Sample records for nasal cytochrome p4502a

  1. Cytochrome P4502E1 inhibitor, chlormethiazole, decreases lipopolysaccharide-induced inflammation in rat Kupffer cells with ethanol treatment

    USDA-ARS?s Scientific Manuscript database

    To investigate the role of Cytochrome P4502E1 in sensitizing Kupffer cells to lipopolysaccharide (LPS)-mediated inflammation after ethanol induction. Sprague-Dawley rats were fed a liquid ethanol diet, control diet or ethanol diet supplemented with CYP2E1 inhibitor, chlormethiazole (CMZ), for 4'week...

  2. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs.

    PubMed

    Zamaratskaia, G; Chen, G; Lundström, K

    2006-02-01

    Cytochromes P4502E1 (CYP2E1) and P4502A6 (CYP2A6) catalyse metabolic reactions of skatole and indole metabolism. The objectives of this study were as follows: to evaluate whether activities of CYP2E1 and CYP2A6 in pigs of two live weights (LW) differ between males and females; to investigate whether activities of CYP2E1 and CYP2A6 are affected by hCG stimulation; and to investigate whether the levels of skatole and indole in the liver and the activities of CYP2E1 and CYP2A6 are affected by raw potato starch (RPS). Female pigs expressed higher CYP2A6 activity at 90kg LW, and higher CYP2E1 activity at 115kg LW compared to male pigs. Skatole levels in the liver were higher in male pigs than in female pigs at both LW, whereas indole levels were higher in males only at 115 kg LW. Neither levels of indolic compounds in the liver nor enzyme activities were affected by hCG stimulation. The inclusion of RPS in the diet reduced skatole levels in the liver in both sexes and increased CYP2A6 activity in female pigs. It was concluded that the incidence of boar taint may depend on both skatole amount, which reach the liver, and the activities of enzymes involved in skatole metabolism, which may vary depending on sex, live weight, and diet.

  3. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis

    PubMed Central

    Wong, N A C S; Rae, F; Simpson, K J; Murray, G D; Harrison, D J

    2000-01-01

    Aims—To investigate the associations between the Rsa I, Dra I, and Taq I genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease or to hepatocellular carcinoma. Methods—DNA samples isolated from 61 patients with alcoholic liver disease, 46 patients with hepatocellular carcinoma, and 375 healthy controls were subjected to polymerase chain reaction amplification followed by digestion with the endonucleases Rsa I, Dra I, or Taq I. Meta-analysis was performed using data from previous studies of Rsa I polymorphism and the risk of alcoholic liver disease. Results—No association was found between any of the three polymorphisms and susceptibility to hepatocellular carcinoma. The distributions of Rsa I and Dra I alleles among the patients with alcoholic liver disease were not significantly different from those among the control group. Meta-analysis of this data and previous data concerning Rsa I polymorphism and alcoholic liver disease risk failed to demonstrate any significant association between the two. However, the alcoholic liver disease group in this study showed a significantly lower frequency of the less common Taq I allele compared with the healthy control group (odds ratio, 0.33; 95% confidence interval, 0.12 to 0.78). Conclusions—Possession of the less common Taq I cytochrome p4502E1 allele is associated with reduced susceptibility to alcoholic liver disease. There is no existing evidence that the Taq I polymorphism is directly associated with altered alcohol metabolism, but it might be in linkage disequilibrium with as yet unidentified protective factors. PMID:10889908

  4. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  5. Genetic polymorphism analysis of cytochrome P4502E1 (CYP2E1) in a Chinese Tibetan population

    PubMed Central

    Wang, Li; Ren, Guoxia; Li, Jingjie; Zhu, Linhao; Niu, Fanglin; Yan, Mengdan; Li, Jing; Yuan, Dongya; Jin, Tianbo

    2017-01-01

    Abstract Cytochrome P4502E1 (CYP2E1) gene genetic polymorphisms vary markedly in frequency among different ethnic and racial groups. We studied the genotype distributions and allele frequencies of 3 CYP2E1 polymorphisms: CYP2E1∗1A, CYP2E1∗7A, and CYP2E1∗7C by polymerase chain reaction technique in a sample of 100 healthy subjects representing Tibetan population. The frequencies of CYP2E1∗1A, ∗7A, and ∗7C alleles were 0.705, 0.125, and 0.170, respectively. Compared with other populations, we found that the allele frequencies of the variants −352A>G (rs2070672) and −333A>T (rs2070673) in this Tibetan population have significant differences compared with European-American, African-American, Japanese, Korean, and other different geographic areas in Chinese Han population. Furthermore, the results of protein prediction revealed that the variant 6397G>A (rs61710826) could influence the protein structure and function. These findings in this study would be valuable for pharmacogenetics for drug therapy and drug discovery. However, further studies in larger samples are warranted to confirm our results. PMID:29381998

  6. Limited value of the urinary phenytoin metabolic ratio for the assessment of cytochrome P4502C9 activity in vivo

    PubMed Central

    TASSANEEYAKUL, WICHITTRA; BIRKETT, DONALD J.; PASS, MICHAEL C.; MINERS, JOHN O.

    1996-01-01

    Relationships between the ratio of p-hydroxyphenytoin (p-HPPH), the major metabolite of phenytoin, to unchanged phenytoin excreted in urine (the urinary metabolic ratio or MR) were compared with a number of indices of the metabolic clearances of phenytoin and tolbutamide published previously for seventeen subjects separately administered these known cytochrome P4502C9 (CYP2C9) substrates. Significant correlations (rs=0.50–0.60, P<0.05) were observed between the phenytoin MR, derived from either 0–24 or 24–48 h urine collections, and inverse areas under the plasma unbound concentration-time curves (measured over various time intervals) of phenytoin and with plasma unbound tolbutamide clearance. Significant correlations (rs =0.59–0.74) were also observed between the phenytoin MRs and metabolic unbound clearances for p-hydroxyphenytoin formation. Despite the significant correlations, variability in tolbutamide and phenytoin metabolic clearance parameters tended to account for <50% of the variability in phenytoin MR. Correlations between the renal clearance of phenytoin and the phenytoin MRs suggest that variability in the renal clearance of unchanged drug limits the usefulness of the phenytoin MR for the investigation of factors influencing CYP2C9 activity in vivo. PMID:8971435

  7. Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide.

    PubMed

    Cao, Qi; Mak, Ki M; Lieber, Charles S

    2005-07-01

    Kupffer cells become activated in response to elevated levels of LPS during ethanol feeding, but the role of ethanol in the molecular processes of activation remains unclear. Because cytochrome P4502E1 (CYP2E1) is upregulated in Kupffer cells after ethanol, we hypothesized that this effect primes Kupffer cells, sensitizing them to increase TNF-alpha production in response to LPS. However, cultured Kupffer cells rapidly lose their CYP2E1. This difficulty was overcome by transfecting CYP2E1 to RAW 264.7 macrophages. Macrophages with stable increased CYP2E1 expression (E2) displayed increased levels of CD14/Toll-like receptor 4, NADPH oxidase and H2O2, accompanied by activation of ERK1/2, p38, and NF-kappaB. These increases primed E2 cells, sensitizing them to LPS stimuli, with amplification of LPS signaling, resulting in increased TNF-alpha production. Diphenyleneiodonium, a NADPH oxidase inhibitor, and diallyl sulfide, a CYP2E1 inhibitor, decreased approximately equally H2O2 levels in E2 cells, suggesting that NADPH oxidase and CYP2E1 contribute equally to H2O2 generation. Because CYP2E1 expression also enhanced the levels of the membrane localized NADPH oxidase subunits p47phox and p67phox, thereby contributing to the oxidase activation, it may augment H2O2 generation via this mechanism. H2O2, derived in part from NADPH and CYP2E1, activated ERK1/2 and p38. ERK1/2 stimulated TNF-alpha production via activation of NF-kappaB, whereas p38 promoted TNF-alpha production by stabilizing TNF-alpha mRNA. Oxidant generation after CYP2E1 overexpression appears to be central to macrophage priming and their sensitization to LPS. Accordingly, CYP2E1 priming could explain the sensitization of Kupffer cells to LPS activation by ethanol, a critical early step in alcoholic liver disease.

  8. [Stimulation of human hepatic stellate cells by cytochrome P4502E1-mediated oxidative stress].

    PubMed

    Li, Jing; Liu, Tian-hui; You, Hong; Xu, You-qing; Wang, Chen

    2010-08-01

    To explore the stimulation of human hepatic stellate cells by Cytochrome P4502E1-mediated oxidative stress. HepG2-line was transfected with human CYP2E1 plasmid (HepG2/CYP2E1) and empty plasmid (HepG2/PCI) respectively. The CYP2E1 expression was evaluated with RT-PCR and Western blot. MDA was measured in culture medium of HepG2 cell lines. LX2 was co-incubated with HepG2/CYP2E1, HepG2/PCI and HepG2 respectively. The level of hydroxyproline in culture medium was examined in 48 hours and the cells were lysated and total RNA and protein were extracted. COL-1 and MMP2 mRNA levels were detected by RT-PCR and analyzed semi-quantitatively. PICP proteins were measured by ELISA. Zymography was performed to investigate MMP2 enzymatic activities. (1) MDA from the HepG2 which (HepG2/CYP2E1)express human CYP2E1 (6.51+/-0.25) was significantly higher than that from the HepG2 which do not (HepG2/PCI) express human CYP2E1 (3.07+/-0.29) and HepG2 alone (2.57+/-0.29). (F=22.66, all P<0.01). (2) After co-incubated for 48 hours,the level of hydroxyproline in culture medium (35.24+/-3.52) excreted from CYP2E1/LX2 could significantly increase (F=58.89, P is less than 0.01). PICP protein (540.01+/-11.38) excreted from CYP2E1/LX2 was significantly increased (F=124.97, P<0.01). Zymography showed MMP2 gene expression and enzymatic activities of MMP2 had no difference among the groups (F=0.29, P>0.05) (F=0.33, P>0.05). CYP2E1 derived oxidative stress mediated stimulation of collagen I synthesis by hepatic stellate cells. Hydroxyproline excreted by LX2 was increased by CYP2E1. COL-1mRNA had no difference among the groups (F=0.73, P>0.05).

  9. A novel assay for detecting antibodies to cytochrome P4502D6, the molecular target of liver kidney microsomal antibody type 1.

    PubMed

    Kerkar, N; Ma, Y; Hussain, M; Muratori, L; Targett, C; Williams, R; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1999-03-04

    Liver Kidney Microsomal type 1 (LKM1) antibody, the diagnostic marker of autoimmune hepatitis type 2, is also found in a proportion of patients with hepatitis C virus infection (HCV). It is detected conventionally by the subjective immunofluorescence technique. Our aim was to establish a simple and objective enzyme-linked immunosorbent assay (ELISA) that measures antibodies to cytochrome P4502D6 (CYP2D6), the target of LKM1. An indirect ELISA using eukaryotically expressed CYP2D6 was designed. Absorbance values obtained against a reference microsomal preparation were subtracted from those obtained against a microsomal preparation over-expressing CYP2D6, thus removing the non-CYP2D6-specific reaction. Sera from 51 LKM1 positive patients (21 autoimmune hepatitis and 30 with HCV infection), 111 LKM1 negative patients with chronic liver disease (including 20 with HCV infection) and 43 healthy controls were tested. Of 51 patients positive by immunofluorescence, 48 were also positive by ELISA while all the 154 LKM1 negative subjects were also negative by ELISA. There was a high degree of association between IFL and ELISA as demonstrated by a kappa reliability value of 0.96. The absorbance values by ELISA correlated with immunofluorescence LKM1 titres both in autoimmune hepatitis (r = 0.74, p < 0.001) and HCV infection (r = 0.67, p < 0.001). The simple, objective ELISA described has the potential to replace the standard immunofluorescence technique.

  10. High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats.

    PubMed

    Veeramachaneni, Sudipta; Ausman, Lynne M; Choi, Sang Woon; Russell, Robert M; Wang, Xiang-Dong

    2008-07-01

    Recent in vitro evidence suggests that the antioxidant lycopene can prevent alcohol-induced oxidative stress and inflammation. However, knowledge of possible interactions in vivo between escalating doses of lycopene and chronic alcohol ingestion are lacking. In this study, we investigated potential interactions between alcohol ingestion and lycopene supplementation and their effect on hepatic lycopene concentration, cytochrome P4502E1 (CYP2E1) induction, and inflammation. Fischer 344 rats (6 groups, n = 10 per group) were fed either a liquid ethanol Lieber-DeCarli diet or a control diet (isocaloric maltodextrin substituted for ethanol) with or without lycopene supplementation at 2 doses (1.1 or 3.3 mg x kg body weight(-1) x d(-1)) for 11 wk. Plasma and hepatic concentrations of lycopene isomers were assessed by HPLC analysis. We examined expressions of hepatic CYP2E1 and tumor necrosis factor-alpha (TNFalpha) and the incidence of hepatic inflammatory foci. Both plasma and hepatic lycopene concentrations were greater in alcohol-fed rats than in control rats supplemented with identical doses of lycopene. In contrast, alcohol-fed rats had a lower percentage of lycopene cis isomers in the plasma and the liver compared with control rats fed the same dose of lycopene. Notably, lycopene supplementation at the higher dose significantly induced hepatic CYP2E1 protein, TNFalpha mRNA, and the incidence of inflammatory foci in the alcohol-fed rats but not in the control rats. These data indicate an interaction between chronic alcohol ingestion and lycopene supplementation and suggest a need for caution among individuals consuming high amounts of both alcohol and lycopene.

  11. Identification of a synonymous polymorphism within the cytochrome P4502C9 gene that interferes with identification of the CYP2C9*2 allele.

    PubMed

    Womack, Edward P; Reynolds, Kristen K; Valdes, Roland; Linder, Mark W

    2007-10-01

    Cytochrome P450 2C9 (CYP4502C9) genotyping is useful in dosage adjustments for several critical drug therapies, including warfarin. Potential interference compromising these genotyping results could lead to inappropriate dose adjustments that may result in adverse drug reactions. During routine clinical CYP4502C9 genotyping using multiplex allele-specific primer extension, an ambiguous result was obtained for determination of the CYP2C9 430C>T substitution, which defines the CYP2C9*2 allele. In this one patient sample submitted for CYP2C9 genotyping, the ratio for the variant 430T allele signal to the total signal (C+T alleles) was 0.29. This is above the expected ratio to be classified as wild-type (<0.15) and below the minimum expected ratio (>0.3) when the genotype is heterozygous at the 430 position. The mean fluorescence intensity for the 430C allele was consistent with that observed in subjects who are heterozygous at this nucleotide position. However, the corresponding signal for the 430T allele indicated the absence of the CYP2C9*2 allele. This suggests the assay was not able to determine the correct nucleotide at position 430 for one of the two alleles in this patient. Subsequent sequencing to investigate the allele-specific primer extension failure revealed the presence of a rare C>T nucleotide substitution at position 429. We tested this subject's CYP2C9 genotype using AvaII restriction endonuclease digestion and found that this rare substitution causes false-positive identification of the CYP2C9*2 allele when using this method. We developed a DpnII endonuclease digestion assay to specifically detect the CYP2C9 429C>T substitution and tested 100 randomly selected samples obtained from unrelated individuals. The 429C>T polymorphism was not identified in this sample set, which indicates an allele frequency of less than 2.0% (95% confidence interval, 0.0-1.8%) in the general population. Despite the rarity of this polymorphism, it has important implications

  12. 48 CFR 4.502 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Policy. 4.502 Section 4.502 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Electronic Commerce in Contracting 4.502 Policy. (a) The Federal Government shall use electronic...

  13. Methyl helicterate protects against CCl4-induced liver injury in rats by inhibiting oxidative stress, NF-κB activation, Fas/FasL pathway and cytochrome P4502E1 level.

    PubMed

    Lin, Xing; Huang, Renbin; Zhang, Shijun; Zheng, Li; Wei, Ling; He, Min; Zhou, Yan; Zhuo, Lang; Huang, Quanfang

    2012-10-01

    This study was designed to investigate the protective effects of the methyl helicterate (MH) isolated from Helicteres angustifolia L. against CCl4-induced hepatotoxicities in rats. Liver injury was induced in rats by the administration of CCl4 twice a week for 8 weeks. Compared with the CCl4 group, MH significantly decreased the activities of ALT, AST and ALP in the serum and increased the activities of SOD, GSH-Px and GSH-Rd in the liver. Moreover, the content of hepatic MDA was reduced. Histological findings also confirmed the anti-hepatotoxic characterisation. In addition, MH significantly inhibited the proinflammatory mediators, such as PGE2, iNOS, COX-2, IL-6, TNF-α and myeloperoxidase (MPO). Further investigation showed that the inhibitory effect of MH on the proinflammatory cytokines was associated with the downregulation of NF-κB. Besides, MH also markedly decreased the levels of Fas/FasL protein expression and the activities of caspase-3/8, as well as the activity of cytochrome P4502E1 (CYP2E1). In brief, the protective effect of MH against CCl4-induced hepatic injury may rely on its ability to reduce oxidative stress, suppress inflammatory responses, protect against Fas/FasL-mediated apoptosis and block CYP2El-mediated CCl4 bioactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug-Flow Bioreactors for the Production of Drug Metabolites

    PubMed Central

    Wollenberg, Lance A.; Kabulski, Jarod L.; Powell, Matthew J.; Chen, Jifeng; Flora, Darcy R.; Tracy, Timothy S.; Gannett, Peter M.

    2013-01-01

    Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly (methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug-flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: 1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process. PMID:24166101

  15. Establishment of a novel radioligand assay using eukaryotically expressed cytochrome P4502D6 for the measurement of liver kidney microsomal type 1 antibody in patients with autoimmune hepatitis and hepatitis C virus infection.

    PubMed

    Ma, Y; Gregorio, G; Gäken, J; Muratori, L; Bianchi, F B; Mieli-Vergani, G; Vergani, D

    1997-06-01

    Liver kidney microsomal type 1 antibody (LKM1) is the diagnostic marker of autoimmune hepatitis (AIH) type 2 and is also found in patients with hepatitis C virus (HCV) infection. Cytochrome P4502D6 (CYP2D6) is the documented target antigen of LKM1 in AIH, but not in HCV infection. To compare the reactivity in the two conditions, we established a radioligand assay using eukaryotically expressed CYP2D6 as target. A 1.2-kb human CYP2D6 cDNA was isolated from a human liver cDNA library and subcloned into an in vitro transcription vector pSP64 Poly(A). Recombinant CYP2D6 was then produced by in vitro transcription/translation, metabolically labelled with 35S methionine and used in the immunoprecipitation assay. Antibodies that bound radiolabelled CYP2D6 were immunoprecipitated and their levels assessed as cpm. Sera from 50 LKM1-positive patients (26 with AIH; 24 with HCV infection), 128 LKM1-negative patients and 57 normal controls were tested. Reactivity to 35S labelled CYP2D6 was observed in all LKM1-positive sera from patients with AIH and HCV infection, but in none of the controls. The cpm in both conditions were significantly higher than in normal controls (p<0.0001), and were correlated with the immunofluorescence titres of LKM1 (r 0.87, p<0.001 and r=0.64, p<0.001 for AIH and HCV infection, respectively). Reactivity to 35S labelled CYP2D6 was inhibited by addition of an excess of eukaryotically expressed CYP2D6. CYP2D6 is a major target antigen of both AIH and HCV infection. The novel radioligand assay is highly sensitive and specific.

  16. [Correlation of polymorphisms of adiponectin receptor 2 gene +33371Gln/Arg, cytochrome P4502E1 gene Rsa I and smoking with nonalcoholic fatty liver disease].

    PubMed

    Zhang, Chaoxian; Guo, Like

    2014-10-01

    To investigate the correlation of the polymorphisms of adiponectin receptor 2 (AdipoR2) gene +33371Gln/;Arg and cytochromes P4502E1 gene Rsa I (CYP2E1-Rsa I) as well as smoking with nonalcoholic fatty liver disease (NAFLD). The polymorphisms of AdipoR2 gene +33371Gln/Arg and CYP2E1-Rsa I were analyzed with PCR technique in peripheral blood leukocytes from 750 NAFLD cases and 750 healthy subjects. The frequencies of AdipoR2 gene +33371Gln/Arg (A/A) and CYP2E1-Rsa I (c2/c2 ) were 39.20% and 71.73% in NAFLD cases, respectively, significantly higher than those in healthy subjects (21.07% and 43.07%, respectively, P<0.01). The risk of NAFLD increased significantly in subjects carrying +33371Gln/Arg (A/A) (OR=2.4156, 95% CI=1.8164-4.0725) and CYP2E1-Rsa I (c2/c2) (OR=3.3547, 95% CI=1.9182-4.5057). Combined analysis of the polymorphisms showed that the percentage of +33371Gln/Arg (A/A)/CYP2E1-Rsa I (c2/c2) was 32. 67% in NAFLD cases, significantly higher than that in the healthy subjects (6.40%, P<0.01), and subjects carrying both +33371Gln/Arg (A/A) and CYP2E1-Rsa I (c2/c2) had a high risk of NAFLD (OR=9.9264, 95% CI=4.2928-12.4241). The smoking rate was significantly higher in the case group than in the control group (OR=2.5919, 95% CI=1.4194-4. 9527, P<0.01), and statistical analysis suggested an interaction between smoking and +33371Gln/Arg (A/A)/CYP2E1-Rsa I (c2/c2) to increase the risk of NAFLD (OR=34.6764, 95% CI=18.9076-61.5825). +33371Gln/Arg (A/A), CYP2E1-Rsa I (c2/c2 ) and smoking are risk factors for NAFLD and coordinately contribute to the occurrence of NAFLD.

  17. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  18. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  19. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  20. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  1. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  2. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  3. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  4. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  5. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  6. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  7. Cytochrome P4502D6(193-212): a new immunodominant epitope and target of virus/self cross-reactivity in liver kidney microsomal autoantibody type 1-positive liver disease.

    PubMed

    Kerkar, Nanda; Choudhuri, Kaushik; Ma, Yun; Mahmoud, Ayman; Bogdanos, Dimitrios P; Muratori, Luigi; Bianchi, Francesco; Williams, Roger; Mieli-Vergani, Giorgina; Vergani, Diego

    2003-02-01

    Cytochrome P4502D6 (CYP2D6), target of liver kidney microsomal autoantibody type 1 (LKM1), characterizes autoimmune hepatitis type 2 (AIH2) but is also found in patients with chronic hepatitis C virus (HCV) infection. To provide a complete linear epitope B cell map of CYP2D6, we tested peptides spanning the entire sequence of CYP2D6. In addition to confirming previously described antigenic sites, we identified four new epitopes (193-212, 238-257, 268-287, and 478-497). CYP2D6(193-212) is immunodominant and was the target of 12 of 13 (93%) patients with AIH2 and 5 of 10 (50%) HCV/LKM1-positive patients. Because LKM1 is present in both AIH2 and a viral infection, we tested whether Abs to CYP2D6(193-212) arise through cross-reactive immunity between virus and self. We identified a hexameric sequence "RLLDLA" sharing 5 of 6 aa with "RLLDLS" of HCV(2985-2990) and all 6 aa with CMV(130-135). Of 17 CYP2D6(193-212)-reactive sera, 11 (7 AIH and 4 HCV) reacted by ELISA with the HCV homologue, 8 (5 AIH and 3 HCV) with the CMV homologue, and 8 (5 AIH and 3 HCV) showed double reactivity. Autoantibody binding to CYP2D6(193-212) was inhibited by preincubation with HCV(2977-2996) or CMV(121-140). Recombinant HCV-nonstructural protein 5 and CMV-UL98 proteins also inhibited Ab binding to CYP2D6(193-212). Affinity-purified CYP2D6(193-212)-specific Ab inhibited the metabolic activity of CYP2D6. The demonstrated similarity and cross-reactivity between CYP2D6(193-212) and two unrelated viruses suggests that multiple exposure to viruses mimicking self may represent an important pathway to the development of autoimmunity.

  8. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  9. Inhibition of human cytochrome P450 2E1 and 2A6 by aldehydes: structure and activity relationships.

    PubMed

    Kandagatla, Suneel K; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M

    2014-08-05

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ± 0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ± 1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5-12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8 ± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0 ± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Inhibition of human Cytochrome P450 2E1 and 2A6 by aldehydes: Structure and activity relationships

    PubMed Central

    Kandagatla, Suneel K.; Mack, Todd; Simpson, Sean; Sollenberger, Jill; Helton, Eric; Raner, Gregory M.

    2014-01-01

    The purpose of this study was to probe active site structure and dynamics of human cytochrome P4502E1 and P4502A6 using a series of related short chain fatty aldehydes. Binding efficiency of the aldehydes was monitored via their ability to inhibit the binding and activation of the probe substrates p-nitrophenol (2E1) and coumarin (2A6). Oxidation of the aldehydes was observed in reactions with individually expressed 2E1, but not 2A6, suggesting alternate binding modes. For saturated aldehydes the optimum chain length for inhibition of 2E1 was 9 carbons (KI=7.8 ±0.3 μM), whereas for 2A6 heptanal was most potent (KI=15.8 ±1.1 μM). A double bond in the 2-position of the aldehyde significantly decreased the observed KI relative to the corresponding saturated compound in most cases. A clear difference in the effect of the double bond was observed between the two isoforms. With 2E1, the double bond appeared to remove steric constraints on aldehyde binding with KI values for the 5–12 carbon compounds ranging between 2.6 ± 0.1 μM and 12.8± 0.5 μM, whereas steric effects remained the dominant factor in the binding of the unsaturated aldehydes to 2A6 (observed KI values between 7.0± 0.5 μM and >1000 μM). The aldehyde function was essential for effective inhibition, as the corresponding carboxylic acids had very little effect on enzyme activity over the same range of concentrations, and branching at the 3-position of the aldehydes increased the corresponding KI value in all cases examined. The results suggest that a conjugated π-system may be a key structural determinant in the binding of these compounds to both enzymes, and may also be an important feature for the expansion of the active site volume in 2E1. PMID:24924949

  11. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach.

    PubMed Central

    Bogdanffy, M S

    1990-01-01

    An increasing number of chemicals have been identified as being toxic to the nasal mucosa of rats. While many chemicals exert their effects only after inhalation exposure, others are toxic following systemic administration, suggesting that factors other than direct deposition on the nasal mucosa may be important in mechanisms of nasal toxicity. The mucosal lining of the nasal cavity consists of a heterogeneous population of ciliated and nonciliated cells, secretory cells, sensory cells, and glandular and other cell types. For chemicals that are metabolized in the nasal mucosa, the balance between metabolic activation and detoxication within a cell type may be a key factor in determining whether that cell type will be a target for toxicity. Recent research in the area of xenobiotic metabolism in nasal mucosa has demonstrated the presence of many enzymes previously described in other tissues. In particular, carboxylesterase, aldehyde dehydrogenase, cytochromes P-450, epoxide hydrolase, and glutathione S-transferases have been localized by histochemical techniques. The distribution of these enzymes appears to be cell-type-specific and the presence of the enzyme may predispose particular cell types to enhanced susceptibility or resistance to chemical-induced injury. This paper reviews the distribution of these enzymes within the nasal mucosa in the context of their contribution to xenobiotic metabolism. The localization of the enzymes by histochemical techniques has provided important information on the potential mechanism of action of esters, aldehydes, and cytochrome P-450 substrates known to injure the nasal mucosa. Images PLATE 1. PLATE 2. PLATE 3. PMID:2200661

  12. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  13. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    PubMed

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  14. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  15. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

    PubMed

    Papa, S; Lorusso, M; Izzo, G; Capuano, F

    1981-02-15

    1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi

  16. 48 CFR 4.502 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATTERS Electronic Commerce in Contracting 4.502 Policy. (a) The Federal Government shall use electronic commerce whenever practicable or cost-effective. The use of terms commonly associated with paper transactions (e.g., “copy,” “document,” “page,” “printed,” “sealed envelope,” and “stamped”) shall not be...

  17. Cytochrome P450-mediated metabolism of vitamin D

    PubMed Central

    Jones, Glenville; Prosser, David E.; Kaufmann, Martin

    2014-01-01

    The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field. PMID:23564710

  18. Engineering of a functional human NADH-dependent cytochrome P450 system

    PubMed Central

    Döhr, Olaf; Paine, Mark J. I.; Friedberg, Thomas; Roberts, Gordon C. K.; Wolf, C. Roland

    2001-01-01

    A functional human NADH-dependent cytochrome P450 system has been developed by altering the cofactor preference of human NADPH cytochrome P450 reductase (CPR), the redox partner for P450s. This has been achieved by a single amino acid change of the conserved aromatic amino acid Trp-676, which covers the re-side of the FAD isoalloxazine ring in the nicotinamide-binding site. Of the mutations made, the substitution of Trp-676 with alanine (W676A) resulted in a functional NADH-dependent enzyme, which catalyzed the reduction of cytochrome c and ferricyanide as well as facilitated the metabolism of 7-ethoxyresorufin by CYP1A2. Kinetic analysis measuring cytochrome c activity revealed that the NADH-dependent kcat of W676A is equivalent (90%) to the NADPH-dependent kcat of the wild-type enzyme, with W676A having an approximately 1,000-fold higher specificity for NADH. The apparent KMNADPH and KMNADH values of W676A are 80- and 150-fold decreased, respectively. In accordance with structural data, which show a bipartite binding mode of NADPH, substitution of Trp-676 does not affect 2′-AMP binding as seen by the inhibition of both wild-type CPR and the W676A mutant. Furthermore, NADPH was a potent inhibitor of the W676A NADH-dependent cytochrome c reduction and CYP1A2 activity. Overall, the results show that Trp-676 of human CPR plays a major role in cofactor discrimination, and substitution of this conserved aromatic residue with alanine results in an efficient NADH-dependent cytochrome P450 system. PMID:11136248

  19. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... P450 (CYP450) tests Overview Your doctor may use cytochrome P450 (CYP450) tests to help determine how your body processes (metabolizes) a drug. The human body contains P450 enzymes to process medications. Because of inherited (genetic) traits ...

  20. Use of high doses of quetiapine in bipolar disorder episodes are not linked to high activity of cytochrome P4503A4 and/or cytochrome P4502D6.

    PubMed

    Khazaal, Yasser; Preisig, Martin; Chatton, Anne; Kaufmann, Nadine; Bilancioni, Romain; Eap, Chin B

    2013-09-01

    The use of quetiapine for treatment of bipolar disorders at a higher dosage than the licensed range is not unusual in clinical practice. Quetiapine is predominantly metabolised by cytochrome P450 3A4 (CYP3A4) and to a lesser extent by CYP2D6. The large interindividual variability of those isozyme activities could contribute to the variability observed in quetiapine dosage. The aim of the present study is to evaluate if the use of high dosages of quetiapine in some patients, as compared to patients treated with a dosage in the licensed range (up to 800 mg/day), could be explained by a high activity of CYP3A4 and/or of CYP2D6. CYP3A4 activities were determined using the midazolam metabolic ratio in 21 bipolar and schizoaffective bipolar patients genotyped for CYP2D6. 9 patients were treated with a high quetiapine dosage (mean ± SD, median; range: 1467 ± 625, 1200; 1000-3000 mg/day) and 11 with a normal quetiapine dosage (433 ± 274, 350; 100-800 mg/day). One patient in the high dose and one patient in the normal dose groups were genotyped as CYP2D6 ultrarapid metabolizers. CYP3A4 activities were not significantly different between the two groups (midazolam metabolic ratio: 9.4 ± 8.2; 6.2; 1.7-26.8 vs 3.9 ± 2.3; 3.8; 1.5-7.6, in the normal dose group as compared to the high dose group, respectively, NS). The use of high quetiapine dosage for the patients included in the present study cannot be explained by variations in pharmacokinetics parameters such as a high activity of CYP3A4 and/or of CYP2D6.

  1. Cytochrome P460 Genes from the Methanotroph Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; Hooper, Alan B.; DiSpirito, Alan A.

    1998-01-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID

  2. The expression of 11β-hydroxysteroid dehydrogenase type 1 and 2 in nasal polyp-derived epithelial cells and its possible contribution to glucocorticoid activation in nasal polyp.

    PubMed

    Kook, Jin Ho; Kim, Hyun Jin; Kim, Kyung Won; Park, Se Jin; Kim, Tae Hoon; Lim, Sae Hee; Kang, Sung Hoon; Lee, Sang Hag

    2015-01-01

    The actions of glucocorticoids in target tissues depend on the local metabolism of glucocorticoids catalyzed by 11β hydroxysteroid dehydrogenase (HSD) 1 and 2. Glucocorticoids are the most effective anti-inflammatory drugs in the treatment of nasal polyps. However, the mechanisms that underlie the anti-inflammatory effects are unclear. The present study analyzed the expression of 11β-HSD1, 11β-HSD2, and steroidogenic enzymes (cytochrome P450, family 11, subfamily B, polypeptide 1 [CYP11B1]; cytochrome P450, family 11, subfamily A, polypeptide 1 [CYP11A1]) in nasal polyp tissues, and endogenous cortisol levels in nasal polyp-derived epithelial cells. The expression levels and distribution pattern of 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1 were determined in nasal polyp tissues or nasal polyp-derived epithelial cells by using real-time polymerase chain reaction, Western blot, and immunohistochemistry testing. The expression levels of cortisol by using enzyme-linked immunosorbent assay were determined in cultured polyp-derived epithelial cells treated with adrenocorticotrophic hormone (ACTH), 11β-HSD1 inhibitor, or small interfering ribonucleic acid technique. The effect of glucocorticoids on the expression levels of these enzymes was investigated in cultured cells. Expressed in nasal polyp tissues and nasal polyp-derived epithelial cells were 11β-HSD1, 11β-HSD2, CYP11B1, and CYP11A1. Cortisol production in cultured epithelial cells was decreased in cells treated with 11β-HSD1 small interfering ribonucleic acid or inhibitor, compared with nontreated cells. Cultured cells treated with adrenocorticotropic hormone induced increased cortisol production. 11β-HSD1 expression levels were upregulated in cells treated with glucocorticoid. Analysis of these results indicated that 11β-HSD1 expressed in polyp-derived epithelial cells may be involved in the anti-inflammatory function of glucocorticoid in the treatment of nasal polyps, which contributes to increased

  3. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  4. Normal gene expression in male F344 rat nasal transitional and respiratory epithelium.

    PubMed

    Hester, Susan D; Benavides, Gina B; Sartor, Maureen; Yoon, Lawrence; Wolf, Douglas C; Morgan, Kevin T

    2002-02-20

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Cells lining the rat nasal passages were collected and gene expression analysis was performed using Clontech cDNA Rat Atlas 1.2 arrays (1185 genes). The percentages of genes within specific average expression ranges were 4.2% at 45,000-1000, 14.8% at 1000-200, 25.0% at 200-68, and 56.0% below 68. Nine out of a subset of ten genes were confirmed for relative signal intensity using quantitative real-time RT-PCR. The most highly expressed genes included those involved in phase I (e.g. cytochrome P450s) and phase II (e.g. glutathione S-transferases) xenobiotic metabolism, bioenergetics (e.g. cytochrome oxidase), osmotic balance (e.g. Na(+)/K(+) ATPase) and epithelial ionic homeostasis (e.g. ion channels). Such baseline data will contribute to further understanding the normal physiology of these cells and facilitate the interpretation of responses by the nasal epithelial cells to xenobiotic treatment or disease.

  5. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  6. Cytochrome P450 3A4 activity after surgical stress.

    PubMed

    Haas, Curtis E; Kaufman, David C; Jones, Carolyn E; Burstein, Aaron H; Reiss, William

    2003-05-01

    To evaluate the relationship between the acute inflammatory response after surgical trauma and changes in hepatic cytochrome P450 3A4 activity, compare changes in cytochrome P450 3A4 activity after procedures with varying degrees of surgical stress, and to explore the time course of any potential drug-cytokine interaction after surgery. Prospective, open-label study with each patient serving as his or her own control. University-affiliated, acute care, general hospital. A total of 16 patients scheduled for elective repair of an abdominal aortic aneurysm (n = 5), complete or partial colectomy (n = 6), or peripheral vascular surgery with graft (n = 5). Cytochrome P450 3A4 activity was estimated using the carbon-14 [14C]erythromycin breath test (ERMBT) before surgery and 24, 48, and 72 hrs after surgery. Abdominal aortic aneurysm and colectomy patients also had an ERMBT performed at discharge. Blood samples were obtained before surgery, immediately after surgery, and 6, 24, 32, 48, and 72 hrs after surgery for determination of plasma concentrations of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha. Clinical markers of surgical stress that were collected included duration of surgery, estimated blood loss, and volume of fluids administered in the operating room. ERMBT results significantly declined in all three surgical groups, with the lowest value at the time of the 72-hr study in all three groups. There was a trend toward differences in ERMBT results among groups that did not reach statistical significance (p =.06). The nadir ERMBT result was significantly and negatively correlated with both peak interleukin-6 concentration (r(s) = -.541, p =.03) and log interleukin-6 area under the curve from 0 to 72 hrs (r(s) = -.597, p =.014). Subjects with a peak interleukin-6 of >100 pg/mL had a significantly lower nadir ERMBT compared with subjects with a peak interleukin-6 of <100 pg/mL (35.5% +/- 5.2% vs. 74.7% +/- 5.1%, p <.001). Acute inflammation after

  7. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland

    2008-11-14

    In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.

  8. Bioactivation of the Cancer Chemopreventive Agent Tamoxifen to Quinone Methides by Cytochrome P4502B6 and Identification of the Modified Residue on the Apoprotein

    PubMed Central

    Sridar, Chitra; D'Agostino, Jaime

    2012-01-01

    The nonsteroidal antiestrogen tamoxifen was introduced as a treatment for breast cancer 3 decades ago. It has also been approved as a chemopreventive agent and is prescribed to women at high risk for this disease. However, several studies have shown that use of tamoxifen leads to increased risk of endometrial cancer in humans. One potential pathway of tamoxifen toxicity could involve metabolism via hydroxylation to give 4-hydroxytamoxifen (4OHtam), which may be further oxidized to form a quinone methide. CYP2B6 is a highly polymorphic drug-metabolizing enzyme, and it metabolizes a number of clinically important drugs. Earlier studies from our laboratory have shown that tamoxifen is a mechanism-based inactivator of CYP2B6. The aim of the current study was to investigate the possible formation of reactive intermediates through detection of protein covalent binding and glutathione ethyl ester adduct (GSHEE) formation. The incubation of tamoxifen with 2B6 gave rise to an adduct of 4OHtam with glutathione, which was characterized as the 4OHtam quinone methide + GSHEE with an m/z value of 719, and the structure was characterized by liquid chromatography-tandem mass spectrometry. The metabolic activation of tamoxifen in the CYP2B6 reconstituted system also resulted in the formation of an adduct to the P4502B6 apoprotein, which was identified using liquid chromatography mass spectrometry. The site responsible for the inactivation of CYP2B6 was determined by proteolytic digestion and identification of the labeled peptide. This revealed a tryptic peptide 188FHYQDQE194 with the site of adduct formation localized to Gln193 as the site modified by the reactive metabolite formed during tamoxifen metabolism. PMID:22942317

  9. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  10. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  11. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    PubMed

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  12. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  13. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  14. Substance P and neurokinin A in human nasal mucosa.

    PubMed

    Baraniuk, J N; Lundgren, J D; Okayama, M; Goff, J; Mullol, J; Merida, M; Shelhamer, J H; Kaliner, M A

    1991-03-01

    The tachykinins substance P (SP) and neurokinin A (NKA) were studied in human inferior turbinate nasal mucosa by radioimmunoassay, immunohistochemistry, and autoradiography and for their effect upon mucus release in an in vitro culture system in order to infer their potential functions in the upper respiratory tract. Similar amounts of SP (1.03 +/- 0.12 pmol/g wet weight; mean +/- SEM; n = 26) and NKA (0.76 +/- 0.23; n = 7) were found. NKA and SP immunoreactive nerve fibers were found in the walls of arterioles, venules, and sinusoids and as individual fibers in gland acini, near the basement membrane, and in the epithelium. [125I]SP bound to arterioles, venules, and glands. [125I]NKA bound only to arterioles. In short-term explant culture of fragments of human nasal mucosa, both 1 microM SP and 1 microM NKA stimulated release of [3H]glucosamine-labeled respiratory glycoconjugates. These results indicate that SP and NKA have similar distributions in nociceptive sensory nerves in human nasal mucosa. The distribution of [125I]SP binding sites is consistent with a role for SP as a vasodilator and mucous secretagogue. The presence of [125I] NKA binding sites on vessels suggests a primary role for NKA in regulating vasomotor tone.

  15. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  16. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.

    PubMed

    Henderson, Colin J; Otto, Diana M E; Carrie, Dianne; Magnuson, Mark A; McLaren, Aileen W; Rosewell, Ian; Wolf, C Roland

    2003-04-11

    Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of a large number of endogenous compounds and the majority of ingested environmental chemicals, leading to their elimination and often to their metabolic activation to toxic products. This enzyme system therefore provides our primary defense against xenobiotics and is a major determinant in the therapeutic efficacy of pharmacological agents. To evaluate the importance of hepatic P450s in normal homeostasis, drug pharmacology, and chemical toxicity, we have conditionally deleted the essential electron transfer protein, NADH:ferrihemoprotein reductase (EC, cytochrome P450 reductase, CPR) in the liver, resulting in essentially complete ablation of hepatic microsomal P450 activity. Hepatic CPR-null mice could no longer break down cholesterol because of their inability to produce bile acids, and whereas hepatic lipid levels were significantly increased, circulating levels of cholesterol and triglycerides were severely reduced. Loss of hepatic P450 activity resulted in a 5-fold increase in P450 protein, indicating the existence of a negative feedback pathway regulating P450 expression. Profound changes in the in vivo metabolism of pentobarbital and acetaminophen indicated that extrahepatic metabolism does not play a major role in the disposition of these compounds. Hepatic CPR-null mice developed normally and were able to breed, indicating that hepatic microsomal P450-mediated steroid hormone metabolism is not essential for fertility, demonstrating that a major evolutionary role for hepatic P450s is to protect mammals from their environment.

