vacuum chambers. Liquid propellant capabilities are high pressure hydrogen (liquid and gas), methane (liquid and gas), and RP-1 and high pressure LOX. Solid propellant capability includes thrust measurement and firing capability up to 1/6 scale Shuttle SRB segment. In the past six months MSFC supported multiple space access and exploration programs in the previous six months. Major programs were Space Exploration, Shuttle External Tank research, Reusable Solid Rocket Motor (RSRM) development, as well as research programs for NASA and other customers. At Test Stand 115 monopropellant ignition testing was conducted on one position. At the second position multiple ignition/variable burn time cycles were conducted on Vacuum Plasma Spatter (VPS) coated injectors. Each injector received fifty cycles; the propellants were LOX Hydrogen and the ignition source was TEA. Following completion of the monopropellant test series the stand was reconfigured to support ignition testing on a LOX Methane injector system. At TS 116 a thrust stand used to test Booster Separation Motors from the Shuttle SRB system was disassembled and moved from Chemical Systems Division s Coyote Canyon plant to MSFC. The stand was reassembled and readied for BSM testing. Also, a series of tests was run on a Pratt & Whitney Rocketdyne Low Element Density (LED) injector engine. The propellants for this engine are LOX and LH2. At TS 300 the 20 foot vacuum chamber was configured to support hydrogen testing in the Multipurpose Hydrogen Test Bed (MHTB) test article. This testing

  9. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  10. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  11. May 20, 2016 Administrator Bolden Press Conference at Marshall

    NASA Image and Video Library

    2016-05-20

    NASA Administrator Charles Bolden presented the Small Business Administrator's Cup -- awarded for managing the agency's most effective small business program -- to NASA's Marshall Space Flight Center in Huntsville, Ala. It is the fifth time in eight years Marshall has earned the prize, which honors innovative practices that promote small business participation in a variety of NASA initiatives, and recognizes the winning center's significant contributions to the agency's small business programs. The award is sponsored annually by NASA's Office of Small Business Programs. Following the award ceremony, Bolden met with the media.

  12. Around Marshall

    NASA Image and Video Library

    2003-12-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  13. NASA Acting Administrator Robert Lightfoot presents the 2018 "St

    NASA Image and Video Library

    2018-02-12

    Marshall Space Flight Center Director Todd May introduces NASA Acting Adminstrator Robert Lightfoot prior to his delivery of the "State of NASA", February 12, 2018, at the Marshall Space Flight Center in Huntsville, Alabama. In his address, Lightfoot discussed what the President's Fiscal Year 2019 budget request means for America's space agency. According to Lightfoot, it "reflects the administration's confidence that America will lead the way back to the Moon and take the next giant leap". Lightfoot delivered the "State of NASA" address in Marshall's Center for Advanced Manufacturing where engineers are pushing boundaries in the fields of additive manufacturing, 3D printing, and more. Hardware for NASA's Space Launch System and a model of the agency's Orion spacecraft served as a backdrop for the annual event. SLS, which is managed by Marshall, will enable a new era of exploration beyond Earth's orbit by launching astronauts on missions to deep-space destinations including the Moon and Mars.

  14. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  15. The Marshall Space Flight Center KC-135 zero gravity test program for FY 1982

    NASA Technical Reports Server (NTRS)

    Shurney, R. E. (Editor)

    1983-01-01

    During FY-82, researchers and experimenters from Marshall Space Flight Center (MSFC) conducted 11 separate investigations during 26.3 hr of testing aboard the KC-135 zero-gravity aircraft, based at Ellington Air force Base, Texas. Although this represented fewer hours than initially projected, all experiment and test objectives were met or exceeded. This Technical Memorandum compiles all results achieved by MSFC users during FY-82, a year considered to be highly productive.

  16. An Overview of In-Stu Treatability Studies at Marshall Space Flight Center, Huntsville, Alabama

    NASA Technical Reports Server (NTRS)

    McElroy, Bill; Keith, Amy; Glasgow, J. K.; Dasappa, Srini; McCaleb, Rebecca (Technical Monitor)

    2001-01-01

    Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama (north-central Alabama), on approximately 1,840 acres near the center of the U.S. Army's Redstone Arsenal (RSA). MSFC is the National Aeronautics and Space Administration's (NASA's) principal propulsion development center. Its scientists, engineers, and support personnel play a major role in the National Space Transportation System by managing space shuttle mission activities, including the microgravity laboratory. In addition, MSFC will be a significant contributor to several of NASA's future programs, including the Reusable Launch Vehicle (X-33), International Space Station, and Advanced X-ray Astrophysics Facility, as well as research on a variety of space science applications. MSFC has been used to develop, test and manufacture space vehicles and components since 1960, when civilian rocketry and missile activities were transferred from RSA to MSFC. In 1994, MSFC was placed on the National Priority List for the management of hazardous waste sites, under the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). One requirement of the CERCLA program is to evaluate the nature and extent of environmental contamination resulting from identified CERCLA sites, assess the public health and environmental risks associated with the identified contamination, and identify potential remedial actions. A CERCLA remedial investigation (RI) for the groundwater system has identified at least five major plumes of chlorinated volatile organic compounds (CVOCs) in the groundwater beneath the facility. These plumes are believed to be the result of former management practices at 14 main facility locations (termed "source areas") where CVOCs were released to the subsurface. Trichloroethene (TCE) is the predominant CVOC and is common to all the plumes. Perchloroethene (PCE) also exists in two of the plumes. In addition to TCE and PCE, carbon tetrachloride and 1

  17. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  18. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  19. The NASA Human Space Flight Supply Chain, Current and Future

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  20. JWST Flight Mirrors

    NASA Image and Video Library

    2011-05-25

    Project scientist Mark Clampin is reflected in the flight mirrors of the Webb Space Telescope at Marshall Space Flight Center. Portions of the Webb telescope are being built at NASA Goddard. Credit: Ball Aerospace/NASA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  1. Around Marshall

    NASA Image and Video Library

    1999-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in joint ground activities during the SL-J mission are NASA/NASDA personnel at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  2. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).

  3. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe

  4. Around Marshall

    NASA Image and Video Library

    1999-09-30

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  5. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) of Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  6. Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

    NASA Image and Video Library

    2017-08-31

    Expedition 49/50 Astronaut Shane Kimbrough briefs the press on his extended mission to the International Space Station in the Marshall Space Flight Center Payload Operations Integration Center (POIC).

  7. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  8. Around Marshall

    NASA Image and Video Library

    1998-09-01

    Mr. Arthur G. Stephenson has been serving as the ninth Director of NASA's Marshall Space Flight Center since his appointment on September 11, 1998. Prior to his appointment, Mr. Stephenson worked for TRW, Redondo Beach, California, for 28 years and was president of Oceaneering Advanced Technologies in Houston, Texas, at the time of his appointment. Mr. Stephenson has over 30 years of experience as a manager in spacecraft and high-technology systems.

  9. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Isolate of long-term growth human mammary epithelial cells (HMEC) from outgrowth of duct element; cells shown soon after isolation and early in culture in a dish. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).

  10. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  11. Around Marshall

    NASA Image and Video Library

    2004-02-01

    Andy Jenkins, an engineer for the Lab on a Chip Applications Development program, helped build the Applications Development Unit (ADU-25), a one-of-a-kind facility for controlling and analyzing processes on chips with extreme accuracy. Pressure is used to cause fluids to travel through network of fluid pathways, or micro-channels, embossed on the chips through a process similar to the one used to print circuits on computer chips. To make customized chips for various applications, NASA has an agreement with the U.S. Army's Micro devices and Micro fabrication Laboratory at Redstone Arsenal in Huntsville, Alabama, where NASA's Marshall Space Flight Center (MSFC) is located. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for many applications, such as studying how fluidic systems work in spacecraft and identifying microbes in self-contained life support systems. Chips could even be designed for use on Earth, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  12. Around Marshall

    NASA Image and Video Library

    2003-04-09

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  13. Around Marshall

    NASA Image and Video Library

    1996-06-20

    Launched on June 20, 1996, the STS-78 mission’s primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. In this photo, LMS mission scientist Patton Downey and LMS mission manager Mark Boudreaux display the flag that was flown for the mission at MSFC.

  14. Marshall Space Flight Center Technology Investments Overview

    NASA Technical Reports Server (NTRS)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  15. NASA light emitting diode medical applications from deep space to deep sea

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James

    2001-02-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .

  16. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  17. Around Marshall

    NASA Image and Video Library

    1964-04-28

    Two US Congressmen, accompanied by NASA Administrator James E. Webb, visited the Marshall Space Flight Center (MSFC) April 28, 1964, for a briefing on the Saturn program and a tour of the facilities. They are (left to right) Congressman Gerald Ford Jr., Republican representative of Michigan; Dr. Wernher von Braun, MSFC director; Congressman George H. Mahon, Democratic representative of Texas; and Mr. Webb. Not pictured is Dr. Robert Seamans, associate administrator, who was also in the group.

