Sample records for nasas life sciences

  1. Measuring the returns to NASA life sciences research and development

    NASA Astrophysics Data System (ADS)

    Hertzfeld, Henry R.

    1998-01-01

    The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life

  2. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  3. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  4. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  5. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  6. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  7. NASA Johnson Space Center Life Sciences Data System

    NASA Technical Reports Server (NTRS)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  8. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  9. Measuring the economic returns from successful NASA life sciences technology transfers.

    PubMed

    Hertzfeld, Henry R

    2002-12-01

    Since 1958 NASA has invested approximately $3.7 billion in life sciences R&D in the support of the successful human space flight program. There are numerous studies documenting the spin-off technologies that can be traced to NASA research and development activities. Most of these studies describe the technologies and their uses; however only a few measure the economic impact of the spin-offs and most of these are benefit/cost studies that tend to overstate benefits or underestimate costs. This study takes a different approach, measuring only economic impacts to the companies that developed successful spin-off products from NASA life sciences investments. A personal interview was conducted with each company and the benefits are conservatively estimated as the value-added by the NASA technology to the company's output and the amount of additional private R&D stimulated by the NASA R&D. This pilot study of fifteen companies, using a very conservative measurement technique, found a large return to companies that have successfully commercialized NASA life sciences spin-off products. Value-added benefits totaled over $1.5 billion and a NASA R&D total investment in these 15 technologies of $64 million was found to stimulate an additional $200 million in private R&D. The study also found that the largest benefits were from products developed and marketed by large companies, primarily because these companies had the financial and marketing resources to work on a scale unavailable to smaller companies. Many of the small companies reported very profitable product-lines as well as documented evidence of benefits extending to the commercial users of their products. However, the smaller companies often lacked either the ability or the desire to expand into much larger scale production. NASA and other government technology transfer programs may be overlooking an opportunity to enlarge the economic benefits from their spin-off technologies. When a federal R&D grant or contract

  10. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  11. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  12. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  13. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.

  14. NASA Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  15. Space life sciences strategic plan

    NASA Astrophysics Data System (ADS)

    Nicogossian, Arnauld E.

    1992-05-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  16. Space life sciences strategic plan

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  17. NASA Life Sciences Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  18. NASA/NSF Antarctic Science Working Group

    NASA Technical Reports Server (NTRS)

    Stoklosa, Janis H.

    1990-01-01

    A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.

  19. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future

  20. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  1. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  2. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  3. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  4. Life sciences report 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  5. Space Life Sciences Lab

    NASA Image and Video Library

    2003-10-09

    The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  6. Life sciences flight experiments program mission science requirements document. The first life sciences dedicated Spacelab mission, part 1

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1982-01-01

    The Mission Science Requirements Document (MSRD) for the First Dedicated Life Sciences Mission (LS-1) represents the culmination of thousands of hours of experiment selection, and science requirement definition activities. NASA life sciences has never before attempted to integrate, both scientifically and operationally, a single mission dedicated to life sciences research, and the complexity of the planning required for such an endeavor should be apparent. This set of requirements completes the first phase of a continual process which will attempt to optimize (within available programmatic and mission resources) the science accomplished on this mission.

  7. The Science@NASA Websites

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Phillips. Tony; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Science@NASA websites represent a significant stride forward in communicating NASA science to the general public via the Internet. Using a family of websites aimed at science-attentive adults, high school students, middle school students and educators, the Science@NASA activity presents selected stories of on-going NASA science, giving context to otherwise dry press releases and scientific reports.

  8. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  9. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  10. NASA Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  11. NASA life sciences. An improvement in vital signs.

    PubMed

    Lawler, A

    2000-08-04

    Last week a hefty Russian module with living and working quarters for astronauts docked with the pieces of the international space station already in orbit, a critical step in creating a full-time orbiting laboratory. Meanwhile, NASA bureaucrats put the finishing touches on a realignment of the agency's struggling biology effort that should bolster fundamental research and allow scientists to make better use of the facility, scheduled to be completed in 2005. The two events raise the hopes of U.S. academic space life scientists that their discipline is at last on the ascent at NASA.

  12. MIT-NASA/KSC space life science experiments - A telescience testbed

    NASA Technical Reports Server (NTRS)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  13. Space shuttle and life sciences

    NASA Technical Reports Server (NTRS)

    Mason, J. A.

    1977-01-01

    During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.

  14. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  15. Life sciences recruitment objectives

    NASA Technical Reports Server (NTRS)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  16. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  17. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  18. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. Life sciences interests in Mars missions

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Griffiths, Lynn D.

    1989-01-01

    NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.

  20. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  1. NASA and the search for life in the universe.