  17. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  18. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  19. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  20. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  1. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  2. An Isotopic Labelling Strategy to Study Cytochrome P450 Oxidations of Terpenes.

    PubMed

    Rinkel, Jan; Litzenburger, Martin; Bernhardt, Rita; Dickschat, Jeroen Sidney

    2018-04-26

    The cytochrome P450 monooxygenase CYP267B1 from Sorangium cellulosum was applied for enzymatic oxidation of the sesquiterpene alcohols T-muurolol and isodauc-8-en-11-ol. Various isotopically labelled geranyl and farnesyl diphosphates were used for product identification from micro-scale reactions, for determination of the absolute configurations of unknown compounds, to follow the stereochemical course of a cytochrome P450-catalysed hydroxylation step, and to investigate kinetic isotope effects. Overall, this study demonstrates that isotopically labelled terpene precursors are highly useful to follow cytochrome P450 dependent oxidations of terpenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  4. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone

  5. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  6. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    PubMed

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  7. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  8. Identification of human cytochrome P450s as autoantigens.

    PubMed

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  9. Nasal deposition of ciclesonide nasal aerosol and mometasone aqueous nasal spray in allergic rhinitis patients.

    PubMed

    Emanuel, Ivor A; Blaiss, Michael S; Meltzer, Eli O; Evans, Philip; Connor, Alyson

    2014-01-01

    Sensory attributes of intranasal corticosteroids, such as rundown to the back of the throat, may influence patient treatment preferences. This study compares the nasal deposition and nasal retention of a radiolabeled solution of ciclesonide nasal aerosol (CIC-hydrofluoroalkane [HFA]) with a radiolabeled suspension of mometasone furoate monohydrate aqueous nasal spray (MFNS) in subjects with either perennial allergic rhinitis (AR) or seasonal AR. In this open-label, single-dose, randomized, crossover scintigraphy study, 14 subjects with symptomatic AR received a single dose of radiolabeled 74-μg CIC-HFA (37 μg/spray, 1 spray/each nostril) via a nasal metered-dose inhaler or a single dose of radiolabeled 200-μg MFNS (50 μg/spray, 2 sprays/each nostril), with a minimum 5-day washout period between treatments. Initial deposition (2 minutes postdose) of radiolabeled CIC-HFA and MFNS in the nasal cavity, nasopharynx, and on nasal wipes, and retention of radioactivity in the nasal cavity and nasal run-out on nasal wipes at 2, 4, 6, 8, and 10 minutes postdose were quantified with scintigraphy. At 2 and 10 minutes postdose, deposition of radiolabeled CIC-HFA was significantly higher in the nasal cavity versus radiolabeled MFNS (99.42% versus 86.50% at 2 minutes, p = 0.0046; and 81.10% versus 54.31% at 10 minutes, p < 0.0001, respectively; p values unadjusted for multiplicity). Deposition of radioactivity on nasal wipes was significantly higher with MFNS versus CIC-HFA at all five time points, and posterior losses of radiolabeled formulation were significantly higher with MFNS at 6, 8, and 10 minutes postdose. In this scintigraphic study, significantly higher nasal deposition and retention of radiolabeled aerosol CIC-HFA were observed versus radiolabeled aqueous MFNS in subjects with AR.

  10. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed Central

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-01-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative. Images PMID:3186722

  11. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    PubMed

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  12. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  13. Evaluation of polyvinylidene fluoride nasal sensor to assess deviated nasal septum in comparision with peak nasal inspiratory flow measurements.

    PubMed

    Manjunatha, Roopa G; Rajanna, K; Mahapatra, D Roy; Prakash, Surya

    2014-01-01

    Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.

  14. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  15. A complex of cardiac cytochrome c1 and cytochrome c.

    PubMed

    Chiang, Y L; Kaminsky, L S; King, T E

    1976-01-10

    The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of

  16. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  17. Effects of thalidomide, cytochrome P-450 and TNF-alpha on angiogenesis in a three-dimensional collagen gel-culture.

    PubMed

    Fujita, Keiko; Asami, Yoshiko; Murata, Eiko; Akita, Masumi; Kaneko, Katsuji

    2002-10-01

    The anti-angiogenic effects of thalidomide were examined in mouse aortae grown in a three-dimensional collagen gel-culture. In our in vitro model, (+/-)-thalidomide and (-)-thalidomide exhibited no anti-angiogenic effects. On the other hand, when the culture was treated with thalidomide plus cytochrome P-450, both types of thalidomides significantly inhibited angiogenesis. Co-administration of 100 microg/ml thalidomide plus 200 microg/ml cytochrome P-450 inhibited angiogenesis more strongly than thalidomide plus cytochrome P-450 at other concentrations (10 microg/ml + 200 microg/ml and 100 microg/ml + 20 microg/ml). To study the relation between the anti-angiogenic effect and TNF-alpha, we also evaluated the concentration of TNF-alpha in the culture medium. We found that the concentration of TNF-alpha was correlated to the strength of the anti-angiogenic effect. The inhibition of angiogenesis by thalidomide and cytochrome P-450 takes place through a suppression of TNF-alpha and involves the metabolism of the thalidomide.

  18. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    PubMed

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2018-01-01

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cytochrome P4501A immunoassay in freshwater turtles and exposure to PCBs and environmental pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yawetz, A.; Benedek-Segal, M.; Woodin, B.

    1997-09-01

    This is the result of a comparative study of cytochrome P4501A (CYP1A) induction in liver microsomes from three species of freshwater turtles. CYP1A induction in turtle hepatic microsomes was compared to CYP1A induction in microsomes from the alligator. Alligator mississippiensis. Treatment of two species of freshwater turtles with four consecutive intraperitoneal injections of 100 mg/kg Aroclor 1254 caused a four- to five-fold increase in P4501A in hepatic microsomes of Chrysemys picta picta and Chrysemys picta elegans. The same treatment administered to another freshwater turtle, Mauremys caspica rivulata, resulted in a very low but significant (p < 0.01) induction of P4501Amore » in hepatic microsomes. Specimens of M. caspica rivulata collected from an organic waste oxidation pond near the petrochemical industry area of the city of Ashdod exhibited normal levels of total hepatic microsomal cytochrome P450 but no detectable level of induction of cytochrome P4501A. The lack of P4501A1 induction could have resulted from two possible reasons. The first possibility is that the turtles were not exposed to residues of petrochemical waste in the pond. More likely, the apparent lack of induction resulted from the low response to CYP1A inducers found in this species. Induction of cytochrome P4501A was evaluated immunohistochemically in liver tissue of C. picta picta pretreated with Aroclor 1254 or 3,3{prime},4,4{prime}-tetrachlorobiphenyl. The most intensive staining was exhibited by sections of liver from a 3,3{prime},4,4{prime}-tetrachlorobiphenyl-treated turtle. Staining of P4501A in liver sections from Aroclor 1254-treated turtles was relatively moderate. In induced turtles, staining of the hepatocytes concentrated near the cell membranes and nuclear membranes, but stained granules were observed throughout the cytoplasm. The presence of inducible CYP1A enzymes in turtles is of importance from an evolutionary point of view and has potential ecological relevance.« less

  1. 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.L.; Acebo, A.L.; Alworth, W.L.

    The preparation of 1-ethynylpyrene (EP) by incubation of EP with liver microsomes in the presence of NADPH yields fluorescent products briefly. Addition of microsomes restores the original rate. The metabolism of EP is initially more rapid in microsomes from 5,6-benzoflavone- (BF) pretreated rats than in those from phenobarbital (PB) pretreated rats or controls. Ep inhibits the hydroxylation of benzo(a)pyrene (BP) by liver microsomes. Ep more effectively inhibits the oxidation of BP in liver microsomes from BF rats than from PB rats or from controls. The inhibition of BP hydroxylation activity due to EP is dependent upon NADPH and is apparentlymore » irreversible. Kinetic analyses show that the inhibition of BP hydroxylation is due to loss of the activity by a process that is first order in EP and that reaches a limiting value at infinite EP concentrations. A self-catalyzed inhibition of the cytochrome P-450 dependent BP hydroxylation may occur in the presence of EP. Incubation with EP under conditions that result in loss of BP hydroxylase activity in microsomes from BF rats and 66% of the activity from PB rats causes the loss of 6 and 12% of the cytochrome P-450, respectively. Thus the loss of P-450 content is an insensitive measure of the effect of this inhibitor upon this cytochrome P-450 dependent enzyme activity. Selectivity of the loss of P-450 due to the incubation of the different microsomal preparations with EP is observed to be different than the selectivity for loss of BP hydroxylase activity. It is proposed that the inhibition of cytochrome P-450 dependent enzymes by alkynes need not involve heme alkylation and a resulting loss of P-450 content. In vivo EP does not cause a significant change in the cytochrome P-450 content in the microsomes isolated, or result in the change in BP hydroxylation.« less

  2. Complexation of cytochrome P-450 isozymes in hepatic microsomes from SKF 525-A-induced rats.

    PubMed

    Murray, M

    1988-05-01

    Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear

  3. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  4. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  5. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

    PubMed

    Hayano, Satoru; Komatsu, Yoshihiro; Pan, Haichun; Mishina, Yuji

    2015-04-01

    Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  6. Molecular Changes in the Nasal Cavity after N,N-Dimethyl-p-toluidine Exposure

    PubMed Central

    Dunnick, June K.; Merrick, B. Alex; Brix, Amy; Morgan, Daniel L.; Gerrish, Kevin; Wang, Yu; Flake, Gordon; Foley, Julie; Shockley, Keith R.

    2016-01-01

    N,N-Dimethyl-p-toluidine (DMPT) (Cas No. 99-97-8), an accelerant for methyl methacrylate monomers in medical devices, is a nasal cavity carcinogen in a 2-year cancer study in male and female F344/N rats, with the nasal tumors arising from the transitional cell epithelium. In this study we exposed male F344/N rats for five days to DMPT (0, 1, 6, 20, 60 or 120 mg/kg (oral gavage)) to explore early changes in the nasal cavity after short-term exposure. Lesions occurred in the nasal cavity including hyperplasia of transitional cell epithelium (60 and 120 mg/kg). Nasal tissue was rapidly removed and preserved for subsequent laser capture microdissection and isolation of the transitional cell epithelium (0 and 120 mg/kg) for transcriptomic studies. DMPT transitional cell epithelium gene transcript patterns were characteristic of an anti-oxidative damage response (e.g. Akr7a3, Maff, Mgst3), cell proliferation, and decrease in signals for apoptosis. Amino acid transporters transcripts were upregulated (e. g, Slc7a11). The DMPT nasal transcript expression pattern was similar to that found in the rat nasal cavity after formaldehyde exposure with over 1000 transcripts in common. Molecular changes in the nasal cavity after DMPT exposure suggest that oxidative damage is a mechanism for the DMPT toxic and/or carcinogenic effects. PMID:27099258

  7. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  8. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    PubMed

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  9. Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.

    PubMed

    Rydzewski, J; Nowak, W

    2017-08-10

    Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.

  10. Electron transfer between cytochrome. alpha. and copper A in cytochrome c oxidase: A perturbed equilibrium study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, J.E.; Li, P.M.; Jang, D.J.

    1989-08-22

    Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. The authors have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 {plus minus} 2,000 s{sup {minus}1} (1more » {sigma}), at pH 7.0 and 25.5{degree}C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome {alpha} and copper A is far faster than any rate measured or inferred previously for this process.« less

  11. Validation of polyvinylidene fluoride nasal sensor to assess nasal obstruction in comparison with subjective technique.

    PubMed

    Roopa Manjunatha, G; Mahapatra, D Roy; Prakash, Surya; Rajanna, K

    2015-01-01

    The aim of this study is to validate the applicability of the PolyVinyliDene Fluoride (PVDF) nasal sensor to assess the nasal airflow, in healthy subjects and patients with nasal obstruction and to correlate the results with the score of Visual Analogue Scale (VAS). PVDF nasal sensor and VAS measurements were carried out in 50 subjects (25-healthy subjects and 25 patients). The VAS score of nasal obstruction and peak-to-peak amplitude (Vp-p) of nasal cycle measured by PVDF nasal sensors were analyzed for right nostril (RN) and left nostril (LN) in both the groups. Spearman's rho correlation was calculated. The relationship between PVDF nasal sensor measurements and severity of nasal obstruction (VAS score) were assessed by ANOVA. In healthy group, the measurement of nasal airflow by PVDF nasal sensor for RN and LN were found to be 51.14±5.87% and 48.85±5.87%, respectively. In patient group, PVDF nasal sensor indicated lesser nasal airflow in the blocked nostrils (RN: 23.33±10.54% and LN: 32.24±11.54%). Moderate correlation was observed in healthy group (r=-0.710, p<0.001 for RN and r=-0.651, p<0.001 for LN), and moderate to strong correlation in patient group (r=-0.751, p<0.01 for RN and r=-0.885, p<0.0001 for LN). PVDF nasal sensor method is a newly developed technique for measuring the nasal airflow. Moderate to strong correlation was observed between PVDF nasal sensor data and VAS scores for nasal obstruction. In our present study, PVDF nasal sensor technique successfully differentiated between healthy subjects and patients with nasal obstruction. Additionally, it can also assess severity of nasal obstruction in comparison with VAS. Thus, we propose that the PVDF nasal sensor technique could be used as a new diagnostic method to evaluate nasal obstruction in routine clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evidence that ligand formation is a mechanism underlying the maintenance of cytochrome P-450 in rat liver cell culture. Potent maintenance by metyrapone.

    PubMed Central

    Paine, A J; Villa, P; Hockin, L J

    1980-01-01

    The loss of cytochrome P-450 in cultured rat hepatocytes can be prevented by substituted pyridines, especially isonicotinamide, 3-hydroxypyridine and metyrapone. The effect of these compounds is independent of protein synthesis, suggesting that they maintain pre-existing cytochrome P-450. The efficiency of pyridines at maintaining cytochrome P-450 in hepatocyte culture is highly correlated with their ability to bind to this cytochrome, suggesting that ligand formation with cytochrome P-450 prevents its accelerated turnover in liver cell culture. PMID:7470047

  13. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    PubMed

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A role for cytochrome b5 in the in vivo disposition of anti-cancer and cytochrome P450 probe drugs in mice

    PubMed Central

    Henderson, Colin J.; McLaughlin, Lesley A.; Finn, Robert D.; Ronseaux, Sebastien; Kapelyukh, Yury; Wolf, C. Roland

    2014-01-01

    The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolised by a range of cytochrome P450s, including five anti-cancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent, with AUC increased (75-245%), and clearance decreased (35-72%), for phenacetin, metoprolol and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics of cyclophosphamide were measured (Cmax and terminal half-life increased 55% and 40%, respectively), tamoxifen (AUClast and Cmax increased 370% and 233%, respectively) and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data from provide strong evidence that both hepatic and extra-hepatic Cyb5 levels are an important determinant of in vivo drug disposition catalysed by a range of cytochrome P450s, including currently-prescribed anti-cancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man. PMID:24115751

  15. Cytochrome P450, CYP93A1, as a defense marker in soybean

    USDA-ARS?s Scientific Manuscript database

    CYP93A1 is a cytochrome P450 that is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as a defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To f...

  16. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  17. Cytochrome P450 humanised mice

    PubMed Central

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  18. [Clinical analysis of nasal resistance and pulmonary function testing in patients with chronic nasal-sinusitis and nasal polyps].

    PubMed

    Liao, Hua; Shen, Ying; Wang, Pengjun

    2015-05-01

    To study the pulmonary function and nasal resistance characteristics of patients with chronic nose-sinusitis and nasal polyps (CRSwNP), to explore the evaluation role of nasal resistance in nasal ventilation function and the effect of endoscopic sinus surgery on pulmonary function in patients with CRSwNP. Fifty CRSwNP patients that met the study criteria were selected . The patients were performed endoscopic surgeries according to Messerklinger surgical procedures under general anesthesia. Extent of surgery was based on preoperative CT showing the range of the lesion of disease and endoscopic findings. Perioperative treatments contained intranasal corticosteroids, cephalosporin or penicillin antibiotics, nasal irrigation and other treatments. Main outcome measures included visual analog scale (VAS), endoscopic Lind-Kennedy scores, nasal resistence, pulmonary function in patientsone week before and after surgery, three months and six months after surgery. Pulmonary function includes forced expiratory volume in one second (FEV1), forced vital capacity FEV1/FVC and peak expiratory flow (PEF). The study found that there were significantly positive correlations among VAS score, Lund-Kennedy score and nasal resistance (P < 0.05) in CRSwNP patients, but there is a significantly negative correlation between VAS score, Lund-Kennedy score, nasal resistance and pulmonary function indexes of FEV1, FVC and PEF (P < 0.05). The VAS score, Lund-Kennedy score and nasal resistance values of CRSwNP patients were decreased significantly after comprehensive treatments with nasal endoscopic operation as the major one, the difference was statistically different (P < 0.05). And the pulmonary function indexs (FEV1, FVC, PEF) were significantly increased after surgery in CRSwNP patients. The nasal resistance can objectively and reliably reflect the degree of nasal congestion and the recovery of nasal function in CRSwNP patients after endoscopic sinus surgery. The detection method of nasal

  19. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreamer, G.L.; Squibb, K.; Gioeli, D.

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less

  20. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  1. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  2. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    PubMed Central

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  3. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    PubMed

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  4. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Yi-Hua; Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu; Baker, Angela A.

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling,more » a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.« less

  5. [Clinical effects of nasal glucocorticoid on amelioration of nasal obstruction in patients with persistent non-allergic rhinitis].

    PubMed

    Sail, Giyab A; Zuo, Ke-jun; Xu, Geng

    2009-09-01

    To observe the efficacy of nasal glucocorticoid continuously used for 12 weeks on nasal obstruction in patients with persistent non-allergic rhinitis (PNAR). The changes of nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in 47 patients with PNAR were observed. The efficacy of nasal glucocorticoid (Mometasone Furoate Nasal Spray, MFNS 200 microg/day) on patients with PNAR was evaluated. The results of nasal glucocorticoid (MFNS) continuously used for 12 weeks demonstrated: (1) After treatment, the nasal obstruction, nasal discharge, nasal obstruction related dizziness, headache, hyposmia, daily life activity, whole body fatigue, mental status were significantly improved (P < 0.05). (2) Nasal resistance showed significant amelioration (pre-treatment = 0.28 +/- 0.10, post- treatment = 0.16 +/- 0.05; F = 91.471, P < 0.05). (3) SF-36 questionnaire revealed that role physical, bodily pain, general health, role emotional had significant amelioration (P < 0.01). (4) SNOT-20 questionnaire revealed that the defatigation, impaired concentration, pinch the nose, nasal discharging into the throat, sleep quality had significant amelioration (P < 0.01). (5) Continued treatment for 12 weeks was better than 4 weeks, continued treatment had good effect. The study shows that nasal glucocorticoid improved the nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in patients with PNAR.

  6. Cytochrome P450 2D6 polymorphism and character traits.

    PubMed

    Suzuki, Eiji; Kitao, Yoshie; Ono, Yutaka; Iijima, Yoshimi; Inada, Toshiya

    2003-06-01

    It has been suggested that cytochrome P450 2D6 (CYP2D6) is involved in dopamine metabolism within the brain. The dopamine system is suggested to play a role in determining normal character. The purpose of this study was to examine whether character traits are dependent on cytochrome P450 2D6 activity. We investigated the association between temperament and CYP2D6 gene polymorphism. The subjects were all Japanese and the polymorphism genotyped in the present study was CYP2D6*10. Character traits were assessed using the Temperament and Character Inventory. There was no overall or specific association between personality traits and the CYP2D6*10 allele and genotype frequencies. The present results do not support the hypothesis that CYP2D6 activity affects temperament and character.

  7. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery.

  8. Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals

    PubMed Central

    Bailey, Ryan S.; Casey, Kevin P.; Pawar, Sachin S.; Garcia, Guilherme J. M.

    2016-01-01

    Importance Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort. Objective To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy subjects. Design, Setting, and Participants Twenty-two healthy adults were recruited for this study. Subjects first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale (VAS) to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in two locations along the nasal septum: at the vestibule and across from the inferior turbinate head. Results The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (ΔTexp-insp = 6.2 ± 2.6°C) than during resting breathing (ΔTexp-insp = 4.2 ± 2.3°C) in both locations (p < 10−13). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side VAS score (Pearson r = −0.55, p=0.0076) and NOSE score (Pearson r = −0.47, p=0.028). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower in the first cavity to be measured, which was the right cavity in all subjects. Conclusions and Relevance The greater mucosal temperature oscillations during deep breathing is consistent with the common experience that airflow sensation is enhanced during deep breaths, thus supporting the hypothesis that mucosal cooling plays a central role in nasal airflow sensation

  9. Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae.

    PubMed

    Nazir, K H M Nazmul Hussain; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2011-05-01

    A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.

  10. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomicmore » approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed

  12. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    PubMed

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  13. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p.

    PubMed

    Banting, Graham S; Glerum, D Moira

    2006-03-01

    Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa(3) peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Deltacox11, like Deltasco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.

  14. The activity of N-acetyl-β-d-hexosaminidase A and B and β-glucuronidase in nasal polyps and hypertrophic nasal concha.

    PubMed

    Chojnowska, Sylwia; Minarowska, Alina; Waszkiewicz, Napoleon; Kępka, Alina; Zalewska-Szajda, Beata; Gościk, Elżbieta; Kowal, Krzysztof; Olszewska, Ewa; Konarzewska-Duchnowska, Emilia; Minarowski, Łukasz; Zwierz, Krzysztof; Ładny, Jerzy Robert; Szajda, Sławomir Dariusz

    2014-01-01

    Nasal polyps and hypertrophic lower nasal conchae are common disorders of nasal cavity. The majority of etiopathogenetic theories indicate inflammatory background of polyps and hypertrophic concha. N-acetyl-β-D-hexosaminidase and β-glucuronidase are lysosomal exoglycosidases revealing accelerated activity in inflammatory processes. The aim of the study was to evaluate the catabolism of glycoconjugates in nasal polyps and hypertrophic nasal concha basing on the activity of N-acetyl-β-D-hexosaminidase (HEX) and β-glucuronidase (GLU). Material consisted of nasal polyps taken from 40 patients during polypectomy in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and hypertrophic lower nasal conchae taken from 20 patients during mucotomy. The activity of HEX, HEX A, HEX B and GLU in supernatant of homogenates of nasal polyps and hypertrophic lower nasal concha tissues has been estimated using colorimetric method. Statistically significant decrease has been observed in concentration of the activity (per 1mg of tissue) of HEX (p<0.05), HEX B (p<0.001) and specific activity (per 1mg of protein) of HEX B (p<0.001) in nasal polyps tissue in comparison to hypertrophic lower nasal conchae tissue. Decrease in the activity and specific activity concentration of the majority of examined lysosomal exoglycosidases (increasing in inflammations) in comparison to hypertrophic lower nasal conchae suggests electrolytes disorders and questions the inflammatory background of nasal polyps. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  15. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  16. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  17. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  18. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  19. Comparison of Early-period Results of Nasal Splint and Merocel Nasal Packs in Septoplasty

    PubMed Central

    Bingöl, Fatih; Budak, Ali; Şimşek, Eda; Kılıç, Korhan; Bingöl, Buket Özel

    2017-01-01

    Objective Several types of nasal packs are used postoperatively in septoplasty. In this study, we compared two commonly used nasal packing materials, the intranasal septal splint with airway and Merocel tampon, in terms of pain, bleeding, nasal obstruction, eating difficulties, discomfort in sleep, and pain and bleeding during removal of packing in the early period. Methods The study group included 60 patients undergoing septoplasty. Patients were divided into two groups (n=30 in each group). An intranasal splint with airway was used for the patients in the first group after septoplasty, while Merocel nasal packing was used for the second group. Patients were investigated in terms of seven different factors - pain, bleeding while the tampon was in place, nasal obstruction, eating difficulties, night sleep, pain during removal of the nasal packing, and bleeding after removal of packing. Results There was no statistically significant difference between the groups in terms of pain 24 hours after operation (p=0.05), while visual analog scale (VAS) scores for nasal obstruction, night sleep, eating difficulties, and pain during packing removal were lower in the nasal splint group with a statistically significant difference (p<0.05). There was no statistically significant difference between the groups in terms of postoperative bleeding (p=0.23). Significantly less bleeding occurred during removal of the packing in the nasal splint group (p<0.05). Conclusion Our study indicates that the nasal splint was more comfortable and effective in terms of causing lesser bleeding and pain during removal of packing. PMID:29392071

  20. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  1. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: radical processes involving iron porphyrins.

    PubMed Central

    Brault, D

    1985-01-01

    Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100

  2. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  3. Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s: Evidence for involvement in host-plant allelochemical resistance

    PubMed Central

    Danielson, Phillip B.; MacIntyre, Ross J.; Fogleman, James C.

    1997-01-01

    Cytochrome P450s constitute a superfamily of genes encoding mostly microsomal hemoproteins that play a dominant role in the metabolism of a wide variety of both endogenous and foreign compounds. In insects, xenobiotic metabolism (i.e., metabolism of insecticides and toxic natural plant compounds) is known to involve members of the CYP6 family of cytochrome P450s. Use of a 3′ RACE (rapid amplification of cDNA ends) strategy with a degenerate primer based on the conserved cytochrome P450 heme-binding decapeptide loop resulted in the amplification of four cDNA sequences representing another family of cytochrome P450 genes (CYP28) from two species of isoquinoline alkaloid-resistant Drosophila and the cosmopolitan species Drosophila hydei. The CYP28 family forms a monophyletic clade with strong regional homologies to the vertebrate CYP3 family and the insect CYP6 family (both of which are involved in xenobiotic metabolism) and to the insect CYP9 family (of unknown function). Induction of mRNA levels for three of the CYP28 cytochrome P450s by toxic host-plant allelochemicals (up to 11.5-fold) and phenobarbital (up to 49-fold) corroborates previous in vitro metabolism studies and suggests a potentially important role for the CYP28 family in determining patterns of insect–host-plant relationships through xenobiotic detoxification. PMID:9380713

  4. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    EPA Science Inventory

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  5. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  6. Prevalence of human papillomavirus, Epstein-Barr virus, p21, and p53 expression in sinonasal inverted papilloma, nasal polyp, and hypertrophied turbinate in Hong Kong patients.

    PubMed

    Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew

    2012-04-01

    The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.

  7. Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide.

    PubMed Central

    Bonkovsky, H L; Sinclair, J F; Healey, J F; Sinclair, P R; Smith, E L

    1984-01-01

    The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem

  8. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  9. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  10. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  11. Limitations of in silico predictability of specificity of co-immobilised cytochromes P450 and mimics in food-bioprocessing.

    PubMed

    Wiseman, Alan

    2003-04-01

    Cytochromes P450 (EC 1.14.14.1) are mixed function oxidases (oxygenases) that can catalyse redox bioconversions of food components. Also, efficacious removal of undesirable components can be achieved using solid-support immobilised enzyme (IME) of a selection from 2700 isoforms of cytochromes P450 (CYP). Cytochromes P450 co-immobilised with other enzymes, or protein receptors, may be used to confer a secondary order of regio- or stereo-specificity of chiral bioconversion: these can be predictable in silico by utilisation of QSARs (quantitative structure/activity relationships).

  12. Oronasal Masks Require a Higher Pressure than Nasal and Nasal Pillow Masks for the Treatment of Obstructive Sleep Apnea

    PubMed Central

    Deshpande, Sheetal; Joosten, Simon; Turton, Anthony; Edwards, Bradley A.; Landry, Shane; Mansfield, Darren R.; Hamilton, Garun S.

    2016-01-01

    Study Objectives: Oronasal masks are frequently used for continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). The aim of this study was to (1) determine if CPAP requirements are higher for oronasal masks compared to nasal mask interfaces and (2) assess whether polysomnography and patient characteristics differed among mask preference groups. Methods: Retrospective analysis of all CPAP implementation polysomnograms between July 2013 and June 2014. Prescribed CPAP level, polysomnography results and patient data were compared according to mask type (n = 358). Results: Oronasal masks were used in 46%, nasal masks in 35% and nasal pillow masks in 19%. There was no difference according to mask type for baseline apnea-hypopnea index (AHI), body mass index (BMI), waist or neck circumference. CPAP level was higher for oronasal masks, 12 (10–15.5) cm H2O compared to nasal pillow masks, 11 (8–12.5) cm H2O and nasal masks, 10 (8–12) cm H2O, p < 0.0001 (Median [interquartile range]). Oronasal mask type, AHI, age, and BMI were independent predictors of a higher CPAP pressure (p < 0.0005, adjusted R2 = 0.26.). For patients with CPAP ≥ 15 cm H2O, there was an odds ratio of 4.5 (95% CI 2.5–8.0) for having an oronasal compared to a nasal or nasal pillow mask. Residual median AHI was higher for oronasal masks (11.3 events/h) than for nasal masks (6.4 events/h) and nasal pillows (6.7 events/h), p < 0.001. Conclusions: Compared to nasal mask types, oronasal masks are associated with higher CPAP pressures (particularly pressures ≥ 15 cm H2O) and a higher residual AHI. Further evaluation with a randomized control trial is required to definitively establish the effect of mask type on pressure requirements. Commentary: A commentary on this article appears in this issue on page 1209. Citation: Deshpande S, Joosten S, Turton A, Edwards BA, Landry S, Mansfield DR, Hamilton GS. Oronasal masks require a higher pressure than nasal and

  13. Immediate effect of benzalkonium chloride in decongestant nasal spray on the human nasal mucosal temperature.

    PubMed

    Lindemann, J; Leiacker, R; Wiesmiller, K; Rettinger, G; Keck, T

    2004-08-01

    Benzalkonium chloride is a preservative commonly used in nasal decongestant sprays. It has been suggested that benzalkonium chloride may be harmful to the nasal mucosa. Decongestion with the vasoconstrictor xylometazoline containing benzalkonium chloride has been shown to cause a significant reduction of the nasal mucosal temperature. The purpose of the present study was to determine the short-term influence of xylometazoline nasal spray with and without benzalkonium chloride on the nasal mucosal temperature. Healthy volunteers (30) were included in the study. Fifteen volunteers received xylometazoline nasal spray (1.0 mg/mL) containing benzalkonium chloride (0.1 mg/mL) and 15 age-matched subjects, received xylometazoline nasal spray without benzalkonium chloride. Using a miniaturized thermocouple the septal mucosal temperature was continuously measured at defined intranasal detection sites before and after application of the nasal spray. The mucosal temperature values did not significantly differ between the group receiving xylometazoline containing benzalkonium chloride and the group receiving xylometazoline spray without benzalkonium chloride before and after decongestion (P > 0.05). In both study groups septal mucosal temperatures significantly decreased after decongestion (P < 0.05) because of a reduction of the nasal mucosal blood flow following vasoconstriction. This study indicates that benzalkonium chloride itself does not seem to influence nasal blood flow and nasal mucosal temperature in topical nasal decongestants.

  14. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 inmore » marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a

  15. A current review of cytochrome P450 interactions of psychotropic drugs.

    PubMed

    Madhusoodanan, Subramoniam; Velama, Umamaheswararao; Parmar, Jeniel; Goia, Diana; Brenner, Ronald

    2014-05-01

    The number of psychotropic drugs has expanded tremendously over the past few decades with a proportional increase in drug-drug interactions. The majority of psychotropic agents are biotransformed by hepatic enzymes, which can lead to significant drug-drug interactions. Most drug-drug interactions of psychotropics occur at metabolic level involving the hepatic cytochrome P450 enzyme system. We searched the National Library of Medicine, PsycINFO, and Cochrane reviews from 1981 to 2012 for original studies including clinical trials, double-blind, placebo-controlled studies, and randomized controlled trials. In addition, case reports, books, review articles, and hand-selected journals were utilized to supplement this review. Based on the clinical intensity of outcome, cytochrome interactions can be classified as severe, moderate, and mild. Severe interactions include effects that might be acutely life threatening. They are mainly inhibitory interactions with cardiovascular drugs. Moderate interactions include efficacy issues. Mild interactions include nonserious side effects, such as somnolence. Psychotropic drugs may interact with other prescribed medications used to treat concomitant medical illnesses. A thorough understanding of the most prescribed medications and patient education will help reduce the likelihood of potentially fatal drug-drug interactions.

  16. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  17. Modulation of the Rat Hepatic Cytochrome P4501A Subfamily Using Biotin Supplementation

    PubMed Central

    Ronquillo-Sánchez, M. D.; Camacho-Carranza, R.; Fernandez-Mejia, C.; Hernández-Ojeda, S.; Elinos-Baez, M.; Espinosa-Aguirre, J. J.

    2013-01-01

    Studies have found that biotin favors glucose and lipid metabolism, and medications containing biotin have been developed. Despite the use of biotin as a pharmacological agent, few studies have addressed toxicity aspects including the possible interaction with cytochrome P450 enzyme family. This study analyzed the effects of pharmacological doses of biotin on the expression and activity of the cytochrome P4501A subfamily involved in the metabolism of xenobiotics. Wistar rats were treated daily with biotin (2 mg/kg, i.p.), while the control groups were treated with saline. All of the rats were sacrificed by cervical dislocation after 1, 3, 5, or 7 days of treatment. CYP1A1 and CYP1A2 mRNAs were modified by biotin while enzyme activity and protein concentration were not affected. The lack of an effect of biotin on CYP1A activity was confirmed using other experimental strategies, including (i) cotreatment of the animals with biotin and a known CYP1A inducer; (ii) the addition of biotin to the reaction mixtures for the measurement of CYP1A1 and CYP1A2 activities; and (iii) the use of an S9 mixture that was prepared from control and biotin-treated rats to analyze the activation of benzo[a]pyrene (BaP) into mutagenic metabolites using the Ames test. The results suggest that biotin does not influence the CYP1A-mediated metabolism of xenobiotics. PMID:23984390

  18. Oronasal Masks Require a Higher Pressure than Nasal and Nasal Pillow Masks for the Treatment of Obstructive Sleep Apnea.

    PubMed

    Deshpande, Sheetal; Joosten, Simon; Turton, Anthony; Edwards, Bradley A; Landry, Shane; Mansfield, Darren R; Hamilton, Garun S

    2016-09-15

    Oronasal masks are frequently used for continuous positive airway pressure (CPAP) treatment in patients with obstructive sleep apnea (OSA). The aim of this study was to (1) determine if CPAP requirements are higher for oronasal masks compared to nasal mask interfaces and (2) assess whether polysomnography and patient characteristics differed among mask preference groups. Retrospective analysis of all CPAP implementation polysomnograms between July 2013 and June 2014. Prescribed CPAP level, polysomnography results and patient data were compared according to mask type (n = 358). Oronasal masks were used in 46%, nasal masks in 35% and nasal pillow masks in 19%. There was no difference according to mask type for baseline apnea-hypopnea index (AHI), body mass index (BMI), waist or neck circumference. CPAP level was higher for oronasal masks, 12 (10-15.5) cm H2O compared to nasal pillow masks, 11 (8-12.5) cm H2O and nasal masks, 10 (8-12) cm H2O, p < 0.0001 (Median [interquartile range]). Oronasal mask type, AHI, age, and BMI were independent predictors of a higher CPAP pressure (p < 0.0005, adjusted R(2) = 0.26.). For patients with CPAP ≥ 15 cm H2O, there was an odds ratio of 4.5 (95% CI 2.5-8.0) for having an oronasal compared to a nasal or nasal pillow mask. Residual median AHI was higher for oronasal masks (11.3 events/h) than for nasal masks (6.4 events/h) and nasal pillows (6.7 events/h), p < 0.001. Compared to nasal mask types, oronasal masks are associated with higher CPAP pressures (particularly pressures ≥ 15 cm H2O) and a higher residual AHI. Further evaluation with a randomized control trial is required to definitively establish the effect of mask type on pressure requirements. A commentary on this article appears in this issue on page 1209. © 2016 American Academy of Sleep Medicine.

  19. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  20. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  1. Effects of membrane curvature and pH on proton pumping activity of single cytochrome bo3 enzymes.

    PubMed

    Li, Mengqiu; Khan, Sanobar; Rong, Honglin; Tuma, Roman; Hatzakis, Nikos S; Jeuken, Lars J C

    2017-09-01

    The molecular mechanism of proton pumping by heme-copper oxidases (HCO) has intrigued the scientific community since it was first proposed. We have recently reported a novel technology that enables the continuous characterisation of proton transport activity of a HCO and ubiquinol oxidase from Escherichia coli, cytochrome bo 3 , for hundreds of seconds on the single enzyme level (Li et al. J Am Chem Soc 137 (2015) 16055-16063). Here, we have extended these studies by additional experiments and analyses of the proton transfer rate as a function of proteoliposome size and pH at the N- and P-side of single HCOs. Proton transport activity of cytochrome bo 3 was found to decrease with increased curvature of the membrane. Furthermore, proton uptake at the N-side (proton entrance) was insensitive to pH between pH6.4-8.4, while proton release at the P-side had an optimum pH of ~7.4, suggesting that the pH optimum is related to proton release from the proton exit site. Our previous single-enzyme experiments identified rare, long-lived conformation states of cytochrome bo 3 where protons leak back under turn-over conditions. Here, we analyzed and found that ~23% of cytochrome bo 3 proteoliposomes show ΔpH half-lives below 50s after stopping turnover, while only ~5% of the proteoliposomes containing a non-pumping mutant, E286C cytochrome bo 3 exhibit such fast decays. These single-enzyme results confirm our model in which HCO exhibit heterogeneous pumping rates and can adopt rare leak states in which protons are able to rapidly flow back. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  3. Nasal patency and otorhinolaryngologic-orofacial features in children.

    PubMed

    Milanesi, Jovana de Moura; Berwig, Luana Cristina; Schuch, Luiz Henrique; Ritzel, Rodrigo Agne; Silva, Ana Maria Toniolo da; Corrêa, Eliane Castilhos Rodrigues

    2017-11-21

    Nasal obstruction is a common symptom in childhood, related to rhinitis and pharyngeal tonsil hypertrophy. In the presence of nasal obstruction, nasal patency may be reduced, and nasal breathing is replaced by mouth breathing. Orofacial and otorhinolaryngologic changes are related to this breathing mode. Objective evaluation of upper airways may be obtained through nasal patency measurement. To compare nasal patency and otorhinolaryngologic-orofacial features in children. One hundred and twenty three children, 6-12 year-old, and of both sexes underwent speech therapy evaluation, according to Orofacial Myofunctional Evaluation protocol, clinical and endoscopic otorhinolaryngologic examination and nasal patency measurement, using the absolute and predicted (%) peak nasal inspiratory flow values. Lower values of absolute and estimated peak nasal inspiratory flow values were found in children with restless sleep (p=0.006 and p=0.002), nasal obstruction report (p=0.027 and p=0.023), runny nose (p=0.004 and p=0.012), unsystematic lip closure during mastication (p=0.040 and p=0.026), masticatory speed reduced (p=0.006 and p=0.008) and altered solid food swallowing (p=0.006 and p=0.001). Absolute peak nasal inspiratory flow was lower in children with pale inferior turbinate (p=0.040), reduced hard palate width (p=0.037) and altered speech (p=0.004). Higher absolute values were found in children with increased tongue width (p=0.027) and, higher absolute and predicted (%) in children with mild everted lip (p=0.008 and p=0.000). Nasal patency was lower in children with restless sleep, rhinitis signs and symptoms, hard palate width reduced and with changes in mastication, deglutition and speech functions. It is also emphasized that most of the children presented signs and symptom of allergic rhinitis. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Tributyltin potentiates 3,3',4,4',5-pentachlorobiphenyl-induced cytochrome P-4501A-related activity.

    PubMed

    DeLong, G T; Rice, C D

    1997-06-06

    Induction of cytochrome P-4501A protein and induction of related enzyme activity are hallmark physiological responses following exposure to planar halogenated aromatic hydrocarbons (HAHs) such as 3,3',4,4',5-pentachlorobiphenyl (PCB 126; PeCB). Environments contaminated by HAHs are often contaminated by mixtures of anthropogenic contaminants, including organometallic compounds. Both HAHs and organometallics easily bioconcentrate and bioaccumulate in aquatic food chains that may ultimately be linked to humans through seafood consumption. Tributyltin (TBT), a marine biocide, has been detected in many aquatic environments due to its primary use as a marine antifoulant agent. Exposure to TBT, as well as several PCBs, has been associated with immunotoxicity, neurotoxicity, and endocrine disruption. Recently TBT has been shown to inhibit cytochrome P-4501A activity in vitro, but information concerning these effects in vivo and in combination with classical inducers of P-4501A, such PeCB, is lacking. We exposed female B6C3F1 mice to 0.01, 0.1, and 1.0 mg/kg PeCB, TBT, or both in combination, with corn oil (CO) serving as a carrier control. Cytochrome P-4501A protein levels and related benzo[a]pyrene hydroxylation (BaP-OHase) activity were measured following a single acute intraperitoneal (ip) dose or seven daily injections. Body, thymus, and liver weights were used to monitor general physiological responses following exposure. P-4501A levels and BaP-OHase activity were significantly elevated in mice exposed to PeCB alone. This effect was enhanced by coexposure to low levels of TBT; PeCB-induced P-4501A-related activity was potentiated at the low range of each. The highest dose of TBT, however, inhibited these activities when given in combination with PeCB. Thymic atrophy was evident only in mice exposed daily to 0:1 and 1.0 mg/kg PeCB alone, or to a combination of the lowest and highest dose of PeCB and TBT, respectively. Because environmental levels of TBT are not

  5. Identification of novel cytochrome P450s in the Acari

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450s are the major phase I drug metabolising enzymes found in most organisms, including arthropods. Much of the work within the area of xenobiotic metabolism in this group of animals has centered around mosquito species, e.g. Anopheles gambiae and Culex quinquefasciatus, due to their rol...