  18. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission

  19. Nozzle Side Load Testing and Analysis at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.; Brown, Andrew M.

    2009-01-01

    Realistic estimates of nozzle side loads, the off-axis forces that develop during engine start and shutdown, are important in the design cycle of a rocket engine. The estimated magnitude of the nozzle side loads has a large impact on the design of the nozzle shell and the engine s thrust vector control system. In 2004 Marshall Space Flight Center (MSFC) began developing a capability to quantify the relative magnitude of side loads caused by different types of nozzle contours. The MSFC Nozzle Test Facility was modified to measure nozzle side loads during simulated nozzle start. Side load results from cold flow tests on two nozzle test articles, one with a truncated ideal contour and one with a parabolic contour are provided. The experimental approach, nozzle contour designs and wall static pressures are also discussed

  20. Aerial View: SLS Intertank Arrives at Marshall for Critical Structural Testing

    NASA Image and Video Library

    2018-03-08

    A structural test version of the intertank for NASA's new deep-space rocket, the Space Launch System, arrives at NASA’s Marshall Space Flight Center in Huntsville, Alabama, March 4, aboard the barge Pegasus. The intertank is the second piece of structural hardware for the massive SLS core stage built at NASA's Michoud Assembly Facility in New Orleans delivered to Marshall for testing. The structural test article will undergo critical testing as engineers push, pull and bend the hardware with millions of pounds of force to ensure it can withstand the forces of launch and ascent. The test hardware is structurally identical to the flight version of the intertank that will connect the core stage's two colossal propellant tanks, serve as the upper-connection point for the two solid rocket boosters and house critical avionics and electronics. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the flight core stage from Michoud to other NASA centers for tests and launch.

  1. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneously die during early cell divisions, but a few will establish long-term growth. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).

  2. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  3. Around Marshall

    NASA Image and Video Library

    2001-01-01

    This photograph shows the Starship 2040 leaving the Marshall Space Flight Center (MSFC) for the exhibit site. Developed by the Space Transportation Directorate at MSFC, the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit, automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids and emergency and safety systems, are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a "real" Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  4. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  5. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Pictured along with George Norris in the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC) are NASDA alternate payload specialists Dr. Doi and Dr. Mukai.

  6. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  7. Around Marshall

    NASA Image and Video Library

    1999-07-17

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, NASA Administrator Dan Goldin, and director of the U. S. Space and Rocket Center Mike Wing during the dedication ceremony.

  8. Around Marshall

    NASA Image and Video Library

    1999-07-17

    A replica of the Saturn V rocket that propelled man from the confines of Earth's gravity to the surface of the Moon was built on the grounds of the U. S. Space and Rocket Center in Huntsville, AL. in time for the 30th arniversary celebration of that historic occasion. Marshall Space Flight Center and its team of German rocket scientists headed by Dr. Wernher von Braun were responsible for the design and development of the Saturn V rocket. Pictured are MSFC's current Center Director Art Stephenson, Alabama Congressman Bud Cramer, and NASA Administrator Dan Goldin during the dedication ceremony.

  9. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    NASA Technical Reports Server (NTRS)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  10. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Same long-term growth human mammary epithelial cells (HMEC), but after 3 weeks in concinuous culture. Note attempts to reform duct elements, but this time in two dimensions in a dish rather that in three demensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).

  11. Ride With Astronauts In Flyby Salute to Marshall Center Test Stand Construction Teams

    NASA Image and Video Library

    2016-09-27

    NASA astronaut Don Pettit captured this video from the cockpit with Victor Glover as they and fellow astronauts Barry "Butch” Wilmore and Stephanie Wilson banked low over Marshall Space Flight Center at Huntsville, Alabama, saluting to teams finishing construction of Test Stand 4697. In the short video edited by Pettit, viewers fly along from the astronauts' takeoff in two NASA T-38 jets from Ellington Field Joint Reserve Base in Houston to their landing at Huntsville International Airport for meetings at Marshall. (NASA/Don Pettit)

  12. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will

  13. HUT Data Inspected at Marshall Space Flight Center During the STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of viewing HUT data in the Mission Manager Actions Room during the mission.

  14. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  15. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  16. 77 FR 67029 - NASA Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-094)] NASA Advisory Council Meeting... Administration announces a meeting of the NASA Advisory Council. DATES: Wednesday, November 28, 2012, from 1:00... 9:00 a.m. to 11:30 a.m. Note: All times listed are local time. ADDRESSES: NASA Marshall Space Flight...

  17. Around Marshall

    NASA Image and Video Library

    2002-06-01

    This photograph shows onlookers viewing displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a "real" Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  18. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun meets with Congressmen in the MSFC boardroom. Pictured from left to right are: Jack Cramer, NASA Headquarters; Joe Waggoner, Democratic representative of Louisiana; John W. Davis, Democratic representative of Georgia; R. Walter Riehlman, Republican representative of New York; Olin E. Teague, Democratic representative of Texas; Dr. Wernher von Braun, Director of MSFC; James G. Fulton, Republican representative of Pennsylvania; Ken Hechler, Democratic representative of West Virginia; and Erich Neubert of MSFC.

  19. Stephanie Shelton, a payload communications manager at NASA's Ma

    NASA Image and Video Library

    2018-04-19

    Stephanie Shelton, a payload communications manager at NASA's Marshall Space Flight Center, joins NASA astronauts Joe Acaba and Mark Vande Hei for a call to the onboard crew of the International Space Station. Vande Hei and Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team..

  20. NASA's Space Environments and Effects (SEE) Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody

    2001-01-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, adhesives and other data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on a spacecraft, its sub-systems, materials and instruments. In partnership with industry, academia, and other US and international government agencies, the National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program (agency-wide in scope but managed at the Marshall Space Flight Center) provides a very comprehensive and focused approach to understanding the space environment. It does this by defining the best techniques for both flight- and groundbased experimentation, updating models which predict both the environments and the environmental effects on spacecraft and ensuring that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and discuss several current technology development activities associated with the spacecraft charging phenomenon.

  1. Advanced Fiber-optic Monitoring System for Space-flight Applications

    NASA Technical Reports Server (NTRS)

    Hull, M. S.; VanTassell, R. L.; Pennington, C. D.; Roman, M.

    2005-01-01

    Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration s Marshall Space Flight Center (NASA MSFC) have developed an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies with atomic force microscopy (AFM) and long-period grating (LPG) technology to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.

  3. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-23

    The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  4. First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    First flight at NASA's Dryden Flight Research Center for the X-40A was a 74 second glide from 15,000 feet on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  5. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  6. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  7. Around Marshall

    NASA Image and Video Library

    1992-09-12

    The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).

  8. Recent Results of NASA's Space Environments and Effects Program

    NASA Technical Reports Server (NTRS)

    Minor, Jody L.; Brewer, Dana S.

    1998-01-01

    The Space Environments and Effects (SEE) Program is a multi-center multi-agency program managed by the NASA Marshall Space Flight Center. The program evolved from the Long Duration Exposure Facility (LDEF), analysis of LDEF data, and recognition of the importance of the environments and environmental effects on future space missions. It is a very comprehensive and focused approach to understanding the space environments, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. Formal funding of the SEE Program began initially in FY95. A NASA Research Announcement (NRA) solicited research proposals in the following categories: 1) Engineering environment definitions; 2) Environments and effects design guidelines; 3) Environments and effects assessment models and databases; and, 4) Flight/ground simulation/technology assessment data. This solicitation resulted in funding for eighteen technology development activities (TDA's). This paper will present and describe technical results rom the first set of TDA's of the SEE Program. It will also describe the second set of technology development activities which are expected to begin in January 1998. These new technology development activities will enable the SEE Program to start numerous new development activities in support of mission customer needs.

  9. 77 FR 67028 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-092] NASA Advisory Council; Information... Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday, November 27, 2012, 1:00 to 5:00 p.m., Local Time. ADDRESSES: NASA Marshall Space Flight Center, Building 4200, Room...

  10. Marshall Space Flight Center Research and Technology Report 2015

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  11. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  12. Video File - NASA on a Roll Testing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.

  13. Around Marshall

    NASA Image and Video Library

    1998-04-06

    Portrait of Marshall's third Center Director Dr. Rocco A. Petrone (1973-1974) standing in front of a Saturn V rocket. Dr. Petrone personally supervised the Apollo 11 Mission and then became Director of the Apollo program in 1969 before coming to Marshall. At Marshall he continued to direct the marned space flight programs.

  14. Thermal performance evaluation of the Northrop model NSC-01-0732 concentrating solar collector array at outdoor conditions. [Marshall Space Flight Center solar house test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The thermal efficiency of the concentrating, tracking solar collector was tested after ten months of operation at the Marshall Space Flight Center solar house. The test procedures and results are presented.

  15. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-25

    Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  16. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  18. LUVOIR and HabEx mission concepts enabled by NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC Advanced Concept Office

    2016-01-01

    NASA Marshall Space Flight Center has developed candidate concepts for the 'decadal' LUVOIR and HabEx missions. ATLAST-12 is a 12.7 meter diameter on-axis telescope designed to meet the science objectives of the AURA Cosmic Earth to Living Earth report. HabEx-4 is a 4.0 meter diameter off-axis telescope designed to both search for habitable planets and perform general astrophysics observations. These mission concepts take advantage of the payload mass and volume capacity enabled by NASA Space Launch System to make the design architectures as simple as possible. Simplicity is important because complexity is a significant contributor to mission risk and cost. This poster summarizes the two mission concepts.