    PubMed

    Dick, Steven J

    2006-06-01

    Almost from its beginnings in 1958, the National Aeronautics and Space Administration (NASA) set up a life-science program. Because one of the priorities of the organization is to search for life beyond Earth, NASA began designing spacecraft to unravel the mysteries of Mars. The effort to search for life on Mars culminated in the landing of two Viking spacecraft on the surface of the planet in 1976. Although the biology experiments conducted as part of these missions provided some evidence for the possibility of life, the scientific consensus was that they drew a blank. In 1996, however, the 'Mars rock' rekindled interest in life in our solar system. The discovery of an ocean on the Jovian moon Europa, of organic molecules on the Saturnian moon Titan and persuasive evidence that water once flowed on Mars suggests that the solar system is still of considerable exobiological interest. In addition, since 1995 approximately 175 planets have been found beyond our solar system. Although these discoveries are gas giants, NASA spacecraft might soon detect Earth-sized planets. The search for life in the universe continues.

  2. Earth benefits from NASA research and technology. Life sciences applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.

  3. Life Sciences Laboratories for the Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Schulte, L. O.; Kelly, H. B.; Secord, T. C.

    1976-01-01

    Space Shuttle and Spacelab missions will provide scientists with their first opportunity to participate directly in research in space for all scientific disciplines, particularly the Life Sciences. Preparations are already underway to ensure the success of these missions. The paper summarizes the results of the 1975 NASA-funded Life Sciences Laboratories definition study which defined several long-range life sciences research options and the laboratory designs necessary to accomplish high-priority life sciences research. The implications and impacts of Spacelab design and development on the life sciences missions are discussed. An approach is presented based upon the development of a general-purposs laboratory capability and an inventory of common operational research equipment for conducting life sciences research. Several life sciences laboratories and their capabilities are described to demonstrate the systems potentially available to the experimenter for conducting biological and medical research.

  4. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  5. Science@NASA: Direct to People!

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  6. Life sciences accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.

  7. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  8. NASA Hosts Live Science Chat about Europa Findings

    NASA Image and Video Library

    2018-05-14

    NASA hosted a Science Chat May 14 to discuss the latest analysis of Jupiter’s moon Europa and its status as one of the most promising places in the solar system to search for life. The event aired live on NASA Television, Facebook Live, Twitch TV, Ustream, YouTube, Twitter/Periscope and the agency's website. Europa has long been a high priority for exploration because beneath its icy crust lies a salty, liquid water ocean. NASA’s Europa Clipper, targeted to launch in 2022, will be equipped with the instruments necessary to determine whether Europa possesses the ingredients necessary to support life as we know it.

  9. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  10. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  11. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  12. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  13. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  14. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  15. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  16. Experimental control requirements for life sciences

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Sharp, J. C.

    1978-01-01

    The Life Sciences dedicated Spacelab will enable scientists to test hypotheses in various disciplines. Building upon experience gained in mission simulations, orbital flight test experiments, and the first three Spacelab missions, NASA will be able to progressively develop the engineering and management capabilities necessary for the first Life Sciences Spacelab. Development of experiments for these missions will require implementation of life-support systems not previously flown in space. Plant growth chambers, animal holding facilities, aquatic specimen life-support systems, and centrifuge-mounted specimen holding units are examples of systems currently being designed and fabricated for flight.

  17. Science Comes Alive at NASA Goddard

    NASA Image and Video Library

    2017-05-17

    Science Comes Alive at NASA Goddard: Welcome to the NASA Goddard Space Flight Center. Where innovation and science never sleep and new discoveries never get old... At NASA Goddard. For Higher Resolutions and Other Versions: https://svs.gsfc.nasa.gov/12533

  18. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  19. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  20. Citizen Science as a Tool for Scientific Research and Societal Benefit at NASA

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy

    2018-01-01

    NASA's strategic goals include advancing knowledge and opportunity in space and improving life on Earth. We support these goals through extensive programs in space and Earth science research accomplished via space-based missions and research funding. NASA's "system" is configured to conduct science using (1) in-house personnel and (2) grants, contracts, and agreements with external entities (academia, industry, international space agencies.

  1. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2006-01-01

    High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.

  2. NASA-Ames Life Sciences Flight Experiments program - 1980 status report

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.; Macleod, G.; Williams, B. A.

    1980-01-01

    The paper deals with the ESA's Spacelab LSFE (Life Sciences Flight Experiments) program which, once operational, will provide new and unique opportunities to conduct research into the effects of spaceflight and weightlessness on living organisms under conditions approximating ground-based laboratories. Spacelab missions, launched at 18-month intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and similar life sciences.