  6. Objective measurements for grading the nasal esthetics on Basal view in individuals with secondary cleft nasal deformity.

    PubMed

    He, Xing; Li, Hua; Shao, Yan; Shi, Bing

    2015-01-01

    The purpose of this study is to ascertain objective nasal measurements from the basal view that are predictive of nasal esthetics in individuals with secondary cleft nasal deformity. Thirty-three patients who had undergone unilateral cleft lip repair were retrospectively reviewed in this study. The degree of nasal deformity was subjectively ranked by seven surgeons using standardized basal-view measurements. Nine physical objective parameters including angles and ratios were measured. Correlations and regressions between these objective and subjective measurements were then analyzed. There was high concordance in subjective measurements by different surgeons (Kendall's harmonious coefficient = W = .825, P = .006). The strongest predictive factors for nasal aesthetics were the ratio of length of nasal alar (r = .370, P = .034) and the degree of deviation of the columnar axis (r = .451, P = .008). The columellar angle had a more powerful effect in rating nasal esthetics. There was reliable concordance in subjective ranking of nasal esthetics by surgeons. Measurement of the columnar angle may serve as an independent, objective predictor of esthetics of the nose.

  7. [Consumption of vitamin A in intact and castrated rats. Relation to tocopherol and cytochrome P 450].

    PubMed

    Ferrando, R; Truhaut, R; Fourlon, C

    1979-05-07

    There are significant differences between castrated and non castrated male Rats in regard to vitamine A hepatic storage and plasma level. Cytochrom P 450 levels are the same in both groups. Those results are discussed.

  8. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. Themore » reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.« less

  9. Flower colour and cytochromes P450†

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  10. Nasal budesonide offers superior symptom relief in perennial allergic rhinitis in comparison to nasal azelastine.

    PubMed

    Stern, M A; Wade, A G; Ridout, S M; Cambell, L M

    1998-10-01

    Allergic rhinitis is usually treated with oral antihistamines or nasal steroids. Topically active nasal antihistamine is a new treatment modality for allergic rhinitis. The efficacy in comparison to well established topical treatment alternatives is not fully known. To compare the efficacy of intranasally administered azelastine to budesonide, at their respectively recommended dosage, on the symptoms of perennial rhinitis patients. A placebo-controlled, randomized, parallel group study was conducted to compare the efficacy and tolerability of intranasal budesonide aqueous suspension (256 microg once daily) with azelastine hydrochloride nasal spray (280 microg twice daily (560 microg/day)) and with placebo in the treatment of perennial allergic rhinitis. The 195 patients (with at least a 2-year history of perennial allergic rhinitis) recorded individual nasal symptom scores, the degree of symptom control achieved and any adverse events experienced over a 2-week baseline period and a 6-week treatment period. Following treatment, the reductions in mean combined and individual nasal symptom scores from baseline values were significantly greater in the budesonide group compared with the placebo group (P < .0001 for all variables except runny nose P = .01). In patients treated with budesonide, there were also significantly larger reductions from baseline values in combined nasal symptom scores (P < .01) and in scores for all individual nasal symptoms (P < or = .05) compared with those treated with azelastine. The reductions from baseline in both combined and individual nasal symptom scores did not differ between azelastine and placebo. The study medications were well tolerated, producing no unexpected or serious treatment-related adverse events. A once-daily dose of 256 microg of intranasal budesonide aqueous suspension is significantly more effective at relieving the symptoms of perennial allergic rhinitis compared with a twice daily dose of 280 microg of azelastine

  11. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  12. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    PubMed

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  13. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W.; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-01-01

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification. PMID:25752830

  14. Cytochrome P450 drug interactions with statin therapy.

    PubMed

    Goh, Ivanna Xin Wei; How, Choon How; Tavintharan, Subramaniam

    2013-03-01

    Statins are commonly used in the treatment of hyperlipidaemia. Although the benefits of statins are well-documented, they have the potential to cause myopathy and rhabdomyolysis due to the complex interactions of drugs, comorbidities and genetics. The cytochrome P450 family consists of major enzymes involved in drug metabolism and bioactivation. This article aims to highlight drug interactions involving statins, as well as provide updated recommendations and approaches regarding the safe and appropriate use of statins in the primary care setting.

  15. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    PubMed Central

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  16. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  17. Fluorescence labelling of NADPH-cytochrome P-450 reductase with the monobromomethyl derivative of syn-9,10-dioxabimane.

    PubMed Central

    Vogel, F; Lumper, L

    1983-01-01

    The kinetics of thiol-group alkylation in NADPH-cytochrome P-450 reductase during its inactivation by monobromobimane has been studied using the fluorimetric determination of S-bimane-L-cysteine by high-performance liquid chromatography. Loss of activity during the reaction of NADPH-cytochrome P-450 reductase with monobromobimane is caused by the alkylation of one single critical cysteine residue, which can be protected against thiol-specific reagents by NADP(H). The chemical stability of the bimane group allows the digestion of bimane-labelled NADPH-cytochrome P-450 reductase by CNBr. The critical cysteine residue could be located in a CNBr-cleaved peptide purified to homogeneity with Mr 10 500 +/- 1 000 and valine as N-terminus. Images Fig. 2. PMID:6414464

  18. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  20. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  2. Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect: Procedures and baseline values

    USGS Publications Warehouse

    Melancon, M.J.; Bengston, David A.; Henshel, Diane S.

    1996-01-01

    As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).

  3. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology.

    PubMed

    Jennings, Brett L; Sahan-Firat, Seyhan; Estes, Anne M; Das, Kanak; Farjana, Nasreen; Fang, Xiao R; Gonzalez, Frank J; Malik, Kafait U

    2010-10-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study showing that angiotensin II-induced vascular smooth muscle cell growth depends on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg per minute) or mice (1000 μg/kg per day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased vascular reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1(-/-) mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3',4,5'-tetramethoxystilbene, which prevents both cytochrome P450 1B1-dependent and -independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases.

  4. CYTOCHROME P450 1B1 CONTRIBUTES TO ANGIOTENSIN II-INDUCED HYPERTENSION AND ASSOCIATED PATHOPHYSIOLOGY

    PubMed Central

    Jennings, Brett L.; Sahan-Firat, Seyhan; Estes, Anne M.; Das, Kanak; Farjana, Nasreen; Fang, Xiao R.; Gonzalez, Frank J.; Malik, Kafait U.

    2010-01-01

    Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study that angiotensin II-induced vascular smooth muscle cell growth is dependent on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg/min) or mice (1000 μg/kg/day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor, 2,3′,4,5′-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1-/- mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3′,4,5′-tetramethoxystilbene which prevents both cytochrome P450 1B1-dependent and independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases. PMID:20805442

  5. Inkjet-printed selective microfluidic biosensor using CNTs functionalized by cytochrome P450 enzyme

    NASA Astrophysics Data System (ADS)

    Krivec, Matic; Leitner, Raimund; Überall, Florian; Hochleitner, Johannes

    2017-05-01

    An additive manufacturing concept, consisting of 3D photopolymer printing and Ag nanoparticle printing, was investigated for the construction of a microfluidic biosensor based on immobilized cytochrome P450 enzyme. An acylate-type microfluidic chamber composed of two parts, i.e. chamber-housing and chamber-lid was printed with a polyjet 3D printer. A 3-electrode sensor structure was inkjet-printed on the lid using a combination of Ag and graphene printing. The working electrode was covered with carbon nanotubes by drop-casting and immobilized with cytochrome P450 2D6 enzyme. The microfluidic sensor shows a significant response to a test xenobiotic, i.e. dextromethorphan; the cyclic voltammetrical measurements show a corresponding oxidation peak at 0.4 V with around 5 μM detection limit.

  6. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath.

    PubMed Central

    Zahn, J A; Duncan, C; DiSpirito, A A

    1994-01-01

    An enzyme capable of the oxidation of hydroxylamine to nitrite was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The absorption spectra in cell extracts, electron paramagnetic resonance spectra, molecular weight, covalent attachment of heme group to polypeptide, and enzymatic activities suggest that the enzyme is similar to cytochrome P-460, a novel iron-containing protein previously observed only in Nitrosomonas europaea. The native and subunit molecular masses of the M. capsulatus Bath protein were 38,900 and 16,390 Da, respectively; the isoelectric point was 6.98. The enzyme has approximately one iron and one copper atom per subunit. The electron paramagnetic resonance spectrum of the protein showed evidence for a high-spin ferric heme. In contrast to the enzyme from N. europaea, a 13-nm blue shift in the soret band of the ferrocytochrome (463 nm in cell extracts to 450 nm in the final sample) occurred during purification. The amino acid composition and N-terminal amino acid sequence of the enzyme from M. capsulatus Bath was similar but not identical to those of cytochrome P-460 of N. europaea. In cell extracts, the identity of the biological electron acceptor is as yet unestablished. Cytochrome c-555 is able to accept electrons from cytochrome P-460, although the purified enzyme required phenazine methosulfate for maximum hydroxylamine oxidation activity (specific activity, 366 mol of O2 per s per mol of enzyme). Hydroxylamine oxidation rates were stimulated approximately 2-fold by 1 mM cyanide and 1.5-fold by 0.1 mM 8-hydroxyquinoline. Images PMID:7928947

  7. THE DIFFERENTIAL HEPATOTOXICITY AND CYTOCHROME P450 RESPONSE OF F344 RATS TO THE THREE ISOMERS OF DICHLOROBENZENE

    EPA Science Inventory

    The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate toxic thresholds and to further e1ucidate the role of cytochrome P450 in the metabolism and toxici...

  8. Smart Polymers in Nasal Drug Delivery

    PubMed Central

    Chonkar, Ankita; Nayak, Usha; Udupa, N.

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  9. In vitro activity of commercial valerian root extracts against human cytochrome P450 3A4.

    PubMed

    Lefebvre, Tania; Foster, Brian C; Drouin, Cathy E; Krantis, Anthony; Livesey, John F; Jordan, Scott A

    2004-08-12

    Valerian root ( Valeriana officinalis L.) has been used since antiquity as a medicinal herb. Recent studies have found that certain herbal products used concomitantly with conventional therapeutic products can markedly affect drug disposition. The in vitro effect of aliquots from 14 commercially available single-entity and blended products containing valerian root on cytochrome P450 CYP3A4-mediated metabolism and P-glycoprotein transport has been determined with aqueous, ethanol and acetonitrile extracts. Hydroxyvalerenic acid, acetoxyvalerenic acid and valerenic acid content was analyzed and wide variation was found between samples and compared to the concentrations noted on the product labels. Valerian extracts from the products tested also exhibited a marked capacity to inhibit cytochrome P450 3A4-mediated metabolism and P-glycoprotein transport based upon the ATPase assay. There is wide variation between commercially available samples of valerian root. The findings from this study suggest that valerian root may have an initial inhibitory effect when taken with therapeutic products. Further work is warranted to determine whether valerian root can affect other CYP450 isozymes and how the results of this in vitro investigation can be extrapolated to in vivo situations.

  10. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    PubMed

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Effects of topical nasal steroids and diclofenac on the nasal mucosa during hyperbaric oxygen therapy: a double-blind experimental study.

    PubMed

    Vuralkan, Erkan; Cobanoglu, Hatice Bengu; Arslan, Abdullah; Arslan, Selcuk; Mungan, Sevdegul; Tatar, Selcuk; Toklu, Akın Savas

    2014-08-01

    We aimed to evaluate nasal mucosal changes and efficiency of nasal steroids and diclofenac on nasal mucosa during hyperbaric oxygen (HBO) treatment. Forty adult Albino-Wistar rats were randomized into four groups. Group 1 (control group) (n = 10) not exposed to hyperbaric or enhanced oxygen concentrations; group 2 (HBO group) (n = 10) underwent only HBO treatment; group 3 (n = 10) received HBO and intranasal mometasone furoate (10 μl/day); group 4 (n = 10) treated with HBO and diclofenac sodium (10 mg/kg/day ip). Specimens of nasal mucosa were collected after sacrificing and dissection of animals. The specimens were processed for light microscopic evaluation, and then evaluated histopathologically for fibroblastic proliferation and inflammation. Regarding the scores of inflammation, the level of inflammation in the control group was significantly less severe than the other groups (p < 0.05). Evaluation of the fibrosis scores showed that the scores of both groups 2 and 4 were significantly increased (p < 0.05). There were no statistically significant differences between groups 2, 3, and 4 as for fibrosis and inflammation (p > 0.05). Chronic HBO treatment induced mild inflammation of the nasal mucosa. These effects cannot be prevented adequately by administration of nasal steroids and diclofenac.

  12. Assessment of nasalance and nasality in patients with a repaired cleft palate.

    PubMed

    Sinko, Klaus; Gruber, Maike; Jagsch, Reinhold; Roesner, Imme; Baumann, Arnulf; Wutzl, Arno; Denk-Linnert, Doris-Maria

    2017-07-01

    In patients with a repaired cleft palate, nasality is typically diagnosed by speech language pathologists. In addition, there are various instruments to objectively diagnose nasalance. To explore the potential of nasalance measurements after cleft palate repair by NasalView ® , we correlated perceptual nasality and instrumentally measured nasalance of eight speech items and determined the relationship between sensitivity and specificity of the nasalance measures by receiver-operating characteristics (ROC) analyses and AUC (area under the curve) computation for each single test item and specific item groups. We recruited patients with a primarily repaired cleft palate receiving speech therapy during follow-up. During a single day visit, perceptive and instrumental assessments were obtained in 36 patients and analyzed. The individual perceptual nasality was assigned to one of four categories; the corresponding instrumental nasalance measures for the eight specific speech items were expressed on a metric scale (1-100). With reference to the perceptual diagnoses, we observed 3 nasal and one oral test item with high sensitivity. However, the specificity of the nasality indicating measures was rather low. The four best speech items with the highest sensitivity provided scores ranging from 96.43 to 100%, while the averaged sensitivity of all eight items was below 90%. We conclude that perceptive evaluation of nasality remains state of the art. For clinical follow-up, instrumental nasalance assessment can objectively document subtle changes by analysis of four speech items only. Further studies are warranted to determine the applicability of instrumental nasalance measures in the clinical routine, using discriminative items only.

  13. Nasal Base Retraction: A Treatment Algorithm.

    PubMed

    Tas, Süleyman; Colakoglu, Salih; Lee, Bernard Travis

    2017-06-01

    Nasal base retraction results from cephalic malposition of the alar base in the vertical plane, which causes disharmony of the alar base with the rest of the nose structures. Correcting nasal base retraction is very important for improved aesthetic outcomes; however, there is a limited body of literature about this deformity and its treatment. Create a nasal base retraction treatment algorithm based on a severity classification system. This is a retrospective case review study of 53 patients who underwent rhinoplasty with correction of alar base retraction by the senior author (S.T.). The minimum follow-up time was 6 months. Levator labii alaque nasi muscle dissection or alar base release with or without a rim graft on the effected side were performed based on the severity of the alar base retraction. Aesthetic results were assessed with objective grading of preoperative and postoperative patient photographs by two independent plastic surgeons. Functional improvement was assessed with patient self-evaluations of nasal patency. Also, a rhinoplasty outcomes evaluation (ROE) questionnaire was distributed to patients. Comparison of preoperative and postoperative photographs demonstrated that nasal base asymmetry was significantly improved in all cases, and 85% of the patients had complete symmetry. Nasal obstruction was also significantly reduced after surgery (P < 0.001). The majority of patients reported satisfaction (92.5%), with an ROE total score greater than or equal to 20. New techniques and a treatment algorithm for correcting nasal base retraction deformities that will help rhinoplasty surgeons obtain aesthetically and functionally pleasing outcomes for patients. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  14. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  15. Nasal symptoms following endoscopic transsphenoidal pituitary surgery: assessment using the General Nasal Patient Inventory.

    PubMed

    Wang, Yi Yuen; Srirathan, Vinothan; Tirr, Erica; Kearney, Tara; Gnanalingham, Kanna K

    2011-04-01

    The endoscopic approach for pituitary tumors is a recent innovation and is said to reduce the nasal trauma associated with transnasal transsphenoidal surgery. The authors assessed the temporal changes in the rhinological symptoms following endoscopic transsphenoidal surgery for pituitary lesions, using the General Nasal Patient Inventory (GNPI). The GNPI was administered to 88 consecutive patients undergoing endoscopic transsphenoidal surgery at 3 time points (presurgery, 3-6 months postsurgery, and at final follow-up). The total GNPI score and the scores for the individual GNPI questions were calculated and differences between groups were assessed once before surgery, several months after surgery, and at final follow-up. Of a maximum possible score of 135, the mean GNPI score at 3-6 months postsurgery was only 12.9 ± 12 and was not significantly different from the preoperative score (10.4 ± 13) or final follow-up score (10.3 ± 10). Patients with functioning tumors had higher GNPI scores than those with nonfunctioning tumors for each of these time points (p < 0.05). Individually, a mild increase in symptom severity was seen for symptoms attributable to the nasal trauma of surgery, with partial recovery (nasal sores and bleeding) or complete recovery (nasal blockage, painful sinuses, and unpleasant nasal smell) by final follow-up (p < 0.05). Progressive improvements in symptom severity were seen for symptoms more attributable to tumor mass preoperatively (for example, headaches and painkiller use [p < 0.05]). In total, by final follow-up 8 patients (9%) required further treatment or advice for ongoing nasal symptoms. Endoscopic transsphenoidal surgery is a well-tolerated minimally invasive procedure for pituitary fossa lesions. Overall patient-assessed nasal symptoms do not change, but some individual symptoms may show a mild worsening or overall improvement.

  16. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-κB Pathways in Nasal Fibroblasts.

    PubMed

    Park, Il-Ho; Um, Ji-Young; Cho, Jung-Sun; Lee, Seung Hoon; Lee, Sang Hag; Lee, Heung-Man

    2014-11-01

    Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB, were evaluated by Western blot, and a luciferase reporter assay. Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-κB induction. The H1R antagonist actively suppressed pp38 and NF-κB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.

  18. Three-dimensional structure of NADPH–cytochrome P450 reductase: Prototype for FMN- and FAD-containing enzymes

    PubMed Central

    Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.

    1997-01-01

    Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990

  19. Dialectal and gender differences in nasalance for a Mandarin population.

    PubMed

    Kim, Ha-Kyung; Yu, Xiao-meng; Cao, Yan-jing; Liu, Xiao-ming; Huang, Zhao-Ming

    2016-01-01

    The purpose of this study was to determine whether there are dialectal and gender related differences in nasalance of main Mandarin vowels and three sentences in 400 Chinese normal adults. The mean nasalance score difference for dialect and gender was significant (p < .001) in all speech materials. For different dialects, the average nasalance scores show that Chongqing > Beijing > Shanghai > Guangzhou for the nasal sentence, oro-nasal sentence, /a/, /i/ and /u/. In addition, the average nasalance scores of females were higher than those of males for all speech materials in all dialects. The clinical significance of this study can be helpful in making nasalance clinical decisions for Chinese people with cleft palate, hearing disorders and dysarthria with resonance disorders. It also shows the theoretical and socio-cultural features for linguists considering dialects and gender.

  20. [Cytochrome P-450 and the response to antimalarial drugs].

    PubMed

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  1. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation.

    PubMed Central

    Roberts, E S; Vaz, A D; Coon, M J

    1991-01-01

    As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356

  2. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less

  3. Nasal irrigation: From empiricism to evidence-based medicine. A review.

    PubMed

    Bastier, P-L; Lechot, A; Bordenave, L; Durand, M; de Gabory, L

    2015-11-01

    Nasal irrigation plays a non-negligible role in the treatment of numerous sinonasal pathologies and postoperative care. There is, however, a wide variety of protocols. The present review of the evidence-based literature sought objective arguments for optimization and efficacy. It emerged that large-volume low-pressure nasal douche optimizes the distribution and cleansing power of the irrigation solution in the nasal cavity. Ionic composition and pH also influence mucociliary clearance and epithelium trophicity. Seawater is less rich in sodium ions and richer in bicarbonates, potassium, calcium and magnesium than is isotonic normal saline, while alkaline pH and elevated calcium concentration optimized ciliary motility in vitro. Bicarbonates reduce secretion viscosity. Potassium and magnesium promote healing and limit local inflammation. These results show that the efficacy of nasal irrigation is multifactorial. Large-volume low-pressure nasal irrigation using undiluted seawater seems, in the present state of knowledge, to be the most effective protocol. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. RELATIVE POTENCY VALUES FOR POLYCHLORINATED DIBENZO-P-DIOXIN, DIBENZOFURAN AND BIPHENYL CONGENERS TO INDUCE CYTOCHROME P4501A MRNA IN A ZEBRAFISH LIVER CELL LINE (ZF-L)

    EPA Science Inventory

    Induction of cytochrome P450 (CYPIA) mRNA by polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF) and polychlorinated biphenyl (PCB) congeners was measured in a zebrafish liver cell line (ZF-L). ZF-L cells were far less sensitive to PCDD, PCDF and PCB cong...

  5. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    PubMed

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  6. [Participation of nitric oxide and arachidonic acid metabolites via cytochrome - P450 in the regulation of arterial blood pressure].

    PubMed

    Sánchez-Mendoza, M Alicia; Martínez-Ayala, Sonia O; Hernández-Hernández, José A; Zúñiga-Sosa, Leonor; Pastelín-Hernández, Gustavo; Escalante-Acosta, Bruno A

    2003-01-01

    Nitric oxide and cytochrome P450 arachidonic acid metabolites participate in blood pressure regulation. The synthesis of these autacoids leads to arterial hypertension. However, it is not known whether there is an interaction between them. Therefore, we studied the modulatory effect of nitric oxide and cytochrome P450-arachidonic acid metabolites, their interaction on blood pressure, and the renal content of cytochrome P450. Male Wistar rats were divided: 1) control, 2) L-NAME (100 mg/kg/d p.o.), 3) L-NAME + SnCl2 (10 mg/kg/d i.p.), and 4) L-NAME + dexamethasone (1 mg/kg/d s.c.). We measured blood pressure and collected urine and blood for nitric oxide measurement. NO2 was quantified by HPLC. Blood pressure was: control, 97 +/- 7 mmHg; L-NAME, 151 +/- 4.6 mmHg; L-NAME + SnCl2, 133 +/- 3 mmHg, and L-NAME + dexamethasone 152 +/- 4.5 mmHg. Urine nitrite concentration was: 1) 1.832 +/- 0.32, 2) 1.031 +/- 0.23, 3) 1.616 +/- 0.33, and 4) 1.244 +/- 0.33 mumol/mL, while the concentration in blood was: 1) 0.293 +/- 0.06, 2) 0.150 +/- 0.05, 3) 0.373 +/- 0.13, and 4) 0.373 +/- 0.07 mumol/mL. L-NAME + SnCl2 decreased cytochrome P450 renal content, and L-NAME + dexamethasone showed a similar response. In conclusion, both, nitric oxide and CYP-arachidonic acid metabolites play a role in the regulation of blood pressure. Nitric oxide also partially regulates renal cytochrome P450 content.

  7. Evidence for induction of cytochrome P-450I in patients with tropical chronic pancreatitis.

    PubMed

    Chaloner, C; Sandle, L N; Mohan, V; Snehalatha, C; Viswanathan, M; Braganza, J M

    1990-06-01

    Theophylline kinetics, as an in vivo probe for the potentially toxic cytochrome P-450I pathway of drug metabolism, were studied in 11 healthy volunteers and 11 patients with calcific chronic pancreatitis at Madras, South India. Theophylline clearance was faster in the patients than controls [median 69 (range 39-114) vs 45 (33-56) ml h-1 kg-1, p = 0.003]. In keeping with this finding, detailed social histories identified a higher exposure level in the patients to xenobiotics that are inducers of cytochrome P-450I and/or yield reactive metabolites upon processing thereby (score 7, 4-11 vs 3, 2-9, p = 0.002). However, the concentration of D-glucaric acid in urine, as a marker of phase II conjugating pathways of drug metabolism, was similar in patients and controls. This pattern of drug metabolism could predispose to oxidant stress: hence micronutrient antioxidant supplements may have therapeutic (or even prophylactic) value in tropical chronic pancreatitis.

  8. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  9. Identification of two new cytochrome P450 genes and RNA interference to evaluate their roles in detoxification of commonly used insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Jianzhen; Yu, Rongrong; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2012-05-01

    Cytochrome P450 monooxygenases (cytochrome P450s), found in virtually all living organisms, play an important role in the metabolism of xenobiotics such as drugs, pesticides, and plant toxins. We have previously evaluated the responses of the oriental migratory locust (Locusta migratoria) to the pyrethroid insecticide deltamethrin and revealed that increased cytochrome P450 enzyme activity was due to increased transcription of multiple cytochrome P450 genes. In this study, we identified for the first time two new cytochrome P450 genes, which belong to two novel cytochrome P450 gene families. CYP409A1 belongs to CYP409 family whereas CYP408B1 belongs to CYP408 family. Our molecular analysis indicated that CYP409A1 was mainly expressed in fatbodies, midgut, gastric caecum, foregut and Malpighian tubules of the third- and fourth-instar nymphs, whereas CYP408B1 was mainly expressed in foregut, hindgut and muscle of the insects at all developmental stages examined. The expression of these two cytochrome P450 genes were differentially affected by three representative insecticides, including carbaryl (carbamate), malathion (organophosphate) and deltamethrin (pyrethroid). The exposure of the locust to carbaryl, malathion and deltamethrin resulted in reduced, moderately increased and significantly increased transcript levels, respectively, of the two cytochrome P450 genes. Our further analysis of their detoxification roles by using RNA interference followed by deltamethrin bioassay showed increased nymph mortalities by 21.1% and 16.7%, respectively, after CYP409A1 and CYP408B1 were silenced. These results strongly support our notion that these two new cytochrome P450 genes play an important role in deltamethrin detoxification in the locust. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver.

    PubMed

    Schuster, I

    1985-06-01

    Spectrophotometric studies with ketoconazole, clotrimazole and miconazole show strong type-II interactions with several cytochromes P-450, particularly (Ks greater than 10(7)M-1; pH7.4; 25 degrees C) with the 11 beta-hydroxylase of adrenal mitochondria, with the 17 alpha/20 lyase of testis microsomes and with some forms of cytochromes P-450 of liver. A tight binding of the azoles also occurs to the reduced cytochromes, giving rise to an impeded CO binding to the haem iron. The binding of the azoles to 11 beta-hydroxylase and 17 alpha/20 lyase is much tighter than the binding of endogenous substrates, and consequently inhibition of steroidogenesis will occur at these sites. The metabolism of xenobiotic substrates by the cytochromes P-450 of liver will also be severely impeded. In contrast, the allylamines naftifine and SF 86-327 are type-I substrates for a small portion of cytochromes P-450 of liver microsomes only and there is no spectral evidence for binding to the cytochromes P-450 involved in steroid biosynthesis.

  11. MP29-02 reduces nasal hyperreactivity and nasal mediators in patients with house dust mite-allergic rhinitis.

    PubMed

    Kortekaas Krohn, I; Callebaut, I; Alpizar, Y A; Steelant, B; Van Gerven, L; Skov, P S; Kasran, A; Talavera, K; Wouters, M M; Ceuppens, J L; Seys, S F; Hellings, P W

    2018-05-01

    Nasal hyperreactivity (NHR) is an important clinical feature of allergic rhinitis (AR). The efficacy of MP29-02 (azelastine hydrochloride (AZE) and fluticasone propionate [FP]) nasal spray on local inflammatory mediators and NHR in AR is unknown. We tested if MP29-02 decreases inflammatory mediators and NHR in AR and if this effect is due to restoration of nasal epithelial barrier function. A 4-week double-blinded placebo-controlled trial with MP29-02 treatment was conducted in 28 patients with house dust mite (HDM) AR. The presence of NHR was evaluated by measuring reduction in nasal flow upon cold dry air exposure. The effects of AZE ± FP on barrier integrity and airway inflammation were studied in a murine model of HDM-induced NHR and on reduced activation of murine sensory neurons and human mast cells. MP29-02 but not placebo reduced NHR (P < .0001 vs P = .21), levels of substance P (P = .026 vs P = .941), and β-hexosaminidase (P = .036 vs P = .632) in human nasal secretions. In wild-type C57BL6 mice, the reduction in β-hexosaminidase levels (P < .0001) by AZE + FP treatment upon HDM challenge was found in parallel with a decreased transmucosal passage (P = .0012) and completely reversed eosinophilic inflammation (P = .0013). In vitro, repeated applications of AZE + FP desensitized sensory neurons expressing the transient receptor potential channels TRPA1 and TRPV1. AZE + FP reduced MC degranulation to the same extent as AZE alone. MP29-02 treatment reduces inflammatory mediators and NHR in AR. The effects of AZE + FP on MC degranulation, nasal epithelial barrier integrity, and TRP channels provide novel insights into the pathophysiology of allergic rhinitis. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  12. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR) and Mutagenesis Analysis

    PubMed Central

    Sarapusit, Songklod; Lertkiatmongkol, Panida; Duangkaew, Panida; Rongnoparut, Pornpimol

    2013-01-01

    Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR), which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD) and FLAVIN mono-nucleotide (FMN) cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(P)H bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD) mediated by mosquito CYP6AA3 with a two-to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs. PMID:23325047

  13. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  14. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  15. Dependence of microsomal methoxyflurane O-demethylation on cytochrome P-450 reductase and the stoichiometry of fluoride ion and formaldehyde release.

    PubMed

    Waskell, L; Gonzales, J

    1982-07-01

    In order to characterize further the in vitro liver microsomal O-demethylation and defluorination of the volatile anesthetic methoxyflurane, and obtain additional information regarding the participation of cytochrome P-450 in the oxidation, the stoichiometry of the reaction was determined and the effect of antibody to cytochrome P-450 reductase on this unique biotransformation was examined. Liver microsomes were isolated from rabbits and rats in which enzyme induction had previously been produced by phenobarbital. The O-demethylation of methoxyflurane by phenobarbital-induced microsomes results in the production of 1 mol of formaldehyde for every 2 mol of fluoride ion produced. Dichloroacetic acid is also a product of methoxyflurane O-demethylation. Antibody to cytochrome P-450 reductase inhibits by 85% the amount of fluoride ion produced by the microsomal metabolism of methoxyflurane. Thus critical indirect supportive data are contributed to the hypothesis that at least one, but perhaps more, cytochrome P-450 is indeed responsible for methoxyflurane O-demethylation and defluorination.

  16. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

    PubMed Central

    Sibbesen, O; Koch, B; Halkier, B A; Møller, B L

    1994-01-01

    The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The cytochrome P-450 enzyme was solubilized with the detergents Renex 690, reduced Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and isolated by ion-exchange (DEAE-Sepharose) and dye (Cibacron blue and reactive red 120) column chromatography. To prevent irreversible aggregation of the cytochrome P-450 enzyme, the isolation procedure was designed without any concentration step--i.e., with dilution of the ion-exchange gel with gel filtration material. The isolated enzyme, which we designate the cytochrome P-450TYR enzyme, gives rise to the specific formation of a type I substrate binding spectrum in the presence of L-tyrosine. The microsomal preparation contains 0.2 nmol of total cytochrome P-450/mg of protein. The cytochrome P-450TYR enzyme is estimated to constitute approximately 20% of the total cytochrome P-450 content of the microsomal membranes and about 0.2% of their total protein content. The apparent molecular mass of the cytochrome P-450TYR enzyme is 57 kDa, and the N-terminal amino acid sequence is ATMEVEAAAATVLAAP. A polyclonal antibody raised against the isolated cytochrome P-450TYR enzyme is specific as monitored by Western blot analysis and inhibits the in vitro conversion of L-tyrosine to p-hydroxymandelonitrile catalyzed by the microsomal system. The cytochrome P-450TYR enzyme exhibits high substrate specificity and acts as an N-hydroxylase on a single endogenous substrate. The reported isolation procedure based on dye columns constitutes a gentle isolation method for cytochrome P-450 enzymes and is of general use as indicated by its ability to separate cytochrome P-450TYR from the cytochrome P-450 enzyme catalyzing the C

  17. A randomized open trial for comparison of proton pump inhibitors, omeprazole versus rabeprazole, in dual therapy for Helicobacter pylori infection in relation to CYP2C19 genetic polymorphism.

    PubMed

    Miyoshi, M; Mizuno, M; Ishiki, K; Nagahara, Y; Maga, T; Torigoe, T; Nasu, J; Okada, H; Yokota, K; Oguma, K; Tsuji, T

    2001-07-01

    The genetic polymorphism of cytochrome P450 (CYP) 2C19 has been shown to influence the efficacy of Helicobacter pylori eradication therapy with a proton pump inhibitor (PPI) and amoxicillin (so-called dual therapy). Omeprazole, a widely used PPI, and rabeprazole, a new PPI, are metabolized in different pathways in terms of CYP2C19 genetic polymorphisms. In this study, we compared the efficacy of omeprazole and rabeprazole in a 2-week dual therapy in relation to CYP2C19 polymorphism. One hundred and ninety-nine patients with peptic ulcer disease were randomly assigned to receive one of the following regimens: 500 mg t.i.d. amoxicillin together with either 20 mg b.i.d. omeprazole or 10 mg b.i.d rabeprazole. The eradication of H. pylori was evaluated by using a bacterial culture and a [(13)C]-urea breath test at 1--2 months after completion of treatment. Cytochrome P4502C19 polymorphism was analyzed by using polymerase chain reaction-restriction fragment length polymorphism. Intention-to-treat-based cure rates for the omeprazole or rabeprazole regimens were 66.3% (95% CI, 56--75) and 62.4% (95% CI, 52--71), respectively, without significant difference. Cytochrome P4502C19 genetic polymorphism did not influence the cure rates in either of these regimens. We analyzed various factors associated with treatment failure (PPI, CYP2C19 genotype, and smoking habit) by using multiple logistic regression; smoking was the only significant independent factor for treatment failure. Omeprazole and rabeprazole were equally effective in combination with amoxicillin in eradicating H. pylori, irrespective of the PPI used (omeprazole or rabeprazole) and CYP2C19 genetic polymorphism. Smoking significantly decreased the cure rate of H. pylori infection in the dual therapy.

  18. HALOGENATED AROMATIC HYDROCARBON-MEDIATED PORPHYRIN ACCUMULATION AND INDUCTION OF CYTOCHROME P4501A IN CHICKEN EMBRYO HEPATOCYTES. (R823889)

    EPA Science Inventory

    Concentration-dependent induction of cytochrome P4501A (CYP1A) and intracellular porphyrin accumulation were observed following treatment of chicken embryo hepatocyte (CEH) cultures with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 3,3',4,4'...

  19. Cytochrome P450 1A1 expression in cetacean skin biopsies from the Indian Ocean.

    PubMed

    Jauniaux, Thierry; Farnir, Frédéric; Fontaine, Michaël; Kiszka, Jeremy; Sarlet, Michael; Coignoul, Freddy

    2011-06-01

    The study describes cytochrome P450 1A1 (CYPA1) expression in the skin of different cetacean species (Megaptera novaeangliae, n=15; Stenella attenuata, n=7 and Stenella longirostris, n=24) from the Mozambique Channel island of Mayotte. Immunohistochemical examination was performed with a monoclonal antibody against scup cytochrome CYPA1. The sex was determined using a molecular approach consisting in the genotyping sex-specific genes. CYPA1 was detected at the junction between epidermis and blubber on dolphins only, mostly in the endothelial cells. Similar observation was obtained in the dermis of one M. novaeangliae. Immunohistochemical slides were scored to evaluate the expression of the CYPA1 and a higher expression was observed in S. longirostris, suggesting a higher exposure to pollutants for this species. The difference of expression between sexes was not significant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Role of Ca2+-independent phospholipase A2 and cytochrome P-450 in store-operated calcium entry in 3T6 fibroblasts.

    PubMed

    Martínez, Javier; Moreno, Juan J

    2005-09-01

    Store-operated calcium (SOC) channels and capacitative Ca2+ entry play a key role in cellular functions, but their mechanism of activation remains unclear. Here, we show that thapsigargin induces [3H] arachidonic acid (AA) release, 45Ca2+ influx and a subsequent enhancement of intracellular calcium concentration ([Ca2+]i. Thapsigargin-induced elevation of [Ca2+]i was inhibited by cytochrome P-450 inhibitors and by cytochrome P-450 epoxygenase inhibitor and was reverted by 11,12 EET addition. However, cyclooxygenase and lipoxygenase inhibitors have no effect. Moreover, we observed that four EETs were able to induce 45Ca2+ influx. Finally, we reported that the effect of 11,12 EET on 45Ca2+ influx was sensible to receptor-operated Ca2+ channel blockers (NiCl2, LaCl3) but not to voltage-dependent Ca2+ channel blocker as verapamil. Thus, AA released by Ca2+-independent phospholipase A2 and AA metabolism through cytochrome P-450 pathway may be crucial molecular determinant in thapsigargin activation of SOC channels and store-operated Ca2+ entry pathway in 3T6 fibroblasts. Moreover, EETs, the main cytochrome P-450 epoxygenase metabolites of AA, are involved in thapsigargin-stimulated Ca2+ influx. In summary, our results suggest that EETs are components of calcium influx factor(s).

  1. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112; Cawley, George F.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of severalmore » P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is

  2. Does rhinoplasty improve nasal breathing?

    PubMed

    Xavier, Rui

    2010-08-01

    Rhinoplasty is a surgical procedure that aims to improve nasal aesthetics and nasal breathing. The aesthetic improvement of the nose is usually judged subjectively by the patient and the surgeon, but the degree of improvement of nasal obstruction is difficult to assess by clinical examination only. The measurement of peak nasal inspiratory flow (PNIF) is a reliable tool that has been shown to correlate with other objective methods of assessing nasal breathing and with patients' symptoms of nasal obstruction. Twenty-three consecutive patients undergoing rhinoplasty have been evaluated by measurement of PNIF before and after surgery. All but three patients had an increase in PNIF after surgery. The mean preoperative PNIF was 86.5 L/min and the mean postoperative PNIF was 123.0 L/min ( P < 0.001). Not surprisingly, the greatest improvement in PNIF was achieved when bilateral spreader grafts were used. This study suggests that rhinoplasty does improve nasal breathing. (c) Thieme Medical Publishers

  3. [Cytochrome b-559 photooxidation in the presence of carbonyl cyanide p-trifluorometh-oxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone or p-benzoquinone in three non-photosynthetic mutants of Chlamydomonas reinhardti (author's transl)].

    PubMed

    Maroc, J; Garnier, J

    1975-04-14

    Studies of absorbance related to the cytochrome b-559 photooxidation induced by FCCP, with and without addition of 3-p-chlorophenyl-1, 1-dimethylurea (CMU), DBMIB or p-benzoquinone, in whole cells and in chloroplast fragments of Chlamydomonas reinhardti, were carried out. In addition to the wild type, three strains of non-photosynthetic mutants were used: Fl 5, which lacks P 700; Fl 9 and Fl 15, which are deficient in bound cytochrome c-553 and in cytochrome b-563. In the presence of FCCP, whole cells and chloroplast fragments of the four strains showed a System II-dependent photooxidation of cytochrome b-559. This photooxidation was inhibited by CMU but it occurred again in presence of FCCP, CMU and DBMIB. In chloroplast fragments, cytochrome b-559 photooxidation was also inhibited by an excess of FCCP; it was recovered, likewise, by addition of DBMIB. In whole cells, the highest measured redox changes were: 1 mu mol oxidized cytochrome b-559 per 1 mmol chlorophyll, corresponding approximately to about one seventh (wild type, Fl5) or one fifth (Fl 9, Fl 15) of the total amount of this cytochrome. Another kind of cytochrome b-559 photooxidation, CMU-insensitive, also occurred in the mutants Fl 9 and Fl 15 and in the wild type, but not in the mutant Fl 5. This latter kind of photooxidation was observed with chloroplast fragments in the presence of FCCP and CMU and also with whole cells in the presence of FCCP, CMU and p-benzoquinone. These reactions can be attributed to the Photosystem I; they do not require the intervention of the cytochrome c-553. A high-potential form of cytochrome b-559, hydroquinone-reducible, was involved in these two kinds of photooxidation. In addition, a lower potential form, reducible only by ascorbate, appeared to be able to interfere also. An interpretation is attempted, taking into consideration the various effects of FCCP and DBMIB, at different concentrations, on photosynthetic electron transport.

  4. Flexible docking-based molecular dynamics/steered molecular dynamics calculations of protein-protein contacts in a complex of cytochrome P450 1A2 with cytochrome b5.

    PubMed

    Jeřábek, Petr; Florián, Jan; Stiborová, Marie; Martínek, Václav

    2014-10-28

    Formation of transient complexes of cytochrome P450 (P450) with another protein of the endoplasmic reticulum membrane, cytochrome b5 (cyt b5), dictates the catalytic activities of several P450s. Therefore, we examined formation and binding modes of the complex of human P450 1A2 with cyt b5. Docking of soluble domains of these proteins was performed using an information-driven flexible docking approach implemented in HADDOCK. Stabilities of the five unique binding modes of the P450 1A2-cyt b5 complex yielded by HADDOCK were evaluated using explicit 10 ns molecular dynamics (MD) simulations in aqueous solution. Further, steered MD was used to compare the stability of the individual P450 1A2-cyt b5 binding modes. The best binding mode was characterized by a T-shaped mutual orientation of the porphyrin rings and a 10.7 Å distance between the two redox centers, thus satisfying the condition for a fast electron transfer. Mutagenesis studies and chemical cross-linking, which, in the absence of crystal structures, were previously used to deduce specific P450-cyt b5 interactions, indicated that the negatively charged convex surface of cyt b5 binds to the positively charged concave surface of P450. Our simulations further elaborate structural details of this interface, including nine ion pairs between R95, R100, R138, R362, K442, K455, and K465 side chains of P450 1A2 and E42, E43, E49, D65, D71, and heme propionates of cyt b5. The universal heme-centric system of internal coordinates was proposed to facilitate consistent classification of the orientation of the two porphyrins in any protein complex.