  19. Development of automated electromagnetic compatibility test facilities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Harrison, Cecil A.

    1986-01-01

    The efforts to automate the electromagentic compatibility (EMC) test facilites at Marshall Flight Center were examined. A battery of nine standard tests is to be integrated by means of a desktop computer-controller in order to provide near real-time data assessment, store the data acquired during testing on flexible disk, and provide computer production of the certification report.

  20. NASA Goddard Space Flight Center Supply Chain Management Program

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  1. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.

  2. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  3. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  4. NASA's Space Launch System Progress Report

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2012-01-01

    Exploration beyond Earth orbit will be an enduring legacy for future generations, as it provides a platform for science and exploration that will define new knowledge and redefine known boundaries. NASA s Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program s Saturn V that sent Americans to the Moon in the 1960s and 1970s. The SLS offers a flexible design that may be configured for the Orion Multi-Purpose Crew Vehicle with associated life-support equipment and provisions for long journeys or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 tonnes (t) in 2017 and will be evolvable to 130 t after 2021. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of Mars. Building on the foundation laid by over 50 years of human and scientific space flight and on the lessons learned from the Apollo, Space Shuttle, and Constellation Programs the SLS team is delivering both technical trade studies and business case analyses to ensure that the SLS architecture will be safe, affordable, reliable, and sustainable. This panel will address the planning and progress being made by NASA s SLS Program.

  5. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  6. NASA Acting Administrator Robert Lightfoot presents the 2018 "St

    NASA Image and Video Library

    2018-02-12

    NASA Acting Administrator Robert Lightfoot delivers the "State of NASA", February 12, 2018, at the Marshall Space Flight Center in Huntsville, Alabama. In his address, Lightfoot discussed what the President's Fiscal Year 2019 budget request means for America's space agency. According to Lightfoot, it "reflects the administration's confidence that America will lead the way back to the Moon and take the next giant leap". Lightfoot delivered the "State of NASA" address in Marshall's Center for Advanced Manufacturing where engineers are pushing boundaries in the fields of additive manufacturing, 3D printing, and more. Hardware for NASA's Space Launch System and a model of the agency's Orion spacecraft served as a backdrop for the annual event. SLS, which is managed by Marshall, will enable a new era of exploration beyond Earth's orbit by launching astronauts on missions to deep-space destinations including the Moon and Mars.

  7. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  8. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  9. Space Flight Software Development Software for Intelligent System Health Management

    NASA Technical Reports Server (NTRS)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  10. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  11. SLS Rocket Hardware Moved to NASA Marshall Stand for Upcoming Test Series (30-second timelapse)

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  12. Marshall Space Flight Center battery activity

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1993-01-01

    The topics covered are presented in viewgraph form and include a flight program history and in-house activities. Some of the in-house activities addressed include secondary battery/cell testing and Hubble Space Telescope Test data updates involving the NiCd type 40 test - battery 1 and 2, the NiCd type 41 test battery, the general electric battery, the NiCd six-battery system, the six four-cell packs, fourteen-cell pack, three four-cell packs, the NiH2 six-battery system, and the flight spare battery. A general test data update is also presented for the twelve-cell pack, the four four-cell packs, the reconditioning test, and planned Ni-MH testing.

  13. Space Science

    NASA Image and Video Library

    1999-04-21

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Dr. Joe Ritter examines a replicated electro-formed nickel-alloy mirror which exemplifies the improvements in mirror fabrication techniques, with benefits such as dramtic weight reduction that have been achieved at the Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC).

  14. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  15. NASA's Space Launch System Progress Report

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2011-01-01

    Exploration beyond Earth will be an enduring legacy for future generations, confirming America's commitment to explore, learn, and progress. NASA's Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program's Saturn V that sent Americans to the Moon. The SLS offers a flexible design that may be configured for the MultiPurpose Crew Vehicle and associated equipment, or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Both options support a national capability that will pay dividends for future generations. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 metric tons (mT) and will be evolvable to 130 mT. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of asteroids and Mars. With its superior lift capability, the SLS can expand the interplanetary highway to many possible destinations, conducting revolutionary missions that will change the way we view ourselves, our planet and its place in the cosmos. To perform missions such as these, the SLS will be the largest launch vehicle ever built. It is being designed for safety and affordability - to sustain our journey into the space age. Current plans include launching the first flight, without crew, later this decade, with crewed flights beginning early next decade. Development work now in progress is based on heritage space systems and working knowledge, allowing for a relatively quick start and for maturing the SLS rocket as future technologies become available. Together, NASA and the U.S. aerospace industry are partnering to develop this one-of-a-kind asset. Many of NASA's space

  16. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  17. NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…

  18. Around Marshall

    NASA Image and Video Library

    1986-07-08

    Dr. William R. Lucas, Marshall's fourth Center Director (1974-1986), delivers a speech in front of a picture of the lunar landscape with Earth looming in the background while attending a Huntsville Chamber of Commerce reception honoring his achievements as Director of Marshall Space Flight Center (MSFC).

  19. The Marshall Grazing Incidence X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  20. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  1. STS-121 Space Shuttle Processing Update

    NASA Image and Video Library

    2006-04-27

    NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale talks from NASA's Marshall Space Flight Center about the space shuttle's ice frost ramps during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  2. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    1959-08-11

    In this picture, negotiations are under way between officials of the Army Ballistic Missile Agency (ABMA) and the National Aeronautics and Space Administration (NASA) on August 11, 1959. Seated at the table with his back to the camera, is Dr. T. Keith Glernan, NASA Administrator. At the head of the table is Major General John Barclay, Commander of ABMA and at the right side of the table are Colonel John G. Zierdt of ABMA and Dr. von Braun.

  3. Marshall Space Flight Center Propulsion Systems Department (PSD) KM Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnadoe, Tom; McCarter, Mike

    2006-01-01

    NASA Marshall Space Flight Center s Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities with in the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center Of Excellence (AISCE), Intergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KM implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to support the planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have been performed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural/KM surveys and practitioner interviews include

  4. Space transfer services as a precursor to space business parks

    NASA Astrophysics Data System (ADS)

    Smitherman, David V.

    1998-01-01

    Boeing Defense and Space Group and NASA, Marshall Space Flight Center conducted a study in 1996-1997 on the topic of commercial space business parks under the sponsorship of the former Office of Advanced Concepts at NASA Headquarters (Marshall 1997). The findings of this 7-month study are used to present possible strategies for near-term commercial developments in space. Related data from NASA studies on public space travel, and commercial space transportation are included along with the author's observations. It is hoped that this analysis will assist future entrepreneurs in the development of commercial space business parks. In conclusion, it appears that a market could soon become viable for commercial space transfer services, and that this market could form the infrastructure to grow the first commercial space business park.

  5. Marshall Installs Receiving Antenna for Next-Generation Weather Satellites

    NASA Image and Video Library

    2016-12-16

    Technicians assemble a hefty segment of a new antenna system in this 30-second time-lapse video captured Dec. 16 at NASA's Marshall Space Flight Center. The high-performance ground station is designed to receive meteorological and space weather data from instruments flown on the National Oceanic and Atmospheric Administration's new, game-changing Geostationary Operational Environmental Satellite series. The six-meter dish antenna near Building 4316 expands the capacity of Marshall’s Earth Science Office to use real-time GOES observations for studies of Earth and to deliver new forecasting, warning and disaster response tools to partners around the world. (NASA/MSFC)

  6. Obtaining NASA Approval for use of Non-Metallic Materials in Manned Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Wise, Harry L.

    2003-01-01

    Material manufacturers and suppliers are often surprised when a material commonly provided to industry is not approved for use on manned spacecraft. Often the reason is a lack of test data in environments that simulate those encountered in space applications, especially oxygen-enriched conditions, which significantly increase both the likelihood of material combustion and the propagation of a fire. This paper introduces the requirements for flight approval of non-metallic materials, focusing on material testing for human-rated space flight programs; it reviews the history of flight materials requirements and provides the rationale for such and introduces specific requirements related to testing and to good material engineering and design practices. After describing the procedure for submitting materials to be tested, the paper outlines options available if a material fails testing. In addition, this treatise introduces the National Aeronautics and Space Administration's (NASA's) Materials and Processes Technical Information System (MAPTIS), a database housing all test data produced in accordance with NASA-STD-6001, Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion.

  7. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  8. Marshall Space Flight Center Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.

  9. NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health

    NASA Technical Reports Server (NTRS)

    Holubec, Keith; Connolly, Janis

    2010-01-01

    This slide presentation reviews the history, and development of NASA-STD-3001, NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health, and the related Human Integration Design Handbook. Currently being developed from NASA-STD-3000, this project standard currently in review will be available in two volumes, (i.e., Volume 1 -- VCrew Health and Volume 2 -- Human Factors, Habitability, and Environmental Health) and the handbook will be both available as a pdf file and as a interactive website.