  3. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  4. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  5. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  6. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  7. USSR Space Life Sciences Digest, issue 3

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  8. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  9. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  10. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  11. NASA Experience with UAS Science Applications

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Jennison, Chris

    2007-01-01

    Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies

  12. Inspiring the Next Generation in Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  13. Large-Scale NASA Science Applications on the Columbia Supercluster

    NASA Technical Reports Server (NTRS)

    Brooks, Walter

    2005-01-01

    Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.

  14. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  15. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage

  16. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  17. Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Friedl, L.; Bonniksen, C. K.

    2017-12-01

    NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.

  18. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  19. Life science payloads planning study integration facility survey results

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Brown, N. E.; Nelson, W. G.

    1976-01-01

    The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.

  20. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  1. Global Reach: A View of International Cooperation in NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Improving life on Earth and understanding and protecting our home planet are foremost in the Vision and Mission of the National Aeronautics and Space Administration (NASA). NASA's Earth Science Enterprise end eavors to use the unique vantage point of space to study the Earth sy stem and improve the prediction of Earth system change. NASA and its international partners study Earth's land, atmosphere, ice, oceans, a nd biota and seek to provide objective scientific knowledge to decisi onmakers and scientists worldwide. This book describes NASA's extensi ve cooperation with its international partners.

  2. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  3. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  4. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  5. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  6. NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data

    Atmospheric Science Data Center

    2015-05-08

    ... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...

  7. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  8. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-050] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-081)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. 78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-156] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  11. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  12. USSR Space Life Sciences Digest, issue 4

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  13. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  14. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  15. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  16. Defining a Mechanism of Educational Interface Between NASA Life Sciences the Nation's Students

    NASA Technical Reports Server (NTRS)

    Chamberland, D.; Dreschel, T.; Coulter, G.

    1995-01-01

    Harnessing our greatest national resource, as represented by the nation's students, will require a thoughtful, well developed and administered program that includes precise, executable strategies and valid evaluation tools. Responding to a national education outreach priority, the National Aeronautics and Space Administration's Life and Biomedical Sciences and Applications Division has initiated a process or organizing and implementing various strategies through a steering committee that includes representatives from Headquarters and three field centers with major Life Sciences programs. The mandate of the Life Sciences Education Outreach Steering Committee is to develop ways of communicating space life science issues to America's students through the nation's teachers by curriculum enhancement and direct participation in the education process with an emphasis in the primary and secondary schools. Metrics are also developed for each individually defined process so that the mechanis can be continuously refined and improved.

  17. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  18. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    NASA Technical Reports Server (NTRS)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  19. Accommodating life sciences on the Space Station

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  20. NASA Science Data Processing for SNPP

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.

    2014-12-01

    NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.

  1. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  2. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  3. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  5. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  6. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  7. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  11. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  12. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  14. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  15. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  16. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  17. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  18. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  19. Life science payloads planning study. [for space shuttle orbiters and spacelab

    NASA Technical Reports Server (NTRS)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  20. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  1. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  2. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-021)] NASA Advisory Council; Science...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to...

  3. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science..., Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally scheduled...

  4. Life Sciences Data Archive Scientific Development

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr.

    1995-01-01

    The Life Sciences Data Archive will provide scientists, managers and the general public with access to biomedical data collected before, during and after spaceflight. These data are often irreplaceable and represent a major resource from the space program. For these data to be useful, however, they must be presented with enough supporting information, description and detail so that an interested scientist can understand how, when and why the data were collected. The goal of this contract was to provide a scientific consultant to the archival effort at the NASA-Johnson Space Center. This consultant (Jay C. Buckey, Jr., M.D.) is a scientist, who was a co-investigator on both the Spacelab Life Sciences-1 and Spacelab Life Sciences-2 flights. In addition he was an alternate payload specialist for the Spacelab Life Sciences-2 flight. In this role he trained on all the experiments on the flight and so was familiar with the protocols, hardware and goals of all the experiments on the flight. Many of these experiments were flown on both SLS-1 and SLS-2. This background was useful for the archive, since the first mission to be archived was Spacelab Life Sciences-1. Dr. Buckey worked directly with the archive effort to ensure that the parameters, scientific descriptions, protocols and data sets were accurate and useful.

  5. USSR Space Life Sciences Digest, Issue 26

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Frey, Mary Ann (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 35 journal papers or book chapters published in Russian and of 8 Soviet books. In addition, the proceedings of an Intercosmos conference on space biology and medicine are summarized.

  6. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  7. NASA Propulsion Investments for Exploration and Science

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high

  8. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  9. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  10. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  11. The first dedicated life sciences Spacelab mission

    NASA Technical Reports Server (NTRS)

    Perry, T. W.; Rummel, J. A.; Griffiths, L. D.; White, R. J.; Leonard, J. I.