  5. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  6. Influence of cytochrome P450 oxidoreductase genetic polymorphisms on CYP1A2 activity and inducibility by smoking.

    PubMed

    Dobrinas, Maria; Cornuz, Jacques; Pedrido, Leticia; Eap, Chin B

    2012-02-01

    Cytochrome P4501A2 (CYP1A2) presents a high interindividual variability in its activity and also in its inducibility by smoking. Cytochrome P450 oxidoreductase (POR) is an electron transfer protein that catalyzes the activity of several cytochromes P450. We aimed to study the influence of POR genetic polymorphisms on CYP1A2 activity while smoking and after smoking cessation, as well as on CYP1A2 inducibility. CYP1A2 activity was determined by the paraxanthine/caffeine ratio in 184 smokers and in 113 of these smokers who were abstinent during a 4-week period. Participants were genotyped for POR rs17148944G>A, rs10239977C>T, rs3815455C>T, rs2286823G>A, rs2302429G>A, and rs1057868C>T (POR*28) polymorphisms. While smoking, none of the tested POR polymorphisms showed a significant influence on CYP1A2 activity. After smoking cessation, significantly higher CYP1A2 activity was found in POR rs2302429A carriers (P=0.038) and in carriers of rs17148944G-rs10239977C-rs3815455T-rs2286823G-rs2302429A-rs1057868T haplotype (P=0.038), whereas carriers of POR rs2286823A (P=0.031) and of the rs17148944G-rs10239977C-rs3815455C-rs2286823A-rs2302429G-rs1057868C haplotype (P=0.031) had decreased CYP1A2 activity. In the complete regression model, only POR rs2302429G>A showed a significant effect (P=0.017). No influence of POR genotypes or haplotypes was observed on the inducibility of CYP1A2. POR genetic polymorphisms influence CYP1A2 basal but not induced activity and do not seem to influence CYP1A2 inducibility. Future work is warranted to identify other clinical and genetic factors that may explain the variability in CYP1A2 activity and inducibility by smoking.

  7. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Nasal saline for chronic sinonasal symptoms: a randomized controlled trial.

    PubMed

    Pynnonen, Melissa A; Mukerji, Shraddha S; Kim, H Myra; Adams, Meredith E; Terrell, Jeffrey E

    2007-11-01

    To determine if isotonic sodium chloride (hereinafter "saline") nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays at improving quality of life and decreasing medication use. A prospective, randomized controlled trial. Community. A total of 127 adults with chronic nasal and sinus symptoms. Patients were randomly assigned to irrigation performed with large volume and delivered with low positive pressure (n = 64) or spray (n = 63) for 8 weeks. Change in symptom severity measured by mean 20-Item Sino-Nasal Outcome Test (SNOT-20) score; change in symptom frequency measured with a global question; and change in medication use. A total of 121 patients were evaluable. The irrigation group achieved lower SNOT-20 scores than the spray group at all 3 time points: 4.4 points lower at 2 weeks (P = .02); 8.2 points lower at 4 weeks (P < .001); and 6.4 points lower at 8 weeks (P = .002). When symptom frequency was analyzed, 40% of subjects in the irrigation group reported symptoms "often or always" at 8 weeks compared with 61% in the spray group (absolute risk reduction, 0.2; 95% confidence interval, 0.02-0.38 (P = .01). No significant differences in sinus medication use were seen between groups. Nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays for treatment of chronic nasal and sinus symptoms in a community-based population.

  9. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involvesmore » release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP

  10. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  11. Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism.

    ERIC Educational Resources Information Center

    Groves, John T.

    1985-01-01

    Discusses the structure and function of the liver protein cytochrome P-450, an important catalyst for a variety of detoxification reactions. Diagnostic substracts for this heme-containing monooxygenase, synthetic modes of the active site, and oxidations with synthetic metalloporphyrins are the major topic areas considered. (JN)

  12. Immunohistochemical study of temporal variations in cytochrome P-450 isozymes in rat testis and their modifications by the inductive effects of cadinenes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhito; Motohashi, Yutaka; Miyazaki, Yoshifumi; Yatagai, Mitsuyoshi; Takano, Takehito

    1991-12-01

    Temporal variations in cytochrome P-450 isozymes of rat testis, PB-P-450 (forms of cytochrome P-450 strongly induced by phenobarbital) and MC-P-448 (forms of cytochrome P-450 strongly induced by 3-methylcholanthrene), were investigated immunohistochemically by the avidin-biotin-complex method using specific antibodies against PB-P-450 and MC-P-448 isozymes. Immunoreactivity to both PB-P-450 and MC-P-448 isozymes was observed in Leydig cells. The number of PB-P-450 positive Leydig cells was found to undergo significant time-of-day variation with a peak time of 0000 hours (light phase from 0800 to 2000 hours). Injection of cadinenes (300 mg/kg per day intraperitoneally at 48 and 96 h before sacrifice) induced PB-P-450 isozyme but did not induce MC-P-448 isozyme. The induction of PB-P-450 isozyme by cadinenes was time dependent, and the early dark phase (2000 and 0000 hours) was most sensitive. These results suggest that temporal variation of cytochrome P-450 isozymes is one of the important physiological variations in detoxification and activation of various xenobiotics and chemicals in the testis.

  13. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    USDA-ARS?s Scientific Manuscript database

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  14. Nasal biopsies of children exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Rodriguez-Alcaraz, A; Valencia-Salazar, G; Mora-Tascareño, A; García, R; Osnaya, N; Villarreal-Calderón, A; Devlin, R B; Van Dyke, T

    2001-01-01

    Southwest Metropolitan Mexico City (SWMMC) atmosphere is a complex mixture of air pollutants, including ozone, particulate matter, and aldehydes. Children in SWMMC are exposed chronically and sequentially to numerous toxicants, and they exhibit significant nasal damage. The objective of this study was to assess p53 accumulation by immunohistochemistry in nasal biopsies of SWMMC children. We evaluated 111 biopsies from 107 children (83 exposed SWMMC children and 24 control children residents in a pollutant-compliant Caribbean island). Complete clinical histories and physical examinations, including an ear-nose-throat (ENT) exam were done. There was a significant statistical difference in the upper and lower respiratory symptomatology and ENT findings between control and exposed children (p < 0.001). Control children gave no respiratory symptomatology in the 3 months prior to the study; their biopsies exhibited normal ciliated respiratory epithelium and were p53-negative. SWMMC children complained of epistaxis, nasal obstruction. and crusting. Irregular areas of whitish-gray recessed mucosa over the inferior and middle turbinates were seen in 25% of SWMMC children, and their nasal biopsies displayed basal cell hyperplasia, decreased numbers of ciliated and goblet cells, neutrophilic epithelial infiltrates, squamous metaplasia. and mild dysplasia. Four of 21 SWMMC children with grossly abnormal mucosal changes exhibited strong transmural nuclear p53 staining in their nasal biopsies (p 0.005, odds ratio 26). In the context of lifetime exposures to toxic and potentially carcinogenic air pollutants, p53 nasal induction in children could potentially represent. a) a checkpoint response to toxic exposures, setting up a selective condition for p53 mutation, or b) a p53 mutation has already occurred as a result of such selection. Because the biological significance of p53 nuclear accumulation in the nasal biopsies of these children is not clear at this point, we strongly

  15. Patient experience with mupirocin or povidone-iodine nasal decolonization.

    PubMed

    Maslow, Jed; Hutzler, Lorraine; Cuff, Germaine; Rosenberg, Andrew; Phillips, Michael; Bosco, Joseph

    2014-06-01

    Led by the federal government, the payers of health care are enacting policies designed to base provider reimbursement on the quality of care they render. This study evaluated and compared patient experiences and satisfaction with nasal decolonization with either nasal povidone-iodine (PI) or nasal mupirocin ointment (MO). A total of 1903 patients were randomized to undergo preoperative nasal decolonization with either nasal MO or PI solution. All randomized patients were also given 2% chlorhexidine gluconate topical wipes. Patients were interviewed prior to discharge to assess adverse events and patient experience with their assigned preoperative antiseptic protocol. Of the 1903 randomized patients, 1679 (88.1%) were interviewed prior to discharge. Of patients receiving PI, 3.4% reported an unpleasant or very unpleasant experience, compared with 38.8% of those using nasal MO (P<.0001). Sixty-seven percent of patients using nasal MO believed it to be somewhat or very helpful in reducing surgical site infections, compared with 71% of patients receiving PI (P>.05). Being recruited as an active participant in surgical site infection prevention was a positive experience for 87.2% of MO patients and 86.3% of PI patients (P=.652). Those assigned to receive PI solution preoperatively reported significantly fewer adverse events than the nasal MO group (P<.01). Preoperative nasal decolonization with either nasal PI or MO was considered somewhat or very helpful by more than two-thirds of patients. Copyright 2014, SLACK Incorporated.

  16. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  17. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  18. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    PubMed

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  20. Identification of three cytochrome P450 genes in the Chagas' disease vector Triatoma infestans: Expression analysis in deltamethrin susceptible and resistant populations.

    PubMed

    Grosso, Carla G; Blariza, María J; Mougabure-Cueto, Gastón; Picollo, María I; García, Beatriz A

    2016-10-01

    Cytochrome P450 monooxygenases play a predominant role in the metabolism of insecticides. Many insect P450 genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides. The increases of expression of P450 genes at transcriptional level are often consider responsible for increasing the metabolism of insecticides and seems to be a common phenomenon in the evolution of resistance development in insects. As pyrethroid resistance has been detected in Triatoma infestans, it was of interest to analyze genes associated with resistance to insecticides such as those encoding for cytochromes P450. With this purpose, the cDNA sequences of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6) were identified in this species. Primers and specific Taqman probes were designed from these sequences to determine their expression by quantitative PCR. The mRNA levels of the cytochrome P450 genes identified were determined from total RNA extracted from pools of fat body collected from individuals of different resistant and susceptible strains of T. infestans, and at different interval times after the topical application of the lethal doses 50% (LD50) of deltamethrin on the ventral abdomen of insects belonging to the different populations analyzed. It was detected overexpression of the CYP4EM7 gene in the most resistant strain of T. infestans and the expression of the three cytochrome P450 genes isolated was induced by deltamethrin in the susceptible and resistant populations included in this study. These results suggest that these genes would be involved in the detoxification of deltamethrin and support the hypothesis that considers to the cytochrome P450 genes of importance in the development of pyrethroid resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Psychopathological characteristics in patients with deviation of nasal septum: a preliminary analysis].

    PubMed

    Li, W T; Chen, X Z; Tu, W J; Huang, Z Z; Chang, L H; Wang, J; Zhang, G H

    2016-09-07

    Objective: To investigate the psychopathological characteristics in patients with deviation of nasal septum. Methods: Between May 2015 and December 2015, fourty-four patients with deviated nasal septum and 37 patients with vocal cord polyp as control were included in this study. Psychological characteristics were evaluated by a series of questionnaire instruments including symptom checklist-90 (SCL-90), self-rating depression scale (SDS) and self-rating anxiety scale (SAS). Visual analogue scale (VAS) and rhinomanometry through front nostril were used to evaluate nasal symptom. The correlation between psychological characteristics and nasal symptom was evaluated. SPSS 20.0 software was used to analyze the data. Results: The SCL-90 score in nasal septal deviation group was 130.4±48.3. The total score and total average score of SCL-90 had no significant difference between nasal septal deviation group and the Chinese standard or control group( t value was 0.469, 0.112, 1.575, 1.564, respectively, all P >0.05). The scores of somatization, depression and anxiety factors in nasal septal deviation group were higher than control group ( t value was 2.380, 2.133, 1.969, respectively, all P <0.05). The proportion of positive patients in these three factors between nasal septal deviation group and control group had significant differences (χ 2 value was 11.585, 9.610, 5.429, respectively, all P <0.05). The scores of SDS and SAS in nasal septal deviation group were 46.0±10.6 and 43.0±10.2, which were higher than that in the Chinese standard and control group ( t value was 5.342, 6.236, 1.476, 3.013, respectively, all P <0.05). There were 9 patients companying with depression or anxiety (20.5%, 20.5%, respectively) and 5 patients companying with depression and anxiety in nasal septal deviation group (11.4%). There were positive correlation not only between the scores of SDS and the depression factor of SCL-90 but also between the scores of SAS and the anxiety factor of SCL

  2. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  3. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides themore » reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.« less

  4. May nasal hyperreactivity be a sequela of recurrent common cold?

    PubMed

    Cassano, M; Cassano, P; Ciprandi, G

    2011-01-01

    Respiratory viral infections may worsen bronchial hyperreactivity. However, there is no data on the possible role of recurrent infectious rhinitis in nose hyperreactivity. This study was therefore designed to investigate whether subjects suffering from recurrent common cold have nasal hyperreactivity, assessed by histamine nasal challenge. This study included a group of 40 patients (19 males, mean age 34.1 years) with history of at least five episodes of common cold in the previous year, but without documented allergy, and twenty healthy subjects (8 males, mean age 32.3 years) were enrolled as control group, all of whom were non-allergic. Nasal provocation test with histamine was performed in all subjects. Nasal provocation test with histamine induced a 200% increase in nasal resistance after provocation in 24 (60%) patients suffering from recurrent viral rhinitis. No normal subject had an increase >180% in nasal resistance. There was a significant difference between the patient group and the control group (p<0.05). In conclusion, this study shows that nasal hyperreactivity might be a sequela of recurrent common cold. Further studies should be conducted to confirm this preliminary finding.

  5. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts.

  6. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe.

    PubMed

    Ewen, Kerstin M; Schiffler, Burkhard; Uhlmann-Schiffler, Heike; Bernhardt, Rita; Hannemann, Frank

    2008-05-01

    Mitochondrial cytochromes P450 are essential for biosynthesis of steroid hormones, vitamin D and bile acids. In mammals, the electrons needed for these reactions are provided via adrenodoxin and adrenodoxin reductase (AdR). Recently, Schizosaccharomyces pombe was introduced as a new host for the functional expression of human mitochondrial steroid hydroxylases without the coexpression of their natural redox partners. This fact qualifies S. pombe for the biotechnological production of steroids and for application as inhibitor test organism of heterologously expressed cytochromes P450. In this paper, we present evidence that the S. pombe ferredoxin reductase, arh1, and ferredoxin, etp1fd provide mammalian class I cytochromes P450 with reduction equivalents. The recombinant reductase showed an unusual weak binding of flavin adenine dinucleotide (FAD), which was mastered by modifying the FAD-binding region by site-directed mutagenesis yielding a stable holoprotein. The modified reductase arh1_A18G displayed spectroscopic characteristics similar to AdR and was shown to be capable of accepting electrons with no evident preference for NADH or NADPH, respectively. Arh1_A18G can substitute for AdR by interacting not only with its natural redox partner etp1fd but also with the mammalian homolog adrenodoxin. Cytochrome P450-dependent substrate conversion with all combinations of the mammalian and yeast redox proteins was evaluated in a reconstituted system.

  8. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, G.; Descatoire, V.; Beaune, P.

    Incubation of rat liver microsomes with (3H)methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalenmore » (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B).« less

  9. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    PubMed Central

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  10. Effect of calcium(ion) uptake by rat adrenal mitochondria on pregnenolone formation and spectral properties of cytochrome P-450.

    PubMed

    Simpson, E R; Williams-Smith, D L

    1975-10-09

    The effect of calcium on pregnenolone formation from endogenous precursors has been studied in mitochondria from rat decapsulated and capsular adrenal glands. In the presence of succinate, addition of calcium chloride in the concentration range 20-150 muM caused an inhibition of pregnenolone formation in both decapsulated and capsular adrenal mitochondria. 11beta-hydroxylation of added deoxycosticosterone in decapsulated adrenal mitochondria was also inhibited. Under these conditions, calcium inhibited the reduction of adrenodoxin, a component of the cytochrome P-450 reductase system, presumably because uptake of calcium by the mitochondria competes with energy-linked transhydrogenase for high-energy intermediates. For this reason, incubations were carried out in the presence of succinate plus isocitrate plus NADP+. Under these conditions, calcium chloride in the concentration range 120-875 muM caused a 2-4-fold stimulation of pregnenolone formation, but had no effect on corticosterone formation from added deoxycorticosterone. The effect of calcium on the optical spectra of cytochrome P-450 has also been examined in mitochondria from decapsulated and capsular rat adrenals. In the presence of succinate, calcium induced a spectral change resembling a type I difference spectrum of cytochrome P-450. Thus it appears that uptake of calcium by adrenal mitochondria can stimulate pregnenolone formation by increasing the interaction of mitochondrial cytochrome P-450 with endogenous substrate.

  11. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  12. [Dexpanthenol nasal spray in comparison to dexpanthenol nasal ointment. A prospective, randomised, open, cross-over study to compare nasal mucociliary clearance].

    PubMed

    Verse, T; Klöcker, N; Riedel, F; Pirsig, W; Scheithauer, M O

    2004-07-01

    Recent technical developments in metered pump systems allow the production and use of preservative-free nasal products. The aim of the current study is to compare the tolerability of a preservative-free dexpanthenol (5%) nasal spray with that of the established dexpanthenol (5%) nasal ointment, also without preservatives. The main outcome measure was in vivo mucociliary clearance. Mucociliary clearance was assessed by saccharin migration time in 20 volunteers. Wash-out phases were 7 days and the spray or ointment was always applied 20 min before the saccharin test. The study was designed to test for non-inferiority. Saccharin migration time was slightly longer after ointment administration, however, these were not significantly different to nasal spray. The saccharin migration time showed a significant correlation with the age of the volunteers. The upper confidence limit of dexpanthenol nasal spray was markedly less than that of the ointment. Therefore, dexpanthenol nasal spray is at least equal to if not better than dexpanthenol nasal ointment. Due to its ease of administration, preservative-free dexpanthenol nasal spray offers a valuable therapeutic alternative.

  13. Structure of bovine cytochrome c oxidase crystallized at a neutral pH using a fluorinated detergent.

    PubMed

    Luo, Fangjia; Shinzawa-Itoh, Kyoko; Hagimoto, Kaede; Shimada, Atsuhiro; Shimada, Satoru; Yamashita, Eiki; Yoshikawa, Shinya; Tsukihara, Tomitake

    2017-07-01

    Cytochrome c oxidase (CcO) couples proton pumping to O 2 reduction. Its enzymatic activity depends sensitively on pH over a wide range. However, owing to difficulty in crystallizing this protein, X-ray structure analyses of bovine CcO aimed at understanding its reaction mechanism have been conducted using crystals prepared at pH 5.7, which is significantly lower than that in the cell. Here, oxidized CcO at pH 7.3 was crystallized using a fluorinated octyl-maltoside derivative, and the structure was determined at 1.77 Å resolution. No structural differences between crystals obtained at the neutral pH and the acidic pH were detected within the molecules. On the other hand, some differences in intermolecular interactions were detected between the two types of crystal. The influence of pH on the molecular surface is likely to contribute to the pH dependency of the aerobic oxidation of ferrocytochrome c.

  14. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; hide

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  15. Inter- and intra-rater reliability of nasal auscultation in daycare children.

    PubMed

    Santos, Rita; Silva Alexandrino, Ana; Tomé, David; Melo, Cristina; Mesquita Montes, António; Costa, Daniel; Pinto Ferreira, João

    2018-02-01

    The aim of this study was to assess nasal auscultation's intra- and inter-rater reliability and to analyze ear and respiratory clinical condition according to nasal auscultation. Cross-sectional study performed in 125 children aged up to 3 years old attending daycare centers. Nasal auscultation, tympanometry and Paediatric Respiratory Severity Score (PRSS) were applied to all children. Nasal sounds were classified by an expert panel in order to determine nasal auscultation's intra and inter- rater reliability. The classification of nasal sounds was assessed against tympanometric and PRSS values. Nasal auscultation revealed substantial inter-rater (K=0.75) and intra-rater (K=0.69; K=0.61 and K=0.72) reliability. Children with a "non-obstructed" classification revealed a lower peak pressure (t=-3.599, P<0.001 in left ear; t=-2.258, P=0.026 in right ear) and a higher compliance (t=-2,728, P=0.007 in left ear; t=-3.830. P<0.001 in right ear) in both ears. There was an association between the classification of sounds and tympanogram types in both ears (X=11.437, P=0.003 in left ear; X=13.535, P=0.001 in right ear). Children with a "non-obstructed" classification had a healthier respiratory condition. Nasal auscultation revealed substantial intra- and inter-rater reliability. Nasal auscultation exhibited important differences according to ear and respiratory clinical conditions. Nasal auscultation in pediatrics seems to be an original topic as well as a simple method that can be used to identify early signs of nasopharyngeal obstruction.

  16. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer

    PubMed Central

    Norris, John D.; Ellison, Stephanie J.; Baker, Jennifer G.; Stagg, David B.; Wardell, Suzanne E.; Park, Sunghee; Alley, Holly M.; Baldi, Robert M.; Yllanes, Alexander; Andreano, Kaitlyn J.; Stice, James P.; Lawrence, Scott A.; Eisner, Joel R.; Price, Douglas K.; Moore, William R.; Figg, William D.; McDonnell, Donald P.

    2017-01-01

    The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase–selective inhibitor, ædemonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel’s direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor–bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC. PMID:28463227

  17. Evaluation of nasal IgA secretion in normal subjects by nasal spray and aspiration.

    PubMed

    Fujimoto, Chisa; Kido, Hiroshi; Sawabuchi, Takako; Mizuno, Dai; Hayama, Masaki; Yanagawa, Hiroaki; Takeda, Noriaki

    2009-06-01

    Nasal washing (NW) is a popular method for collecting human nasal lavage fluid. However, for NW the subject must be trained, and the method is unsuitable for field studies on untrained subjects. To overcome this problem, we have developed an easy and painless method, a nasal spray and aspiration (NSA) method. This method is different from NW in that the nasal cavity is misted over with saline, and the nasal lavage fluid is aspirated from the nostrils through a silicon tube. First, nasal lavage fluid was obtained twice by NSA with an interval of a week between lavages to evaluate intraindividual variability, and the IgA and protein levels in the nasal lavage fluid were measured by enzyme-linked immunosorbent assay and bicinchoninic acid assay, respectively. Next, the IgA value determined by NSA was compared with that by NW in another 12 normal subjects 2 days after NSA. In 10 normal subjects, mean volume of saline sprayed into the nose was 0.46+/-0.15 ml (mean+/-S.D.). Mean volume of aspirated nasal lavage fluid containing both sprayed saline and nasal secretion was 0.44+/-0.37 ml. The mean IgA level/mg protein in the nasal lavage fluid determined by NSA was 112+/-18 microg/mg protein at the first and 99+/-20 at the second times of measurement, being highly reproducible. The mean value by NSA was 114+/-19 microg/mg protein, being almost the same as that by NW of 99+/-27. These findings suggest that the IgA level/mg protein in nasal lavage fluid determined by NSA instead of NW might be useful for assessing the variability of nasal IgA secretion.

  18. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  19. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    PubMed

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  20. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance.

    PubMed

    Hu, Z; Lin, Q; Chen, H; Li, Z; Yin, F; Feng, X

    2014-12-01

    Insect cytochrome P450 monooxygenases (P450s) play an important role in catalysis of many reactions leading to insecticides resistance. Our previous studies on transcriptome analysis of chlorantraniliprole-resistant development in the diamondback moth, Plutella xylostella revealed that up-regulation of cytochrome P450s are one of the main factors leading to the development of chlorantraniliprole resistance. Here, we report for the first time a novel cytochrome P450 gene CYP321E1, which belongs to the cytochrome P450 gene family CYP321. Real-time quantitative PCR (RT-qPCR) analyses indicated that CYP321E1 was expressed at all developmental stages of P. xylostella but was highest in the fourth-instar larvae; furthermore, the relatively high expression was observed in the midgut of the fourth-instar larvae, followed by fat bodies and epidermis. The expression of CYP321E1 in P. xylostella was differentially affected by three representative insecticides, including alphamethrin, abamectin and chlorantraniliprole. Among them, the exposure to chlorantraniliprole resulted in the largest transcript level of this cytochrome P450 gene. The findings suggested potential involvement of CYP321E1 in chlorantraniliprole resistance of P. xylostella. To assess the functional link of CYP321E1 to chlorantraniliprole resistance, RNA interference (RNAi)-mediated gene silencing by double stranded RNA (dsRNA) injecting was used. Results revealed that injection delivery of dsRNA can greatly reduce gene expression after 24 h. As a consequence of RNAi, a significant increment in mortality of larvae injected CYP321E1 dsRNA was observed after 24 h of exposure to chlorantraniliprole. These results strongly support our notion that this novel cytochrome P450 gene plays an important role in chlorantraniliprole detoxification in the diamondback moth and is partly responsible for its resistance.

  1. Comparison of Nasal Acceleration and Nasalance across Vowels

    ERIC Educational Resources Information Center

    Thorp, Elias B.; Virnik, Boris T.; Stepp, Cara E.

    2013-01-01

    Purpose: The purpose of this study was to determine the performance of normalized nasal acceleration (NNA) relative to nasalance as estimates of nasalized versus nonnasalized vowel and sentence productions. Method: Participants were 18 healthy speakers of American English. NNA was measured using a custom sensor, and nasalance was measured using…

  2. The golden ratio of nasal width to nasal bone length.

    PubMed

    Goynumer, G; Yayla, M; Durukan, B; Wetherilt, L

    2011-01-01

    To calculate the ratio of fetal nasal width over nasal bone length at 14-39 weeks' gestation in Caucasian women. Fetal nasal bone length and nasal width at 14-39 weeks' gestation were measured in 532 normal fetuses. The mean and standard deviations of fetal nasal bone length, nasal width and their ratio to one another were calculated in normal fetuses according to the gestational age to establish normal values. A positive and linear correlation was detected between the nasal bone length and the gestational week, as between the nasal width and the gestational week. No linear growth pattern was found between the gestational week and the ratio of nasal width to nasal bone length, nearly equal to phi, throughout gestation. The ratio of nasal width to nasal bone length, approximately equal to phi, can be calculated at 14-38 weeks' gestation. This might be useful in evaluating fetal abnormalities.

  3. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    PubMed Central

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  4. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    PubMed

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  5. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  6. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  7. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    PubMed

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  8. Effect of Fentanyl Nasal Packing Treatment on Patients With Acute Postoperative Pain After Nasal Operation: A Randomized Double-Blind Controlled Trial.

    PubMed

    Kim, Kwan-Sub; Yeo, Nam-Kyung; Kim, Seong-Su; Park, Woong-Sub; Kwak, Su-Hyun; Cho, Sang-Hyeon; Sung, Gyu-Wan; Kim, Hae-Sook; Yi, Sang-Wook; Cho, Hae Jun

    2018-05-01

    Nasal packing is an option for bleeding control after endoscopic sinus surgery and septoplasty. Although new packing materials have been developed, patients still suffer from pain and require additional analgesics treatments. In this study, a prospective, randomized, and double-blind controlled trial was designed to evaluate the effect of fentanyl-soaked packing on pain after endoscopic sinus surgery and septoplasty. One hundred fifty-two patients who underwent nasal surgeries due to chronic rhinosinusitis or nasal septal deviation were enrolled in this study. At the end of operation, 50 mcg fentanyl-soaked biodegradable synthetic polyurethane foams packing Nasopore or Merocel were applied to a group of 79 patients, and saline-soaked ones were applied to another group of 73 patients. To evaluate the influence of fentanyl on postoperative nasal pain, patients' conditions were assessed via means of Numeric Rating Scale, patient satisfaction, and Ramsay Sedation Scale. In addition, symptoms of headache or sore throat and any signs of cardiopulmonary-relevant indicators were monitored. The fentanyl group had significantly decreased Numeric Rating Scale and increased patient satisfaction in every operation type for the majority of postoperative time periods ( P < .05) with reduced postoperative headache and sore throat compared to the control group. The fentanyl group showed a higher score on Ramsay Sedation Scale than the control group ( P < .05 in group including endoscopic sinus surgery). There were no significant differences in cardiopulmonary-relevant indicators between the 2 groups ( P > .05). Fentanyl group showed significantly reduced postoperative pain without serious adverse effects. We suggest that topical fentanyl application to nasal packs can be a useful method to reduce pain during the early postoperative period after endoscopic sinus surgery and septoplasty.

  9. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  10. External Nasal Neuralgia: A Neuropathic Pain Within the Territory of the External Nasal Nerve.

    PubMed

    García-Moreno, Héctor; Aledo-Serrano, Ángel; Gimeno-Hernández, Jesús; Cuadrado, María-Luz

    2015-10-01

    Nasal pain is a challenging diagnosis and very little has been reported in the neurological literature. The nose is a sophisticated structure regarding its innervation, which is supplied by the first and second divisions of the trigeminal nerve. Painful cranial neuropathies are an important group in the differential diagnosis, although they have been described only scarcely. Here, we report a case that can conform a non-traumatic external nasal nerve neuralgia. A 76-year-old woman was referred to our office due to pain in her left nose. She was suffering from daily excruciating attacks, which were strictly limited to the territory supplied by her left external nasal nerve (left ala nasi and apex nasi). She denied previous traumatisms and the ancillary tests did not yield any underlying pathology. An anesthetic blockade of her left external nasal nerve achieved a marked reduction of the number of episodes as well as their intensity. External nasal neuralgia seems a specific neuralgia causing nasal pain. Anesthetic blockades of the external nasal nerve may be a valid treatment for this condition. © 2015 American Headache Society.

  11. Effects of interferon-tau and steroids on cytochrome P450 activity in bovine endometrial epithelial cells

    USDA-ARS?s Scientific Manuscript database

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-t (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were tr...

  12. Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice.

    PubMed

    Kishida, T; Ataki, H; Takebe, M; Ebihara, K

    2000-04-01

    The effect of soybean meal fermented by Aspergillus awamori on the acute lethality of acetaldehyde, pentobarbital sleeping time, and cytochrome P-450 content of the hepatic microsomes was studied in mice. Most of the daidzin and genistin in soybean meal (SBM) were converted into the respective aglycones, daidzein and genistein, by fermentation. In experiment 1, mice were fed isonitrogenic test diets with one of the following five protein sources for 28 d: casein, SBM, fermented and hot-air-dried SBM (FSBM-HD), fermented and freeze-dried SBM (FSBM-FD), or methanol-extracted FSBM-FD (FSMB-FD-R). The acute lethality of acetaldehyde in mice fed the FSBM-FD diet was significantly lower than that in mice fed the SBM, FSBM-HD, or FSBM-FD-R diet. In experiments 2 and 3, mice were fed isonitrogenic test diets with one of the following four protein sources for 28 d: casein, SBM, FSBM-FD, and FSBM-FD-R. The pentobarbital sleeping time was significantly shorter and the cytochrome P-450 content was significantly higher in the mice fed the FSBM-FD diet than the respective value in mice fed the other test diets. In experiment 4, mice were fed one of eight diets which contained different levels of aglycone obtained by varying the proportion of FSBM-FD and FSBM-FD-R, for 28 d. The cytochrome P-450 content in hepatic microsomes increased as the dietary level of isoflavonoid aglycones increased, but there was a saturation phenomenon. These results suggest that soy isoflavonoid aglycones are more potent inducers of cytochrome P-450 than isoflavonoid glycosides.

  13. CYTOCHROME P450 17A1 STRUCTURES WITH PROSTATE CANCER DRUGS ABIRATERONE AND TOK-001

    PubMed Central

    DeVore, Natasha M.; Scott, Emily E.

    2011-01-01

    Cytochrome P450 17A1 (P450c17) catalyzes the biosynthesis of androgens in humans1. Since prostate cancer cells proliferate in response to androgen steroids2,3, CYP17A1 inhibition is a new strategy to prevent androgen synthesis and treat lethal metastatic castration-resistant prostate cancer4, but drug development has been hampered by the lack of a CYP17A1 structure. Here we report the only known structures of CYP17A1, which contain either abiraterone, a first-in-class steroidal inhibitor recently approved by the FDA for late-stage prostate cancer5, or TOK-001, another inhibitor in clinical trials4,6. Both bind the heme iron forming a 60° angle above the heme plane, packing against the central I helix with the 3β-OH interacting with N202 in the F helix. Importantly, this binding mode differs substantially from those predicted by homology models or from steroids in other cytochrome P450 enzymes with known structures, with some features more similar to steroid receptors. While the overall CYP17A1 structure provides a rationale for understanding many mutations found in patients with steroidogenic diseases, the active site reveals multiple steric and hydrogen bonding features that will facilitate better understanding of the enzyme’s dual hydroxylase and lyase catalytic capabilities and assist in rational drug design. Specifically, structure-based design is expected to aid development of inhibitors that bind only CYP17A1 and solely inhibit its androgen-generating lyase activity to improve treatment of prostate and other hormone-responsive cancers. PMID:22266943

  14. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1.

    PubMed

    Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T

    2012-01-01

    To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.

  15. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    PubMed

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Stability of a novel corticosteroid nasal irrigation solution: betamethasone 17-valerate added to extemporaneously prepared nasal irrigation solutions.

    PubMed

    Ong, Kheng Yong; Lim, Wei Ching; Ooi, Shing Ming; Loh, Zhi Hui; Kong, Ming Chai; Chan, Lai Wah; Heng, Paul Wan Sia

    2017-05-01

    There are no commercially available nasal irrigation solutions containing corticosteroids. Instead, such preparations are extemporaneously prepared by adding existing corticosteroid formulations to nasal irrigation solutions. The stability of the corticosteroid betamethasone 17-valerate (B17V), in nasal irrigation solutions of different compositions and pH and stored under different temperatures, was studied to determine the optimal choice of solution and storage conditions. Triplicate extemporaneous preparations made with B17V were prepared by adding a predetermined volume of B17V lotion to each nasal irrigation solution: normal saline (NS), sodium bicarbonate (NaHCO 3 ) powder dissolved in tap water, and a commercially available powder mixture (FLO Sinus Care Powder), dissolved in tap water or pre-boiled tap water. Preparations were stored at 30°C and 4°C. Sampling was carried out at 0, 1, 2, 6, and 24 hours. The concentrations of B17V and its degradation compound, betamethasone 21-valerate (B21V), were determined by high-performance liquid chromatography. Preparations stored at 30°C contained a lower amount of B17V and higher amount of B21V than those stored at 4°C. B17V stability in nasal irrigation solutions decreased in the following order: NS, FLO in fresh tap water, FLO in pre-boiled tap water, and NaHCO 3 . The degradation rate of B17V increased with higher storage temperature and higher pH. B17V is most stable when added to NS and least stable in NaHCO 3 solution. FLO solution prepared with either cooled boiled water or tap water is an alternative if administered immediately. Storage at 4°C can better preserve stability of B17V, over a period of 24 hours. © 2017 ARS-AAOA, LLC.

  17. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19.

    PubMed

    Toda, Akiko; Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Kusama, Takashi; Shimizu, Makiko; Uno, Yasuhiro; Mogi, Masayuki; Sasaki, Erika; Yamazaki, Hiroshi

    2018-07-01

    1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.

  18. Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci.

    PubMed Central

    Esteller, M.; García, A.; Martínez-Palones, J. M.; Xercavins, J.; Reventós, J.

    1997-01-01

    A case-control study was designed to identify associations between polymorphisms at p53, cytochrome P-450 (CYP1A1) and glutathione-S-transferases and endometrial cancer susceptibility. Among all polymorphisms analysed, an insertional variant in p53 (P53PIN3) and two polymorphisms in the 3'-end and exon 7 of CYP1A1 showed significant association with enhanced endometrial cancer risk. Images Figure 1 Figure 2 PMID:9155064

  19. Appraisal of transverse nasal groove: a study.

    PubMed

    Sathyanarayana, Belagola D; Basavaraj, Halevoor B; Nischal, Kuchangi C; Swaroop, Mukunda R; Umashankar, Puttagangu N; Agrawal, Dhruv P; Swamy, Suchetha S; Okram, Sarda

    2012-01-01

    Transverse nasal groove is a condition of cosmetic concern which awaits due recognition and has been widely described as a shallow groove that extends transversely over the dorsum of nose. However, we observed variations in the clinical presentations of this entity, hitherto undescribed in literature. We conducted a clinicoepidemiological study of transverse nasal lesions in patients attending our outpatient department. We conducted a prospective observational study. We screened all patients attending our out-patient department for presence of transverse nasal lesions, signs of any dermatosis and associated other skin conditions. One hundred patients were recruited in the study. Females (80%) predominated over males. Most patients were of 15-45 years age group (70%). Majority of the transverse nasal lesions were classical transverse nasal groove (39%) and others included transverse nasal line (28%), strip (28%), ridge (4%) and loop (1%). Seborrhoeic diathesis was the most common condition associated with transverse nasal lesion. Occurrence of transverse nasal line, strip, ridge and loop, in addition to classical transverse nasal groove implies that latter is actually a subset of transverse nasal lesions. Common association of this entity with seborrheic dermatitis, seborrhea and dandruff raises a possibility of whether transverse nasal lesion is a manifestation of seborrheic diathesis.

  20. Cytochrome P450 responses and PCB congeners in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.; Woodin, Bruce R.; Stegeman, John J.

    1992-01-01

    Pipping black-crowned night-heron (Nvcticorax nvcticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge VA; CNWR) and industrialized (Cat Island, Green Bay WI and San Francisco Bay, CA; SFB) locations. Hepatic monooxygenases (AHH, EROD, BROD, ECOD) were induced up to 100-fold, and were correlated (r=0.50 to 0.72) with total PCB burdens (N =61 embryos). A subset of 30 embryos have now been analyzed by GC/MS for 12 AHH-active PCB congeners and by Western blot for cytochromes P450lA and P450llB. At Cat Island, concentrations of 8 congeners were greater (P <0.05) than at CNWR. P450lA and P450llB were detected in 44% and 100% of the Cat Island embryos compared to 8% and 33% of the CNWR + SFB embryos. Cytochrome P450 parameters were correlated with the total PCBs (r =0.44 to 0.67) and with at least 9 PCB congeners (r =0.39 to 0.77). Since P450 responses might be affected by other contaminants, sample extract potency in the H411E rat hepatoma bioassay is being determined to study relationships among dioxin equivalents and cytochrome P450 parameters.

  1. Specific antibodies induced by nasally administered 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits coaggregation activity of P. gingivalis.

    PubMed

    Namikoshi, Jun; Otake, Shigeo; Maeba, Satomi; Hayakawa, Mitsuo; Abiko, Yoshimitsu; Yamamoto, Masafumi

    2003-12-12

    In this study, we have assessed the efficacy of the 40-kDa outer membrane protein (40k-OMP) of Porphyromonas gingivalis as a nasal vaccine for the prevention of adult periodontitis. Mice nasally immunized with 40k-OMP and cholera toxin as mucosal adjuvant displayed significant levels of 40k-OMP-specific serum IgG1, IgG2b and IgA as well as mucosal IgA antibodies (Abs) in saliva and nasal secretions. Ab-forming cell (AFC) analysis confirmed the antibody titers by detecting high numbers of 40k-OMP-specific AFCs in spleen, salivary glands and nasal passages. Because 40k-OMP-specific IgG inhibited coaggregation of P. gingivalis vesicles and S. gordonii, it may be an important tool for the prevention of adult periodontitis.

  2. Kinetics of interprotein electron transfer between cytochrome c6 and the soluble CuA domain of cyanobacterial cytochrome c oxidase.

    PubMed

    Paumann, Martina; Feichtinger, Markus; Bernroitner, Margit; Goldfuhs, Judith; Jakopitsch, Christa; Furtmüller, Paul G; Regelsberger, Günther; Peschek, Günter A; Obinger, Christian

    2004-10-08

    Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways. Copyright 2004 Federation of European Biochemical Societies

  3. Effect of Breathe Right nasal strip on snoring.

    PubMed

    Ulfberg, J; Fenton, G

    1997-06-01

    Snoring is a significant problem both for the patient and for the bedpartner. It is well known that nasal stuffiness can contribute to snoring, and sleep quality may deteriorate because of the snoring. Nasal dilation can reduce snoring and improve sleep. Thirty-five habitual snorers (18 female, 17 male) and their bedpartners participated in an open label study. The patients were diagnosed as heavy snorers after they underwent overnight polysomnography showing that their apnoea indexes were below 5, thus sleep apnoea patients were not included in the study. The participants and their partners filled out evaluations concerning snoring intensity, mouth dryness and Epworth Sleepiness Scale prior to and after using Breath Right nasal strips for 14 consecutive nights. The Breathe Right external nasal dilator is a simple, nonpharmaceutical method to decrease nasal airway resistance and thus potentially reduce or eliminate snoring. After using the strips there were statistically significant decreases in snoring (p < 0.001) as graded by the bed partner, and in mouth dryness (p = 0.025) and in the Epworth Sleepiness Scale scores (p = 0.001), as graded by the patient. The results of this study indicate that Breathe Right nasal strips may be used to reduce snoring, mouth dryness and sleepiness in patients presenting with symptoms of snoring.

  4. Human cytochromes P450 in health and disease

    PubMed Central

    Nebert, Daniel W.; Wikvall, Kjell; Miller, Walter L.

    2013-01-01

    There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases—confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development. PMID:23297354

  5. [Hemangiopericytoma in nasal cavity: a case report].

    PubMed

    Hu, Honghai; Shi, Qifeng; Chen, Jidong

    2015-05-01

    We report a case of a 46 year old female patient with nasal hemangiopericytoma. She complained of left nasal congestion, pus snot for 10 years, sometimes with left nasal bleeding. Physical examination: in the left nasal tract saw red soft neoplasm, roughness surface, easy bleeding when touched. Sinus CT shows: bilateral maxillary sinus, ethmoid sinus, sphenoid sinus and the left posterior nasal cavity lesions, considering inflammation with the formation of polyps, tumor not excluded. The left nasal cavity neoplasm biopsy shows: hemangioma of left nasal cavity. After admission in general anesthesia, we do transnasal endoscopic sinus openning operation and the left nasal cavity neoplasm resection. Postoperative pathological examination shows: the left nasal cavity hemangiopericytoma. Immunohistochemical showed: Vimentin(+), Smooth muscle actin(+), Desmin(-), endothelial cells CD31(-) and CD34(-). No postoperative radiotherapy or chemotherapy, no tumor recurrence. After one year of follow-up, the contact was lost.