  10. NASA Data Acquisitions System (NDAS) Software Architecture

    NASA Technical Reports Server (NTRS)

    Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark

    2012-01-01

    The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).

  11. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  12. Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight

    NASA Image and Video Library

    2001-03-14

    Wranglers steadied the X-40A at NASA's Dryden Flight Research Center, Edwards, California, March 14, 2001, as the experimental craft was carried to 15,000 feet for an unpiloted glide flight. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  13. NASA Engineering Design Challenges: Thermal Protection Systems. EP-2008-09-122-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, and their partners at other NASA centers and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles--the Ares I and Ares V launch…

  14. Around Marshall

    NASA Image and Video Library

    1988-09-19

    Marshall's fifth Center Director, James R. Thompson (1986-1989), in the control room of the Solid Rocket Booster (SRB)automated thermal protection system (TPS) removal facility. Under Dr. Thompson's leadership, the shuttle program was rekindled after the Challenger explosion. Return to Flight kept NASA 's future programs alive.

  15. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  16. NASA's Hypersonic Investment Area

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Hutt, John; McClinton, Charles

    2002-01-01

    NASA has established long term goals for access to space. The third generation launch systems are to be fully reusable and operational around 2025. The goal for third-generation launch systems represents significant reduction in cost and improved safety over the current first generation system. The Advanced Space Transportation Office (ASTP) at NASA s Marshall Space Flight Center (MSFC) has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonic Investment Area (HIA), third generation technologies are being pursued in the areas of propulsion, airframe, integrated vehicle health management (IVHM), avionics, power, operations and system analysis. These technologies are being matured through research and both ground and flight-testing. This paper provides an overview of the HIA program plans and recent accomplishments.

  17. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  18. STS-121 Space Shuttle Processing Update

    NASA Image and Video Library

    2006-04-27

    NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale from NASA's Marshall Space Flight Center, holds a test configuration of an ice frost ramp during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  19. Flight Testing of the Space Launch System (SLS) Adaptive Augmenting Control (AAC) Algorithm on an F/A-18

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.

    2014-01-01

    The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.

  20. Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bai, S. D.; Dumbacher, P.; Cole, J. W.

    2002-01-01

    This was a small-scale, hot-fire test series to make initial measurements of performance differences of five new liquid fuels relative to rocket propellant-1 (RP-1). The program was part of a high-energy-density materials development at Marshall Space Flight Center (MSFC), and the fuels tested were quadricyclane, 1-7 octodiyne, AFRL-1, biclopropylidene, and competitive impulse noncarcinogenic hypergol (CINCH) (di-methyl-aminoethyl-azide). All tests were conducted at MSFC. The first four fuels were provided by the U.S. Air Force Research Laboratory (AFRL), Edwards Air Force Base, CA. The U.S. Army, Redstone Arsenal, Huntsville, AL, provided the CINCH. The data recorded in all hot-fire tests were used to calculate specific impulse and characteristic exhaust velocity for each fuel, then compared to RP-1 at the same conditions. This was not an exhaustive study, comparing each fuel to RP-1 at an array of mixture ratios, nor did it include important fuel parameters, such as fuel handling or long-term storage. The test hardware was designed for liquid oxygen (lox)/RP-1, then modified for gaseous oxygen/RP-1 to avoid two-phase lox at very small flow rates. All fuels were tested using the same thruster/injector combination designed for RP-1. The results of this test will be used to determine which fuels will be tested in future test programs.

  1. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  2. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  3. Rapid Ascent Simulation at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Sisco, Jimmy D.

    2004-01-01

    The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. The majority of tests require a hard vacuum with heating and cryogenics. NASA's Return-to-Flight program requested testing to simulate a launch from the ground to flight using vacuum, heating and cryogenics. This paper describes an effective method for simulating a launch.

  4. Evolving the NASA Near Earth Network for the Next Generation of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Carter, David L.; Hudiburg, John J.; Tye, Robert N.; Celeste, Peter B.

    2014-01-01

    The purpose of this paper is to present the planned development and evolution of the NASA Near Earth Network (NEN) launch communications services in support of the next generation of human space flight programs. Following the final space shuttle mission in 2011, the two NEN launch communications stations were decommissioned. Today, NASA is developing the next generation of human space flight systems focused on exploration missions beyond low-earth orbit, and supporting the emerging market for commercial crew and cargo human space flight services. The NEN is leading a major initiative to develop a modern high data rate launch communications ground architecture with support from the Kennedy Space Center Ground Systems Development and Operations Program and in partnership with the U.S. Air Force (USAF) Eastern Range. This initiative, the NEN Launch Communications Stations (LCS) development project, successfully completed its System Requirements Review in November 2013. This paper provides an overview of the LCS project and a summary of its progress. The LCS ground architecture, concept of operations, and driving requirements to support the new heavy-lift Space Launch System and Orion Multi-Purpose Crew Vehicle for Exploration Mission-1 are presented. Finally, potential future extensions to the ground architecture beyond EM-1 are discussed.

  5. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  6. NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2014-01-01

    Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).

  7. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Epithelial and fibroblast cell coculture: Long-term growth human mammary epithelial cells (HMEC) admixed in coculture with fibroblast from the same initial breast tissue grown as 3-dimenstional constructions in the presence of attachment beads in the NASA Bioreactor. A: A typical constrct about 2.0 mm in diameter without beads on the surface. The center of these constrcts is hollow, and beads are organized about the irner surface. Although the coculture provides smaller constructs than the monoculture, the metabolic of the organized cells is about the same. B, C, D: Closer views of cells showing that the shape of cells and cell-to-cell interactions apprear different in the coculture than in the monoculture constructs. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  8. The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2005-08-11

    The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  9. The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2005-08-11

    The Space Shuttle Discovery receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, August 9, 2005. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT this morning, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  10. Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2014-01-01

    NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new

  11. Student Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  12. NASA's Space Launch Transitions: From Design to Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  13. Compilation and development of K-6 aerospace materials for implementation in NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1987-01-01

    Spacelink is an electronic information service to be operated by the Marshall Space Flight Center. It will provide NASA news and educational resources including software programs that can be accessed by anyone with a computer and modem. Spacelink is currently being installed and will soon begin service. It will provide daily updates of NASA programs, information about NASA educational services, manned space flight, unmanned space flight, aeronautics, NASA itself, lesson plans and activities, and space program spinoffs. Lesson plans and activities were extracted from existing NASA publications on aerospace activities for the elementary school. These materials were arranged into 206 documents which have been entered into the Spacelink program for use in grades K-6.

  14. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, three Sparkman High School students pose with their rocket.

  15. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman, and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides hands-on, practical aerospace experience. In this picture, a rocket built by Johnson High School students soars to it projected designation.

  16. Around Marshall

    NASA Image and Video Library

    2002-04-27

    Filled with anticipation, students from three Huntsville area high schools: Randolph, Sparkman and Johnson High Schools, counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides them with hands-on, practical aerospace experience. In this picture, two Johnson High School students pose with their rocket.

  17. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  18. Vapor Compression Distillation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.

    2002-01-01

    One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.

  19. Overview of NASA MSFC and UAH Space Weather Modeling and Data Efforts

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard

    2016-01-01

    Marshall Space Flight Center, along with its industry and academia neighbors, has a long history of space environment model development and testing. Space weather efforts include research, testing, model development, environment definition, anomaly investigation, and operational support. This presentation will highlight a few of the current space weather activities being performed at Marshall and through collaborative efforts with University of Alabama in Huntsville scientists.

  20. Around Marshall

    NASA Image and Video Library

    2002-05-23

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the combined efforts of students from UAH and AM sent this rocket soaring into flight. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  1. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) Program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the university students prepare their rocket for flight on the launch pad. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  2. Impact Testing for Materials Science at NASA - MSFC

    NASA Technical Reports Server (NTRS)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  3. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  4. Watch 60-Seconds of Major SLS Hardware Being Moved and Put in the Test Stand at NASA Marshall

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  5. Students Compete in NASA's Human Exploration Rover Challenge

    NASA Image and Video Library

    2018-04-03

    NASA's Human Exploration Rover Challenge invites high school and college teams to design, build and test human-powered roving vehicles inspired by the Apollo lunar missions and future exploration missions to the Moon, Mars and beyond. The nearly three-quarter-mile course boasts grueling obstacles that simulate terrain found throughout the solar system. Hosted by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Space & Rocket Center, Rover Challenge is managed by Marshall's Academic Affairs Office.

  6. State of NASA: How Cool Is That?

    NASA Image and Video Library

    2018-02-13

    On Feb. 12, NASA centers across the country hosted “State of NASA” events, following President Trump’s Fiscal Year 2019 budget proposal delivery to the U.S. Congress. The events included an address, by acting NASA Administrator Robert Lightfoot, to the agency’s workforce, from NASA’s Marshall Space Flight Center, in Huntsville, Alabama. During his speech, Lightfoot highlighted how the budget would help the agency achieve its goals for space exploration.