    1984-01-01

    JIt is pointed out that the Shuttle-borne Spacelab provides the capability to fly large numbers of life sciences experiments, to retrieve and rescue experimental equipment, and to undertake multiple-flight studies. A NASA Life Sciences Flight Experiments Program has been organized with the aim to take full advantages of this capability. A description is provided of the scientific aspects of the most ambitious Spacelab mission currently being conducted in connection with this program, taking into account the First Dedicated Life Sciences Spacelab Mission. The payload of this mission will contain the equipment for 24 separate investigations. It is planned to perform the mission on two separate seven-day Spacelab flights, the first of which is currently scheduled for early 1986. Some of the mission objectives are related to the study of human and animal responses which occur promptly upon achieving weightlessness.

  12. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  13. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-086)] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee.... Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-4452, fax...

  14. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  18. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  19. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  20. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  1. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  2. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  3. USSR Space Life Sciences Digest, issue 13

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  4. The NASA Astrobiology Roadmap

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.; hide

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  5. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W

    2003-01-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.

  6. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 7:30 a.m. to 11:30 a.m., Local Time. ADDRESSES: NASA Ames Research Center, NASA Ames Conference...

  7. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  8. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits under white tents line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  9. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Signage points the way to NASA exhibits at the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  10. Life Science Research In Space: The Spacelab Era

    NASA Astrophysics Data System (ADS)

    Farrell, R. M.; Cramer, D. B.; Reid, D. H.

    1982-02-01

    This manuscript summarizes the events leading to the first Spacelab mission dedicated exclusively to life sciences experimentation. This mission is currently planned for a Space Shuttle flight in the 1984-1985 time frame. Following publication of a NASA Announce ment of Opportunity in 1978, approximately 400 proposals were received from researchers in universities, government laboratories, and industrial firms both in the U. S. and abroad. In 1979, 87 candidate experiments were selected for definition studies to identify the detailed resources which would need to be accommodated by the Spacelab. These proposals addressed problems encountered in man's previous space flight experience, such as space motion sickness, cardiovascular deconditioning, muscle wasting, calcium loss and a reduction in red cell mass. Additionally, experiments were selected in areas of bioengineering, behavior and performance, Plant physiology, and cell biology. Animal species (rodents and small primates) to be investigated will be housed in a specially-developed animal holding facility which will provide all life support requirements for the animals. Human subjects will consist of a Mission Specialist Astronaut and up to four Payload Specialists. Plant species will be housed in Plant Growth Units. A general purpose work station and biological containment facility will provide the working area for much of the in-space experimentation. A comprehensive array of flight qualified laboratory equipment will be made available by NASA to Principal Investigators for in-flight use by the Payload Specialists. This equipment includes microscopes, biotelemetry systems, cameras, centrifuges, refrigerators, and similar equipment. All of this equipment has been designed for use in weightlessness. The process to develop a primary payload of about 20 experiments is now underway for Spacelab mission number four, the first dedicated life sciences flight. Under the overall guidance of NASA Headquarters

  11. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  12. Telemetric Sensors for the Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)

    1996-01-01

    Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.

  13. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  14. 78 FR 41115 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-074] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory... Time. ADDRESSES: NASA Headquarters, Room 7H45, 300 E Street SW., Washington, DC 20546. FOR FURTHER...

  15. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  16. NASA Space Science Resource Catalog

    NASA Astrophysics Data System (ADS)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  17. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  18. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  19. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April '98 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; and others will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach. Many of these visualizations have been widely disseminated through the world wide web pages of the HPCC/LTP/RSD program which can be found at http://rsd.gsfc.nasa.gov/rsd The one min interval animations of Hurricane Luis on ABC Nightline and the color perspective rendering of Hurricane Fran published by TIME, LIFE, Newsweek, Popular Science, National Geographic, Scientific American, and the "Weekly Reader" are some of the examples which will be shown.

  20. 78 FR 20357 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-037] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 6H45...

  1. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  2. 78 FR 67202 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-131] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2013, 8:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: This meeting will take place at NASA Headquarters...

  3. 76 FR 17158 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-026)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 5H45, Washington, DC...

  4. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  5. The NASA Astrobiology Roadmap.

    PubMed

    Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M

    2008-08-01

    The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.

  6. 75 FR 35091 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 1:30 p.m., e.d.t. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46, Washington, DC...

  7. 77 FR 6824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-010] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 3H46 and 7H45...

  8. 76 FR 59446 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice11-084] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 8:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46...

  9. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  10. 76 FR 8380 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-114)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Rooms 9H40 and 3H46...