  6. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    USGS Publications Warehouse

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R.

    1995-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of arylhydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) weremodestly elevated (p,p?DDE, other organochlorinepesticides and total PCBs in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. At these low pollutant concentrations there was little correlation between monooxygenase activity and contaminant levels in nestlings. These observations markedly contrast the pronounced monooxygenase induction (up to 85-fold) and its significant correlation with total PCBs, arylhydrocarbon receptor-active PCB congeners and toxic equivalents in concurrently collected night-heron embryos that were often siblings of the nestlings. The present findings suggest that cytochrome P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  7. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.

    PubMed

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A

    2015-12-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    PubMed

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-09-01

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide. Copyright © 2017. Published by Elsevier B.V.

  9. INDUCTION AND POST-TRANSCRIPTIONAL SUPPRESSION OF HEPATIC CYTOCHROME P450 1A1 BY 3,3',4,4'-TETRACHLOROBIPHENYL. (R827102)

    EPA Science Inventory

    Abstract

    <p>3,3',4,4'-Tetrachlorobiphenyl (TCB) can induce and inhibit cytochrome P450 1A1 (CYP1A1) in vertebrates. TCB may also suppress CYP1A1 protein levels, but the mechanism is unknown. This study examined transcriptional and translational aspects of hepatic ...

  10. In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue.

    PubMed

    Pearson, Josh T; Siu, Sophia; Meininger, David P; Wienkers, Larry C; Rock, Dan A

    2010-03-30

    Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).

  11. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure ofmore » human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.« less

  12. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  13. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  14. Measuring and Characterizing the Human Nasal Cycle

    PubMed Central

    Kahana-Zweig, Roni; Geva-Sagiv, Maya; Weissbrod, Aharon; Secundo, Lavi; Soroker, Nachum; Sobel, Noam

    2016-01-01

    Nasal airflow is greater in one nostril than in the other because of transient asymmetric nasal passage obstruction by erectile tissue. The extent of obstruction alternates across nostrils with periodicity referred to as the nasal cycle. The nasal cycle is related to autonomic arousal and is indicative of asymmetry in brain function. Moreover, alterations in nasal cycle periodicity have been linked to various diseases. There is therefore need for a tool allowing continuous accurate measurement and recording of airflow in each nostril separately. Here we provide detailed instructions for constructing such a tool at minimal cost and effort. We demonstrate application of the tool in 33 right-handed healthy subjects, and derive several statistical measures for nasal cycle characterization. Using these measures applied to 24-hour recordings we observed that: 1: subjects spent slightly longer in left over right nostril dominance (left = 2.63 ± 0.89 hours, right = 2.17 ± 0.89 hours, t(32) = 2.07, p < 0.05), 2: cycle duration was shorter in wake than in sleep (wake = 2.02 ± 1.7 hours, sleep = 4.5 ± 1.7 hours, (t(30) = 5.73, p < 0.0001). 3: slower breathing was associated with a more powerful cycle (the extent of difference across nostrils) (r = 0.4, p < 0.0001), and 4: the cycle was influenced by body posture such that lying on one side was associated with greater flow in the contralateral nostril (p < 0.002). Finally, we provide evidence for an airflow cycle in each nostril alone. These results provide characterization of an easily obtained measure that may have diagnostic implications for neurological disease and cognitive state. PMID:27711189

  15. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    ERIC Educational Resources Information Center

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  16. Characterization of the nasal and oral microbiota of detection dogs.

    PubMed

    Isaiah, Anitha; Hoffmann, Aline Rodrigues; Kelley, Russ; Mundell, Paul; Steiner, Jörg M; Suchodolski, Jan S

    2017-01-01

    Little is known about physiological factors that affect the sense of olfaction in dogs. The objectives of this study were to describe the canine nasal and oral microbiota in detection dogs. We sought to determine the bacterial composition of the nasal and oral microbiota of a diverse population of detection canines. Nasal and oral swabs were collected from healthy dogs (n = 81) from four locations-Alabama, Georgia, California, and Texas. Nasal and oral swabs were also collected from a second cohort of detection canines belonging to three different detection job categories: explosive detection dogs (SP-E; n = 22), patrol and narcotics detection dogs (P-NDD; n = 15), and vapor wake dogs (VWD-E; n = 9). To understand if the nasal and oral microbiota of detection canines were variable, sample collection was repeated after 7 weeks in a subset of dogs. DNA was extracted from the swabs and used for 454-pyrosequencing of the16S rRNA genes. Nasal samples had a significantly lower diversity than oral samples (P<0.01). Actinobacteria and Proteobacteria were higher in nasal samples, while Bacteroidetes, Firmicutes, Fusobacteria, and Tenericutes were higher in oral samples. Bacterial diversity was not significantly different based on the detection job. No significant difference in beta diversity was observed in the nasal samples based on the detection job. In oral samples, however, ANOSIM suggested a significant difference in bacterial communities based on job category albeit with a small effect size (R = 0.1079, P = 0.02). Analysis of the composition of bacterial communities using LEfSe showed that within the nasal samples, Cardiobacterium and Riemerella were higher in VWD-E dogs, and Sphingobacterium was higher in the P-NDD group. In the oral samples Enterococcus and Capnocytophaga were higher in the P-NDD group. Gemella and Aggregatibacter were higher in S-PE, and Pigmentiphaga, Chryseobacterium, Parabacteroides amongst others were higher within the VWD-E group. Our initial

  17. Characterization of the nasal and oral microbiota of detection dogs

    PubMed Central

    Hoffmann, Aline Rodrigues; Kelley, Russ; Mundell, Paul; Steiner, Jörg M.

    2017-01-01

    Little is known about physiological factors that affect the sense of olfaction in dogs. The objectives of this study were to describe the canine nasal and oral microbiota in detection dogs. We sought to determine the bacterial composition of the nasal and oral microbiota of a diverse population of detection canines. Nasal and oral swabs were collected from healthy dogs (n = 81) from four locations—Alabama, Georgia, California, and Texas. Nasal and oral swabs were also collected from a second cohort of detection canines belonging to three different detection job categories: explosive detection dogs (SP-E; n = 22), patrol and narcotics detection dogs (P-NDD; n = 15), and vapor wake dogs (VWD-E; n = 9). To understand if the nasal and oral microbiota of detection canines were variable, sample collection was repeated after 7 weeks in a subset of dogs. DNA was extracted from the swabs and used for 454-pyrosequencing of the16S rRNA genes. Nasal samples had a significantly lower diversity than oral samples (P<0.01). Actinobacteria and Proteobacteria were higher in nasal samples, while Bacteroidetes, Firmicutes, Fusobacteria, and Tenericutes were higher in oral samples. Bacterial diversity was not significantly different based on the detection job. No significant difference in beta diversity was observed in the nasal samples based on the detection job. In oral samples, however, ANOSIM suggested a significant difference in bacterial communities based on job category albeit with a small effect size (R = 0.1079, P = 0.02). Analysis of the composition of bacterial communities using LEfSe showed that within the nasal samples, Cardiobacterium and Riemerella were higher in VWD-E dogs, and Sphingobacterium was higher in the P-NDD group. In the oral samples Enterococcus and Capnocytophaga were higher in the P-NDD group. Gemella and Aggregatibacter were higher in S-PE, and Pigmentiphaga, Chryseobacterium, Parabacteroides amongst others were higher within the VWD-E group. Our

  18. Effort of breathing in children receiving high-flow nasal cannula.

    PubMed

    Rubin, Sarah; Ghuman, Anoopindar; Deakers, Timothy; Khemani, Robinder; Ross, Patrick; Newth, Christopher J

    2014-01-01

    High-flow humidified nasal cannula is often used to provide noninvasive respiratory support in children. The effect of high-flow humidified nasal cannula on effort of breathing in children has not been objectively studied, and the mechanism by which respiratory support is provided remains unclear. This study uses an objective measure of effort of breathing (Pressure. Rate Product) to evaluate high-flow humidified nasal cannula in critically ill children. Prospective cohort study. Quaternary care free-standing academic children's hospital. ICU patients younger than 18 years receiving high-flow humidified nasal cannula or whom the medical team planned to extubate to high-flow humidified nasal cannula within 72 hours of enrollment. An esophageal pressure monitoring catheter was placed to measure pleural pressures via a Bicore CP-100 pulmonary mechanics monitor. Change in pleural pressure (ΔPes) and respiratory rate were measured on high-flow humidified nasal cannula at 2, 5, and 8 L/min. ΔPes and respiratory rate were multiplied to generate the Pressure.Rate Product, a well-established objective measure of effort of breathing. Baseline Pes, defined as pleural pressure at end exhalation during tidal breathing, reflected the positive pressure generated on each level of respiratory support. Twenty-five patients had measurements on high-flow humidified nasal cannula. Median age was 6.5 months (interquartile range, 1.3-15.5 mo). Median Pressure,Rate Product was lower on high-flow humidified nasal cannula 8 L/min (median, 329 cm H2O·min; interquartile range, 195-402) compared with high-flow humidified nasal cannula 5 L/min (median, 341; interquartile range, 232-475; p = 0.007) or high-flow humidified nasal cannula 2 L/min (median, 421; interquartile range, 233-621; p < 0.0001) and was lower on high-flow humidified nasal cannula 5 L/min compared with high-flow humidified nasal cannula 2 L/min (p = 0.01). Baseline Pes was higher on high-flow humidified nasal

  19. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.

    PubMed

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-07-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members' duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes.

  20. Nasal polyps

    MedlinePlus

    ... get rid of nasal polyps. Nasal steroid sprays shrink polyps. They help clear blocked nasal passages and ... is stopped. Corticosteroid pills or liquid may also shrink polyps, and can reduce swelling and nasal congestion. ...

  1. Binding Specificity Determines the Cytochrome P450 3A4 Mediated Enantioselective Metabolism of Metconazole.

    PubMed

    Zhuang, Shulin; Zhang, Leili; Zhan, Tingjie; Lu, Liping; Zhao, Lu; Wang, Haifei; Morrone, Joseph A; Liu, Weiping; Zhou, Ruhong

    2018-01-25

    Cytochrome P450 3A4 (CYP3A4) is a promiscuous enzyme, mediating the biotransformations of ∼50% of clinically used drugs, many of which are chiral molecules. Probing the interactions between CYP3A4 and chiral chemicals is thus essential for the elucidation of molecular mechanisms of enantioselective metabolism. We developed a stepwise-restrained-molecular-dynamics (MD) method to model human CYP3A4 in a complex with cis-metconazole (MEZ) isomers and performed conventional MD simulations with a total simulation time of 2.2 μs to probe the molecular interactions. Our current study, which employs a combined experimental and theoretical approach, reports for the first time on the distinct conformational changes of CYP3A4 that are induced by the enantioselective binding of cis-MEZ enantiomers. CYP3A4 preferably metabolizes cis-RS MEZ over the cis-SR isomer, with the resultant enantiomer fraction for cis-MEZ increasing rapidly from 0.5 to 0.82. cis-RS MEZ adopts a more extended structure in the active pocket with its Cl atom exposed to the solvent, whereas cis-SR MEZ sits within the hydrophobic core of the active pocket. Free-energy-perturbation calculations indicate that unfavorable van der Waals interactions between the cis-MEZ isomers and the CYP3A4 binding pocket predominantly contribute to their binding-affinity differences. These results demonstrate that binding specificity determines the cytochrome P450 3A4 mediated enantioselective metabolism of cis-MEZ.

  2. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    PubMed

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.

  3. Piezoelectric sensing: Evaluation for clinical investigation of deviated nasal septum

    PubMed Central

    Manjunatha, Roopa G.; Mahapatra, Roy D.; Dorasala, Srinivas

    2013-01-01

    Noninvasive objective evaluation of nasal airflow is one of the important clinical aspects. The developed polyvinylidene fluoride (PVDF) sensor enables measurement of airflow through each side of the nose using its piezoelectric property. This study was designed to evaluate the diagnostic capability of the PVDF sensor in assessing the deviated nasal septum (DNS). PVDF nasal sensor uses its piezoelectric property to measure the peak-to-peak amplitude (Vp-p) of nasal airflow in both of the nostrils: right nostril (RN) and left nostril (LN), separately and simultaneously. We have compared the results of PVDF nasal sensor, visual analog scale (VAS), and clinician scale for 34 DNS patients and 28 healthy controls. Additionally, the results were further analyzed by receiver operating characteristic curve and correlation between PVDF nasal sensor and VAS in detecting DNS. We found a significant difference in the peak-to-peak amplitude values of the test group and the control group. The correlation between the PVDF nasal sensor measurements and VAS (RN and LN combined) for test group was statistically significant (−0.807; p < 0.001). Sensitivity and specificity of the PVDF nasal sensor measurements in the detection of DNS (RN and LN combined) was 85.3 and 74.4%, respectively, with optimum cutoff value ≤0.34 Vp-p. The developed PVDF nasal sensor is noninvasive and requires less patient efforts. The sensitivity and specificity of the PVDF nasal sensor are reliable. According to our findings, we propose that the said PVDF nasal sensor can be used as a new diagnostic tool to evaluate the DNS in routine clinical practice. PMID:24498519

  4. What is normal nasal airflow? A computational study of 22 healthy adults

    PubMed Central

    Zhao, Kai; Jiang, Jianbo

    2014-01-01

    Objective Nasal airflow is essential for functioning of the human nose. Given individual variation in nasal anatomy, there is yet no consensus what constitutes normal nasal airflow patterns. We attempt to obtain such information that is essential to differentiate disease-related variations. Methods Computational fluid dynamics (CFD) simulated nasal airflow in 22 healthy subjects during resting breathing. Streamline patterns, airflow distributions, velocity profiles, pressure, wall stress, turbulence, and vortical flow characteristics under quasi-steady state were analyzed. Patency ratings, acoustically measured minimum cross-sectional area (MCA), and rhinomanometric nasal resistance (NR) were examined for potential correlations with morphological and airflow-related variables. Results Common features across subjects included: >50% total pressure-drop reached near the inferior turbinate head; wall shear stress, NR, turbulence energy, and vorticity were lower in the turbinate than in the nasal valve region. However, location of the major flow path and coronal velocity distributions varied greatly across individuals. Surprisingly, on average, more flow passed through the middle than the inferior meatus and correlated with better patency ratings (r=-0.65, p<0.01). This middle flow percentage combined with peak post-vestibule nasal heat loss and MCA accounted for >70% of the variance in subjective patency ratings and predicted patency categories with 86% success. Nasal index correlated with forming of the anterior dorsal vortex. Expected for resting breathing, the functional impact for local and total turbulence, vorticity, and helicity was limited. As validation, rhinomanometric NR significantly correlated with CFD simulations (r=0.53, p<0.01). Conclusion Significant variations of nasal airflow found among healthy subjects; Key features may have clinically relevant applications. PMID:24664528

  5. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.

    PubMed

    Yosca, Timothy H; Rittle, Jonathan; Krest, Courtney M; Onderko, Elizabeth L; Silakov, Alexey; Calixto, Julio C; Behan, Rachel K; Green, Michael T

    2013-11-15

    Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.

  6. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  7. Effect of septoplasty and per-operative antibiotic prophylaxis on nasal flora.

    PubMed

    Karaman, E; Alimoglu, Y; Aygun, G; Kilic, E; Yagiz, C

    2012-01-01

    Septoplasty is one of the most commonly performed procedures in otolaryngology practice. Prophylactic use of antibiotics is controversial. Disruption of nasal flora may predispose individuals to infection. We investigated the effect of antibiotic prophylaxis and septoplasty on nasal flora. We included 115 consecutive patients who underwent septoplasty because of symptomatic nasal septal deviation. Patients were divided into study and control groups. Study patients received prophylactic parenteral sodium cefazoline twice a day beginning intra-operatively and while the nasal packing remained in the nose for 48 h, and expandable polyvinyl acetate (Merocel) packing covered with antibiotic ointment containing 0.2% nitrofurazone was inserted into each nostril at the end of the operation. Control patients received neither parenteral antibiotic prophylaxis nor antibiotic ointment around the Merocel packs. Both groups received oral prophylactic cefuroxime axetil for 5 d after nasal packing was removed. Nasal flora was determined pre-operatively, post-operatively when nasal packing was removed, and 3 mo after surgery. Study patients were compared to control patients at pack removal and 1 mo after surgery The effect of antibiotic use in septoplasty on nasal flora was as follows: Increased isolation rate of gram-positive rods (p = 0.007), decreased methicillin-sensitive coagulase-negative staphylococci (p = 0.002). Pre-operative and post-operative culture results at 3 mo were compared. The effect of septoplasty on nasal flora was as follows: Decreased coagulase-negative staphylococci (p = 0.05), decreased Klebsiella (p < 0.001), decreased gram-positive rods (p < 0.001), increased methicillin-sensitive Staphylococcus aureus (p < 0.001). Septoplasty increases S. aureus colonization and decreases normal flora. Antibiotics do not protect against S. aureus colonization and contribute to a decrease in normal flora. Antibiotics do not seem to confer benefit in terms of flora changes

  8. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Jia, Zongchao; Nakatsu, Kanji

    2017-01-01

    Carbon monoxide (CO) formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2). Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR); CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR) were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide) detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  9. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodiummore » dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.« less

  10. Crystallization and Preliminary X-ray Analysis of Allene Oxide Synthase, Cytochrome P450 CYP74A2, from Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...

  11. Does the Supine Position Affect the Nasal Profile in Rhinoplasty Patients? A Comparison of Nasal Anthropometric Measurements in Different Body Positions.

    PubMed

    Kim, Su Jin; Ryu, In Yong; Kim, Sung Wan; Lee, Kun Hee

    2017-10-16

    Rhinoplasty surgeons are aware that the nasal profile differs according to body position, namely, the erect position in the consultation room vs the supine position on the operating table. It is not clear whether this difference is caused by an optical illusion or skin laxity due to positional change. To evaluate anthropometric measurements of the nose with different body positions and determine whether the supine position affects the nasal profile. In this retrospective study, 103 patients who underwent primary rhinoplasty were enrolled. Preoperatively, all patients underwent lateral cephalography in the erect position, and facial computed tomography (CT), in the supine position. We measured four nasal anthropometric parameters (the nasofrontal, nasolabial, and nasomental angles, and Simon's ratio) on lateral cephalograms and facial CT images, and compared these parameters between the two body positions. The nasofrontal angle was greater on facial CT than on cephalograms (P < 0.01). This difference was not related to age, sex, or body mass index (P > 0.05 each). We found no significant difference (P > 0.05) between the two positions in the nasolabial angle, nasomental angle, or Simon's ratio. The supine position does affect the nasal profile, especially in the radix area. Surgeons need to consider this difference in patients undergoing rhinoplasty. 2. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  12. Resonance Raman study on the structure of the active sites of microsomal cytochrome P-450 isozymes LM2 and LM4.

    PubMed

    Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H

    1989-12-08

    The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form

  13. Microsomal P-450 induction by some secondary products from thermal oxidation of dietary lipids: epidermal hyperplasia, mutagenicity and cytochrome P-450 activities.

    PubMed

    Crawford, L; Wheeler, E L

    1983-12-01

    Distillable secondary products from roasted fowl were found to be cytotoxic but not mutagenic when assayed with Salmonella typhimurium strains TA98, TA100 and TA1537. A crudely separated fraction of the volatiles produced focal hyperplasia and damage to the epidermis of the backs of mice. The volatiles also caused an apparent synthesis of non-constitutive forms of rat hepatic cytochromes P-450 which metabolize benzo[a]pyrene B [a]P differently from the constitutive P-450.

  14. A hypothesis of the Effect of a New Nasal Spray Made from Natural Medicines on Allergic Rhinitis in Animals

    NASA Astrophysics Data System (ADS)

    Zhai, Hailong; Wang, Yufang

    2018-01-01

    To verify the effect of a new nasal spray made from natural medicines on allergic rhinitis in animals. Methods: The main natural medicines contained in Acusine nasal spray plus essential traditional Chinese medicine contained in drugs for allergic rhinitis in Chinese market were used. By preparation process of extraction of traditional Chinese medicine such as steam distillation, ethanol extraction, a new nasal spray made from natural medicines was prepared. In the meantime, 24 BALB/c mice and New Zealand white rabbits were used. Then, mice were randomly divided into four group; control group, beclomethasone dipropionate group, Acusine group and new spray group, 6 mice in each group. Moreover, the effect of the new nasal spray made on passive cutaneous anaphylaxis was conducted by detecting absorptions of Evan’s blue (620nm) in the four groups. Allergic rhinitis models in 40 New Zealand white rabbits were established. Consequently, 40 allergic rhinitis models in rabbits were randomly divided into control group, Acusine group and new spray group, 10 rabbits in each group. The four groups were sprayed nasally with saline, Acusine spray and new spray respectively, three times/d, for 30 days. The nasal resistances in the four groups were measured with a rhinoresistometer. Moreover, their nasal mucosa was taken for HE staining. Consequently, their pathological manifestations were observed. The results: Absorption of Evan’s blue (620nm) of new spray group will be found significantly lower than Acusine group (P<0.05) and will have no significantly difference compared with beclomethasone dipropionate group(P>0.05). On the other hand, absorption of Evan’s blue (620nm) of beclomethasone dipropionate group will be significantly lower than Acusine group (P<0.05). Moreover, The nasal resistances of new spray group will be significantly lower than Acusine group (P<0.05) and will have no significantly difference compared with beclomethasone dipropionate group (P».05

  15. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion

    PubMed Central

    Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun

    2015-01-01

    NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis. PMID:26681597

  16. A novel cytochrome P450 CYP6AB14 gene in spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  17. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    USDA-ARS?s Scientific Manuscript database

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  18. SEASONAL HEPATIC CYTOCHROME P-450 INDUCTION IN COTTON RATS (SIGMODON HISPIDUS) INHABITING PETROCHEMICAL WASTE SITES. (R826242)

    EPA Science Inventory

    Abstract

    <p>Wildlife species inhabiting contaminated sites are often exposed to complex mixtures of chemicals that have known effects on physiological and biochemical function. We evaluated the induction of major hepatic cytochrome P-450 isoenzymes through O-dealky...

  19. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race.

    PubMed

    Tsou, Chung-Yau; Matsunaga, Shigeki; Okada, Shigeru

    2018-01-01

    The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a k m for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 μM, and a k cat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 μmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c.

    PubMed

    Battistuzzi, Gianantonio; Bortolotti, Carlo Augusto; Bellei, Marzia; Di Rocco, Giulia; Salewski, Johannes; Hildebrandt, Peter; Sola, Marco

    2012-07-31

    The low-pH conformational equilibria of ferric yeast iso-1 cytochrome c (ycc) and its M80A, M80A/Y67H, and M80A/Y67A variants were studied from pH 7 to 2 at low ionic strength through electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies. For wild-type ycc, the protein structure, axial heme ligands, and spin state of the iron atom convert from the native folded His/Met low-spin (LS) form to a molten globule His/H(2)O high-spin (HS) form and a totally unfolded bis-aquo HS state, in a single cooperative transition with an apparent pK(a) of ~3.0. An analogous cooperative transition occurs for the M80A and M80A/Y67H variants. This is preceded by protonation of heme propionate-7, with a pK(a) of ~4.2, and by an equilibrium between a His/OH(-)-ligated LS and a His/H(2)O-ligated HS conformer, with a pK(a) of ~5.9. In the M80A/Y67A variant, the cooperative low-pH transition is split into two distinct processes because of an increased stability of the molten globule state that is formed at higher pH values than the other species. These data show that removal of the axial methionine ligand does not significantly alter the mechanism of acidic unfolding and the ranges of stability of low-pH conformers. Instead, removal of a hydrogen bonding partner at position 67 increases the stability of the molten globule and renders cytochrome c more susceptible to acid unfolding. This underlines the key role played by Tyr67 in stabilizing the three-dimensional structure of cytochrome c by means of the hydrogen bonding network connecting the Ω loops formed by residues 71-85 and 40-57.

  1. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue

    2016-06-01

    To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.

  2. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  3. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  4. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  5. Reduced cytochrome P4501A activity and recovery from oxidative stress during subchronic benzo[a]pyrene and benzo[e]pyrene treatment of rainbow trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Lawrence R., E-mail: larry.curtis@oregonstate.edu; Garzon, Claudia B.; Arkoosh, Mary

    2011-07-01

    This study assessed the role of aryl hydrocarbon receptor (AHR) affinity, and cytochrome P4501A (CYP1A) protein and activity in polyaromatic hydrocarbon (PAH)-induced oxidative stress. In the 1-100 nM concentration range benzo[a]pyrene (BaP) but not benzo[e]pyrene (BeP) competitively displaced 2 nM [{sup 3}H]2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin from rainbow trout AHR2{alpha}. Based on appearance of fluorescent aromatic compounds in bile over 3, 7, 14, 28 or 50 days of feeding 3 {mu}g of BaP or BeP/g fish/day, rainbow trout liver readily excreted these polyaromatic hydrocarbons (PAHs) and their metabolites at near steady state rates. CYP1A proteins catalyzed more than 98% of ethoxyresorufin-O-deethylasemore » (EROD) activity in rainbow trout hepatic microsomes. EROD activity of hepatic microsomes initially increased and then decreased to control activities after 50 days of feeding both PAHs. Immunohistochemistry of liver confirmed CYP1A protein increased in fish fed both PAHs after 3 days and remained elevated for up to 28 days. Neither BaP nor BeP increased hepatic DNA adduct concentrations at any time up to 50 days of feeding these PAHs. Comet assays of blood cells demonstrated marked DNA damage after 14 days of feeding both PAHs that was not significant after 50 days. There was a strong positive correlation between hepatic EROD activity and DNA damage in blood cells over time for both PAHs. Neither CYP1A protein nor 3-nitrotyrosine (a biomarker for oxidative stress) immunostaining in trunk kidney were significantly altered by BaP or BeP after 3, 7, 14, or 28 days. There was no clear association between AHR2{alpha} affinity and BaP and BeP-induced oxidative stress. - Highlights: > No direct association between aryl hydrocarbon receptor affinity and polyaromatic hydrocarbon induced oxidative stress. > There was a strong correlation between cytochrome P4501A activity and oxidative stress as measured with the comet assay. > There was no correlation between

  6. Recollection of the early years of the research on cytochrome P450

    PubMed Central

    OMURA, Tsuneo

    2011-01-01

    Since the publication of the first paper on “cytochrome P450” in 1962, the biochemical research on this novel hemoprotein expanded rapidly in the 1960s and the 1970s as its principal roles in various important metabolic processes including steroid hormone biosynthesis in the steroidogenic organs and drug metabolism in the liver were elucidated. Establishment of the purification procedures of microsomal and mitochondrial P450s in the middle of the 1970s together with the introduction of molecular biological techniques accelerated the remarkable expansion of the research on P450 in the following years. This review paper summarizes the important developments in the research on P450 in the early years, for about two decades from the beginning, together with my personal recollections. PMID:22156409

  7. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B sup 1 metabolism in human liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrester, L.M.; Wolf, C.R.; Neal, G.E.

    Liver cancer is a major cause of premature death in many areas of Africa and Asia and its incidence is strongly correlated with exposure to aflatoxin B{sub 1} (AFB{sub 1}). Because AFB{sub 1} requires metabolic activation to achieve a biological response, there is a need for detailed knowledge of the mechanism of activation to assess individual risk. The authors carried out an extensive study using a total of 19 human liver samples to determine the individual variability in the metabolism of the toxin to mutagenic or detoxification products and to identify the specific cytochrome P-450 forms involved in these processes.more » Metabolism to the toxic 8,9-epoxide or to products mutagenic in the Ames test was found to exhibit very large individual variation. These data demonstrate that, although P450IIIA probably plays an important role in AFB{sub 1} activation, several other cytochrome P-450 forms have the capacity to activate the toxin. Similar considerations apply to detoxifying metabolism to aflatoxin Q{sub 1} and aflatoxin M{sub 1}. The levels of expression of many of the forms of cytochrome P-450 involved in AFB{sub 1} metabolism are known to be highly sensitive to environmental factors. This indicates that such factors will be an important determinant in individual susceptibility to the tumorigenic action of AFB{sub 1}.« less

  8. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots

    PubMed Central

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-01-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  9. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  10. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase

    PubMed Central

    Sündermann, Axel; Oostenbrink, Chris

    2013-01-01

    Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577

  11. Cyp15F1: A novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite R. flavipes

    USDA-ARS?s Scientific Manuscript database

    Termites are eusocial insects that perform social interactions that facilitate chemical signaling. Previous research identified two cytochrome P450s that have homology to other insect p450s responsible for the production of juvenile hormone. Juvenile hormone is an important morphogenic hormone tha...

  12. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    PubMed

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Comparison of the metabolism of parathion by a rat liver reconstituted mixed-function oxidase enzyme system and by a system containing cumene hydroperoxide and purified rat liver cytochrome P-450.

    PubMed

    Yoshihara, S; Neal, R A

    1977-01-01

    The metabolism of parathion by a reconstituted mixed-function oxidase enzyme system (rat liver cytochrome P-450, NADPH-cytochrome c reductase, dilauroyl phosphatidylcholine, deoxycholate, and NADPH) or a cumene hydroperoxide system (cytochrome P-450, dilauroyl phosphatidylcholine, and cumene hydroperoxide) have been compared. The products formed on incubation of parathion with both systems were paraoxon, diethyl phosphorothioic acid, diethyl phosphoric acid, p-nitrophenol, and atomic sulfur. The apparent KM values for parathion for formation of paraoxon and diethyl phosphorothioic acid with the cumene hydroperoxide system were 55 and 39 X 10(-6) M, respectively. These KM values are not significantly different. When the reconstituted system was used, apparent KM values of 2.8 x 10(-6) M for formation of paraoxon and 3.9 x 10(-6) M for The formation of diethyl phosphorothioic acid and diethyl phosphoric acid were determined. These KM values are also not significantly different. covalent binding of the sulfur atom, released in the metabolism of parathion to paraoxon, to the proteins of the reconstituted system and to cytochrome P-450 of the cumene hydroperoxide system was also examined. With both the reconstituted system and the cumene hydroperoxide system approximately 65% of the sulfur released became bound to the proteins of these enzyme systems. The binding of the sulfur atome resulted in a progressive inhibition of the metabolism of parathion by these two systems.

  14. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  15. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein.

    PubMed

    von Moltke, Lisa L; Weemhoff, James L; Perloff, Michael D; Hesse, Leah M; Harmatz, Jerold S; Roth-Schechter, Barbara F; Greenblatt, David J

    2002-12-01

    The influence of high concentrations of zolpidem (100 microM, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 microM), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright 2002 John Wiley & Sons, Ltd.

  16. Humidification of inspired oxygen is increased with pre-nasal cannula, compared to intranasal cannula.

    PubMed

    Dellweg, Dominic; Wenze, Markus; Hoehn, Ekkehard; Bourgund, Olaf; Haidl, Peter

    2013-08-01

    Oxygen therapy is usually combined with a humidification device, to prevent mucosal dryness. Depending on the cannula design, oxygen can be administered pre- or intra-nasally (administration of oxygen in front of the nasal ostia vs cannula system inside the nasal vestibulum). The impact of cannula design on intra-nasal humidity, however, has not been investigated to date. First, to develop a system, that samples air from the nasal cavity and analyzes the humidity of these samples. Second, to investigate nasal humidity during pre-nasal and intra-nasal oxygen application, with and without humidification. We first developed and validated a sampling and analysis system to measure humidity from air samples. By means of this system we measured inspiratory air samples from 12 subjects who received nasal oxygen with an intra-nasal and pre-nasal cannula at different flows, with and without humidification. The sampling and analysis system showed good correlation to a standard hygrometer within the tested humidity range (r = 0.99, P < .001). In our subjects intranasal humidity dropped significantly, from 40.3 ± 8.7% to 35.3 ± 5.8%, 32 ± 5.6%, and 29.0 ± 6.8% at flows of 1, 2, and 3 L, respectively, when oxygen was given intra-nasally without humidification (P = .001, P < .001, and P < .001, respectively). We observed no significant change in airway humidity when oxygen was given pre-nasally without humidification. With the addition of humidification we observed no significant change in humidity at any flow, and independent of pre- or intranasal oxygen administration. Pre-nasal administration of dry oxygen achieves levels of intranasal humidity similar to those achieved by intranasal administration in combination with a bubble through humidifier. Pre-nasal oxygen simplifies application and may reduce therapy cost.

  17. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  18. Hypercalcemia and parathyroid hormone-related protein in a dog with undifferentiated nasal carcinoma.

    PubMed Central

    Anderson, G M; Lane, I; Fischer, J; Lopez, A

    1999-01-01

    Hypercalcemia was discovered in a 7-year-old, castrated male basset hound with a suspected nasal tumor. The dog died the day after admission and nasal carcinoma and disseminated intravascular coagulation were diagnosed on postmortem. Detectable levels of serum PTHrP support a diagnosis of hypercalcemia of malignancy. PMID:10340096

  19. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) Activity in Healthy Subjects

    PubMed Central

    Malati, Christine Y.; Robertson, Sarah M.; Hunt, Jennifer D.; Chairez, Cheryl; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2012-01-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy subjects (8 males) completed this open label, single sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P. ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared pre-and post P. ginseng administration. Geometric mean ratios (post-ginseng/pre-ginseng) for midazolam area under the concentration vs. time curve from zero to infinity (AUC0-∞), half life (T1/2), and maximum concentration (Cmax) were significantly reduced at 0.66 (0.55 – 0.78), 0.71 (0.53 – 0.90), and 0.74 (0.56 – 0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P. ginseng administration. Based on these results, Panax ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking Panax ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  20. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  1. Functional Characterization of the Small Regulatory Subunit PetP from the Cytochrome b6f Complex in Thermosynechococcus elongatus[C][W

    PubMed Central

    Rexroth, Sascha; Rexroth, Dorothea; Veit, Sebastian; Plohnke, Nicole; Cormann, Kai U.; Nowaczyk, Marc M.; Rögner, Matthias

    2014-01-01

    The cyanobacterial cytochrome b6f complex is central for the coordination of photosynthetic and respiratory electron transport and also for the balance between linear and cyclic electron transport. The development of a purification strategy for a highly active dimeric b6f complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 enabled characterization of the structural and functional role of the small subunit PetP in this complex. Moreover, the efficient transformability of this strain allowed the generation of a ΔpetP mutant. Analysis on the whole-cell level by growth curves, photosystem II light saturation curves, and P700+ reduction kinetics indicate a strong decrease in the linear electron transport in the mutant strain versus the wild type, while the cyclic electron transport via photosystem I and cytochrome b6f is largely unaffected. This reduction in linear electron transport is accompanied by a strongly decreased stability and activity of the isolated ΔpetP complex in comparison with the dimeric wild-type complex, which binds two PetP subunits. The distinct behavior of linear and cyclic electron transport may suggest the presence of two distinguishable pools of cytochrome b6f complexes with different functions that might be correlated with supercomplex formation. PMID:25139006

  2. Nasal Obstruction in Children With Cleft Lip and Palate: Results of a Cross-Sectional Study Utilizing the NOSE Scale.

    PubMed

    Zhang, Rosaline S; Lin, Lawrence O; Hoppe, Ian C; Jackson, Oksana A; Low, David W; Bartlett, Scott P; Swanson, Jordan W; Taylor, Jesse A

    2018-01-01

    To characterize the epidemiology and risk factors for nasal obstruction among subjects with cleft lip and/or cleft palate (CL/P) utilizing the well-validated Nasal Obstruction Symptom Evaluation (NOSE) survey. Retrospective cross-sectional study. Cleft Lip and Palate Program, Children's Hospital of Philadelphia. Patients, Subjects: One thousand twenty-eight surveys obtained from 456 subjects (mean age: 10.10 (4.48) years) with CL/P evaluated between January 2015 and August 2017 with at least 1 completed NOSE survey. Nasal Obstruction Symptom Evaluation surveys completed at each annual visit. Composite NOSE and individual symptom scores. Sixty-seven percent of subjects had nasal obstruction at some point during the study period, with 49% reporting nasal obstruction at latest follow-up. subjects aged 14 years and older reported the most severe symptoms ( P = .002). Subjects with cleft lip and alveolus (CL+A) and unilateral cleft lip and palate (CLP) reported more severe nasal blockage than other phenotypes ( P = .021). subjects with a history of either posterior pharyngeal flap (PPF) or sphincter pharyngoplasty (SP) had significantly higher NOSE scores than subjects with no history of speech surgery ( P = .006). There was no significant difference ( P > .050) in NOSE scores with regard to history of primary tip rhinoplasty, nasal stent use, or nasoalveolar molding. There are more severe nasal obstructive symptoms among subjects older than 14 years of age, with CL+A or unilateral CLP, and with a history of PPF or SP. Future studies utilizing the NOSE are needed to evaluate and address this prevalent morbidity in the CLP population.

  3. First-trimester nasal bone length in a normal Latin American population.

    PubMed

    Casasbuenas, Alexandra; Wong, Amy E; Sepulveda, Waldo

    2009-02-01

    To report normative data of nasal bone length (NBL) in first-trimester singleton fetuses in a normal cohort of Latin American women. NBL was measured during routine first-trimester sonographic examination in 1040 singleton fetuses from an unselected population. NBL increased linearly with advancing gestational age (GA) [NBL (mm) = - 1.10 + 0.03 x GA (days), R(2) = 0.21; p < 0.001]. Similarly, there was a linear relationship between the NBL and crown-lump length (CRL) [NBL (mm) = 0.41 + 0.02 x CRL (mm), R(2) = 0.27; p < 0.001]. The NBLs at the 50th percentile in our population were 1.5, 1.7, and 1.9 mm at 11, 12, and 13 weeks of gestation, respectively. Whereas categorizing a nasal bone as absent or present can be subjective because of variations in echogenicity due to technique and equipment, measurement of NBL is a more objective approach to nasal bone assessment in screening for aneuploidy. Measurement of NBL in the first trimester is feasible and can be easily obtained at the time of nuchal translucency assessment. The normative data we report can provide a reference for defining nasal bone hypoplasia in the first trimester in the Latin American population. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Characterization and identification of an indirect cytochrome P-450-initiated denitrosation of 2,6-dichloro-4-nitroaniline in rat hepatic microsomes.

    PubMed

    Myers, L A; Witmer, C M; Gallo, M A

    1988-08-01

    The metabolism of 2,6-dichloro-4-nitroaniline (DCNA) to a unique denitrosated product, 3,5-dichloro-p-aminophenol (DCAP), was investigated in rat hepatic microsomes using an HPLC system containing a reverse-phase column and an electrochemical detector. The parent compound appears to induce its own metabolism. The characterization of this induction was studied by polyacrylamide gel electrophoresis, catalytic enzymatic activity, and immunochemistry. The in vitro microsomal aerobic production of DCAP was increased 4- to 6.5-fold with respect to controls after animals were treated with DCNA. The microsomal production of DCAP can be inhibited by the addition of specific antibodies to cytochrome P-450d, thus indicating that the removal of the nitro group and subsequent replacement with a hydroxyl group was initiated by cytochrome P-450d in the mixed-function oxidase system. Finally, it was demonstrated by the addition of H218O to the assay that this hydroxyl group came from H2O and not molecular oxygen. It is concluded that cytochrome P-450 initiated this novel reaction by the formation of an N-hydroxylamine, followed by a non-P-450-mediated attack of water causing the removal of nitrous acid and the formation of the phenol.

  5. Nasal Chondromesenchymal Hamartoma in a Child

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finitsis, Stefanos; Giavroglou, Constantinos; Potsi, Stamatia, E-mail: matinapotsi@hotmail.co

    Nasal chondromesenchymal hamartoma (NCMH) is a benign tumor that was described in 1998. The occurrence of this lesion in the nasal cavity of infants and children is especially rare, with only 21 cases reported in the international literature. We report a 12-month-old boy with respiratory distress due to nasal obstruction. Computed tomographic scan and magnetic resonance imaging examination demonstrated a soft-tissue mass obstructing the left nasal cavity. Digital subtraction angiography and preoperative superselective embolization with microparticles were also performed. The tumor was completely resected surgically. Histopathology and immunohistochemical analyses of the tumor disclosed a NCMH. The imaging characteristics of themore » tumor are described and the radiology literature is reviewed.« less

  6. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    PubMed Central

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  7. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  8. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  9. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  10. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs

    PubMed Central

    LYTTON, S D; BERG, U; NEMETH, A; INGELMAN-SUNDBERG, M

    2002-01-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato-and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8·5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection. PMID:11876753

  11. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs.

    PubMed

    Lytton, S D; Berg, U; Nemeth, A; Ingelman-Sundberg, M

    2002-02-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato- and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8.5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection.

  12. Effect of Nasal Continuous Positive Pressure on the Nostrils of Patients with Sleep Apnea Syndrome and no Previous Nasal Pathology. Predictive Factors for Compliance.