  7. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  8. Around Marshall

    NASA Image and Video Library

    1998-11-04

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  9. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics from NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nguyen, Hanson C.; Fraction, James; Ortiz-Acosta, Melyane; Dakermanji, George; Kercheval, Bradford P.; Hernandez-Pellerano, Amri; Kim, David S.; Jung, David S.; Meyer, Steven E.; Mallik, Udayan; hide

    2016-01-01

    The Goddard Modular Smallsat Architecture (GMSA) is developed at NASA Goddard Space Flight Center (GSFC) to address future reliability along with minimizing cost and schedule challenges for NASA Cubesat and Smallsat missions.

  10. Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.

    2007-01-01

    It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.

  11. The Space Shuttle Atlantis centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California

    NASA Image and Video Library

    2001-02-26

    The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  12. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  13. Space Station redesign option A: Modular buildup concept

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1993, President Clinton mandated that NASA look at lower cost alternatives to Space Station Freedom. He also established an independent advisory committee - the Blue Ribbon Panel - to review the redesign work and evaluate alternatives. Daniel Goldin, NASA Administrator, established a Station Redesign Team that began operating in late March from Crystal City, Virginia. NASA intercenter teams - one each at Marshall Space Flight Center, Johnson Space Center, and Langley Research Center provided engineering and other support. The results of the Option A study done at Marshall Space Flight Center are summarized. Two configurations (A-1 and A-2) are covered. Additional data is provided in the briefing package MSFC SRT-001, Final System Review to SRT-002, Space Station Option A Modular Buildup Concept, Volumes 1-5, Revision B, June 10, 1993. In June 1993, President Clinton decided to proceed with a modular concept consistent with Option A, and asked NASA to provide an Implementation Plan by September. All data from the Option A redesign activity was provided to NASA's Transition Team for use in developing the Implementation Plan.

  14. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  15. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama commemorates the Neutral Buoyancy Space Simulator as a National Historic Landmark. The site was designated as such in 1986 by the National Park Service of the United States Department of the Interior.

  16. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  17. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  18. Around Marshall

    NASA Image and Video Library

    2003-09-01

    A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

  19. Refining, revising, augmenting, compiling and developing computer assisted instruction K-12 aerospace materials for implementation in NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1988-01-01

    The NASA Spacelink is an electronic information service operated by the Marshall Space Flight Center. The Spacelink contains extensive NASA news and educational resources that can be accessed by a computer and modem. Updates and information are provided on: current NASA news; aeronautics; space exploration: before the Shuttle; space exploration: the Shuttle and beyond; NASA installations; NASA educational services; materials for classroom use; and space program spinoffs.

  20. Around Marshall

    NASA Image and Video Library

    2002-10-26

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as an Alabama Historic Civil Engineering Landmark. The site was desinated as such in 1979.

  1. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  2. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  3. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Epithelial cell monoculture: Long-term growth of human mammary epithelial cells (HMEC) grown in monoculture as 3-dimensional constructions in the presence of attachment beads in the NASA Bioreactor. A: A typical construct about 3.5 mm (less than 1/8th inch) in diameter with slightly dehydrted, crinkled beads contained on the surface as well as within the 3-dimensional structure. B: The center of these constructs is hollow. Crinkling of the beads causes a few to fall out, leaving crater-like impressiions in the construct. The central impression shows a small hole that accesses the hollow center of the construct. C: A closeup view of the cells and the hole the central impression. D: Closer views of cells in the construct showing sell-to-cell interactions. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  4. Summary of NASA Aerospace Flight Battery Systems Program activities

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; Odonnell, Patricia

    1994-01-01

    A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.

  5. Around Marshall

    NASA Image and Video Library

    1996-06-18

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  6. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  7. There's Enough Space for Everyone

    NASA Technical Reports Server (NTRS)

    Schumacher, Daniel M.

    2010-01-01

    Only a few fortunate people have the opportunity to go into space and experience the wonders of our universe first-hand. But thanks to social media and virtual worlds, many unique opportunities exist for us to learn, explore and experience what s out there from wherever we are. NASA and Marshall Space Flight Center (MSFC) are making this even easier to do. From blogs to Twitter messages, from Facebook pages to Flickr Photo sites, NASA is leveraging social media to share never-before-seen footage and inside information on spaceflight, scientific discoveries and other space activities. Over the last year, Marshall has reached more than half-a-million viewers through its high-profile, real-time blogs. Through its Watching a Launch blog, visitors were invited to take the "virtual" rides of their lives as they received a first-hand account of seeing a powerful shuttle launch - up close and personal. Through the Shuttle Ferry Flight blog, they got to experience the Shuttle Atlantis journey home to Kennedy Space Center as it rode "piggyback" on a modified Boeing 747 airplane. This year, Marshall s Flickr photo galleries have been visited over 700,000 times, Ares rocket videos have been viewed on iTunes, YouTube, TeacherTube and NASA Web sites more than 1.2 million times, and Marshall s Facebook Page has over 2,800 "friends" who regularly follow NASA. Social media tools have been a powerful way to reach and inspire the public, but NASA has also used these tools effectively to promote education and outreach. From events such as the Great Moonbuggy Race to the Student Launch Initiative, Marshall has used social networks to interest, excite and engage students. This presentation shares some of NASA s experiences on what has worked . . . and what hasn't . . . and seeks to spread the message that through social media "there's enough space for everyone."

  8. Clean Room at Goddard Space Flight Center

    NASA Image and Video Library

    2010-03-10

    This panorama shows the inside of Goddard's High Bay Clean Room, as seen from the observation deck. Credit: NASA/Goddard Space Flight Center/Chris Gunn Go into a NASA Clean Room Daily with the Webb Telescope via NASA's 'Webb-cam' here: www.jwst.nasa.gov/webcam.html For more information on JWST go to: www.jwst.nasa.gov/ For more information on Goddard Space Flight Center go to: www.nasa.gov/centers/goddard/home/index.html

  9. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.

  10. Small Satellites to Hitchhike on SLS Rocket’s First Flight on This Week @NASA – February 5, 2016

    NASA Image and Video Library

    2016-02-05

    During a Feb. 2 event at NASA’s Marshall Space Flight Center, officials announced the selection of 13 low-cost small satellites to launch as secondary payloads on Exploration Mission-1 (EM-1) -- the first flight of the agency’s Space Launch System (SLS) rocket, targeted for 2018. SLS’ first flight is designed to launch an un-crewed Orion spacecraft to a stable orbit beyond the moon to demonstrate and test systems for both the spacecraft and rocket before the first crewed flight of Orion. The announced CubeSat secondary payloads will carry science and technology investigations to help pave the way for future human exploration in deep space, including the Journey to Mars. Also, New Marshall Space Flight Center Director, Webb Telescope’s final mirror installed, Juno adjusts course to Jupiter, Russian spacewalk on space station and Hangar One’s Super Bowl Redwood!

  11. NASA Space Flight Human System Standards

    NASA Technical Reports Server (NTRS)

    Tillman, Barry; Pickett, Lynn; Russo, Dane; Stroud, Ken; Connolly, Jan; Foley, Tico

    2007-01-01

    NASA has begun a new approach to human factors design standards. For years NASA-STD-3000, Manned Systems Integration Standards, has been a source of human factors design guidance for space systems. In order to better meet the needs of the system developers, NASA is revising its human factors standards system. NASA-STD-3000 will be replaced by two documents: set of broad human systems specifications (including both human factors and medical topics) and a human factors design handbook

  12. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Human primary breast tumor cells after 49 days of growth in a NASA Bioreactor. Tumor cells aggregate on microcarrier beads (indicated by arrow). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida

  13. Logistics Lessons Learned in NASA Space Flight

    NASA Technical Reports Server (NTRS)

    Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

    2006-01-01

    The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned

  14. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  15. Around Marshall

    NASA Image and Video Library

    1962-03-03

    Members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on January 3, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Shown here at MSFC’s Manufacturing Engineering Laboratory are (left to right): Dr. Eberhard Rees, MSFC; Congressman George P. Miller, Democratic representative of California; Congressman F. Edward Hebert, Democratic representative of Louisiana; Congressman Robert R. Casey, Democratic representative of Texas; and Werner Kuers, MSFC.

  16. Interactive information processing for NASA's mesoscale analysis and space sensor program

    NASA Technical Reports Server (NTRS)

    Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.

    1985-01-01

    The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.

  17. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, located on the grounds of Marshall Space Flight Center in Huntsville, Alabama,commemorates the designation of the Saturn V Rocket as a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1980.

  18. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue; A: Duct element recovered from breast tissue digest. B: Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneousely die during early cell divisions, but a few will establish long-term growth. C: Isolate of long-term frowth HMEC from outgrowth of duct element; cells shown soon after isolation and in early full-cell contact growth in culture in a dish. D: same long-term growth HMEC, but after 3 weeks in late full-cell contact growth in a continuous culture in a dish. Note attempts to reform duct elements but this in two demensions in a dish rather than in three dimensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Richmond, NASA/Marshall Space Flight Center (MSFC).