  11. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA Acting Chief Technologist Douglas Terrier gives a talk to teachers attending a professional development workshop held in tandem with the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  12. 50 Years of Exobiology and Astrobiology at NASA

    NASA Image and Video Library

    2010-10-13

    James L. Green, Director for Planetary Science in NASA's Science Mission Directorate, helps kick off the "Seeking Signs of Life" Symposium, celebrating 50 Years of Exobiology and Astrobiology at NASA, Thursday, Oct. 14, 2010, at the Lockheed Martin Global Vision Center in Arlington, Va. NASA has been researching life in the universe since 1959, asking three fundamental questions: "How does life begin and evolve?"‚ "Is there life beyond Earth and, if so, how can we detect it?" and "What is the future of life on Earth and in the universe?" Photo Credit: (NASA/Bill Ingalls)

  13. 78 FR 77502 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-152)] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 3P40, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  14. 78 FR 57178 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-115] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 1Q39, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  15. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  16. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-103)] NASA Advisory Council; Science... National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for the...

  17. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-033)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  18. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-003)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  19. Application of NASA's advanced life support technologies in polar regions

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Lewis, C.

    1997-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge in the Advanced Life Systems for Extreme Environments (ALSEE) project. This project addresses treatment and reduction of waste, purification and recycling of water, and production of food in remote communities of Alaska. The project focus is a major issue in the state of Alaska and other areas of the Circumpolar North; the health and welfare of people, their lives and the subsistence lifestyle in remote communities, care for the environment, and economic opportunity through technology transfer. The challenge is to implement the technologies in a manner compatible with the social and economic structures of native communities, the state, and the commercial sector. NASA goals are technology selection, system design and methods development of regenerative life support systems for planetary and Lunar bases and other space exploration missions. The ALSEE project will provide similar advanced technologies to address the multiple problems facing the remote communities of Alaska and provide an extreme environment testbed for future space applications. These technologies have never been assembled for this purpose. They offer an integrated approach to solving pressing problems in remote communities.

  20. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  1. 78 FR 31977 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-061] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee (ASAC). This Committee functions in an advisory capacity to the Director, Earth Science Division. The...

  2. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  3. 1992 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1992 Life Support Systems Analysis Workshop was sponsored by NASA's Office of Aeronautics and Space Technology (OAST) to integrate the inputs from, disseminate information to, and foster communication among NASA, industry, and academic specialists. The workshop continued discussion and definition of key issues identified in the 1991 workshop, including: (1) modeling and experimental validation; (2) definition of systems analysis evaluation criteria; (3) integration of modeling at multiple levels; and (4) assessment of process control modeling approaches. Through both the 1991 and 1992 workshops, NASA has continued to seek input from industry and university chemical process modeling and analysis experts, and to introduce and apply new systems analysis approaches to life support systems. The workshop included technical presentations, discussions, and interactive planning, with sufficient time allocated for discussion of both technology status and technology development recommendations. Key personnel currently involved with life support technology developments from NASA, industry, and academia provided input to the status and priorities of current and future systems analysis methods and requirements.

  4. USSR Space Life Sciences Digest, issue 2

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  5. USSR Space Life Sciences Digest, issue 14

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  6. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  7. NASA Wavelength: A Full Spectrum of NASA Resources for Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Schwerin, T. G.; Peticolas, L. M.; Porcello, D.; Kansa, E.; Shipp, S. S.; Bartolone, L.

    2013-12-01

    The NASA Science Education and Public Outreach Forums have developed a digital library--NASAWavelength.org--that enables easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The system has been developed based on best practices in the architecture and design of web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with K-12, higher education, and informal education. A NASA Wavelength strandmap service features the 19 AAAS strandmaps that are most relevant to NASA science; the service also generates all of the 103 AAAS strandmaps with content from the Wavelength collection. These maps graphically and interactively provide connections between concepts as well as illustrate how concepts build upon one another across grade levels. New features have been developed for this site based on user feedback, including list-building so that users can create and share individual collections within Wavelength. We will also discuss potential methods for integrating the Next Generation Science Standards (NGSS) into the search and discovery tools on NASA Wavelength.

  8. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  9. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  10. Benchmarks: Reports of the NASA Science Institutes Team

    NASA Technical Reports Server (NTRS)

    Diaz, A. V.

    1995-01-01

    This report results from a benchmarking study undertaken by NASA as part of its planning for the possible creation of new science Institutes. Candidate Institutes under consideration cover a range of scientific and technological activities ranging from biomedical to astrophysical research and from the global hydrological cycle to microgravity material science. Should NASA create these Institutes, the intent will be to preserve and strengthen key science and technology activities now being performed by Government employees at NASA Field Centers. Because the success of these projected non-Government-operated Institutes is vital for the continued development of space science and applications, NASA has sought to identify the best practices of successful existing scientific and technological research institutions as they carry out those processes that will be most important for the new science Institutes. While many individuals and organizations may be interested in our findings, the primary use of this report will be to formulate plas for establishing the new science Institutes. As a result, the report is organized to that the "best practices" of the finest institutes are associated with characteristics of all institutes. These characteristics or "attributes" serve as the headings for the main body of this report.