    PubMed

    Aguilar, Francina; Cisternas, Ariel; Montserrat, Josep Maria; Àvila, Manuel; Torres-López, Marta; Iranzo, Alex; Berenguer, Joan; Vilaseca, Isabel

    2016-10-01

    To evaluate the effect of continuous positive airway pressure (CPAP) on the nostrils of patients with sleep apnea-hypopnea syndrome and its impact on quality of life, and to identify predictive factors for compliance. Longitudinal prospective study. Thirty-six consecutive patients evaluated before and 2 months after CPAP using the following variables: clinical (eye, nose and throat [ENT] symptoms, Epworth test, anxiety/depression scales, general and rhinoconjunctivitis-specific quality of life); anatomical (ENT examination, computed tomography); functional (auditive and Eustachian tube function, nasal flow, mucociliary transport); biological (nasal cytology); and polisomnographics. The sample was divided into compliers (≥4h/d) and non-compliers (<4h/d). A significant improvement was observed in daytime sleepiness (p=0.000), anxiety (P=.006), and depression (P=.023). Nasal dryness (P=.000), increased neutrophils in nasal cytology (P=.000), and deteriorating ciliary function were evidenced, particularly in compliers. No significant differences were observed in the other variables. Baseline sleepiness was the only factor predictive of compliance. CPAP in patients without previous nasal pathology leads to an improvement in a series of clinical parameters and causes rhinitis and airway dryness. Some ENT variables worsened in compliers. Sleepiness was the only prognostic factor for poor tolerance. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. [pH values in the pharynx of the patients presenting with compromised nasal breathing of inflammatory and non-inflammatory genesis concomitant with gastroesophageal reflux disease].

    PubMed

    Subbotina, M V; Temnikova, I V; Onuchina, E V

    2015-01-01

    The objective of the present study was to estimate the influence of gastroesophageal reflux disease (GERD) on the pH values in the pharynx and nose. It included 87 patients at the age varying from 18 to 81 years admitted to the Irkutsk-based Railway Clinical Hospital and allocated to four groups. Group 1 was comprised of 25 patients presenting with gastroesophageal reflux disease and chronic rhinosinusitis (CRS), group 2 consisted of 29 patients with CRS in the absence of GERD, group 3 included 22 patients with nasal septum deformations (NSD) and GERD, group 4 included 11 patients with NSD and motor rhinitis without GERD. The control group was formed from 10 volunteers. pH was measured by the contact method with the use ofEkokhim indicator paper. Gastroesophageal reflux disease was diagnosed following the recommendations of the Montreal consensus. It was shown that pH values in the pharynx of the patients with compromised nasal breathing of any origin in combination with GERD were lower than in the absence of GERD and in the healthy volunteers. The study groups did not differ in terms of pH values in the nasal cavity. It is concluded that pH values 4 or lower may serve as the criterion for pharyngo-laryngeal reflux (PLR) concomitant with HERD while pH 5 occurs more frequently in the patients with compromised nasal breathing of any etiology, regardless of the presence or absence of GERD.Disordered nasal breathing of any genesis in the patients presenting with gastroesophageal reflux disease was associated with the feeling of the lump in the throat, congestion of the respiratory tract and the nose, pain in the ears, cardialgia, and irregular heartbeat. It isrecommended to use pH measurements as a criterion for diagnostics of pharyngo-laryngeal reflux in the patients presenting with gastroesophageal reflux disease.

  14. Maternal obesity alters feto-placental Cytochrome P4501A1 activity

    PubMed Central

    DuBois, Barent N.; O’Tierney, Perrie; Pearson, Jacob; Friedman, Jacob E.; Thornburg, Kent; Cherala, Ganesh

    2012-01-01

    Cytochrome P4501A1 (CYP1A1), an important drug metabolizing enzyme, is expressed in human placenta throughout gestation as well as in fetal liver. Obesity, a chronic inflammatory condition, is known to alter CYP enzyme expression in non-placental tissues. In the present study, we test the hypothesis that maternal obesity alters the distribution of CYP1A1 activity in feto-placental unit. Placentas were collected from non-obese (BMI<30) and obese (BMI>30) women at term. Livers were collected from gestation day 130 fetuses of non-human primates fed either control diet or high-fat diet (HFD). Cytosol and microsomes were collected using differential centrifugation, and incubated with 7-Ethoxyresorufin. The CYP1A1 specific activity (pmoles of resorufin formed/min/mg of protein) was measured at excitation/emission wavelength of 530/590nm. Placentas of obese women had significantly reduced microsomal CYP1A1 activity compared to non-obese women (0.046 vs. 0.082; p<0.05); however no such effect was observed on cytosolic activity. Similarly, fetal liver from HFD fed mothers had significantly reduced microsomal CYP1A1 activity (0.44±0.04 vs. 0.20±0.10; p<0.05), with no significant difference in cytosolic CYP1A1 activity (control, 1.23±0.20; HFD, 0.80±0.40). Interestingly, multiple linear regression analyses of placental efficiency indicates cytosolic CYP1A1 activity is a main effect (5.67±2.32 (β±SEM); p=0.022) along with BMI (−0.57±0.26; p=0.037), fetal gender (1.07±0.26; p<0.001), and maternal age (0.07±0.03; p=0.011). In summary, while maternal obesity affects microsomal CYP1A1 activity alone, cytosolic activity along with maternal BMI is an important determinant of placental efficiency. Together, these data suggest that maternal lifestyle could have a significant impact on CYP1A1 activity, and hints at a possible role for CYP1A1 in feto-placental growth and thereby well-being of fetus. PMID:23046808

  15. Similarity and Enhancement: Nasality from Moroccan Arabic Pharyngeals and Nasals

    ERIC Educational Resources Information Center

    Zellou, Georgia Eve

    2012-01-01

    Experimental studies of the articulation, acoustics, and perception of nasal and pharyngeal consonants and adjacent vowels were conducted to investigate nasality in Moroccan Arabic (MA). The status of nasality in MA is described as coarticulatorily complex, where two phoneme types (pharyngeal segments and nasal segments) yield similar…

  16. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  17. Gender and Gonadal Status Differences in Zona Reticularis Expression in Marmoset Monkey Adrenals: Cytochrome b5 Localization With Respect To Cytochrome P450 17,20-Lyase Activity.

    PubMed Central

    Pattison, J Christina; Saltzman, Wendy; Abbott, David H; Hogan, Brynn K; Nguyen, Ann D; Husen, Bettina; Einspanier, Almuth; Conley, Alan J; Bird., Ian M

    2007-01-01

    Neonatal marmosets express an adrenal fetal zone comparable to humans. While adult males fail to express a functional ZR, with barely detectable blood DHEA levels, females produce higher levels of DHEA than males in adulthood. We investigated the presence of a putative functional ZR in adult female marmosets. In contrast to males, immunohistochemical analysis showed the ZR marker cytochrome b5 was elevated in the innermost zone in cycling females (compared to testis-intact males), further elevated in the adrenals from anovulatory females, and substantially elevated and continuous in ovariectomized females. As a functional test in vivo, following overnight dexamethasone treatment, cycling and anovulatory females showed higher levels of DHEA relative to males, but DHEA failed to increase in response to ACTH. In direct contrast, while ovariectomized females exhibited lower initial DHEA levels, clear increases were detectable after ACTH administration (p<0.05), suggesting an adrenal origin. The apparent differences in cytochrome b5 expression between groups were also further verified by western blotting of adrenal microsomes, and compared to 17,20-lyase activity; the two parameters were positively correlated (p<0.01) across multiple treatment groups. We conclude that the cycling female marmoset expresses a rudimentary ZR with at least a capacity for DHEA production that becomes significantly ACTH-responsive after anovulation. Expression of cytochrome b5 in this region may be directly or indirectly controlled by gonadal function, and is, at least in part, a critical determinant in the development of an adrenal ZR that is more defined and significantly ACTH-responsive. PMID:17222503

  18. Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.

    PubMed

    Gao, X P

    1998-04-01

    The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P < 0.05). This response is significantly attenuated by CP-96345 and RP-67580, two selective, but structurally distinct, nonpeptide neurokinin 1 (substance P)-receptor antagonists, but not by CP-96344, the 2R,3R enantiomer of CP-96345 (P < 0.05). CP-96345 has no significant effects on adenosine-induced increase in clearance of FITC-dextran from the in situ nasal mucosa. CP-96345 and RP-67580, but not CP-96344, significantly attenuate substance P-induced increases in clearance of FITC-dextran from the in situ nasal mucosa (P < 0.05). Collectively, these data suggest that grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.

  19. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease

    PubMed Central

    Dorn, Elisabeth S.; Suchodolski, Jan S.; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S.

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease. PMID:28459886

  20. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease.

    PubMed

    Tress, Barbara; Dorn, Elisabeth S; Suchodolski, Jan S; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease.

  1. Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Ichinose, H; Wariishi, H; Tanaka, H

    2002-09-01

    A cDNA encoding cytochrome P450 oxidoreductase (CPR) from the lignin-degrading basidiomycete Coriolus versicolor was identified using RT-PCR. The full-length cDNA consisted of 2,484 nucleotides with a poly(A) tail, and contained an open reading frame. The G+C content of the cDNA isolated was 60%. A deduced protein contained 730 amino acid residues with a calculated molecular weight of 80.7 kDa. The conserved amino acid residues involved in functional domains such as FAD-, FMN-, and NADPH-binding domains, were all found in the deduced protein. A phylogenetic analysis demonstrated that C. versicolor CPR is significantly similar to CPR of the basidiomycete Phanerochaete chrysosporium and that they share the same major branch in the fungal cluster. A recombinant CPR protein was expressed using a pET/ Escherichia coli system. The recombinant CPR protein migrated at 81 kDa on SDS polyacrylamide gel electrophoresis. It exhibited an NADPH-dependent cytochrome c reducing activity.

  2. A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization

    PubMed Central

    Faulstich, Manuela; Grau, Timo; Severin, Yannik; Unger, Clemens; Hoffmann, Wolfgang H.; Rudel, Thomas; Autenrieth, Ingo B.; Weidenmaier, Christopher

    2014-01-01

    Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. PMID:24788600

  3. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    PubMed Central

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  4. Nasal Anatomy and Function.

    PubMed

    Patel, Ruchin G

    2017-02-01

    The nose is a complex structure important in facial aesthetics and in respiratory physiology. Nasal defects can pose a challenge to reconstructive surgeons who must re-create nasal symmetry while maintaining nasal function. A basic understanding of the underlying nasal anatomy is thus necessary for successful nasal reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Saline nasal washes

    MedlinePlus

    ... nasal wash helps flush pollen, dust, and other debris from your nasal passages. It also helps remove excess mucus (snot) and adds moisture. Your nasal passages are open spaces behind your nose. Air passes through your nasal ...

  6. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  7. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  8. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Vijay; Agarwal, Rajesh; Singh, Rana P., E-mail: ranaps@hotmail.com

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survivalmore » of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer

  9. The effect of mouth leak and humidification during nasal non-invasive ventilation.

    PubMed

    Tuggey, Justin M; Delmastro, Monica; Elliott, Mark W

    2007-09-01

    Poor mask fit and mouth leak are associated with nasal symptoms and poor sleep quality in patients receiving domiciliary non-invasive ventilation (NIV) through a nasal mask. Normal subjects receiving continuous positive airways pressure demonstrate increased nasal resistance following periods of mouth leak. This study explores the effect of mouth leak during pressure-targeted nasal NIV, and whether this results in increased nasal resistance and consequently a reduction in effective ventilatory support. A randomised crossover study of 16 normal subjects was performed on separate days. Comparison was made of the effect of 5 min of mouth leak during daytime nasal NIV with and without heated humidification. Expired tidal volume (V(T)), nasal resistance (R(N)), and patient comfort were measured. Mean change (Delta) in V(T) and R(N) were significantly less following mouth leak with heated humidification compared to the without (DeltaV(T) -36+/-65 ml vs. -88+/-50 ml, p<0.001; DeltaR(N) +0.9+/-0.4 vs. +2.0+/-0.7 cm H(2)O l s(-1), p<0.001). Baseline comfort was worse without humidification (5.3+/-0.4 vs. 6.2+/-0.4, p<0.01), and only deteriorated following mouth leak without humidification. In normal subjects, heated humidification during nasal NIV attenuates the adverse effects of mouth leak on effective tidal volume, nasal resistance and improves overall comfort. Heated humidification should be considered as part of an approach to patients who are troubled with nasal symptoms, once leak has been minimised.

  10. Obligatory role of cytochrome b5 in the microsomal metabolism of methoxyflurane.

    PubMed

    Canova-Davis, E; Chiang, J Y; Waskell, L

    1985-06-01

    Cytochrome b5 has recently been shown to be required in the reconstituted cytochrome P-450 system for the metabolism of the volatile anesthetic methoxyflurane [E. Canova-Davis and L. A. Waskell, J. biol. Chem. 259, 2541 (1984)]. To determine whether this observation in the reconstituted system was merely dependent on the particular ratios of the various components or some other fortuitous, unknown factor, or whether cytochrome b5 plays a role in the liver microsomal metabolism of methoxyflurane, the following studies were undertaken. Antibody to rabbit holocytochrome b5 was raised in guinea pigs. The antibody to cytochrome b5 was able to inhibit 75% of the microsomal metabolism of methoxyflurane. This same antibody also inhibited methoxyflurane metabolism in the reconstituted system. When the antibody to cytochrome b5 was treated with purified cytochrome b5 before addition to the microsomes, it did not inhibit methoxyflurane metabolism. Furthermore, the antibody to cytochrome b5 did not inhibit the microsomal metabolism of benzphetamine. This suggests that cytochrome b5 was required for the microsomal metabolism of methoxyflurane. It is possible that cytochrome b5 functioned in the metabolism of methoxyflurane by retaining a specific conformation of cytochrome P-450 and not by transferring the second electron to cytochrome P-450. To explore this possibility, cytochrome b5 was reconstituted with Mn3+-protoporphyrin IX. The Mn3+-protoporphyrin IX derivative retained the conformation of cytochrome b5 but not its electron transfer properties. This manganese derivative of cytochrome b5 was unable to stimulate the metabolism of methoxyflurane. The study demonstrated that cytochrome b5 was obligatory for the microsomal metabolism of methoxyflurane, whereas it was not required for the microsomal N-demethylation of benzphetamine. Moreover, the heme moiety of cytochrome b5 functioned to transfer electrons in this reaction.

  11. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomicmore » analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.« less

  12. A review of nasal polyposis

    PubMed Central

    Newton, Jonathan Ray; Ah-See, Kim Wong

    2008-01-01

    Nasal polyps are common, affecting up to four percent of the population. Their etiology remains unclear, but they are known to have associations with allergy, asthma, infection, cystic fibrosis, and aspirin sensitivity. They present with nasal obstruction, anosmia, rhinorrhoea, post nasal drip, and less commonly facial pain. Clinical examination reveals single or multiple grey polypoid masses in the nasal cavity. Computerized tomography allows evaluation of the extent of the disease and is essential if surgical treatment is to be considered. Management of polyposis involves a combination of medical therapy and surgery. There is good evidence for the use of corticosteroids (systemic and topical) both as primary treatment and as postoperative prophylaxis against recurrence. Surgical treatment has been refined significantly over the past twenty years with the advent of endoscopic sinus surgery and, in general, is reserved for cases refractory to medical treatment. Recurrence of the polyposis is common with severe disease recurring in up to ten percent of patients. PMID:18728843

  13. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared

  14. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu; Lomnicki, Slawo M., E-mail: slomni1@lsu.edu

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductasemore » and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450.

  15. [Clinical symptoms and immunology inspection characteristics of nasal cavity local allergy].

    PubMed

    Yin, Z X; Zhu, Y; Zhai, X; Zhang, J L; Liu, G

    2017-08-05

    Objective: To investigate the clinical symptoms and immunology inspection characteristics of nasal cavity local allergy. Method: Selected 60 patients as observation group, who had only nasal local allergy symptoms, allergen skin prick test and serum allergen specific IgE (SIgE) test were negative, 40 allergic rhinitis (AR) patients and 40 healthy volunteers as control groups. To detect Symptom scores and VAS scores, and eosinophilia counts in venous blood, allergen skin prick test (SPT), serum allergen SIgE test, nasal secretions allergen SIgE test, nasal mucous membrane excitation test in both observation group and AR group, eosinophilia counts in nasal secretion, taked the data for statistical analysis. Result: There was no difference ( P > 0.05) in the symptom scores and VAS scores of observation group and the AR group. The eosinophilia counts in venous blood in the AR group were higher than in the observation group ( P < 0.05). The eosinophilia counts in venous blood in the observation group were higher than in the healthy volunteers group ( P < 0.05). The positive rate of nasal secretions dust mites and pollen allergen was 90% (54/60) in observation group. There was no significant difference ( P > 0.05) in the eosinophilia percentages in nasal secretion in the observation group and the AR group. There was significant difference ( P < 0.05) in the eosinophilia percentages in nasal secretion in the observation group and the healthy volunteers group. There were 6 patients in observation group whose nasal secretions allergen SIgE test and nasal mucous membrane excitation test were both negative, could be diagnosised as non-allergic rhinitis (NAR). According to eosinophilia counts in venous blood and nasal secretions, 4 patients were diagnosised as vasomotor rhinitis and 2 patients were diagnosised as NAR with eosinophilia syndrome. There were 54 patients in observation group whose nasal secretions allergen SIgE test and (or) nasal mucous membrane excitation test

  16. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    USDA-ARS?s Scientific Manuscript database

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethan...

  17. Island composite nasal flap for nasal dorsum skin defects.

    PubMed

    Skitarelić, Neven; Mladina, Ranko; Mraovic, Boris; Simurina, Tatjana; Skitarelić, Nataa; Vuković, Katarina

    2009-08-01

    Skin defects on the nasal dorsum remain a challenge for the plastic surgeon. There are few local nasal flap options for the repair of proximally positioned nasal skin defects. During a 3-year period, 22 patients were treated after excision of skin cancer in the proximal two-thirds of the nose. Nine patients (41%) were female and 13 (59%) were male, with an average age of 69 years. All patients were operated on under local anesthesia. The average follow-up was 25 months. In all patients, after tumor ablation, the skin defect was closed with an island composite nasal skin flap. Pathohistologic analysis confirmed that the margins of the removed tumor were free of malignant cells. Six patients (27.3%) had squamous cell and 16 (72.7%) had basal cell carcinoma. There was no total or partial flap loss. None of the patients has suffered from recurrence of the tumor. The island composite nasal flap is a reliable technique for the closure of proximal nasal skin defects. Complications in the elevation of the island composite flap were rare, and the final result was acceptable.

  18. The Use of Human Liver Cell Model and Cytochrome P450 Substrate-Inhibitor Panel for Studies of Dasatinib and Warfarin Interactions.

    PubMed

    Zakharyants, A A; Burmistrova, O A; Poloznikov, A A

    2017-02-01

    The possibility of interactions between warfarin and dasatinib and their interactions with other drugs metabolized by cytochrome P450 isoform CYP3A4 was demonstrated using a previously created cytochrome P450 substrate-inhibitor panel for preclinical in vitro studies of drug biotransformation on a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). Dasatinib and warfarin are inhibitors of CYP2C19 isoform and hence, can interfere the drugs metabolized by this isoform. Our findings are in line with the data obtained on primary culture of human hepatocytes and suggest that the model can be used in preclinical in vitro studies of drugs.

  19. Influence of cooling face masks on nasal air conditioning and nasal geometry.

    PubMed

    Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F

    2017-06-01

    Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.

  20. Distinguishing rhinitis and nasal neoplasia by radiography.

    PubMed

    Russo, M; Lamb, C R; Jakovljevic, S

    2000-01-01

    To compare the incidence of radiographic signs in dogs with rhinitis and primary nasal neoplasia and to assess the performance of observers for distinguishing these conditions, the nasal radiographs of 72 dogs with either rhinitis (n = 42) or primary nasal neoplasia (n = 30) were examined by two independent observers using custom-designed forms to record their interpretations. Rhinitis was associated with a higher incidence of focal or multifocal lesions, localised soft tissue opacities, lucent foci, and a lack of frontal sinus involvement. Neoplasia was associated with soft tissue opacities and loss of turbinate detail that affected the entire ipsilateral nasal cavity, signs of invasion of the bones surrounding the nasal cavity, and soft tissue/fluid opacities within the ipsilateral frontal sinus. The signs with the highest positive predictive value (PPV) for rhinitis were absence of frontal sinus lesions and lucent foci in nasal cavity (PPV of each 82%), and invasion of surrounding bones for neoplasia (PPV 88%). There were no significant differences in the position of the lesion within the nasal cavity, incidence of unilateral versus bilateral lesions, calcified lesions, or absence of teeth. There was moderate agreement between observers about the diagnosis (kappa 0.59). Areas (SE) under ROC curves were 0.94 (0.03) and 0.96 (0.03) for observers A and B, respectively (not significantly different; P = 0.68). These results indicate a high accuracy for radiologists examining dogs with nasal diseases. Differentiation of rhinitis and nasal neoplasia should be based on finding combinations of radiologic signs that together have a high PPV. Differences in interpretation between experienced observers in this study suggest that certain signs are potential sources of error.

  1. Effect of nasal deviation on quality of life.

    PubMed

    de Lima Ramos, Sueli; Hochman, Bernardo; Gomes, Heitor Carvalho; Abla, Luiz Eduardo Felipe; Veiga, Daniela Francescato; Juliano, Yara; Dini, Gal Moreira; Ferreira, Lydia Masako

    2011-07-01

    Nasal deviation is a common complaint in otorhinolaryngology and plastic surgery. This condition not only causes impairment of nasal function but also affects quality of life, leading to psychological distress. The subjective assessment of quality of life, as an important aspect of outcomes research, has received increasing attention in recent decades. Quality of life is measured using standardized questionnaires that have been tested for reliability, validity, and sensitivity. The aim of this study was to evaluate health-related quality of life, self-esteem, and depression in patients with nasal deviation. Sixty patients were selected for the study. Patients with nasal deviation (n = 32) were assigned to the study group, and patients without nasal deviation (n = 28) were assigned to the control group. The diagnosis of nasal deviation was made by digital photogrammetry. Quality of life was assessed using the Medical Outcomes Study 36-Item Short Form Health Survey questionnaire; the Rosenberg Self-Esteem/Federal University of São Paulo, Escola Paulista de Medicina Scale; and the 20-item Self-Report Questionnaire. There were significant differences between groups in the physical functioning and general health subscales of the Medical Outcomes Study 36-Item Short Form Health Survey (p < 0.05). Depression was detected in 11 patients (34.4 percent) in the study group and in two patients in the control group, with a significant difference between groups (p < 0.05). Nasal deviation is an aspect of rhinoplasty of which the surgeon should be aware so that proper psychological diagnosis can be made and suitable treatment can be planned because psychologically the patients with nasal deviation have significantly worse quality of life and are more prone to depression. Risk, II.(Figure is included in full-text article.).

  2. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  3. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  4. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  5. Synthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.

    PubMed

    Mitome, Hidemichi; Sugiyama, Erika; Sato, Hitoshi; Akira, Kazuki

    2014-01-01

    (13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.

  6. Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-29

    Cytochrome P450s play an important role in plant growth and are involved in multiple stresses response. However, little is known about the functions of cytochrome P450s in apple. Here, a Malus × domestica cytochrome P450 monooxygenase 1 gene, MdCYPM1, was identified and subsequently cloned from apple 'Gala' (Malus × domestica). To verify the functions of MdCYPM1, we generated transgenic Arabidopsis plants expressing the apple MdCYPM1 gene under the control of the Cauliflower mosaic virus 35S promoter. Four transgenic lines (#3, #5, #7 and #8) were selected for further study. The transgenic plants exhibited a series of skotomorphogenesis phenotypes relative to wild-type controls, such as reduction of the chlorophyll, anthocyanins content and hypocotyls elongation. In addition, overexpression of MdCYPM1 influenced auxin transport and flowering time in transgenic Arabidopsis. Furthermore, MdCYPM1 expression was induced by salt and mannitol treatments, and the transgenic plants were negatively regulated by salinity and osmotic stresses during germination. These results suggest that MdCYPM1 plays a vital role in plant growth and development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Oxymetazoline Nasal Spray

    MedlinePlus

    ... is recommended by a doctor. Children 6 to 12 years of age should use oxymetazoline nasal spray carefully and under adult supervision. Oxymetazoline is in a class of medications called nasal decongestants. It works by narrowing the blood vessels in the nasal passages.

  8. Conformational Changes of NADPH-Cytochrome P450 Oxidoreductase Are Essential for Catalysis and Cofactor Binding*

    PubMed Central

    Xia, Chuanwu; Hamdane, Djemel; Shen, Anna L.; Choi, Vivian; Kasper, Charles B.; Pearl, Naw May; Zhang, Haoming; Im, Sang-Choul; Waskell, Lucy; Kim, Jung-Ja P.

    2011-01-01

    The crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp147 and Arg514 in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4. Reduction of the disulfide bond restored the ability of the mutant to reduce its redox partners, demonstrating that a conformational change is essential for CYPOR function. The crystal structures of the mutant without and with NADP+ revealed that the two flavin domains are joined by a disulfide linkage and that the relative orientations of the two flavin rings are twisted ∼20° compared with the wild type, decreasing the surface contact area between the two flavin rings. Comparison of the structures without and with NADP+ shows movement of the Gly631–Asn635 loop. In the NADP+-free structure, the loop adopts a conformation that sterically hinders NADP(H) binding. The structure with NADP+ shows movement of the Gly631–Asn635 loop to a position that permits NADP(H) binding. Furthermore, comparison of these mutant and wild type structures strongly suggests that the Gly631–Asn635 loop movement controls NADPH binding and NADP+ release; this loop movement in turn facilitates the flavin domain movement, allowing electron transfer from FMN to the CYPOR redox partners. PMID:21345800

  9. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    PubMed Central

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-01-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism. PMID:7989576

  10. Use of P450 cytochrome inhibitors in studies of enokipodin biosynthesis

    PubMed Central

    Ishikawa, Noemia Kazue; Tahara, Satoshi; Namatame, Tomohiro; Farooq, Afgan; Fukushi, Yukiharu

    2013-01-01

    Enokipodins A, B, C, and D are antimicrobial sesquiterpenes isolated from the mycelial culture medium of Flammulina velutipes, an edible mushroom. The presence of a quaternary carbon stereocenter on the cyclopentane ring makes enokipodins A-D attractive synthetic targets. In this study, nine different cytochrome P450 inhibitors were used to trap the biosynthetic intermediates of highly oxygenated cuparene-type sesquiterpenes of F. velutipes. Of these, 1-aminobenzotriazole produced three less-highly oxygenated biosynthetic intermediates of enokipodins A-D; these were identified as (S)-(−)-cuparene-1,4-quinone and epimers at C-3 of 6-hydroxy-6-methyl-3-(1,2,2-trimethylcyclopentyl)-2-cyclohexen-1-one. One of the epimers was found to be a new compound. PMID:24688524

  11. Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi

    2015-11-15

    Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region.

  12. Continuous Positive Airway Pressure (CPAP) Induces Early Nasal Inflammation

    PubMed Central

    Almendros, Isaac; Acerbi, Irene; Vilaseca, Isabel; Montserrat, Josep M.; Navajas, Daniel; Farré, Ramon

    2008-01-01

    Study Objectives: To assess whether noninvasive application of nCPAP is a mechanical stimulus inducing early nasal inflammation. Design: Prospective controlled animal study. Setting: University laboratory. Patients or Participants: 32 male Sprague-Dawley rats (250–300 g). Interventions: The rats were anesthetized and subjected to nCPAP=10 cm H2O and sham-CPAP through a mask for 3 h and 5 h (n=8 each). Measurements and Results: After nCPAP or sham, nasal scraping was carried out to detect neutrophils, and septum and dorsal nasal concha were excised to assess gene expression of inflammatory markers by real time PCR. Percentage of neutrophils in nucleated cells in the nasal scrapings was significantly (P = 0.006) higher after 5 h of nCPAP (3.51% ± 0.73%; m ± SEM) than in the sham group (1.12% ± 0.39%). When compared with sham, the mRNA of macrophage inflammatory protein-2 (MIP-2) in nasal tissue was significantly overexpressed after both 3 h (2.28-fold ± 0.43–fold; P = 0.034) and 5 h (5.56-fold ± 1.88–fold; P = 0.002) of nCPAP=10 cm H2O. No significant changes were found in the gene expressions of tumor necrosis factor-α, nerve growth factor and tachykinin-1 receptor. Conclusions: The compression applied by nCPAP (10 cm H2O, 5 h) on the nasal wall of healthy rats is a mechanical stimulus that triggers an early inflammatory process mediated by MIP-2, resulting in neutrophil extravasation. Citation: Almendros I; Acerbi I; Vilaseca I; Montserrat JM; Navajas D; Farré R. Continuous positive airway pressure (CPAP) induces early nasal inflammation. SLEEP 2008;31(1):127-131. PMID:18220086

  13. A Critical Role for the cccA Gene Product, Cytochrome c2, in Diverting Electrons from Aerobic Respiration to Denitrification in Neisseria gonorrhoeae

    PubMed Central

    Hopper, Amanda C.; Li, Ying

    2013-01-01

    Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae. PMID:23543713

  14. Evaluation and management of pediatric nasal obstruction: A survey of practice patterns.

    PubMed

    Kohlberg, Gavriel D; Stewart, Michael G; Ward, Robert F; April, Max M

    2016-07-01

    Inferior turbinate (IT) hypertrophy and adenoid hypertrophy are both causes of pediatric nasal obstruction. The purpose of this survey was to study nasal obstruction evaluation and management among pediatric otolaryngologists with respect to IT and adenoid hypertrophy. A questionnaire with embedded clinical videos was sent electronically to American Society of Pediatric Otolaryngology members. A total of 435 questionnaires were sent, and 75 were completed. Respondents were presented with scenarios that involved a 7-year-old child with nasal obstruction unresponsive to medical therapy, and the respondents were asked to choose a surgical plan, either IT reduction, adenoidectomy, or combined IT reduction and adenoidectomy. Three questions described the extent of IT and adenoid obstruction in text form, although three questions included a video of the child's nasal endoscopy. In questions with perceived or stated IT hypertrophy, the respondents chose to perform IT reduction significantly more frequently when the perceived or stated adenoid hypertrophy was less severe (p < 0.0001 for video and p = 0.039 for written questions). The decision to perform IT reduction in children is inversely related to the extent of adenoid hypertrophy. Future studies on pediatric IT surgery should include objective descriptions of the IT and adenoid in study subjects.

  15. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  16. Nasalance and nasality at experimental velopharyngeal openings in palatal prosthesis: a case study

    PubMed Central

    LIMA-GREGIO, Aveliny Mantovan; MARINO, Viviane Cristina de Castro; PEGORARO-KROOK, Maria Inês; BARBOSA, Plinio Almeida; AFERRI, Homero Carneiro; DUTKA, Jeniffer de Cassia Rillo

    2011-01-01

    The use of prosthetic devices for correction of velopharyngeal insufficiency (VPI) is an alternative treatment for patients with conditions that preclude surgery and for those individuals with a hypofunctional velopharynx (HV) with a poor prognosis for the surgical repair of VPI. Understanding the role and measuring the outcome of prosthetic treatment of velopharyngeal dysfunction requires the use of tools that allow for documenting pre- and post-treatment outcomes. Experimental openings in speech bulbs have been used for simulating VPI in studies documenting changes in aerodynamic, acoustic and kinematics aspects of speech associated with the use of palatal prosthetic devices. The use of nasometry to document changes in speech associated with experimental openings in speech bulbs, however, has not been described in the literature. Objective This single-subject study investigated nasalance and nasality at the presence of experimental openings drilled through the speech bulb of a patient with HV. Material and Methods Nasometric recordings of the word "pato" were obtained under 4 velopharyngeal conditions: no-opening (control condition), no speech bulb, speech bulb with a 20 mm2 opening, and speech bulb with 30 mm2 opening. Five speech-language pathologists performed auditory-perceptual ratings while the subject read an oral passage under all conditions. Results Kruskal-Wallis test showed significant difference among conditions (p=0.0002), with Scheffé post hoc test indicating difference from the no-opening condition. Conclusion The changes in nasalance observed after drilling holes of known sizes in a speech bulb suggest that nasometry reflect changes in transfer of sound energy related to different sizes of velopharyngeal opening. PMID:22230996

  17. Induced cytochrome P450 1A activity in cichlid fishes from Guandu River and Jacarepaguá Lake, Rio de Janeiro, Brazil.

    PubMed

    Parente, Thiago E M; De-Oliveira, Ana C A X; Paumgartten, Francisco J R

    2008-03-01

    The induction of cytochrome P4501A-mediated activity (e.g. ethoxyresorufin-O-deethylation, EROD) has been used as a biomarker for monitoring fish exposure to AhR-receptor ligands such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and polychlorinated dibenzo-dioxins/furans (PCDD/Fs). In this study we found that hepatic EROD is induced in fish ("Nile tilapia", Oreochromis niloticus and "acará", Geophagus brasiliensis) from the Guandu River (7-17-fold) and Jacarepaguá Lake (7-fold), Rio de Janeiro, Brazil. Since both cichlid fish are consumed by the local population and the Guandu River is the main source of the drinking water supply for the greater Rio de Janeiro metropolitan area, pollution by cytochrome P4501A-inducing chemicals is a cause for concern and should be further investigated in sediments, water and biota. We additionally showed that EROD activity in the fish liver post-mitochondrial supernatant-simpler, cheaper and less time consuming to prepare than the microsomal fraction-is sufficiently sensitive for monitoring purposes.

  18. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  19. Evaluation of Memory Enhancing Clinically Available Standardized Extract of Bacopa monniera on P-Glycoprotein and Cytochrome P450 3A in Sprague-Dawley Rats

    PubMed Central

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255

  20. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats.

    PubMed

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.

  1. Refinement treatment of nasal bone fracture: A 6-year study of 329 patients.

    PubMed

    Chou, Chieh; Chen, Chao-Wen; Wu, Yi-Chia; Chen, Ko-Kang; Lee, Su-Shin

    2015-10-01

    The reliability of X-ray radiography for diagnosing nasal bone fractures (NBFs) remains controversial. Recent studies show that, for determining the orientation and location of the displaced/depressed fracture, nasal sonography is as accurate as facial computed tomography. This retrospective study compared conductor-assisted nasal sonography (CANS) to conventional diagnostic tools and reported subjective patient satisfaction and discomfort after closed reduction combined with tube technique. This retrospective study reports the results of 329 refinement treatments for nasal bone fracture (including 199 men and 130 women) performed from 2005 to 2011. All patients were assessed with CANS and completed a survey immediately prior to removing the packing. Questionnaires were adapted from the nasal obstruction symptom evaluation (NOSE) scale. The study found that CANS has a 97.2% rate of accuracy in diagnosing NBF. The visual analog scale scores of nasal obstruction, nasal congestion, sleep disturbance, trouble breathing, and inability to move air through the nose were analyzed. The experimental group scores were significantly different from the control group for all scores (p < 0.001). Compared to conventional methods, CANS is more accurate for detecting NBF. We recommend its use as an alternative tool for diagnosing a nasal fracture. Because the tube technique balances pressure between the nasopharynx and middle ear during swallowing, patient comfort is enhanced. Application of these modifications can improve accuracy in diagnosing NBF and can improve the quality of NBF treatment. Copyright © 2014. Published by Elsevier Taiwan.

  2. A Comparison of Over-the-Counter Mechanical Nasal Dilators: A Systematic Review.

    PubMed

    Kiyohara, Nicole; Badger, Christopher; Tjoa, Tjoson; Wong, Brian

    2016-09-01

    The internal nasal valve is the narrowest part of the nasal airway and a common site of inspiratory collapse and obstruction of nasal airflow. Over-the-counter mechanical nasal dilators are an alternative to surgical intervention that attempts to improve airflow through the internal nasal valve. To determine the efficacy of over-the-counter mechanical nasal dilators and classify these products by mechanism. A database of 33 available over-the-counter mechanical nasal dilators was generated via a PubMed search as well as an internet search via Amazon.com and Google, conducted from April 1, 2013, through December 31, 2015. Products determined to be unavailable or discontinued were excluded from the database. Of the devices examined in published literature, efficacy was based on objective measures, such as measured airflow, the cross-sectional area of the nasal valve, and changes in resistance. Measures of reported sleep quality or patient perception were excluded. An analysis of each product's mechanism revealed 4 broad classes: external nasal dilator strips, nasal stents, nasal clips, and septal stimulators. A review demonstrated 5 studies supporting the use of external nasal dilator strips, 4 studies supporting the use of nasal clips, 1 study supporting the use of nasal stents, and no studies supporting the use of septal stimulators. Our findings suggest that external nasal dilator strips and nasal clips effectively relieve obstruction of the internal nasal valve and may be an alternative to surgical intervention in some patients.

  3. Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals.

    PubMed

    Bailey, Ryan S; Casey, Kevin P; Pawar, Sachin S; Garcia, Guilherme J M

    2017-01-01

    Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort. To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy individuals. Healthy adult volunteers first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in 2 locations along the nasal septum: at the vestibule and across from the inferior turbinate head. Nasal mucosal temperature and subjective patency scores in healthy individuals. The 22 healthy adult volunteers (12 [55%] male; mean [SD] age, 28.3 [7.0] years) had a mean (SD) NOSE score of 5.9 (8.4) (range, 0-30) and unilateral VAS score of 1.2 (1.4) (range, 0-5). The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (mean [SD] change in temperature, 6.2°C [2.6°C]) than during resting breathing (mean [SD] change in temperature, 4.2°C [2.3°C]) in both locations (P < .001). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side visual analog scale score (Pearson r = -0.55; 95% CI, -0.79 to -0.17; P = .008) and NOSE score (Pearson r = -0.47; 95% CI, -0.74 to -0.06; P = .03). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower (mean of 1.5°C lower) in the first cavity to be measured, which was the right cavity in all

  4. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength

    PubMed Central

    Campelo, Diana; Lautier, Thomas; Urban, Philippe; Esteves, Francisco; Bozonnet, Sophie; Truan, Gilles; Kranendonk, Michel

    2017-01-01

    NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners. PMID:29163152

  5. Five surgical maneuvers on nasal mucosa movement in cleft palate repair: A cadaver study.

    PubMed

    Nguyen, Dennis C; Patel, Kamlesh B; Parikh, Rajiv P; Skolnick, Gary B; Woo, Albert S

    2016-06-01

    This biomechanical study aims to characterize the nasal mucosa during palatoplasty, thereby describing the soft tissue attachments at different zones and quantifying movement following their release. Palatal nasal mucosa was exposed and divided in the midline in 10 adult cadaver heads. Five consecutive maneuvers were performed: (1) elevation of nasal mucosa off the maxilla, (2) dissection of nasal mucosa from soft palate musculature, (3) separation of nasal mucosa from palatine aponeurosis, (4) release of mucosa at the pterygopalatine junction, and (5) mobilization of vomer flaps. The mucosal movements across the midline at the midpalate (MP) and posterior nasal spine (PNS) following each maneuver were measured. At the MP, maneuvers 1-4 cumulatively provided 3.8 mm (36.9%), 4.9 mm (47.6%), 6.1 mm (59.2%), and 10.3 mm, respectively. Vomer flap (10.5 mm) elevation led to mobility equivalent to that of maneuvers 1-4 (p = 0.72). At the PNS, cumulative measurements after maneuvers 1-4 were 1.3 mm (10%), 2.4 mm (18.6%), 5.7 mm (44.2%), and 12.9 mm. Here, vomer flaps (6.5 mm) provided less movement (p < 0.001). Maneuver 4 yielded the greatest amount of movement of the lateral nasal mucosa at both MP (4.2 mm, 40.8%) and PNS (7.2 mm, 55.8%). At the MP, complete release of the lateral nasal mucosa achieves as much movement as the vomer flap. At the hard-soft palate junction, the maneuvers progressively add to the movement of the lateral nasal mucosa. The most powerful step is release of attachments along the posterior aspect of the medial pterygoid. Published by Elsevier Ltd.

  6. Reduced nasal growth after primary nasal repair combined with cleft lip surgery.

    PubMed

    Yoshimura, Y; Okumoto, T; Iijima, Y; Inoue, Y

    2015-11-01

    Nasal growth after cleft lip surgery with or without primary nasal repair was evaluated using lateral cephalograms. In 14 patients who underwent simultaneous nasal repair with primary cleft lip repair and 12 patients without simultaneous nasal repair, lateral cephalograms were obtained at 5 and 10 years of age. Lateral cephalograms of normal Japanese children were used as a control. At 5 years of age, there were significant differences in the nasal height and columellar angle among the three groups. Children without simultaneous nasal repair had shorter noses with more upward tilt of the columella compared with the controls, while children with simultaneous nasal repair had much shorter noses and more upward tilt than those without repair. At 10 years of age, the children without simultaneous nasal repair showed no differences from the control group, while those with simultaneous repair still had shorter noses and more upward tilt of the columella. These findings suggest that performing nasal repair at the same time as primary cleft lip surgery has an adverse influence on the subsequent growth of the nose. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. [Endoscopic treatment of small osteoma of nasal sinuses manifested as nasal and facial pain].

    PubMed

    Li, Yu; Zheng, Tianqi; Li, Zhong; Deng, Hongyuan; Guo, Chaoxian

    2015-12-01

    To discuss the clinical features, diagnosis and endoscopic surgical intervention for small steoma of nasal sinuses causing nasal and facial pain. A retrospective review was performed on 21 patients with nasal and facial pain caused by small osteoma of nasal sinuses, and nasal endoscopic surgery was included in the treatment of all cases. The nasal and facial pain of all the patients was relieved. Except for one ase exhibiting periorbital bruise after operation, the other patients showed no postoperative complications. Nasal and facial pain caused by small osteoma of nasal sinuses was clinically rare, mostly due to the neuropathic pain of nose and face caused by local compression resulting from the expansion of osteoma. Early diagnosis and operative treatment can significantly relieve nasal and facial pain.

  8. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  9. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  10. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites.

    PubMed

    Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M

    1995-05-11

    The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed

  11. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  12. Presurgical Nasal Molding With a Nasal Spring in Patients With Mild-to-Moderate Nasal Deformity With Incomplete Unilateral Cleft Lip With or Without Cleft Palate.