  19. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, makes a point during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  20. NASA Marshall Impact Testing Facility Capabilities Applicable to Lunar Dust Work

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.; Finchum, Andy; Hubbs, Whitney; Eskridge, Richard; Martin, Jim

    2008-01-01

    The Impact Testing Facility at Marshall Space Flight Center has several guns that would be of use in studying impact phenomena with respect to lunar dust. These include both ballistic guns, using compressed gas and powder charges, and hypervelocity guns, either light gas guns or an exploding wire gun. In addition, a plasma drag accelerator expected to reach 20 km/s for small particles is under development. Velocity determination and impact event recording are done using ultra-high-speed cameras. Simulation analysis is also available using the SPHC hydrocode.

  1. Technicians inspect external tank attachment fittings on the Space Shuttle Discovery as part of its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa

  2. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    NASA Technical Reports Server (NTRS)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include

  3. Evaluation of NASA Foodbars as a standard diet for use in short-term rodent space flight studies.

    PubMed

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    [corrected] A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate because diet can influence the outcome of experiments. We evaluated the use of National Aeronautics and Space Administration (NASA) Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permitted criteria such as nutrient consistency, high nutrient bioavailability, and flexibility of formulation to be met. Extrusion of the semi-purified diet produced Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevented mold growth. Irradiation (15 to 25 kGy) prevented bacterial growth and, in combination with sorbate treatment, added protection against mold for shelf stability. During the development process, nutrient analyses indicated that extrusion and irradiation produces nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiologic changes produced by space flight. All vitamin levels in the Foodbars, except for vitamin K, conformed to or exceeded the current National Research Council (NRC) 1995 recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mouse growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction and growth. Short-term (18 to 20 d) animal feeding studies indicated that Foodbars are palatable, support growth, and maintain health in rats. Results indicated that NASA Rodent Foodbars meet the physical and nutritional criteria required to support rodents in the space environment and thus may be used

  4. Evaluation of NASA Foodbars as a Standard Diet for Use in Short-Term Rodent Space Flight Studies

    NASA Technical Reports Server (NTRS)

    Tou, Janet; Grindeland, Richard; Barrett, Joyce; Dalton, Bonnie; Mandel, Adrian; Wade, Charles

    2003-01-01

    A standard rodent diet for space flight must meet the unique conditions imposed by the space environment and must be nutritionally adequate since diet can influence the outcome of experiments. This paper evaluates the use of National Aeronautics and Space Administration (NASA) developed Foodbars as a standard space flight diet for rats. The Foodbar's semi-purified formulation permits criteria such as nutrient consistency, high nutrient bioavailability and flexibility of formulation to be met. Extrusion of the semi-purified diet produces Foodbars with the proper texture and a non-crumbing solid form for use in space. Treatment of Foodbar with 0.1% potassium sorbate prevents mold growth. Irradiation (15-25 kGy) prevents bacterial growth and in combination with sorbate-treatment provides added protection against mold for shelf-stability. However, during the development process, nutrient analyses indicated that extrusion and irradiation produced nutrient losses. Nutrients were adjusted accordingly to compensate for processing losses. Nutrient analysis of Foodbars continues to be performed routinely to monitor nutrient levels. It is important that the standard rodent diet provide nutrients that will prevent deficiency but also avoid excess that may mask physiological changes produced by space flight. All vitamins levels in the Foodbars, except for vitamin K conformed to or exceeded the current NRC (1995) recommendations. All indispensable amino acids in Foodbar conformed to or exceeded the NRC nutrient recommendation for mice growth and rat maintenance. However, some indispensable amino acids were slightly below recommendations for rat reproduction/growth. Short-term (18-20 d) animal feeding studies indicated that Foodbars were palatable, supported growth and maintained health in rats. Results indicated that NASA rodent Foodbars meet both the physical and nutritional criteria required to support rodents in the space environment and thus, may be used successfully as a

  5. Human habitat positioning system for NASA's space flight environmental simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, W. F.; Tucker, J.; Keas, P.

    1998-01-01

    Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.

  6. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun and Joe Waggoner, Democratic representative of Louisiana, discuss Apollo models.

  7. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Breast tissue specimens in traditional sample dishes. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  8. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Time-lapse exposure depicts Bioreactor rotation. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  9. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  10. Meteorological regimes for the classification of aerospace air quality predictions for NASA-Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Sloan, J. C.

    1976-01-01

    A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

  11. Around Marshall

    NASA Image and Video Library

    1978-07-21

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. Pictured is a large structure that is being used as the antenna base for the space telescope.

  12. Living Together in Space: The International Space Station Internal Active Thermal Control System Issues and Solutions-Sustaining Engineering Activities at the Marshall Space Flight Center From 1998 to 2005

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Roman, M. C.; Miller, L.

    2007-01-01

    On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.

  13. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Norman Augustine, chair of the Human Space Flight Review Committee, listens to a comment from the audience during the first of several public meetings at different U.S. locations, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  14. Product Lifecycle Management and Sustainable Space Exploration

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  15. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  16. NASA 947 and NASA 904 during training flight over White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA 947 and NASA 904 during a training and familiarization flight over White Sands, New Mexico. The Gulfstream aircraft on the left is NASA's Space Shuttle Training aircraft (STA) and the T-38 jet serves as a chase plane.

  17. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  18. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  19. Research reports: 1985 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, G. R. (Editor); Osborn, T. L. (Editor); Dozier, J. B. (Editor); Freeman, L. M. (Editor)

    1986-01-01

    A compilation of 40 technical reports on research conducted by participants in the 1985 NASA/ASEE Summer Faculty Fellowship Program at Marshall Space Flight Center (MSFC) is given. Weibull density functions, reliability analysis, directional solidification, space stations, jet stream, fracture mechanics, composite materials, orbital maneuvering vehicles, stellar winds and gamma ray bursts are among the topics discussed.

  20. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  1. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  2. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  3. International Space Station - Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  4. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  5. Space Flight Support Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123

  6. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  7. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit (LEO). The SLS Program, managed at NASA s Marshall Space Flight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions-opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include Mars, Jupiter, Lagrange Points, and near-Earth asteroids (NEAs), among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions

  8. NASA Design Strengthens Welds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Friction Stir Welding (FSW) is a solid-state joining process-a combination of extruding and forging-ideal for use when the original metal characteristics must remain as unchanged as possible. While exploring methods to improve the use of FSW in manufacturing, engineers at Marshall Space Flight Center created technologies to address the method's shortcomings. MTS Systems Corporation, of Eden Prairie, Minnesota, discovered the NASA-developed technology and then signed a co-exclusive license agreement to commercialize Marshall's design for use in high-strength structural alloys. The resulting process offers the added bonuses of being cost-competitive, efficient, and most importantly, versatile.

  9. Around Marshall

    NASA Image and Video Library

    2000-09-09

    NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Two brick smokestacks from the original refinery still stand before the Michoud facility today.

  10. Around Marshall

    NASA Image and Video Library

    2000-09-09

    NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Visible on the right, is one of two brick smokestacks from the original refinery that still stand before the Michoud facility today.

  11. NASA's Spaceliner 100 Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.

  12. Students Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Kim Nelson, left, of Sandalwood High School in Jacksonville, FL, helps Steven Nepowada, right, of Terry Parker High School in Jacksonville, practice loading a protein sample into a thermos-like container, known as Dewar. Students from Jacksonville worked with researchers from NASA/Marshall Space Flight Center (MSFC), as well as universities, in Huntsville, AL, on an experiment for the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  14. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. The subcommittee was briefed on MSFC’s manned space efforts earlier in the day and then inspected mockups of the Saturn I Workshop and the Apollo Telescope Mount, two projects developed by MSFC for the post-Apollo program. In this photograph, MSFC Director, Dr. Wernher von Braun, bids farewell to Texas Democratic Representative Olin E. Teague before departure at the Redstone Arsenal Airstrip.

  15. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, the University students prepare their rocket for launch. Students at UAH built the rocket and AM students developed its scientific payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  16. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. UAH students designed and built the rocket and AM students designed the payload. In this picture, AM students prepare their payload, an experiment that measures the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity, prior to launch.

  17. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2007-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  18. 2nd NASA CFD Validation Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.

  19. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  20. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  1. Around Marshall

    NASA Image and Video Library

    1978-08-24

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  2. NASA's Space Launch System Transitions From Design To Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2016-01-01

    at NASA's Marshall Space Flight Center in Huntsville, Alabama. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered to SSC. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  3. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Redstone Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  4. 9. AERIAL VIEW LOOKING NORTH AT THE GEORGE C. MARSHALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. AERIAL VIEW LOOKING NORTH AT THE GEORGE C. MARSHALL SPACE FLIGHT CENTER. DODD ROAD RUNS DOWN THE CENTER OF THE PHOTO. THE EAST TEST AREA IS TOWARDS THE BOTTOM OF THE PHOTO, FABRICATION, ENGINEERING AND ADMINISTRATION NEAR THE TOP OF THE PHOTO. 1961, MSFC PHOTO LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL

  5. NASA Aerospace Flight Battery Systems Program: An update

    NASA Astrophysics Data System (ADS)

    Manzo, Michelle A.