  11. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne

    2016-01-01

    Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: (1) Data bits with no corruption, (2) Discoverability and access, (3) Readability, (4) Understandability, (5) Usability' and (6). Reproducibility of results. NASAs Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are published in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing product information pages.

  12. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  13. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  14. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  15. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  16. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  17. The NASA Earthdata Forums - An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Acker, J. G.; Meyer, D. L.; Northup, E. A.; Bagwell, R.

    2017-12-01

    In this presentation, we will demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  18. Telescience testbedding for life science missions on the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, D.; Mian, A.; Bosley, J.

    1988-01-01

    'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.

  19. NASA Tech Briefs, Summer 1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  20. 78 FR 20358 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-036] NASA Advisory Council; Science... Subcommittee (HPS) of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of... CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202...

  1. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  2. Proposed NASA budget cuts planetary science

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    President Barack Obama's fiscal year (FY) 2013 budget request for NASA would sharply cut planetary science while maintaining other science and exploration priorities. The total proposed FY 2013 budget for NASA is $17.7 billion, a slight decrease (0.33%) from the previous year (see Table 1). This includes $4.9 billion for the Science directorate, a decrease of about 3.2% from the previous year, and about $3.9 billion for the Human Exploration directorate, a n increase of about $200 million over FY 2012. The latter would include about $2.8 million for development of a new heavy-lift rocket system, known as the Space Launch System (SLS), to take humans beyond low-Earth orbit, along with the Orion crew vehicle.

  3. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  4. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  5. NASA Tech Briefs, Summer 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  6. NASA Tech Briefs, Spring 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topic include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  7. NASA Science Mission Directorate Science Education and Public Outreach Forums: A Six-Year Retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory

    2015-08-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.

  8. Stewardship of NASA's Earth Science Data and Ensuring Long-Term Active Archives

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Behnke, J.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since 1994. EOSDIS manages data from pre-EOS missions dating back to 1960s, EOS missions that started in 1997, and missions from the post-EOS era. Its data holdings come from many different sources - satellite and airborne instruments, in situ measures, field experiments, science investigations, etc. Since the beginning of the EOS Program, NASA has followed an open data policy, with non-discriminatory access to data with no period of exclusive access. NASA has well-established processes for assigning and/or accepting datasets into one of 12 Distributed Active Archive Centers (DAACs) that are parts of EOSDIS. EOSDIS has been evolving through several information technology cycles, adapting to hardware and software changes in the commercial sector. NASA is responsible for maintaining Earth science data as long as users are interested in using them for research and applications, which is well beyond the life of the data gathering missions. For science data to remain useful over long periods of time, steps must be taken to preserve: 1. Data bits with no corruption, 2. Discoverability and access, 3. Readability, 4. Understandability, 5. Usability and 6. Reproducibility of results. NASA's Earth Science data and Information System (ESDIS) Project, along with the 12 EOSDIS Distributed Active Archive Centers (DAACs), has made significant progress in each of these areas over the last decade, and continues to evolve its active archive capabilities. Particular attention is being paid in recent years to ensure that the datasets are "published" in an easily accessible and citable manner through a unified metadata model, a common metadata repository (CMR), a coherent view through the earthdata.gov website, and assignment of Digital Object Identifiers (DOI) with well-designed landing/product information pages.

  9. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  10. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    An inflatable scale model of the SLS rocket is seen on Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  11. 1991 NASA Life Support Systems Analysis workshop

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.

    1992-01-01

    The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.

  12. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  13. USSR Space Life Sciences Digest, issue 11

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  14. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  15. USSR Space Life Sciences Digest, issue 28

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  16. USSR Space Life Sciences Digest, issue 30

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the thirtieth issue of NASA's Space Life Sciences Digest. It contains abstracts of 47 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, biospheric research, cardiovascular and respiratory systems, endocrinology, equipment and instrumentation, gastrointestinal system, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, psychology, radiobiology, and space biology and medicine.

  17. USSR Space Life Sciences Digest, issue 31

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the thirty first issue of NASA's Space Life Sciences Digest. It contains abstracts of 55 journal papers or book chapters published in Russian and of 5 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, biological rhythms, cardiovascular and respiratory systems, endocrinology, enzymology, genetics, group dynamics, habitability and environmental effects, hematology, life support systems, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and space biology and medicine.