    PubMed

    Peanchitlertkajorn, Supakit

    2018-01-01

    Traditional nasoalveolar molding (NAM) requires steep learning curve for clinicians and significant compliance from parents. Nasal springs have been developed by the author to simplify presurgical nasal molding. This article presents the design, construction, and application of the spring. The treatment goal is to improve nasal deformity prior to primary repair in infants born with incomplete unilateral cleft lip with or without cleft palate. The design, fabrication, and utility of the nasal spring are described. The spring has a simpler design and construction compared to a traditional NAM appliance. Two patients with incomplete unilateral cleft lip with and without cleft palate are presented. The spring is constructed and delivered. The active arm of the spring can be 3-dimensionally (3-D) adjusted to mold the alar cartilage of the affected nostril. The spring does not require an oral plate for adherence as a traditional NAM appliance does, hence an oral impression is not needed. The spring is easy for clinicians to adjust. It also requires less compliance by parents. Main Outcome Measures/Results: The presurgical molding achieved by the use of a nasal spring improved surgical nasolabial aesthetic outcomes. The nasal springs are effective in reducing the initial cleft nasal deformity. This facilitates primary surgical cleft lip and nose correction and improves surgical outcomes in patients with incomplete unilateral cleft lip with or without cleft palate.

  13. Predictors of sinonasal quality of life and nasal morbidity after fully endoscopic transsphenoidal surgery.

    PubMed

    Little, Andrew S; Kelly, Daniel; Milligan, John; Griffiths, Chester; Prevedello, Daniel M; Carrau, Ricardo L; Rosseau, Gail; Barkhoudarian, Garni; Otto, Bradley A; Jahnke, Heidi; Chaloner, Charlene; Jelinek, Kathryn L; Chapple, Kristina; White, William L

    2015-06-01

    Despite the increasing application of endoscopic transsphenoidal surgery for pituitary lesions, the prognostic factors that are associated with sinonasal quality of life (QOL) and nasal morbidity are not well understood. The authors examine the predictors of sinonasal QOL and nasal morbidity in patients undergoing fully endoscopic transsphenoidal surgery. An exploratory post hoc analysis was conducted of patients who underwent endoscopic pituitary surgery and were enrolled in a prospective multicenter QOL study. End points of the study included patient-reported sinonasal QOL and objective nasal endoscopy findings. Multivariate models were developed to determine the patient and surgical factors that correlated with QOL at 2 weeks through 6 months after surgery. This study is a retrospective review of a subgroup of patients studied in the clinical trial "Rhinological Outcomes in Endonasal Pituitary Surgery" (clinical trial no. NCT01504399, clinicaltrials.gov ). Data from 100 patients who underwent fully endoscopic transsphenoidal surgery were included. Predictors of a lower postoperative sinonasal QOL at 2 weeks were use of nasal splints (p = 0.039) and female sex at the trend level (p = 0.061); at 3 months, predictors of lower QOL were the presence of sinusitis (p = 0.025), advancing age (p = 0.044), and use of absorbable nasal packing (p = 0.014). Health status (multidimensional QOL) was also predictive at 2 weeks (p = 0.001) and 3 months (p < 0.001) and was the only significant predictor of sinonasal QOL at 6 months (p < 0.001). A Kaplan-Meier analysis was performed to study time to resolution of nasal crusting, mucopurulence, and synechia as observed during nasal endoscopy after surgery. The mean time (± SEM) to absence of nasal crusting was 16.3 ± 2.1 weeks, mucopurulence was 6.2 ± 1.1 weeks, and synechia was 4.4 ± 0.5 weeks. Use of absorbable nasal packing was associated with more severe mucopurulence. Sinonasal QOL following endoscopic pituitary surgery

  14. Expression patterns of bark beetle cytochromes P450 during host colonization: Likely physiological functions and potential targets for pest management

    Treesearch

    Dezene P. W. Huber; Melissa Erickson; Christian Leutenegger; Joerg Bohlmann; Steven J. Seybold

    2007-01-01

    Cytochromes P450 family genes (P450s) are found in a diverse array of organisms ranging from bacteria to mammals to plants to arthropods. Although there are exceptions to this rule, organisms generally contain a fairly large number of P450 genes and pseudogenes in their genomes. For instance, among arthropods whose genomes are well characterized, the mosquito,

  15. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    PubMed

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  16. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    PubMed

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Character of changes of the level of serotonin-modulating anticonsolidation protein and of cytochrome P-450 in tissues of the eastern alburnoid Alburnoides bipunctatus eichwaldi from rivers of Azerbaijan].

    PubMed

    Mustafayev, M J; Mekhtiev, A A

    2014-01-01

    The paper deals with study by the method of solid-phase indirect immunoenzyme analysis of levels of the novel serotonin-modulated anticonsolidation protein (SMAP) that is directly correlated with serotonin level as well as of biomarker cytochrome P-450 in the liver, gills, and brain of the eastern alburnoid (Alburnoides bipunctatus eichwaldi) caught in the rivers Khudat, Akstafachai, Kura, and Araks flowing at the territory of Azerbaijan. There was revealed a marked downregulation of cytochrome P-450 and SMAP in the liver and gills of the fish caught in the Akstafachai River relatively to values in the fish from the Khudat River not contaminated with pollutants. In the liver and gills in the fish from the Kura and Araks rivers, a significant differently directed changes of the cytochrome P-450 and SMAP levels were observed: downregulations of the cytochrome P-450 versus an upregulation of SMAP. In the brain of the fish from the River Akstafachai there was observed some downregulation of cytochrome P-450, whereas in fish from the Kura and Araks rivers--a significant upregulation of the SMAP level. The obtained results are analyzed from standpoint of processes of adaptation and disadaptation of aquatic organisms to impact of pollutants.

  18. The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5.

    PubMed

    Canova-Davis, E; Waskell, L

    1984-02-25

    Methoxyflurane is an anesthetic whose metabolism by cytochrome P-450LM2 has been shown to be dependent upon a heat-stable microsomal protein (Canova-Davis, E., and Waskell, L. A. (1982) Biochem. Biophys. Res. Commun. 108, 1264-1270). Treatment of this protein with diethylpyrocarbonate, which modifies selected amino acids, caused a dose-dependent loss in its ability to effect the metabolism of methoxyflurane by purified cytochrome P-450LM2. This protein factor has been identified as cytochrome b5 by demonstrating that cytochrome b5 and the heat-stable factor coelute during cytochrome b5 purification. Neither ferriheme nor apocytochrome b5 was able to substitute for the activating factor, while cytochrome b5 reconstituted from apocytochrome b5 and heme exhibited an activity similar to that of native b5. Examination of the cytochrome b5 molecule by computer graphics suggested that diethylpyrocarbonate did not inactivate b5 by reacting with the anionic surface of the cytochrome b5 molecule. Maximal rates of methoxyflurane metabolism were obtained at a ratio of 1:1:1 of the three proteins, cytochrome P-450LM2:reductase:cytochrome b5. In summary, it has been demonstrated that the heat-stable protein, cytochrome b5, is obligatory for the metabolism of methoxyflurane by cytochrome P-450LM2. These data also suggest that cytochrome b5 may be acting as an electron donor to P-450LM2 in the O-demethylation of methoxyflurane.

  19. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    PubMed

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  1. Comparison between a Single-Channel Nasal Airflow Device and Oximetry for the Diagnosis of Obstructive Sleep Apnea

    PubMed Central

    Rofail, Lydia Makarie; Wong, Keith K.H.; Unger, Gunnar; Marks, Guy B.; Grunstein, Ronald R.

    2010-01-01

    Rationale: The most common single channel devices used for obstructive sleep apnea (OSA) screening are nasal airflow and oximetry. No studies have directly compared their role in diagnosing OSA at home. Study Objectives: To prospectively compare the diagnostic utility of home-based nasal airflow and oximetry to attended polysomnography (PSG) and to assess the diagnostic value of adding oximetry to nasal airflow for OSA. Design: Cross-sectional study Setting: Laboratory and home Participants: Sleep clinic patients with suspected OSA. Interventions: All patients had laboratory PSG and 2 sets of 3 consecutive nights on each device; nasal airflow (Flow Wizard, DiagnoseIT, Australia) and oximetry (Radical Set, Masimo, USA) at home in random order. Results: Ninety-eight of the 105 patients enrolled completed home monitoring. The accuracy of nasal airflow respiratory disturbance index (NF RDI) was not different from oximetry (ODI 3%) for diagnosing OSA (area under the ROC curve (AUC) difference, 0.04; 95% CI of difference −0.05 to 0.12; P = 0.43) over 3 nights of at-home recording. The accuracy of NF RDI was higher after 3 nights compared to one night (AUC difference, 0.05; 95% CI of difference, 0.01 to 0.08; P = 0.04). Addition of oximetry to nasal airflow did not increase the accuracy for predicting OSA compared to nasal airflow alone (P > 0.1). Conclusions: Nasal flow and oximetry have equivalent accuracy for diagnosing OSA in the home setting. Choice of device for home screening of sleep apnea may depend on logistical and service delivery issues. Citation: Makarie Rofail L; Wong KKH; Unger G; Marks GB; Grunstein RR. Comparison between a single-channel nasal airflow device and oximetry for the diagnosis of obstructive sleep apnea. SLEEP 2010;33(8):1106-1114. PMID:20815194

  2. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  3. Nasal Physiology

    MedlinePlus

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  4. Electrochemical Detection of Anti-Breast-Cancer Agents in Human Serum by Cytochrome P450-Coated Carbon Nanotubes

    PubMed Central

    Baj-Rossi, Camilla; De Micheli, Giovanni; Carrara, Sandro

    2012-01-01

    We report on the electrochemical detection of anti-cancer drugs in human serum with sensitivity values in the range of 8–925 nA/μM. Multi-walled carbon nanotubes were functionalized with three different cytochrome P450 isoforms (CYP1A2, CYP2B6, and CYP3A4). A model used to effectively describe the cytochrome P450 deposition onto carbon nanotubes was confirmed by Monte Carlo simulations. Voltammetric measurements were performed in phosphate buffer saline (PBS) as well as in human serum, giving well-defined current responses upon addition of increasing concentrations of anti-cancer drugs. The results assert the capability to measure concentration of drugs in the pharmacological ranges in human serum. Another important result is the possibility to detect pairs of drugs present in the same sample, which is highly required in case of therapies with high side-effects risk and in anti-cancer pharmacological treatments based on mixtures of different drugs. Our technology holds potentials for inexpensive multi-panel drug-monitoring in personalized therapy. PMID:22778656

  5. Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco.

    PubMed

    Takemoto, D; Hayashi, M; Doke, N; Nishimura, M; Kawakita, K

    1999-12-01

    Plant defenses against pathogen attack involve a series of inducible responses that contribute to resistance. Tobacco leaves injected with HWC (hyphal wall components prepared from Phytophthora infestans) elicitor showed typical defense responses, including the induction of localized necrosis and the accumulation of pathogenesis-related proteins. In order to elucidate the molecular mechanisms by which plant defense systems are activated, we screened tobacco plants for genes differentially expressed in response to HWC. We performed differential screening by RT-PCR with random primers and obtained PCR products specific to HWC-treated leaf RNA. Northern hybridization using the PCR products as probes confirmed that one transcript was actually induced by HWC treatment. As the deduced amino acid sequence of this clone showed the highest degree of similarity to elicitor-induced soybean cytochrome P450 CYP82A4, it was designated CYP82E1. The expression of CYP82E1 was strongly induced in tobacco by the soybean pathogen Pseudomonas syringae pv. glycinea (nonpathogenic on tobacco), but it was activated only slightly and in a delayed fashion by the tobacco pathogen P. syringae pv. tabaci (pathogenic on tobacco), implying that the product of CYP82E1 may be involved in disease resistance in tobacco.

  6. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    PubMed

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  8. ELEVATED LEVELS OF MULTIPLE CYTOCHROME P450 FORMS IN TILAPIA FROM BILLINGS RESERVOIR-SAO PAULO, BRAZIL. (R827102)

    EPA Science Inventory

    Cytochrome P4501A (CYP1A) levels in tissues of fish inhabiting polluted areas have been used extensively in biomonitoring studies in Europe and North America. However, little information is available about the extent of CYP1A expression in fish from South American waters, nor on ...

  9. Nasal versus oronasal raised volume forced expirations in infants – A real physiologic challenge

    PubMed Central

    Morris, Mohy G.

    2012-01-01

    Summary Raised volume rapid thoracoabdominal compression (RTC) generates forced expiration (FE) in infants typically from an airway opening pressure of 30 cm H2O (V30). We hypothesized that the higher nasal than pulmonary airway resistance limits forced expiratory flows (FEF%) during (nasal) FEn, which an opened mouth, (oronasal) FEo, would resolve. Measurements were performed during a brief post-hyperventilation apnea on twelve healthy infants aged 6.9–104 weeks. In two infants, forced expiratory (FEFV) flow volume (FV) curves were generated using a facemask that covered the nose and a closed mouth, then again with a larger mask with the mouth opened. In other infants (n=10), the mouth closed spontaneously during FE. Oronasal passive expiration from V30 generated either the inspiratory capacity (IC) or by activating RTC before end-expiration, the slow vital capacity (jSVC). Peak flow (PF), FEF25, FEF50, FEF25–75, FEV0.4 and FEV0.5 were lower via FEn than FEo (p<0.05), but the ratio of expired volume at PF and forced vital capacity (FVC) as percent was higher (p<0.05). FEF75, FEF85, FEF90, FVC as well as the applied jacket pressures were not different (p>0.05). FEFV curves generated via FEo exhibited higher PF than FV curves of IC (p< 0.05); PF of those produced via FEn were not different from FV curves of IC (p> 0.05) but lower than those of jSVC (p< 0.05). In conclusion, the higher nasal than pulmonary airways resistance unequivocally affects the FEFV curves by consistently reducing PF and decreases mid-expiratory flows. A monitored slightly opened mouth and a gentle anterior jaw thrust are physiologically integral for raised volume RTC in order to maximize the oral and minimize nasal airways contribution to FE so that flow limitation would be in the pulmonary not nasal airways. PMID:22328241

  10. Leukotriene B4 omega-hydroxylase in human polymorphonuclear leukocytes. Partial purification and identification as a cytochrome P-450.

    PubMed

    Shak, S; Goldstein, I M

    1985-09-01

    Human polymorphonuclear leukocytes (PMN) not only synthesize and respond to leukotriene B4 (LTB4), but also catabolize this mediator of inflammation rapidly and specifically by omega-oxidation. To characterize the enzyme(s) responsible for omega-oxidation of LTB4, human PMN were disrupted by sonication and subjected to differential centrifugation to yield membrane, granule, and cytosol fractions (identified by biochemical markers). LTB4 omega-hydroxylase activity was concentrated (together with NADPH cytochrome c reductase activity) only in the membrane fraction (specific activity increased 10-fold as compared to whole sonicates, 41% recovery). Negligible activity was detected in granule or cytosol fractions. LTB4 omega-hydroxylase activity in isolated PMN membranes was linear with respect to duration of incubation and protein concentration, was maximal at pH 7.4, had a Km for LTB4 of 0.6 microM, and was dependent on oxygen and on reduced pyridine nucleotides (apparent Km for NADPH = 0.5 microM; apparent Km for NADH = 223 microM). The LTB4 omega-hydroxylase was inhibited significantly by carbon monoxide, ferricytochrome c, SKF-525A, and Triton X-100, but was not affected by alpha-naphthoflavone, azide, cyanide, catalase, and superoxide dismutase. Finally, isolated PMN membranes exhibited a carbon monoxide difference spectrum with a peak at 452 nm. Thus, we have partially purified the LTB4 omega-hydroxylase in human PMN and identified the enzyme as a membrane-associated, NADPH-dependent cytochrome P-450.

  11. Tolerability and effects on quality of life of liposomal nasal spray treatment compared to nasal ointment containing dexpanthenol or isotonic NaCl spray in patients with rhinitis sicca.

    PubMed

    Hahn, C; Böhm, M; Allekotte, S; Mösges, R

    2013-09-01

    This study aimed to investigate symptom reduction via the liposomal nasal spray LipoNasal (LN) in patients with rhinitis sicca. Tolerability and the impact on quality of life were also examined. The same parameters were established in parallel for treatment approaches with Bepanthen (BP) nasal ointment containing dexpanthenol and the Rhinomer (RH) nasal spray containing NaCl. This prospective, controlled, open-label observation study was a multicenter trial. 92 patients with rhinitis sicca were allocated to three arms according to their symptoms: LN: n = 33; BP: n = 32 and RH: n = 27. The study comprised three visits at an interval of 14 days. Efficacy was examined by the Rhinitis Sicca Symptom Score (RSSS) documented daily and at the visits based on an endoscopic evaluation. The nasal spray sensory scale was used to investigate the tolerability. Quality of life (QoL) was measured by means of the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) and the "Short Form 12" of the "Impact on Health-Related Quality of Life (HRQL)" questionnaire on general quality of life. Nasal symptoms improved significantly (p = 0.001) under all three treatment approaches, reflected by the reduction in the RSSS and the Endoscopy Sum Score. A comparison of the three groups showed that no therapy was significantly superior to any of the others (p = 0.410). The tolerability of all treatments was good. Concerning the nasal moisturization, LipoNasal was evaluated better than Bepanthen and Rhinomer. Quality of life improved in all groups, but not significantly. The results show good efficacy and tolerability of the liposomal nasal spray compared to generally recognized treatments of rhinitis sicca with dexpanthenol nasal ointment and NaCl nasal spray. LipoNasal therefore constitutes a good treatment for patients suffering from dry nose.

  12. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer

    PubMed Central

    Johnson, Amanda L.; Edson, Katheryne Z.; Totah, Rheem A.; Rettie, Allan E.

    2015-01-01

    Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression. PMID:26233909

  13. Molecular detection of microbes in nasal tissue of dogs with idiopathic lymphoplasmacytic rhinitis.

    PubMed

    Windsor, Rebecca C; Johnson, Lynelle R; Sykes, Jane E; Drazenovich, Tracy L; Leutenegger, Christian M; De Cock, Hilde E V

    2006-01-01

    Lymphoplasmacytic rhinitis (LPR) is a common histologic finding in dogs with chronic nasal disease; however, potential etiologies of this disorder have not been examined. We investigated the hypothesis that specific microbes contribute to clinical disease in dogs with LPR. Paraffin-embedded nasal biopsies were obtained from 19 dogs with LPR, 10 dogs with nasal neoplasia, and 10 dogs with nasal aspergillosis. Nucleic acids were extracted from paraffin blocks, and real-time quantitative polymerase chain reaction (PCR) was employed for detection of target genes for bacterial and fungal DNA, canine adenovirus 2 (CAV-2), parainfluenza virus 3 (PI-3), Chlamydial Chlamydophila spp., and Bartonella spp. Conventional PCR was used for detection of Mycoplasma spp. Statistical analysis was performed using the Mann-Whitney U-test for nonparametric data, and significance was set at P < 0.05. DNA or RNA for CAV-2, PI-3, Bartonella, Mycoplasma, and Chlamydophila was not detected in any nasal biopsy. DNA loads for bacterial DNA did not differ among disease groups. Detection of fungal DNA in nasal biopsies was highest in dogs with aspergillosis (P < 0.0001); however, nasal biopsies of LPR dogs also displayed higher fungal DNA levels than samples from dogs with nasal neoplasia (P = 0.016). Detection of high levels of fungal DNA in nasal biopsies of dogs with LPR suggests that fungal organisms may be causally associated with the inflammation observed, although the possibility of entrapment or accumulation of fungi in the nasal cavity due to chronic inflammation cannot be excluded. Further investigations are required to elucidate the underlying etiopathogenesis of LPR.

  14. Kinetic consequences of introducing a proximal selenocysteine ligand into cytochrome P450cam.

    PubMed

    Vandemeulebroucke, An; Aldag, Caroline; Stiebritz, Martin T; Reiher, Markus; Hilvert, Donald

    2015-11-10

    The structural, electronic, and catalytic properties of cytochrome P450cam are subtly altered when the cysteine that coordinates to the heme iron is replaced with a selenocysteine. To map the effects of the sulfur-to-selenium substitution on the individual steps of the catalytic cycle, we conducted a comparative kinetic analysis of the selenoenzyme and its cysteine counterpart. Our results show that the more electron-donating selenolate ligand has only negligible effects on substrate, product, and oxygen binding, electron transfer, catalytic turnover, and coupling efficiency. Off-pathway reduction of oxygen to give superoxide is the only step significantly affected by the mutation. Incorporation of selenium accelerates this uncoupling reaction approximately 50-fold compared to sulfur, but because the second electron transfer step is much faster, the impact on overall catalytic turnover is minimal. Density functional theory calculations with pure and hybrid functionals suggest that superoxide formation is governed by a delicate interplay of spin distribution, spin state, and structural effects. In light of the remarkably similar electronic structures and energies calculated for the sulfur- and selenium-containing enzymes, the ability of the heavier atom to enhance the rate of spin crossover may account for the experimental observations. Because the selenoenzyme closely mimics wild-type P450cam, even at the level of individual steps in the reaction cycle, selenium represents a unique mechanistic probe for analyzing the role of the proximal ligand and spin crossovers in P450 chemistry.

  15. A reservoir nasal cannula improves protection given by oxygen during muscular exercise in COPD.

    PubMed

    Arlati, S; Rolo, J; Micallef, E; Sacerdoti, C; Brambilla, I

    1988-06-01

    We verified the utility of an oxygen economizer (Pendant Oxymizer) in assuring greater protection than nasal prongs against worsening of oxyhemoglobin resting desaturation (delta SaO2) induced by muscular exercise in 16 patients (ten with chronic obstructive pulmonary disease [COPD] and six with restrictive pulmonary disease). This worsening was quantified as desaturation surface accumulated within five minutes of exercise and was expressed in arbitrary units (au). Each patient carried out the same exercise three times, in a randomized fashion (breathing air or breathing supplemental oxygen [3 L/min] delivered by either nasal prongs or by oxygen economizer). In patients with obstructive disease, delta SaO2 was reduced from 38 +/- 12.0 au when they were breathing air to 18.1 +/- 11.7 au when breathing oxygen by nasal prongs (p less than 0.001) and to 10.1 +/- 9.5 au when breathing oxygen by economizer (p less than 0.001). In patients with restrictive disease, delta SaO2 was reduced from 35.6 +/- 9.9 au when breathing air to 14.9 +/- 10.2 au breathing oxygen by nasal prongs (p less than 0.01) and to 13.7 +/- 10.3 au breathing oxygen by economizer (p less than 0.01). The difference between breathing by economizer and nasal prongs was significant (paired t-test; p less than 0.01) only in patients with COPD. One explanation could lie in the different values of the respiratory rate, which was significantly greater in patients with restrictive disease (20.7 +/- 1.2 breaths per minute at rest and 25.8 +/- 1.5 with exercise) than in patients with obstructive disease (15.3 +/- 1.2 breaths per minute at rest and 20.8 +/- 1.4 with exercise).

  16. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  17. A randomized crossover efficacy trial of oral CPAP (Oracle) compared with nasal CPAP in the management of obstructive sleep apnea.

    PubMed

    Anderson, Fiona E; Kingshott, Ruth N; Taylor, D Robin; Jones, David R; Kline, Lewis R; Whyte, Kenneth F

    2003-09-01

    To determine the therapeutic efficacy and viability of a novel oral interface for continuous positive airway pressure (CPAP) compared with conventional nasal interfaces. A randomized single-blind crossover study. Hospital-based sleep laboratory. 21 CPAP-naïve patients with obstructive sleep apnea (baseline apnea-hypopnea index, 85 +/- 36) INTERVENTIONS: Nasal CPAP and oral CPAP MEASUREMENTS AND RESULTS: Patients were each treated for two 4-week periods using nasal CPAP and oral CPAP. The CPAP titrations were undertaken at the start of each treatment arm. Outcome measures were recorded at baseline and at the end of each treatment arm. These included polysomnography variables, CPAP compliance, subjective sleepiness, obstructive sleep apnea symptom ratings, and adverse effects. There were no significant differences between oral and nasal interfaces for the on-CPAP frequency of apneas and hypopneas (mean difference, nasal-oral [95%CI] = -4.6[-10.1-1.0]/h; P = 0.06) or arousals (-3.0 [-7.8-1.8]/h; P = 0.23). There were also no statistically significant differences between interfaces for scores on the Epworth Sleepiness Scale (-0.7 [-3.1-1.7]; P = 0.20), obstructive sleep apnea symptoms (-7.7 [-17.7-2.4]; P = 0.052), CPAP compliance (0.3 [-0.5-1.1] h/night; P = 0.50), CPAP pressure (0.05 [-0.66-0.76] cmH20; P = 0.73), CPAP side effects scores (-2.0 [-5.3-1.4]; P = 0.23), or mask preference (P = 0.407). In addition, both nasal and oral interfaces significantly improved polysomnographic variables, Epworth Sleepiness Scale scores, obstructive sleep apnea symptoms, and CPAP compliance from baseline (all P < 0.05). This preliminary study indicates that oral CPAP has similar efficacy to traditionally applied nasal CPAP in treating obstructive sleep apnea. Additional large studies are required to determine the range of clinical situations where oral CPAP is indicated.

  18. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    PubMed

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  19. Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

    PubMed Central

    Kikete, Siambi; Liang, Rongjia; Wang, Lili

    2017-01-01

    Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs) modulated via cytochrome P450 enzyme family (CYP) and P-glycoprotein (P-gp) and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes. PMID:28250793

  20. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    PubMed

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump.

    PubMed

    Djupesland, Per Gisle; Skretting, Arne

    2012-10-01

    Delivery of powder formulations to the nose is an attractive alternative for many drugs and vaccines. This study compared the regional nasal deposition and clearance patterns of lactose powder delivered by the OptiNose powder device (Opt-Powder; OptiNose US Inc., Yardley, PA, USA) to that of liquid aerosol administered via a traditional hand-actuated liquid spray pump (Rexam SP270, Rexam Pharma, France). The study was an open-label, crossover design in seven healthy subjects (five females, two males). The regional nasal deposition and clearance patterns of the Opt-Powder device were compared to a traditional liquid spray pump by dynamic gamma camera imaging after administration of either (99m)Tc-labeled lactose powder or liquid (99m)Tc- diethelyne triamine pentaacetic acid-aerosol. The gamma camera images were scaled and aligned with sagittal magnetic resonance images to identify nasal regions. Possible deposition of radiolabeled material in the lungs following both methods of delivery was also evaluated. Both powder and spray were distributed to all of the nasal regions. The Opt-Powder device, however, achieved significantly larger initial deposition in the upper and middle posterior regions of the nose than spray (upper posterior region; Opt-Powder 18.3% ± 11.5 vs. Spray 2.4% ± 1.8, p<0.02; sum of upper and middle posterior regions; Opt-Powder 53.5% ± 18.5 vs. Spray 15.7% ± 13.8, p<0.02). The summed initial deposition to the lower anterior and posterior regions for spray was three times higher compared to Opt-Powder (Opt-Powder 17.4% ± 24.5 vs. Spray 59.4% ± 18.2, p<0.04). OptiNose powder delivery resulted in more rapid overall nasal clearance. No lung deposition was observed. The initial deposition following powder delivery was significantly larger in the ciliated mucosa of the upper and posterior nasal regions, whereas less was deposited in the lower regions. Overall nasal clearance of powder was slower initially, but due to retention in anterior

  2. Perception of Better Nasal Patency Correlates with Increased Mucosal Cooling after Surgery for Nasal Obstruction

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme; Sullivan, Corbin; Frank-Ito, Dennis; Kimbell, Julia; Rhee, John

    2014-11-01

    Nasal airway obstruction (NAO) is a common health problem with 340,000 patients undergoing surgery annually in the United States. Traditionally, otolaryngologists have focused on airspace cross-sectional areas and nasal resistance to airflow as objective measures of nasal patency, but neither of these variables correlated consistently with patients' symptoms. Given that the sensation of nasal airflow is also associated with mucosal cooling (i.e., heat loss) during inspiration, we investigated the correlation between the sensation of nasal obstruction and mucosal cooling in 10 patients before and after NAO surgery. Three-dimensional models of the nasal anatomy were created based on pre- and post-surgery computed tomography scans. Computational fluid dynamics (CFD) simulations were conducted to quantify nasal resistance and mucosal cooling. Patient-reported symptoms were measured by a visual analog scale and the Nasal Obstruction Symptom Evaluation (NOSE), a disease-specific quality of life questionnaire. Our results revealed that the subjective sensation of nasal obstruction correlated with both nasal resistance and heat loss, but the strongest correlation was between the NOSE score and the nasal surface area where heat flux exceeds 50 W /m2 . In conclusion, a significant post-operative increase in mucosal cooling correlates well with patients' perception of better nasal patency after NAO surgery.

  3. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  4. Nasal cytology in southwest metropolitan Mexico City inhabitants: a pilot intervention study.

    PubMed Central

    Calderon-Garcidueñas, L; Roy-Ocotla, G

    1993-01-01

    Southwest metropolitan Mexico City (SWMMC) inhabitants have been exposed several hours per day for the last 6 years to photochemical smog, ozone being the most important oxidant pollutant. Subjects exposed to the SWMMC atmosphere develop several histopathological changes in their nasal mucosa: dysplasia is the most significant, affecting 78.72% of adult individuals within 60 or more days of residence in SWMMC. This study was originally designed to explore whether chemical intervention could modify nasal dysplasia, as determined by nasal cytology, in a defined adult population. In a placebo-controlled, randomized, double-blind trial, 177 healthy male subjects were divided into 5 groups to whom 5000 IU of vitamin A, 100 IU of vitamin E, a combination of vitamins A and E (5000 IU + 100 IU), 16 mg of beta-carotene, or placebo were administered daily for 4 months. Sixteen clinical and cytological variables were monitored. No effect on dysplasia was seen at the end of the 4-month trial; however, an apparent reversibility as well as progression of the dysplastic nasal lesions and high correlation coefficients between dysplasia and nasal cytology of polymorphonuclear leukocytes (PMNs; 0.85), squamous metaplasia (SM; 0.50), and nasal mucosa atrophy (NMA; 0.41) were found. A mathematical theoretical nasal dysplasia (tD) predictor equation for SWMMC adult male inhabitants is proposed (tD = 0.85 delta PMNs + 0.50 delta SM + 0.41 delta NMA + 0.98), in which PMNs are the best single dysplasia predictor, and all variables are independent.(ABSTRACT TRUNCATED AT 250 WORDS) Images p138-a Figure 1. Figure 2. Figure 3. Figure 4. PMID:8354200

  5. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  6. Nasal aesthetics: a cross-cultural analysis.

    PubMed

    Broer, Peter N; Buonocore, Samuel; Morillas, Angie; Liu, Jong; Tanna, Neil; Walker, Marc; Ng, Reuben; Ng, Ruben; Persing, John A

    2012-12-01

    Plastic surgeons often approach nasal aesthetic evaluation with the aid of seemingly objective measurements. However, ideal measurements of an attractive nose, as suggested in the literature, might not apply on a cross-cultural basis. Given these controversies, this study aimed to investigate the cultural and ethnic impact on nasal shape preferences. Computerized images of a model's nose were generated in which the nasal width, root, tip, dorsum, and projection of the lips and chin could be altered. A survey containing these images was sent to over 13,000 plastic surgeons and lay people in 50 different countries, with a total response rate of 9.6 percent. Demographic information about the interviewees was obtained. Preferred dimensions of the nose were broken down according to geographic, ethnic, occupational, and sex variables. Interregional comparison revealed that plastic surgeons from Latin America and the Caribbean overall prefer smaller and narrower noses, with more projecting tips, lips, and chins. Similar trends hold true when analyzing results from the general public. Significant differences were found comparing preferences between plastic surgeons and the general public. Plastic surgeons preferred wider nasal roots and tips and, in combination, more projected nasal dorsi, tips, lips, and chins. No universal parameter can define ideal aesthetics of the nose across cultures and ethnic backgrounds. As demonstrated, geographic, ethnic, and cultural factors influence aesthetic perceptions of patients and surgeons.

  7. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    PubMed

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  8. Effects of Heated Humidification and Topical Steroids on Compliance, Nasal Symptoms, and Quality of Life in Patients with Obstructive Sleep Apnea Syndrome Using Nasal Continuous Positive Airway Pressure

    PubMed Central

    Ryan, Silke; Doherty, Liam S.; Nolan, Geraldine M.; McNicholas, Walter T.

    2009-01-01

    Background: Nasal side effects are common in patients with obstructive sleep apnea syndrome (OSAS) starting on nasal continuous positive airway pressure (CPAP) therapy. We tested the hypothesis that heated humidification or nasal topical steroids improve compliance, nasal side effects and quality of life in this patient group. Methods: 125 patients with the established diagnosis of OSAS (apnea/hypopnea index ≥ 10/h), who tolerated CPAP via a nasal mask, and who had a successful CPAP titration were randomized to 4 weeks of dry CPAP, humidified CPAP or CPAP with additional topical nasal steroid application (fluticasone, GlaxoWellcome). Groups were similar in all demographic variables and in frequency of nasal symptoms at baseline. Outcome measures were objective compliance, quality of life (short form 36), subjective sleepiness (Epworth Sleepiness Scale score) and nasal symptoms such as runny, dry or blocked nose, sneezing and headaches; all variables assessed using a validated questionnaire and by direct interview. Results: There was no difference in compliance between groups after 4 weeks (dry: 5.21 ± 1.66 h/night, fluticasone: 5.66 ± 1.68, humidifier: 5.21 ± 1.84; p = 0.444). Quality of life and subjective sleepiness improved in all groups, but there were no differences in the extent of improvement. Nasal Symptoms were less frequently reported in the humidifier group (28%) than in the remaining groups (dry: 70%, fluticasone: 53%, p = 0.002). However, the addition of fluticasone resulted in increased frequency of sneezing. Conclusion: The addition of a humidifier, but not nasal steroids decreases the frequency of nasal symptoms in unselected OSAS patients initiating CPAP therapy; however compliance and quality of life remain unaltered. Citation: Ryan S; Doherty LS; Nolan GM; McNicholas WT. Effects of heated humidification and topical steroids on compliance, nasal symptoms, and quality of life in patients with obstructive sleep apnea syndrome using nasal

  9. Response of Preterm Infants to 2 Noninvasive Ventilatory Support Systems: Nasal CPAP and Nasal Intermittent Positive-Pressure Ventilation.

    PubMed

    Silveira, Carmen Salum Thomé; Leonardi, Kamila Maia; Melo, Ana Paula Carvalho Freire; Zaia, José Eduardo; Brunherotti, Marisa Afonso Andrade

    2015-12-01

    Noninvasive ventilation (NIV) in preterm infants is currently applied using intermittent positive pressure (2 positive-pressure levels) or in a conventional manner (one pressure level). However, there are no studies in the literature comparing the chances of failure of these NIV methods. The aim of this study was to evaluate the occurrence of failure of 2 noninvasive ventilatory support systems in preterm neonates over a period of 48 h. A randomized, prospective, clinical study was conducted on 80 newborns (gestational age < 37 weeks, birthweight < 2,500 g). The infants were randomized into 2 groups: 40 infants were treated with nasal CPAP and 40 infants with nasal intermittent positive-pressure ventilation (NIPPV). The occurrence of apnea, progression of respiratory distress, nose bleeding, and agitation was defined as ventilation failure. The need for intubation and re-intubation after failure was also observed. There were no significant differences in birth characteristics between groups. Ventilatory support failure was observed in 25 (62.5%) newborns treated with nasal CPAP and in 12 (30%) newborns treated with NIPPV, indicating an association between NIV failure and the absence of intermittent positive pressure (odds ratio [OR] 1.22, P < .05). Apnea (32.5%) was the main reason for nasal CPAP failure. After failure, 25% (OR 0.33) of the newborns receiving nasal CPAP and 12.5% (OR 0.14) receiving NIPPV required invasive mechanical ventilation. Ventilatory support failure was significantly more frequent when nasal CPAP was used. Copyright © 2015 by Daedalus Enterprises.

  10. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    PubMed

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  11. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study.

    PubMed

    Magalhães, Pedro R; Oliveira, A Sofia F; Campos, Sara R R; Soares, Cláudio M; Baptista, António M

    2017-02-27

    Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286 I , Y288 I , and K362 I . All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.

  12. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    PubMed

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Nasal hydropulsion: a novel tumor biopsy technique.

    PubMed

    Ashbaugh, Elizabeth A; McKiernan, Brendan C; Miller, Carrie J; Powers, Barbara

    2011-01-01

    Intranasal tumors of dogs and cats pose a diagnostic and therapeutic challenge for small animal practitioners. Multiple nasal biopsy techniques have been described in the past. This report describes a simplified flushing technique to biopsy and debulk nasal tumors, which often also results in immediate clinical relief for the patient. Based on the results of this retrospective study, the authors recommend high-pressure saline hydropulsion as a minimally invasive diagnostic, and potentially therapeutic, technique for nasal tumors in dogs and cats.

  14. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  15. [Effect of absorption enhancers on nasal ginsenoside Rg1 delivery and its nasal ciliotoxicity].

    PubMed

    Chen, Xin-mei; Zhu, Jia-bi; Sun, Wei-dong; Zhang, Li-jian

    2006-02-01

    The enhancing activity and safety of several absorption enhancers were evaluated as potential nasal absorption enhancers to increase intranasal absorption of ginsenoside Rg1. Nasal circulatory perfusion test in vivo had been employed to investigate the effect of absorption enhancers for nasal mucosa absorption of ginsenoside Rgl in rats. The safety of the absorption enhancers were evaluated by testing cilia movement of the in situ toad palate model, the hemolysis of erythrocyte membrane of the rabbit, leaching of protein and LDH from the mice nasal mucosa and the effect on cilia structural and specific cellular changes of nasal mucosa. Absorption enhancers were necessary to facilitate ginsenoside Rg1 absorption by nasal mucosa. Among the absorption enhancers 1% sodium deoxycholate had great effect to facilite ginsenoside Rgl absorption by nasal mucosa; 1% dipotassium glycyrrhizinate and 1% azone had moderate effect to facilitate ginsenoside Rg1 absorption by nasal mucosa; 1% Tween-80, 2% beta-cyclodextrin, 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan, 5% hydroxypropyl-beta-cyclodextrin and 0.1% EDTA had low effect to facilitate ginsenoside Rgl absorption by nasal mucosa. 1% sodium deoxycholate, 1% azone and 1% dipotassium glycyrrhizinate had serious nasal toxicity; 1% Tween-80, 2% beta-cyclodextrin, 5% hydroxypropyl-beta-cyclodextrin had moderate nasal toxicity; 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan and 0.1% EDTA have little nasal toxicity. 0.5% borneol and 0.5% chitosan were the promising candidates having a good balance between enhancing activity and safety for nasal ginsenoside Rg1 delivery.

  16. A new approach to the treatment of nasal bone fracture: radiologic classification of nasal bone fractures and its clinical application.

    PubMed

    Han, Daniel Seung Youl; Han, Yea Sik; Park, Jin Hyung

    2011-11-01

    A radiologic examination is required in the treatment of nasal bone fracture to determine the fracture condition. Thus, there is an increasing need for radiologic classification of nasal bone fractures that can be applied to clinical practice. Computed tomography was performed in 125 patients with nasal bone fractures to determine which axial view best showed the entire nasal view. The obtained axial view was then used as a reference for classification. The length from the top to the base of the nasal bone was divided into upper, middle, and lower levels, after which the fracture location was determined. If the fracture spanned the boundaries of these levels, it was classified as the total level. Subsequently, the fracture was subclassified based on the fracture direction and pattern and the concurrent fracture. Radiologic examination of patients with nasal bone fracture showed that nasal bone fracture was frequently found at the total, middle, upper, and lower levels, in that order. Nasal bone fractures at the upper level showed lower frequencies of complication and reoperation than the fractures at the other levels, whereas nasal bone fractures at the total level showed the highest frequencies of complication and reoperation. Radiologic classification can be useful for preoperative and postoperative evaluations of nasal bone fractures and can be helpful in understanding such fractures because it can efficiently predict the prognosis of a fracture. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Surgical management of nasal obstruction.

    PubMed

    Moche, Jason A; Palmer, Orville

    2012-05-01

    The proper evaluation of the patient with nasal obstruction relies on a comprehensive history and physical examination. Once the site of obstruction is accurately identified, the patient may benefit from a trial of medical management. At times however, the definitive treatment of nasal obstruction relies on surgical management. Recognizing the nasal septum, nasal valve, and turbinates as possible sites of obstruction and addressing them accordingly can dramatically improve a patient's nasal breathing. Conservative resection of septal cartilage, submucous reduction of the inferior turbinate, and structural grafting of the nasal valve when appropriate will provide the optimal improvement in nasal airflow and allow for the most stable results. Copyright © 2012. Published by Elsevier Inc.

  18. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus.

    PubMed

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Han, Zhaojun

    2017-11-29

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus . This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p -nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin.

  19. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus

    PubMed Central

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Han, Zhaojun

    2017-01-01

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide–adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p-nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin. PMID:29186030

  20. Quantitative Assessment of the Influence of Cytochrome P450 1A2 Gene Polymorphism and Colorectal Cancer Risk

    PubMed Central

    Rewuti, Abudouaini; Ma, Yu-Shui; Wang, Xiao-Feng; Xia, Qing; Fu, Da; Han, Yu-Song

    2013-01-01

    Cytochrome P450 1A2 (CYP1A2) encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC). The CYP1A2*C (rs2069514) and CYP1A2*F (rs762551) polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83–1.00, P = 0.04), and 0.91 (95% CI: 0.68–1.22, P = 0.53), for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians. PMID:23951174

  1. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    PubMed Central

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  2. Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells.