    1992-02-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  6. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  7. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  8. Around Marshall

    NASA Image and Video Library

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  9. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  10. NASA Space Launch System Operations Outlook

    NASA Technical Reports Server (NTRS)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi-Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the life-cycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reachback support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-ofthe- art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  11. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  12. Around Marshall

    NASA Image and Video Library

    1979-03-22

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  13. Around Marshall

    NASA Image and Video Library

    1977-07-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  14. Around Marshall

    NASA Image and Video Library

    1979-04-16

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  15. One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig

    NASA Technical Reports Server (NTRS)

    1999-01-01

    One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to

  16. Technical publications of the NASA Wallops Flight Facility, 1980 through 1983

    NASA Technical Reports Server (NTRS)

    Foster, J. N.

    1984-01-01

    This bibliography lists the publications sponsored by the NASA Wallops Flight Center/NASA Goddard Space Flight Center, Wallops Flight Facility during the period 1980 through 1983. The compilation contains citations listed by type of publication; i.e., NASA formal report, NASA contractor report, journal article, or presentation; by contract/grant number; and by accession number. Oceanography, astrophysics, artificial satellites, fluid mechanics, and sea ice are among the topics covered.

  17. International Space Station -- Fluid Physics Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The optical bench for the Fluid Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  18. International Space Station -- Fluid Physics Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The optical bench for the Fluids Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  19. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Dynamic Test Stand as a National Historic Landmark. The site was designated as such in 1985 by the National Park Service of the United States Department of the Interior.

  20. Around Marshall

    NASA Image and Video Library

    2000-10-26

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the Saturn V Launch Vehicle as a National Historic Landmark. The site was designated as such in 1984 by the National Park Service of the United States Department of the Interior.

  1. NASA's modified 747 Shuttle Carrier Aircraft is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center

    NASA Image and Video Library

    2005-08-18

    NASA's specially modified 747 Shuttle Carrier Aircraft, or SCA, is positioned under the Space Shuttle Discovery to be attached for their ferry flight to the Kennedy Space Center in Florida. After its post-flight servicing and preparation at NASA Dryden in California, Discovery's return flight to Kennedy aboard the 747 will take approximately 2 days, with stops at several intermediate points for refueling. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle payload bay. Discovery launched on July 26 and spent almost 14 days on orbit.

  2. The 1982 NASA/ASEE summer faculty fellowship research program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Aht NASA/ASEE Summer Faculty Fellowship Research Program conducted at the Marshall Space Flight Center by the University of Alabama at Huntsville, Ala. during the summer of 1982 is described. Abstracts of the Final Reports submitted by the Fellows detailing the results of their research are also presented.

  3. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, Testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  4. SLS Intertank Transported to NASA's Barge Pegasus for Shipment, testing

    NASA Image and Video Library

    2018-02-22

    A structural test version of the intertank for NASA's new heavy-lift rocket, the Space Launch System, is loaded onto the barge Pegasus Feb. 22, at NASA’s Michoud Assembly Facility in New Orleans. NASA engineers and technicians used the agency's new self-propelled modular transporters -- highly specialized, mobile platforms specifically designed to transport SLS hardware -- to transport the critical test hardware to the barge. The intertank is the second piece of structural hardware for the rocket's massive core stage scheduled for delivery to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. Engineers at Marshall will push, pull and bend the intertank with millions of pounds of force to ensure the hardware can withstand the forces of launch and ascent. The flight version of the intertank will connect the core stage's two colossal fuel tanks, serve as the upper-connection point for the two solid rocket boosters and house the avionics and electronics that will serve as the "brains" of the rocket. Pegasus, originally used during the Space Shuttle Program, has been redesigned and extended to accommodate the SLS rocket's massive, 212-foot-long core stage -- the backbone of the rocket. The 310-foot-long barge will ferry the core stage elements from Michoud to other NASA centers for tests and launches.

  5. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Robert Richmond extracts breast cell tissue from one of two liquid nitrogen dewars. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  6. Around Marshall

    NASA Image and Video Library

    2002-05-29

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA); Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. An arnex, scheduled for completion by summer 2002, will add an additional 80,000 square feet (7,432 square meters) to NSSTC nearly doubling the size of the core facility. At full capacity, the completed NSSTC will top 200

  7. Around Marshall

    NASA Image and Video Library

    2003-04-09

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  8. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  9. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    Douglas R. Cooke, Associate Administrator for Exploration Systems Mission Directorate, at podium, addresses the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Seated from left on the panel is Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. Photo Credit: (NASA/Paul E. Alers)

  10. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-06-16

    U.S. Sen. Bill Nelson, D-Fla., at podium, addresses members of the Human Space Flight Review Committee, Wednesday, June 17, 2009, at the Carnegie Institution in Washington. Seated from left are Jeffrey Greason, Bohdan Bejmuk, Dr. Leroy Chiao, Norman Augustine (chair), Dr. Wanda Austin, Dr. Edward Crawley, Dr. Christopher Chyba and Philip McAlister. The panel will examine ongoing and planned NASA development activities and potential alternatives in order to present options for advancing a safe, innovative, affordable and sustainable human space flight program following the space shuttle's retirement. The committee wil present its results by August 2009. Photo Credit: (NASA/Paul E. Alers)

  11. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  12. NASA's Space Launch System: Affordability for Sustainability

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  13. X-40A Free Flight #5

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  14. Around Marshall

    NASA Image and Video Library

    1979-08-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Included in the plans for the space station was a space telescope. This telescope would be attached to the space station and directed towards outerspace. Astronomers hoped that the space telescope would provide a look at space that is impossible to see from Earth because of Earth's atmosphere and other man made influences. In an effort to make replacement and repairs easier on astronauts the space telescope was designed to be modular. Practice makes perfect as demonstrated in this photo: an astronaut practices moving modular pieces of the space telescope in the Neutral

  15. Around Marshall

    NASA Image and Video Library

    1999-07-17

    A fountain representing a rocket launch was dedicated in the Von Braun courtyard outside of Building 4200 at Marshall Space Flight Center during the weekend celebrating the 30th arniversary of the Apollo 11 lunar landing. On hand for the festivities were many of the Saturn and Apollo astronauts.

  16. Around Marshall

    NASA Image and Video Library

    1968-02-22

    During a visit to the Marshall Space Flight Center (MSFC), the Congressional House Committee on Science and Astronautics toured the S-IVB workshop. Pictured here are MSFC’s Dr. Wernher von Braun (standing) and Congressman Miller, Democratic representative of California (sitting on the ergometer bicycle) inside the workshop.

  17. Around Marshall

    NASA Image and Video Library

    2000-10-16

    This plaque, displayed on the grounds of Marshall Space Flight Center in Huntsville, Alabama, commemorates the designation of the Propulsion and Structural Test Facility as a National Historic Landmark by the National Park Service of the United States Interior. The site was designated as a landmark in 1985.

  18. Human Space Flight Plans Committee Report

    NASA Image and Video Library

    2009-10-21

    NASA Public Affairs Officer Doc Mirelson, left, and Chairman of the U.S. Human Space Flight Plans Committee Norman Augustine, right, listen to reporters questions during a press conference where the committee released it's report on Thursday, Oct., 22, 2009 at the National Press Club in Washington. The Obama Administration tasked the committee to do an independent review of planned U.S. human space flight activities with the goal of ensuring that the nation is on a vigorous and sustainable path to achieving its boldest aspirations in space. Photo Credit: (NASA/Bill Ingalls)

  19. Hall Propulsion Technology Development, NASA Glenn Research Center: 50 kW Thruster Technology EXPRESS Ground/Space Correlation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert; Elliott, Fred

    2000-01-01

    It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.

  20. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  1. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2003-01-01

    Aeroassist technology development is a vital part of the NASA ln-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  2. NASA Development of Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    James, Bonnie; Munk, Michelle; Moon, Steve

    2004-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).

  3. The NASA Marshall engineering thermosphere model

    NASA Technical Reports Server (NTRS)

    Hickey, Michael Philip

    1988-01-01

    Described is the NASA Marshall Engineering Thermosphere (MET) Model, which is a modified version of the MFSC/J70 Orbital Atmospheric Density Model as currently used in the J70MM program at MSFC. The modifications to the MFSC/J70 model required for the MET model are described, graphical and numerical examples of the models are included, as is a listing of the MET model computer program. Major differences between the numerical output from the MET model and the MFSC/J70 model are discussed.

  4. Benefit from NASA

    NASA Image and Video Library

    2004-04-22

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA’s patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  5. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  6. Application of space benefits to education.

    NASA Technical Reports Server (NTRS)

    Dannenberg, K. K.; Ordway, F. I., III

    1971-01-01

    Information is given on the conduct of a summer teacher workshop designed to strengthen a weakened public interest in the benefits of space programs to various aspects of life. The workshop is part of an educational program for teachers based on the NASA Marshall Space Flight Center industrial facilities and displays at the Alabama Space and Rocket Center.