  18. Exploring the living universe: A strategy for space life sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.

  19. NSI customer service representatives and user support office: NASA Science Internet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Science Internet, (NSI) was established in 1987 to provide NASA's Offices of Space Science and Applications (OSSA) missions with transparent wide-area data connectivity to NASA's researchers, computational resources, and databases. The NSI Office at NASA/Ames Research Center has the lead responsibility for implementing a total, open networking program to serve the OSSA community. NSI is a full-service communications provider whose services include science network planning, network engineering, applications development, network operations, and network information center/user support services. NSI's mission is to provide reliable high-speed communications to the NASA science community. To this end, the NSI Office manages and operates the NASA Science Internet, a multiprotocol network currently supporting both DECnet and TCP/IP protocols. NSI utilizes state-of-the-art network technology to meet its customers' requirements. THe NASA Science Internet interconnects with other national networks including the National Science Foundation's NSFNET, the Department of Energy's ESnet, and the Department of Defense's MILNET. NSI also has international connections to Japan, Australia, New Zealand, Chile, and several European countries. NSI cooperates with other government agencies as well as academic and commercial organizations to implement networking technologies which foster interoperability, improve reliability and performance, increase security and control, and expedite migration to the OSI protocols.

  20. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  1. Life Sciences Division Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Yost, B.

    1999-01-01

    The Ames Research Center (ARC) is responsible for the development, integration, and operation of non-human life sciences payloads in support of NASA's Gravitational Biology and Ecology (GB&E) program. To help stimulate discussion and interest in the development and application of novel technologies for incorporation within non-human life sciences experiment systems, three hardware system models will be displayed with associated graphics/text explanations. First, an Animal Enclosure Model (AEM) will be shown to communicate the nature and types of constraints physiological researchers must deal with during manned space flight experiments using rodent specimens. Second, a model of the Modular Cultivation System (MCS) under development by ESA will be presented to highlight technologies that may benefit cell-based research, including advanced imaging technologies. Finally, subsystems of the Cell Culture Unit (CCU) in development by ARC will also be shown. A discussion will be provided on candidate technology requirements in the areas of specimen environmental control, biotelemetry, telescience and telerobotics, and in situ analytical techniques and imaging. In addition, an overview of the Center for Gravitational Biology Research facilities will be provided.

  2. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  3. Launching Science: Science Opportunities Provided by NASA's Constellation System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science

  4. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  5. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    NASA Astrophysics Data System (ADS)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  6. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  7. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  8. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  9. NASA Citizen Science: Looking at Impact in the Science Community and Beyond

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2017-12-01

    NASA's Science Mission Directorate has invested in several citizen scinece programs with the goal of addressing specific scientific goals which will lead to publishable results. For a complete list of these programs, go to https://science.nasa.gov/citizenscientists. In this paper, we will look at preliminary evalution of the impact of these programs, both in the production of scientific papers and the participation of the general public.

  10. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  11. NASA's Interests in Bioregenerative Life Support

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  12. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  13. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program

    NASA Astrophysics Data System (ADS)

    Prados, A. I.; Blevins, B.; Hook, E.

    2015-12-01

    NASA ARSET http://arset.gsfc.nasa.gov has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  14. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  15. 76 FR 14433 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-023)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  16. 75 FR 53350 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-096)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  17. 76 FR 28470 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-047)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  18. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-149)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  19. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  20. NASA Space Science Day Events-Engaging Students in Science

    NASA Technical Reports Server (NTRS)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  1. Aerospace Communications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.

  2. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  3. USSR Space Life Sciences Digest, issue 9

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  4. The Science behind a NASA Poster.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2002-01-01

    Uses National Aeronautics and Space Administration (NASA) posters and the information behind them as instructional materials to connect real world science to the classroom. Provides a list of resources. (YDS)

  5. Spacelab Life Sciences-2 ARC payload - An overview

    NASA Technical Reports Server (NTRS)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1988-01-01

    The effects of microgravity on the anatomy and physiology of rodent and primate systems will be investigated on the Spacelab Life Sciences 2 (SLS-2) mission. Here, the payload being developed at NASA Ames Research Center (ARC) is described and illustrated with drawings. The ARC payload will build upon the success of previous missions. Experiments includes asssessment of rodent cardiovascular and vestibular system responses, primate thermoregulation and metabolic responses.

  6. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-002)] NASA Advisory Council; Science... FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington...

  7. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-031)] NASA Advisory Council; Science.... FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters...

  8. 75 FR 30074 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-061)] NASA Advisory Council; Science...: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358...

  9. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Update. --Research and Analysis Update. --Wide-Field Infrared Survey Telescope Science Definition Team... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-054] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This subcommittee reports to the Science Committee of the NAC...

  10. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  11. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  12. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  13. Space science at NASA - Retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Rosendhal, Jeffrey D.

    1988-01-01

    Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.

  14. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  15. 75 FR 2892 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-004)] NASA Advisory Council; Science..., Washington, DC 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  16. The NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Helou, G.