    PubMed

    Takemura, Tomoya; Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2013-07-01

    Benzophenanthridine alkaloids, such as sanguinarine, are produced from reticuline, a common intermediate in benzylisoquinoline alkaloid biosynthesis, via protopine. Four cytochrome P450s are involved in the biosynthesis of sanguinarine from reticuline; i.e. cheilanthifoline synthase (CYP719A5; EC 1.14.21.2.), stylopine synthase (CYP719A2/A3; EC 1.14.21.1.), N-methylstylopine hydroxylase (MSH) and protopine 6-hydroxylase (P6H; EC 1.14.13.55.). In this study, a cDNA of P6H was isolated from cultured Eschscholzia californica cells, based on an integrated analysis of metabolites and transcript expression profiles of transgenic cells with Coptis japonica scoulerine-9-O-methyltransferase. Using the full-length candidate cDNA for P6H (CYP82N2v2), recombinant protein was produced in Saccharomyces cerevisiae for characterization. The microsomal fraction containing recombinant CYP82N2v2 showed typical reduced CO-difference spectra of P450, and production of dihydrosanguinarine and dihydrochelerythrine from protopine and allocryptopine, respectively. Further characterization of the substrate-specificity of CYP82N2v2 indicated that 6-hydroxylation played a role in the reaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. In silico prediction of cytochrome P450-mediated drug metabolism.

    PubMed

    Zhang, Tao; Chen, Qi; Li, Li; Liu, Limin Angela; Wei, Dong-Qing

    2011-06-01

    The application of combinatorial chemistry and high-throughput screening technique enables the large number of chemicals to be generated and tested simultaneously, which will facilitate the drug development and discovery. At the same time, it brings about a challenge of how to efficiently identify the potential drug candidates from thousands of compounds. A way used to deal with the challenge is to consider the drug pharmacokinetic properties, such as absorption, distribution, metabolism and excretion (ADME), in the early stage of drug development. Among ADME properties, metabolism is of importance due to the strong association with efficacy and safety of drug. The review will focus on in silico approaches for prediction of Cytochrome P450-mediated drug metabolism. We will describe these predictive methods from two aspects, structure-based and data-based. Moreover, the applications and limitations of various methods will be discussed. Finally, we provide further direction toward improving the predictive accuracy of these in silico methods.

  4. Effect of feeding quandong (Santalum acuminatum) oil to rats on tissue lipids, hepatic cytochrome P-450 and tissue histology.

    PubMed

    Jones, G P; Birkett, A; Sanigorski, A; Sinclair, A J; Hooper, P T; Watson, T; Rieger, V

    1994-06-01

    Quandong kernels are a traditional Aboriginal food item; they are rich in oil and contain large amounts of an unusual fatty acid, trans-11-octadecen-9-ynoic acid (santalbic acid), but it is not known whether this acid is absorbed and/or metabolized. The oil was fed at 12.6% of total energy content in semi-synthetic diets to groups of male Sprague-Dawley rats for 10 and 20 days. Santalbic acid was found in the lipids of plasma, adipose tissue, skeletal muscle, kidney, heart and liver but not in brain. Hepatic microsomal cytochrome P-450 activity in animals fed for 20 days was significantly higher (P < 0.05) than in controls. Histopathological examination did not reveal any lesions in the tissues of any animal fed quandong oil. The fact that santalbic acid was readily absorbed, widely distributed in tissues and was associated with an elevated level of hepatic cytochrome P-450 indicates that further studies are required to investigate whether or not there is a hazard associated with the human practice of consuming quandong kernels.

  5. A Cost-Effectiveness Analysis of Nasal Surgery to Increase Continuous Positive Airway Pressure Adherence in Sleep Apnea Patients With Nasal Obstruction

    PubMed Central

    Kempfle, Judith S.; BuSaba, Nicholas Y.; Dobrowski, John M.; Westover, Michael B.; Bianchi, Matt T.

    2017-01-01

    Objectives/Hypothesis Nasal surgery has been implicated to improve continuous positive airway pressure (CPAP) compliance in patients with obstructive sleep apnea (OSA) and nasal obstruction. However, the cost-effectiveness of nasal surgery to improve CPAP compliance is not known. We modeled the cost-effectiveness of two types of nasal surgery versus no surgery in patients with OSA and nasal obstruction undergoing CPAP therapy. Study Design Cost-effectiveness decision tree model. Methods We built a decision tree model to identify conditions under which nasal surgery would be cost-effective to improve CPAP adherence over the standard of care. We compared turbinate reduction and septoplasty to nonsurgical treatment over varied time horizons from a third-party payer perspective. We included variables for cost of untreated OSA, surgical cost and complications, improved compliance postoperatively, and quality of life. Results Our study identified nasal surgery as a cost-effective strategy to improve compliance of OSA patients using CPAP across a range of plausible model assumptions regarding the cost of untreated OSA, the probability of adherence improvement, and a chronic time horizon. The relatively lower surgical cost of turbinate reduction made it more cost-effective at earlier time horizons, whereas septoplasty became cost-effective after a longer timespan. Conclusions Across a range of plausible values in a clinically relevant decision model, nasal surgery is a cost-effective strategy to improve CPAP compliance in OSA patients with nasal obstruction. Our results suggest that OSA patients with nasal obstruction who struggle with CPAP therapy compliance should undergo evaluation for nasal surgery. PMID:27653626

  6. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.

    PubMed

    Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N

    2003-12-10

    The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.

  7. Topical nasal decongestant oxymetazoline (0.05%) provides relief of nasal symptoms for 12 hours.

    PubMed

    Druce, H M; Ramsey, D L; Karnati, S; Carr, A N

    2018-05-22

    Nasal congestion, often referred to as stuffy nose or blocked nose is one of the most prevalent and bothersome symptoms of an upper respiratory tract infection. Oxymetazoline, a widely used intranasal decongestant, offers fast symptom relief, but little is known about the duration of effect. The results of 2 randomized, double-blind, vehicle-controlled, single-dose, parallel, clinical studies (Study 1, n=67; Study 2, n=61) in which the efficacy of an oxymetazoline (0.05% Oxy) nasal spray in patients with acute coryzal rhinitis was assessed over a 12-hour time-period. Data were collected on both subjective relief of nasal congestion (6-point nasal congestion scale) and objective measures of nasal patency (anterior rhinomanometry) in both studies. A pooled study analysis showed statistically significant changes from baseline in subjective nasal congestion for 0.05% oxymetazoline and vehicle at each hourly time-point from Hour 1 through Hour 12 (marginally significant at Hour 11). An objective measure of nasal flow was statistically significant at each time-point up to 12 hours. Adverse events on either treatment were infrequent. The number of subjects who achieved an improvement in subjective nasal congestion scores of at least 1.0 was significantly higher in the Oxy group vs. vehicle at all hourly time-points on a 6-point nasal congestion scale. This study shows for the first time, that oxymetazoline provides both statistically significant and clinically meaningful relief of nasal congestion and improves nasal airflow for up to 12 hours following a single dose.

  8. Seasonal changes in the activity of cytochrome P450(C17) from the testis of Bufo arenarum.

    PubMed

    Solari, J J F; Pozzi, A G; Ceballos, N R

    2002-12-01

    In Bufo arenarum, the biosynthesis of testosterone and 5alpha-dihydrotestosterone takes place through a complete 5-ene pathway, 5-androsten-3beta,17beta-diol being the immediate precursor of testosterone. Besides androgens, testes are able to synthesise 5alpha-pregnan-3,20-dione and several 3alpha and 20alpha reduced derivatives. During the breeding season, steroid biosynthesis turns from androgen to C21-steroid production. As a consequence, the cytochrome P450 17-hydroxylase, C17,20-lyase (CypP450(c17)) could be a key enzyme in that metabolic shift. The present study demonstrates that in testes of B. arenarum, CypP450(c17) co-localises with glucose-6-phosphatase in the microsomal fraction. CypP450(c17) possesses more affinity for pregnenolone than for progesterone in both non-reproductive (Km = 43.76 +/- 4.63 nM and 2,170 +/- 630 nM, respectively) and reproductive (Km = 37.46 +/- 4.19 nM and 3,060 +/- 190 nM, respectively) seasons. These results could explain the predominance of the 5-ene pathway for testosterone biosynthesis. Toad CypP450(c17) activity is higher in the non-reproductive period than the reproductive period, suggesting that this enzyme is an important factor in toad steroidogenic changes. Animals in reproductive conditions showed a significant reduction in circulating androgens. This is in agreement with the decrease in Vmax of cytochrome P450 17-hydroxylase activity, enhancing the physiological relevance of these in vitro results.

  9. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.

    Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less

  10. The Impact of Middle Turbinate Concha Bullosa on the Severity of Inferior Turbinate Hypertrophy in Patients with a Deviated Nasal Septum.

    PubMed

    Tomblinson, C M; Cheng, M-R; Lal, D; Hoxworth, J M

    2016-07-01

    Inferior turbinate hypertrophy and concha bullosa often occur opposite the direction of nasal septal deviation. The objective of this retrospective study was to determine whether a concha bullosa impacts inferior turbinate hypertrophy in patients who have nasal septal deviation. The electronic medical record was used to identify sinus CT scans exhibiting nasal septal deviation for 100 adult subjects without and 100 subjects with unilateral middle turbinate concha bullosa. Exclusion criteria included previous sinonasal surgery, tumor, sinusitis, septal perforation, and craniofacial trauma. Nasal septal deviation was characterized in the coronal plane by distance from the midline (severity) and height from the nasal floor. Measurement differences between sides for inferior turbinate width (overall and bone), medial mucosa, and distance to the lateral nasal wall were calculated as inferior turbinate hypertrophy indicators. The cohorts with and without concha bullosa were similarly matched for age, sex, and nasal septal deviation severity, though nasal septal deviation height was greater in the cohort with concha bullosa than in the cohort without concha bullosa (19.1 ± 4.3 mm versus 13.5 ± 4.1 mm, P < .001). Compensatory inferior turbinate hypertrophy was significantly greater in the cohort without concha bullosa than in the cohort with it as measured by side-to-side differences in turbinate overall width, bone width, and distance to the lateral nasal wall (P < .01), but not the medial mucosa. Multiple linear regression analyses found nasal septal deviation severity and height to be significant predictors of inferior turbinate hypertrophy with positive and negative relationships, respectively (P < .001). Inferior turbinate hypertrophy is directly proportional to nasal septal deviation severity and inversely proportional to nasal septal deviation height. The effect of a concha bullosa on inferior turbinate hypertrophy is primarily mediated through influence on septal

  11. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

    PubMed

    Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J

    2007-01-01

    Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.

  12. Calcium transport in vesicles energized by cytochrome oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less

  13. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  14. Comparison of Tongue-in-Groove and Columellar Strut on Rotation and Projection in Droopy Nasal Tip: Contribution of a Cap Graft.

    PubMed

    Demir, Uygar Levent

    2018-05-01

    Underrotation of the nasal tip with narrow nasolabial angle is a common nasal deformity that leads to a long nose appearance, named drooping nose. In these patients, there are various techniques described to correct droopy tip and to achieve a desirable nasal tip rotation such as lateral crural steal, lateral crural overlay, tongue-ingroove, columellar strut graft, tip rotation sutures, cephalic trimming, and others. In this study, the effects of tongue-in-groove (TIG) and columellar strut graft (CS) and the contribution of cap graft on nasal tip rotation and projection were evaluated. Twenty-eight consecutive patients who underwent open approach rhinoplasty by the same senior author (ULD) between January 2015 and December 2016 with the diagnosis of septonasal deformity and droopy nasal tip were included. In 9 of these patients nasal tip was constructed with strut graft, in 6 patients with both strut and cap grafts, in 6 patients with TIG technique and in 7 patients with both TIG and cap graft. Standardized right lateral images were taken preoperatively and 6 months postoperatively to use for further assessments. The nasal tip rotation was evaluated by measuring nasolabial angle (NLA) and the nasal projection (NP) was evaluated by using the Goode method. Finally, the postoperative values of NLA and NP at the 6th month were compared with preoperative recorded values in between groups. Each group showed increase at nasal projection; however, significance was present only in CS graft and TIG groups (P=0.011 and P=0.027 relatively). Each 4 groups showed significant increase in nasal tip rotation. In addition, the comparison of percent changes between preoperative and postoperative NP and NLA revealed no difference (P=0.56 and P=0.431 relatively). In conclusion, the authors argued that TIG and CS graft techniques are both reliable methods to correct droopy nasal tip and using additional cap graft over dome area when required is safe and useful.

  15. Molecular Regulation of the Induction of Cytochrome P-450E in the Estuarine Fish Fundulus Heteroclitus.

    DTIC Science & Technology

    1989-02-01

    and reassemble scientific arguments. Drs. Harry V. Gelboin and Sang S. Park (National Cancer Institute, NIH ) produced crucial monoclonal antibodies and...3-methyicholanthrene ALA(S): amninolevulinic acid (synthase) MFO: mixed-function oxidase ApND: aniinopyrine N-demethylase K~: apparent molecular...humans) have historically been the main focus of study. In this overview, based on the primary literature and Cytochrome P-450: Structure , Mechanism

  16. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  17. Mometasone furoate nasal spray relieves the ocular symptoms of seasonal allergic rhinoconjunctivitis.

    PubMed

    Igarashi, Tsutomu; Nakazato, Yuri; Kunishige, Tomoyuki; Fujita, Miho; Yamada, Yumi; Fujimoto, Chiaki; Okubo, Kimihiro; Takahashi, Hiroshi

    2012-01-01

    Recent studies have examined the effects of intranasal corticosteroids (INSs) in relieving the ocular symptoms of seasonal allergic rhinoconjunctivitis (SAR) and perennial allergic rhinitis. However, because most of these studies were based on subjective assessments by patients, the associated factors and mechanism of action are unknown. A single-center, randomized, double-blind, parallel-group study was carried out in which patients with SAR were randomly assigned to an INS mometasone furoate nasal spray (MFNS) group or to a placebo group and treated once daily for 4 weeks. Substance P concentrations in tears were measured, ocular and nasal symptoms were recorded by patients in an allergy diary, and findings were recorded by an ophthalmologist. There was no significant difference between treatment groups in the mean change from baseline of substance P concentration in tears after 4 weeks of treatment, but the mean change tended to increase in the placebo group and tended to decrease in the MFNS group (P = 0.089). All ocular and nasal symptom scores, except eye tearing, were significantly lower in the MFNS group than in the placebo group. Furthermore, substance P concentrations were strongly correlated with ocular and nasal symptom scores. In patients with SAR, INSs tend to decrease the substance P concentration in tears, which is correlated with the severity of ocular and nasal symptoms.

  18. A retrospective study of chronic nasal disease in 75 dogs.

    PubMed

    Lobetti, R G

    2009-12-01

    Chronic nasal disease is a common problem in dogs. To determine the aetiology, a retrospective study in 75 dogs with persistent and chronic nasal disease was done. All dogs were evaluated by means of survey nasal radiographs, antegrade and retrograde rhinoscopy, bacterial and fungal cultures, and histopathology. A definitive diagnosis was made in 74/75 cases (98.6%). Nasal neoplasia was the most common diagnosis (46.7%), median age 108 months, followed by lympho-plasmacytic rhinitis (20%), median age 112 months, and fungal rhinitis (10.7%), median age 53.5 months. Other diagnoses included nasal foreign body (5.3%), median age 51 months, and primary bacterial rhinitis (6.7%), median age 116.5 months. Rare aetiologies identified were nasal polyps, granulomatous rhinitis, oro-nasal fistula and naso-pharyngeal stenosis. This study showed that by using a structured combination of survey radiography, rhinoscopy, cultures and histopathology, a diagnosis could be made in dogs with chronic nasal disease.

  19. Desloratadine and pseudoephedrine combination therapy as a comprehensive treatment for allergic rhinitis and nasal congestion.

    PubMed

    Anolik, Robert

    2009-06-01

    Allergic rhinitis (AR) is rapidly increasing in global prevalence. Symptoms of AR, particularly nasal congestion, can cause quality of life (QoL) impairment. Second-generation antihistamines are a recommended first-line therapy for AR but are not viewed as very effective for the treatment of congestion. Therefore, an antihistamine plus a decongestant, such as the combination of desloratadine and pseudoephedrine, is a convenient and efficacious treatment. To review the clinical evidence on the efficacy and safety of combination desloratadine/pseudoephedrine for the treatment of AR symptoms, particularly nasal congestion. Four large studies found that improvement in nasal congestion is enhanced when patients are treated with combination desloratadine/pseudoephedrine. The combination drug significantly improved mean reflective nasal congestion scores in these studies compared with either component as monotherapy (p nasal congestion scores were comparable between the once- and twice-daily dosing regimens of the combination drug. Comprehensive treatment of AR that effectively relieves nasal congestion can also improve patient QoL. Administration of the second-generation antihistamine desloratadine in combination with the decongestant pseudoephedrine may be regarded as an efficacious and convenient option for patients with AR who are particularly troubled by nasal congestion.

  20. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor: terminal hydroxylation of branched hydrocarbon chains.

    PubMed

    Jensen, Kenneth; Johnston, Jonathan B; de Montellano, Paul R Ortiz; Møller, Birger Lindberg

    2012-02-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP(+) to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation system for biotechnology applications.

  1. Nasal Cancer

    MedlinePlus

    ... the way to your throat as you breathe. Cancer of the nasal cavity and paranasal sinuses is ... be like those of infections. Doctors diagnose nasal cancer with imaging tests, lighted tube-like instruments that ...

  2. Nasal septal angiofibroma, a subclass of extranasopharyngeal angiofibroma.

    PubMed

    Garcia-Rodriguez, Laura; Rudman, Kelli; Cogbill, Christopher H; Loehrl, Todd; Poetker, David M

    2012-01-01

    Extranasopharyngeal angiofibromas (ENA) arising from the nasal septum or nasal septal angiofibromas are extremely rare; only 13 such cases have been reported in the international literature. Our objective is to describe the presentation, workup, and surgical management of these lesions. Case reports were done. The setting was a tertiary care referral center and the Veterans Affairs Medical Center. PATIENTS, INTERVENTIONS, AND RESULTS: We present 2 cases of extranasopharyngeal angiofibroma occurring on the nasal septum. In this report, we discuss the occurrence, the histopathologic findings, and the treatment of nasal septal angiofibroma. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A nasal dermoid sinus in an English bull terrier.

    PubMed

    Burrow, R D

    2004-11-01

    A five-year-old, entire female English bull terrier was presented with a six-week history of intermittent facial swelling and nasal pain, following an incident of nasal trauma. A small opening was present at the mucocutaneous junction on the dorsal nasal planum. Examination under general anaesthesia allowed catheterisation of this opening and confirmed the presence of a tract passing caudally. Plain radiographic examination of the region was unremarkable. Positive contrast sinography demonstrated contrast material filling a midline tract that passed caudally and subcutaneously towards the nasal bone. This tract was surgically excised. Histopathological examination of the excised tissue, together with the clinical findings, led to the diagnosis of nasal dermoid sinus.

  4. Lysine methylation modulates the protein-protein interactions of yeast cytochrome C Cyc1p.

    PubMed

    Winter, Daniel L; Abeygunawardena, Dhanushi; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2015-07-01

    In recent years, protein methylation has been established as a major intracellular PTM. It has also been proposed to modulate protein-protein interactions (PPIs) in the interactome. To investigate the effect of PTMs on PPIs, we recently developed the conditional two-hybrid (C2H) system. With this, we demonstrated that arginine methylation can modulate PPIs in the yeast interactome. Here, we used the C2H system to investigate the effect of lysine methylation. Specifically, we asked whether Ctm1p-mediated trimethylation of yeast cytochrome c Cyc1p, on lysine 78, modulates its interactions with Erv1p, Ccp1p, Cyc2p and Cyc3p. We show that the interactions between Cyc1p and Erv1p, and between Cyc1p and Cyc3p, are significantly increased upon trimethylation of lysine 78. This increase of interaction helps explain the reported facilitation of Cyc1p import into the mitochondrial intermembrane space upon methylation. This first application of the C2H system to the study of methyllysine-modulated interactions further confirms its robustness and flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of early correction of nasal septal deformity in unilateral cleft lip and palate on inferior turbinate hypertrophy and nasal patency.

    PubMed

    Pinto, Valentina; Piccin, Ottavio; Burgio, Luca; Summo, Valeria; Antoniazzi, Elisa; Morselli, Paolo G

    2018-05-01

    A relatively neglected aspect of cleft lip nasal deformity is the effect of septal deviation and inferior turbinate hypertrophy (ITH) on the functional airway. In particular, ITH in the noncleft side can be especially problematic, because it reduces the healthy nasal area, creating bilateral nasal obstruction that might affect the growth of the maxillofacial skeleton. Although these anatomic and functional changes are documented, few recommendations have been developed regarding the proper approach to ITH. The aim of the present study was to asses the ITH severity and determine the degree of nasal airway patency in patients who have undergone primary correction of the nasal septum during lip repair compared to patients operated on without primary septal correction. The study population included two groups. One group consisted of twenty unilateral cleft lip palate UCLP patients who have previously undergone primary rhinoseptoplasty as part of their treatment plan. The control group consisted of twenty UCLP patients operated on without rhinoseptal correction. The Nasal Obstructive Symptom Evaluation (NOSE) scale and nasal endoscopy were used to assess nasal obstruction. The overall untreated group reported severe symptoms across all NOSE scale dimensions more frequently than children who have undergone primary rhinoseptoplasty. The difference was statistically significant for each dimensions (p < 0.05). The mean NOSE score for group A and group B was 21.4 ± 9.4 and 70.8 ± 17.2 respectively (p < 0.0001). In group A turbinate size decreased significantly (p < 0.05) compared to pre-operative data. Comparing the two groups a statistically significant difference in turbinate size was observed (p < 0.0001). The results of the present study confirm that there is a significant degree of ITH and nasal airway dysfunction in patients with UCLP. Early septal repositioning during primary cleft lip repair results in a statistically significant reduction in IT

  6. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  7. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling

    PubMed Central

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-01-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450–CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate–enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies. PMID:23844938

  8. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.

    PubMed

    Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu

    2013-06-01

    Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.

  9. Perceiving Nasal Patency through Mucosal Cooling Rather than Air Temperature or Nasal Resistance

    PubMed Central

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive.The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool. PMID:22022361

  10. Comparison between Perceptual Assessments of Nasality and Nasalance Scores

    ERIC Educational Resources Information Center

    Brunnegard, Karin; Lohmander, Anette; van Doorn, Jan

    2012-01-01

    Background: There are different reports of the usefulness of the Nasometer[TM] as a complement to listening, often as correlation calculations between listening and nasalance measurements. Differences between findings have been attributed to listener experience and types of speech stimuli. Aims: To compare nasalance scores from the Nasometer with…

  11. Functional anatomy of the nasal bones and adjacent structures. Consequences for nasal surgery.

    PubMed

    Popko, M; Verlinde-Schellekens, S A M W; Huizing, E H; Bleys, R L A W

    2018-03-01

    The periosteum of the nasal bones, the periosteal-perichondrial nasal envelope, and the cartilaginous support of the bony vault were studied in serial coronal sections of four human cadaver noses. To differentiate between the various tissue components, the sections were stained according to Mallory-Cason and Verhoeff-Van Gieson stain. The results demonstrated: 1. the presence of clearly distinguishable layers of the periosteum covering the nasal bones; 2. the presence of a continuous periosteal-perichondrial covering of the bony and cartilaginous nasal vaults; 3. the way the cartilaginous support of the bony vault is constructed. The findings described in the present study may have clinical relevance in nasal surgery.

  12. Is there a correlation between nasal septum deviation and maxillary transversal deficiency? A retrospective study on prepubertal subjects.

    PubMed

    Ballanti, Fabiana; Baldini, Alberto; Ranieri, Salvatore; Nota, Alessandro; Cozza, Paola

    2016-04-01

    Deviated nasal septum may cause a reduction of the nasal airflow, thus, during the craniofacial development, a reduced nasal airflow could originate a chronic mouth-breathing pattern, related with moderate to severe maxillary constriction. The aim of this retrospective study is to analyze the correlation between maxillary transverse deficiency and nasal septum deviation. Frontal cephalograms were performed on 66 posterior-anterior radiographs of subjects (34M, 32F; mean age 9.95±2.50 years) with maxillary transverse deficiency and on a control group of 31 posterior-anterior radiographs of subjects (13M, 18F; 9.29±2.08 years). Angular parameters of the nasal cavities were recorded and compared between the two groups using a Student's t-test. Generally all the parameters are very similar between the two groups except for the ASY angle that differs for about the 27%; anyway the Student's t-test showed no statistically significant differences between the two groups (mostly p>0.20). This study failed to show an association between transverse maxillary deficiencies and nasal septum deviations. Moreover, no significant differences were found between the mean nasal cavities dimensions in subjects with transverse maxillary deficiency and the control group. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas.

    PubMed

    Matsuno, T; Yumoto, I

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).

  14. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    PubMed Central

    Matsuno, T.; Yumoto, I.

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691

  15. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter

    PubMed Central

    Reed, James R.; dela Cruz, Albert Leo N.; Lomnicki, Slawo M.; Backes, Wayne L.

    2015-01-01

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR•P450 complex. PMID:25817938

  16. Nasal septal hematoma

    MedlinePlus

    ... medlineplus.gov/ency/article/001292.htm Nasal septal hematoma To use the sharing features on this page, please enable JavaScript. A nasal septal hematoma is a collection of blood within the septum ...

  17. Pharmacokinetics of a new, nasal formulation of naloxone.

    PubMed

    Tylleskar, Ida; Skulberg, Arne Kristian; Nilsen, Turid; Skarra, Sissel; Jansook, Phatsawee; Dale, Ola

    2017-05-01

    Nasal naloxone is wanted for bystander administration in opioid overdose and as a needle-free alternative for emergency medical personnel. Epidemiologic studies have indicated a therapeutic effect of bystander administration of low-concentration/high-volume formulations. The objective for this study was to describe the nasal pharmacokinetics of a new high-concentration/low-volume nasal formulation of naloxone. This was an open, randomized triple crossover trial in healthy, human volunteers (n = 12) where two doses of nasal naloxone (0.8 and 1.6 mg) and one intravenous dose (1.0 mg) were compared. Fifteen serum samples were collected before and until 6 h after naloxone administration. Quantification of naloxone was performed by a validated liquid chromatography-tandem mass spectrometry method. Bioavailability was 0.54 (0.45-0.63) for the 0.8 mg and 0.52 (0.37-0.67) for the 1.6 mg nasal naloxone formulation. Maximum concentration levels (C max ) were 1.45 ng/ml (1.07-1.84) for 0.8 mg and 2.57 ng/ml (1.49-3.66) for the 1.6 mg. Time to maximum concentrations (T max ) were reached at 17.9 min (11.4-24.5) and 18.6 min (14.4-22.9) for the 0.8 mg and the 1.6 mg doses, respectively. This nasal naloxone formulation had a rapid, systemic uptake and higher bioavailability than naloxone formulations not designed for IN use. This indicates that an optimized high-concentration/low-volume nasal spray formulation may deliver a therapeutic dose. The 1.6 mg nasal dose provided serum concentrations that surpassed those of 1.0 mg IV after 15-20 min and stayed above for the rest of the study period.

  18. [Impact of nasal colonization by methicillin-resistant Staphylococcus aureus among geriatric intermediate care facility patients].

    PubMed

    Giraud, Karine; Chatap, Guy; Bastuji-Garin, Sylvie; Vincent, Jean-Pierre

    2004-12-04

    To evaluate the impact of nasal carriage of Methicillin Resistant Staphylococcus aureus (MRSA) on antibiotic cost, infection morbidity, mortality and length of stay in a geriatric population. 341 consecutive elderly patients (mean age 83.4 +/- 8.7 years) admitted to an intermediate care facility were prospectively include between November 1998 and October 1999. Nasal swab cultures were taken on admission. In sixty patients (17.6%) no nasal swab was taken. Among the 281 patients screened, 52 were identified as MRSA carriers. The principle predictive factors were: diabetes (p=0,046), sores (p=0,03), malnutrition (p=0,02), polypathology (p=0,02) and prolongation of previous hospitalisation (p=0,09). Nasal carriage of MRSA on admission to the facility was not a deleterious prognostic factor regarding duration of stay, infectious morbidity and antibiotic cost, but was associated with higher mortality risk.

  19. [Effect of nasal CPAP on human diaphragm position and lung volume].

    PubMed

    Yoshimura, N; Abe, T; Kusuhara, N; Tomita, T

    1994-11-01

    The cephalic margin of the zone of apposition (ZOA) was observed with ultrasonography at ambient pressure and during nasal continuous positive airway pressure (nasal CPAP) in nine awake healthy males in a supine position. In a relaxed state at ambient pressure, there was a significant (p < 0.001) linear relationship between lung volume and the movement of the cephalic margin of the ZOA over the range from maximum expiratory position (MEP) to maximum inspiratory position (MIP). With nasal CPAP, functional residual capacity increased significantly (p < 0.01) in proportion to the increase in CPAP. At 20 cmH2O CPAP, the mean increase in volume at end expiration was 36% of the vital capacity measured at ambient pressure. The cephalic margin of the ZOA moved significantly (p < 0.01) in a caudal direction as CPAP was increased. At 20 cmH2O CPAP, the cephalic margin of the ZOA at end expiratory position (EEP) had moved 55% of the difference from MIP to MEP measured at ambient pressure. The end expiratory diaphragm position during nasal CPAP was lower than the diaphragm position at ambient pressure when lung volumes were equal. These results suggest that during nasal CPAP the chest wall is distorted from its relaxed configuration, with a decrease in rib cage expansion and an increase in outward displacement of the abdominal wall.

  20. Nasal Harmony in Aguaruna.

    ERIC Educational Resources Information Center

    Moon, Gui-Sun

    A discussion of the nasal harmony of Aguaruna, a language of the Jivaroan family in South America, approaches the subject from the viewpoint of generative phonology. This theory of phonology proposes an underlying nasal consonant, later deleted, that accounts for vowel nasalization. Complex rules that suppose a complex system of vowel and…

  1. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats.

    PubMed

    Abou-Donia, Mohamed B; El-Masry, Eman M; Abdel-Rahman, Ali A; McLendon, Roger E; Schiffman, Susan S

    2008-01-01

    Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.

  2. Nasal hydropulsion.

    PubMed

    Elizabeth, Ashbaugh

    2013-08-01

    Intranasal tumors of dogs and cats pose a diagnostic and therapeutic challenge for the small animal practitioner. A simplified flushing technique to biopsy and debulk nasal tumors, that often results in immediate clinical relief for the patient is described. This technique can also be utilized to remove nasal foreign bodies. © 2013 Elsevier Inc. All rights reserved.

  3. Unexpected dependence on pH of NO release from Paracoccus pantotrophus cytochrome cd1.

    PubMed

    Sam, Katharine A; Tolland, John D; Fairhurst, Shirley A; Higham, Christopher W; Lowe, David J; Thorneley, Roger N F; Allen, James W A; Ferguson, Stuart J

    2008-07-11

    A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd(1) at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d(1)-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d(1)Fe(II)-NO and 45% cFe(II)d(1)Fe(II)-NO(+). No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.

  4. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    PubMed

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  5. The biodiversity of microbial cytochromes P450.

    PubMed

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  6. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells.

    PubMed

    Naderi-Kalali, B; Allameh, A; Rasaee, M J; Bach, H-J; Behechti, A; Doods, K; Kettrup, A; Schramm, K-W

    2005-04-01

    Cytochrome P450 1A1 (CYP1A1) is among the cytochrome P450 classes known to convert xenobiotics and endogenous compounds to toxic and/or carcinogenic metabolites. Suppression of CYP1A1 over expression by certain compounds is implicated in prevention of cancer caused by chemical carcinogens. Chemopreventive agents containing high levels of flavonoids and steroids-like compounds are known to suppress CYP1A1. This study was carried out for assessment of the genomic and proteomic effects of caraway (Carum carvi) extracts containing high levels of both flavonoids and steroid-like substances on ethoxy resorufin dealkylation (EROD) activity and CYP1A1 at mRNA levels. Rat hepatoma cells co-treated with a CYP1A1 inducer i.e. TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin) and different preparations of caraway extracts at concentrations of 0, 0.13, 1.3, and 13 microM in culture medium. After incubation (37 degrees C and 7% CO2 for 20 h), changes in EROD specific activity recorded and compared in cells under different treatments. The results show that caraway seed extract prepared in three different organic solvents suppressed the enzyme activity in hepatoma cells in a dose-dependent manner. The extracts added above 0.13 microM could significantly inhibit EROD activity and higher levels of each extract (1.3 and 13 microM) caused approximately 10-fold suppression in the enzyme activity. Accordingly, data obtained from the RT-PCR (TaqMan) clearly showed the suppressive effects of plant extract on CYP1A1-related mRNA expression. These data clearly show that substances in caraway seeds extractable in organic solvents can potentially reverse the TCDD-dependent induction in cytochrome P450 1A1.

  7. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism.

    PubMed

    Liu, Zhenhua; Tavares, Raquel; Forsythe, Evan S; André, François; Lugan, Raphaël; Jonasson, Gabriella; Boutet-Mercey, Stéphanie; Tohge, Takayuki; Beilstein, Mark A; Werck-Reichhart, Danièle; Renault, Hugues

    2016-10-07

    Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.

  8. Glucocorticoid receptor contributes to the altered expression of hepatic cytochrome P450 upon cigarette smoking.

    PubMed

    Li, Xue; Yan, Zhongfang; Wu, Qi; Sun, Xin; Li, Fan; Zhang, Subei; Li, Kuan; Li, Li; Wu, Junping; Xu, Long; Feng, Jing; Ning, Wen; Liu, Zhixue; Chen, Huaiyong

    2016-12-01

    Cigarette smoking has been shown to cause pathological alterations in the liver. However, how hepatic metabolism is altered during cigarette smoking‑induced inflammation remains to be fully elucidated. In the present study, a rat model of smoking was established to examine the effects of cigarette smoking on inflammation, autophagy activity, and the expression of nuclear receptor and CYP in the liver. Elevated expression of interleukin 1β and activation of autophagy in the liver were observed upon smoking exposure in rats. Cigarette smoking induced a significant reduction in the mRNA expression levels of cytochromes, including cytochrome P450 (Cyp)1A2, Cyp2D4 and Cyp3A2. Accordingly, a decrease was also observed in glucocorticoid receptor (GR), a regulator of the expression of Cyp. Activation of the GR signal in human hepatic LO2 cells did not affect autophagic genes, however, it led to the upregulation of hCYP1A2, hCYP2C19 and hCYP3A4, and the downregulation of hCYP2C9. The GR antagonist, RU486, eliminated this effect, suggesting the importance of GR in liver metabolism upon cigarette smoking.

  9. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney.

    PubMed

    Ishizuka, Tsuneo; Ito, Osamu; Tan, Liping; Ogawa, Susumu; Kohzuki, Masahiro; Omata, Ken; Takeuchi, Kazuhisa; Ito, Sadayoshi

    2003-11-01

    The localization of cytochrome P-450 4A, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARgamma proteins, and the inducibility of P-450 4A expression and activity by PPAR agonists were determined in the rat kidney. The expressions of these proteins in isolated nephron segments were evaluated by immunoblot analysis, and the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was measured as P-450 4A activity. P-450 4A proteins were expressed predominantly in the proximal tubule (PT), with lower expression in the preglomerular arteriole (Art), glomerulus (Glm), and medullary thick ascending limb (mTAL), but their expression was not detected in the inner medullary collecting duct (IMCD). PPARalpha protein was expressed in the PT and mTAL, and PPARgamma protein was expressed in the IMCD and mTAL. Treatment with clofibrate, the PPARalpha agonist, increased P-450 4A protein levels and the production of 20-HETE in microsomes prepared from the renal cortex, whereas treatment with pioglitazone, the PPARgamma agonist, affected neither of them. These results indicate that PPARalpha and PPARgamma proteins are localized in different nephron segments and the inducibility of P-450 4A expression and activity by the PPAR agonists correlates with the nephron-specific localization of the respective PPAR isoforms.

  10. Cytochrome P450 isozyme protein verified in the skin of southern hemisphere humpback whales (Megaptera novaeangliae): implications for biochemical biomarker assessment.

    PubMed

    Waugh, Courtney A; Huston, Wilhelmina M; Noad, Michael J; Bengtson Nash, Susan

    2011-04-01

    Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The role of TNF alpha polymorphism and expression in susceptibility to nasal polyposis.

    PubMed

    Zhang, Guimin; Zhang, Jinmei; Kuang, Manbao; Lin, Peng

    2018-05-01

    In this study, we first performed a meta-analysis to assess the role of single-nucleotide polymorphism (SNP) within tumor necrosis factor alpha (TNF alpha) gene and TNF alpha expression in the risk of nasal polyposis. STATA 12.0 software was utilized to conduct the Mantel-Haenszel statistics, Cohen statistics, Begg's test, Egger's tests and sensitivity analysis. We systemically carried out the database retrieval and initially identified 486 articles. After screening, 15 articles were included in our meta-analysis. For TNF alpha rs1800629 G/A SNP, compared with control group, an increased risk of nasal polyposis of case group was observed in the models of A vs. G [p (P value of association) = 0.009, OR (odds ratio) = 1.35], GA vs. GG (p = 0.001, OR = 1.69), GA+AA vs. GG (p = 0.010, OR = 1.47). The similar results were observed in Caucasian subgroup (p < 0.05, OR > 1). For TNF alpha rs361525 G/A SNP, no significant difference between control and case group was detected (all p > 0.05). In addition, a significant difference exists between case and control groups in the meta-analyses of TNF alpha expression in nasal mucosal cells, secreted TNF alpha (p < 0.05, OR > 1), but not serum TNF alpha (p = 0.090). The present meta-analysis revealed that TNF alpha rs1800629, increased TNF alpha expression and secretion of nasal mucosal cells were associated with an increased risk of nasal polyposis.

  12. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    PubMed

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients

    PubMed Central

    2012-01-01

    Background The enzymes of the cytochrome P450 family (CYPs) play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91), as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12) when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91) in the population of interest. PMID:22702493

  14. [A preliminary study on the role of substance P in histamine-nasal-spray-induced allergic conjunctivitis in guinea pigs].

    PubMed

    Li, Tong; Zhao, Changqing

    2015-10-01

    To investigate the effect of the non adrenergic non cholinergic nerve (NANC) and substance P (SP) in allergic rhinoconjunctivitis by observing histamine nasal provocation induced conjunctivitis in guinea pigs. Forty male guinea pigs were randomly divided into five groups with each group consisting of eight guinea pigs. All anesthetized guinea pigs were exposed either to histamine (0.2%, 5 µl) (group B~E) or saline (5 µl, group A) via unilateral nostril. No pretreatment was done in group A and B while pretreatment was done in groups C~E through injection into the unilateral common carotid artery with cholinergic nerve inhibitor (atropine, 1 mg/kg, group C), cholinergic nerve inhibitor plus adrenergic nerve inhibitors (atropine, 1 mg/kg, phentolamine, 1 mg/kg plus Esmolol, 1 mg/kg, group D) and cholinergic nerve inhibitor, adrenergic nerve inhibitors plus SP receptor antagonist (the same treatment with group D plus D-SP 10(-6) mol/L, 1 µl/g, group E), respectively. To assess the ipsilateral conjunctival inflammatory reaction, conjunctiva leakage with Evans blue dye assessments and HE staining of conjunctival tissues were performed. The SP expression in ipsilateral conjunctival tissue in different groups of guinea pigs were assessed by immunofluorescence and RT-PCR. The activity of eosinophils was assessed by eosinophil major basic protein 1 (MBP1) with RT-PCR, meanwhile, the activity of mast cells was assessed by tryptase with RT-PCR. SPSS 17.0 software was used to analyze the data. At 30 min after nasal application of histamine, ipsilateral conjunctivitis was successfully induced as shown by the change of conjunctiva leakage and histology. The content of Evans blue in ipsilateral conjunctival tissue of group A~E was (13.78 ± 2.48), (29.62 ± 3.31), (19.03 ± 1.47), (18.42 ± 2.52), (14.83 ± 2.14) µg/ml, respectively. There was statistically significant difference between group A and B (t = -10.66, P < 0.05), group B and C (t = 7.97, P < 0.05), group C and E (t

  15. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  16. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  17. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  18. Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.

    PubMed

    Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P

    2007-08-01

    Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.

  19. Nasalance measures in Cantonese-speaking women.

    PubMed

    Whitehill, T L

    2001-03-01

    To establish and evaluate stimulus materials for nasalance measurement in Cantonese speakers, to provide normative data for Cantonese-speaking women, and to evaluate session-to-session reliability of nasalance measures. One hundred forty-one Cantonese-speaking women with normal resonance who were students in the Department of Speech and Hearing Sciences, University of Hong Kong. Participants read aloud four speech stimuli: oral sentences, nasal sentences, an oral paragraph (similar to the Zoo Passage), and an oral-nasal paragraph (similar to the Rainbow Passage). Data were collected and analyzed using the Kay Nasometer 6200. Data collection was repeated for a subgroup of speakers (n = 28) on a separate day. Nasalance materials were evaluated by using statistical tests of difference and correlation. Group mean (standard deviation) nasalance scores for oral sentences, nasal sentences, oral paragraph, and oral-nasal paragraph were 16.79 (5.99), 55.67 (7.38), 13.68 (7.16), and 35.46 (6.22), respectively. There was a significant difference in mean nasalance scores for oral versus nasal materials. Correlations between stimuli were as expected, ranging from 0.43 to 0.91. Session-to-session reliability was within 5 points for over 95% of speakers for the oral stimuli but for less than 76% of speakers for the nasal and oral-nasal stimuli. Standard nasalance materials have been developed for Cantonese, and normative data have been established for Cantonese women. Evaluation of materials indicated acceptable differentiation between oral and nasal materials. Two stimuli (nasal sentences and oral paragraph) are recommended for future use. Comparison with findings from other languages showed similarities in scores; possible language-specific differences are discussed. Session-to-session reliability was poorer for nasal than oral stimuli.

  20. Nasal fracture - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000554.htm Nasal fracture - aftercare To use the sharing features on this ... that gives your nose its shape. A nasal fracture occurs when the bony part of your nose ...