  7. NASA Acting Administrator Robert Lightfoot addresses members of the National Space Club at a breakfast meeting in the Jackson Conference Center in Huntsville, Alabama.

    NASA Image and Video Library

    2018-03-22

    NASA Acting Administrator Robert Lightfoot addresses a standing room-only crowd at the March 20 National Space Club Huntsville breakfast. Lightfoot, who recently announced he will be retiring from the agency on April 30, praised NASA's Marshall Space Flight Center and spoke about where the agency is headed over the next two decades. “I get to be nostalgic now, as I leave the Agency. This work was going on before I got here, and it’s going to keep going on after I leave,” said Lightfoot. “In this nation where we hear a lot about what we can't do, NASA is a demonstration of what this nation can do. The Space Launch System rocket is taking shape right here at Marshall. The passion our team has on our exploration journey is second to none and there seems to be a sense of urgency to get to that first launch. Exploration gives us hope for the future, and brings today's generation on board to forge its own path to the next great milestones for humanity.” National Space Club Huntsville's mission is to promote the awareness of civilian and military applications for rocketry and astronautics. Participation in its events helps raise money for scholarships and STEM engagement in the community.

  8. Around Marshall

    NASA Image and Video Library

    1977-04-12

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built.Pictured is an experiment where the astronaut is required to move a large object which weighed 19,000 pounds. It was moved with realitive ease once the astronaut became familiar with his environment and his near weightless condition. Experiments of this nature provided scientists with the information needed regarding weight and mass allowances astronauts could manage in preparation for building a permanent space station in the future.

  9. Around Marshall

    NASA Image and Video Library

    1980-01-07

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  10. Around Marshall

    NASA Image and Video Library

    1980-02-27

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  11. Around Marshall

    NASA Image and Video Library

    1980-05-06

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  12. Around Marshall

    NASA Image and Video Library

    1980-07-08

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle.

  13. Around Marshall

    NASA Image and Video Library

    1963-09-09

    NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Two brick smokestacks from the original refinery still stand before the Michoud facility today as seen in the lower half of this photograph taken in the 1960's, while the upper half reflects the area during the time of the sugar cane plantation workers.

  14. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade. In 1988, NASA reissued that first volume of the data book and added two additional volumes on the agency's programs and projects, one each for 1958-1968 and 1969-1978. NASA published a fourth volume in 1994 that addressed NASA resources for the period between 1969 and 1978. This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions. A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988. NASA began its operations as the nation's civilian space agency in 1958 following the passage of the National Aeronautics and Space Act. It succeeded the National Advisory Committee for Aeronautics (NACA). The new organization was charged with preserving the role of the United States "as a leader in aeronautical and space science and technology" and in its application, with expanding our knowledge of the Earth's atmosphere and space, and with

  15. NASA Ames Contributes to Orion / EFT-1 Test Flight (Reporter Pkg)

    NASA Image and Video Library

    2014-12-03

    NASA's Orion spacecraft is built to take humans farther than they've ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA's Ames Research Center played a critical role in the development and preparation for the flight test designated Exploration Flight Test 1, or EFT-1.

  16. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  17. Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-02-20

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  18. Space Shuttle Discovery landed at NASA's Dryden Flight Research Center at 5:11 a.m., following the very successful 14-day STS-114 return to flight mission

    NASA Image and Video Library

    2005-08-09

    Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in Calif. at 5:11 a.m. this morning, following the very successful 14-day STS-114 return to flight mission.

  19. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Harry Mahtani analyzes the gas content of nutrient media from Bioreactor used in research on human breast cancer. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  20. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience

    PubMed Central

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac

    2017-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255

  1. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.

    PubMed

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac

    2016-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.

  2. April 2017 Marshall Association luncheon with Madison mayor Paul

    NASA Image and Video Library

    2017-03-03

    Markeeva Morgan, SLS avionics subsystem manager at NASA’s Marshall Space Flight Center, speaks to an audience of Marshall team members April 26 at the Overlook at Redstone. Morgan was the introductory speaker for the luncheon meeting of the Marshall Association, the center’s professional, employee service organization.

  3. NASA/State Education Cooperation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is cooperating with state departments of education in a number of special education programs. An example is Maryland Summer Centers for Gifted and Talented Students sponsored by the Maryland State Department of Education. Some 2,600 students participated in the 1990 program. One of the 12 centers is the Center for Space Science and Technology at Goddard Space Flight Center, which provides instruction to students of the 9-12 grade level. This center is operated by a three organization partnership that includes the Maryland State Department of Education, the University of Maryland and Goddard Space Flight Center, which hosts the instructional program and provides volunteer scientists and engineers as instructors. Typical two-week space intern program includes panel discussions, lectures, tours, field trips and hands-on activity focusing on various space science topics. Senior high students benefit from a one-to-one mentor relationship with a volunteer scientist or engineer. Another example was the Paducah (Kentucky) NASA Community Involvement Project, a joint educational effort of Langley and Lewis Research Centers, Marshall Space Flight Center, the Kentucky Department of Education, the City of Paducah and Paducah Independent Schools. It was a 16 day exposition/symposium featuring seminars on space subjects.

  4. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    High magnification view of human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. The arrow points to bead surface indicating breast cancer cells (as noted by the staining of tumor cell intermediate filaments). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida

  5. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.

  6. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  7. Around Marshall

    NASA Image and Video Library

    1974-02-01

    Huntsville’s Jack Giles, Alabama State Senator (left), and Dr. Rocco Petrone, Marshall Space Flight Center Director (Middle), speak with Astronaut Owen Garriott who is inside the Apollo 16 Command Module on display at the Alabama Space and Rocket Center in Huntsville, Alabama. The successful Apollo 16 manned lunar landing mission took place April 16, 1972 through April 27, 1972. (Photograph courtesy of Huntsville/Madison County Public Library)

  8. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  9. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  10. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  11. Marshall Team Complete Testing for Lunar Atmosphere and Dust Environment Explorer

    NASA Technical Reports Server (NTRS)

    Swofford, Philip

    2013-01-01

    Dr. Huu Trinh and his team with the Propulsion Systems and Test Departments at Marshall Space Flight Center in Huntsville, Ala. successfully complete a simulated cold-flow test series on the propulsion system used for the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. NASA Ames Research Center, Moffett Field, Calif., is leading NASA s work on the development of the LADEE spacecraft, and the Marshall center is the program office for the project. The spacecraft, scheduled for launch this fall, will orbit the Moon and gather information about the lunar atmosphere, conditions near the surface of the Moon, and collect samples of lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. The test team at the Marshall center conducted the cold flow test to identify how the fluid flows through the propulsion system feed lines, especially during critical operation modes. The test data will be used to assist the LADEE team in identifying any potential flow issues in the propulsion system, and allow them to address and correct them in advance of the launch.

  12. Around Marshall

    NASA Image and Video Library

    1962-03-08

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather firsthand information of the nation’s space exploration program. The congressional group was composed of members of the Subcommittee on Manned Space Flight. Pictured from left-to-right are Congressman Ken Hechler, Democratic representative of West Virginia; Dieter Grau, MSFC; Congressman John W. Davis, Democratic representative of Georgia; Congressman Joe Waggoner, Democratic representative of Louisiana; Congressman Richard L. Roudebush, Republican representative of Indiana; Congressman R. Walter Riehlman, Republican representative of New York; Congressman James G. Fulton, Republican representative of Pennsylvania; Dr. Wernher von Braun, MSFC; and Congressman Olin E. Teague, Democratic representative of Texas.

  13. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-21

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements.

  14. The 1994 27th Annual NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1995-01-01

    The proceedings of the 27th Annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-17, 1994 are presented. The workshop was attended by representatives from various government agencies, as well as contractors and manufacturers, both U.S. and abroad. The subjects covered included: (1) nickel-cadium; (2) nickel-hydrogen, (3) nickel-metal hydride, and (4) lithium based technologies, as well as flight and ground test data.

  15. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  16. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  17. The 2001 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeff C. (Compiler)

    2002-01-01

    This document contains the proceedings of the 34th annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center, November 27-29, 2001. The workshop was attended by scientists and engineers from various agencies of the US Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind. The subjects covered included nickel-hydrogen, nickel-cadmium, lithium-ion, and silver-zinc technologies.

  18. Around Marshall

    NASA Image and Video Library

    2002-05-22

    Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.

  19. NASA Day in Montgomery, Feb. 22, 2018

    NASA Image and Video Library

    2018-02-22

    Officials from Marshall Space Flight Center discussed the state's role in leading America back to the Moon and on to Mars with elected officials, industry leaders, students and the public during the Aerospace States Association’s Alabama Aerospace Week in Montgomery, Ala. NASA was honored by the Alabama legislature with a resolution and proclamation from Gov. Kay Ivey recognizing the agency's achievements. NASA Trained Alabama Lead Teachers, (LtoR) Jacquelyn Adams, Arlinda Davis,Timothy Johnson,Laura Crowe demonstrate how rocket boosters work.

  20. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Dr. Edward Crawley, Ford Professor of Engineering at MIT and co-chair, NASA Exploration Technology Development Program Review Committee speaks during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)