    2005-12-01

    NASA has set aside resources in support of US-based scientists working on analysis and interpretation of data from Herschel, and has designated IPAC as the home of the NASA Herschel Science Center (NHSC). In supporting the US-based Herschel community, NHSC will draw on its experience (ISO, Spitzer and other missions) as well as a close working relation with the Herschel mission and instrument expertise both in Europe and in the U.S. The support covers technical and logistical aspects as well as data analysis funding, to be handled in large measure following the Spitzer funding model.

  17. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  18. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  19. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  20. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  1. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  2. MY NASA DATA: Making Earth Science Data Accessible to the K-12 Community

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-12-01

    In 2004, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project began. The goal of this project is to enable K-12 and citizen science communities to make use of the large volume of Earth System Science data that NASA has collected and archived. One major outcome is to allow students to select a problem of real-life importance, and to explore it using high quality data sources without spending months looking for and then learning how to use a dataset. The key element of the MY NASA DATA project is the implementation of a Live Access Server (LAS). The LAS is an open source software tool, developed by NOAA, that provides access to a variety of data sources through a single, fairly simple, point- and- click interface. This tool truly enables use of the available data - more than 100 parameters are offered so far - in an inquiry-based educational setting. It readily gives students the opportunity to browse images for times and places they define, and also provides direct access to the underlying data values - a key feature of this educational effort. The team quickly discovered, however, that even a simple and fairly intuitive tool is not enough to make most teachers comfortable with data exploration. User feedback has led us to create a friendly LAS Introduction page, which uses the analogy of a restaurant to explain to our audience the basic concept of an LAS. In addition, we have created a "Time Coverage at a Glance" chart to show what data are available when. This keeps our audience from being too confused by the patchwork of data availability caused by the start and end of individual missions. Finally, we have found it necessary to develop a substantial amount of age appropriate documentation, including topical pages and a science glossary, to help our audience understand the parameters they are exploring and how these parameters fit into the larger picture of Earth System Science. MY NASA DATA

  3. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  4. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  5. NASA Space Sciences Symposium-1977

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The primary objective of the symposium was to motivate American Indians and other minority youths and women to select science and engineering as viable career choices, thereby making them available to the technical work force. Other objectives were: (1) to determine how aerospace technology careers and aerospace activities can be made more relevant to minorities and women; (2) to provide an opportunity for key NASA officials to interact with teachers and counselors of the participating schools; (3) to stimulate a greater interest among American Indian organizations and students in NASA's research and development programs; (4) to help NASA's efforts in the recruiting of minorities and women into its work force; and (5) to provide opportunities for minority aerospace scientists and engineers to interact with the minority community, particularly with youths at the junior high school and high school levels.

  6. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  7. Vision Science and Technology at NASA: Results of a Workshop

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Editor); Mulligan, Jeffrey B. (Editor)

    1990-01-01

    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program.

  8. USSR Space Life Sciences Digest, issue 25

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  9. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  10. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  11. An historical summary of advisory boards for aerospace medicine at NASA.

    PubMed

    Doarn, Charles R

    2013-03-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has interacted with numerous advisory committees. These committees include those established by NASA, the National Academy of Sciences, the Institute of Medicine, or through Congressional oversight. Such groups have had a relatively passive role while providing sage advice on a variety of important issues. While these groups cover a wide range of disciplines, the focus of this paper is on those that impacted aerospace medicine and human spaceflight from NASA's beginning to the present time. The intent is to provide an historical narrative of the committees, their purpose, their outcome, and how they influenced the development of aerospace medicine within NASA. Aerospace medicine and life sciences have been closely aligned and intertwined from NASA's beginning. While several committees overlap life sciences within NASA, life sciences will not be presented unless it is in direct reference to aerospace medicine. This paper provides an historical summary chronicling those individuals and the groups they led when aerospace medicine was emerging as a discipline for human spaceflight beginning in 1957.

  12. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  13. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  14. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  15. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  16. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  17. Life Sciences Data Archives (LSDA) in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2010-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management-the systematic use and reuse of information, experience, and expertise to achieve a specific goal-are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries for the science communities. Information about experiments and data, as well as non-attributable human data and data from other species' are available on our public Web site http://lsda.jsc.nasa.gov. The Web site also includes a repository for biospecimens, and a utilization process. NASA has undertaken an initiative to develop a Shuttle Data Archive repository. The Shuttle program is nearing its end in 2010 and it is critical that the medical and research data related to the Shuttle program be captured, retained, and usable for research, lessons learned, and future mission planning. Communities of practice are groups of people who share a concern or a passion

  18. Life Sciences Research Facility automation requirements and concepts for the Space Station

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  19. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  1. Digest of Russian Space Life Sciences, issue 33

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  2. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  3. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  4. 75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...). This Subcommittee reports to the Science Committee of the NAC. The meeting will be held for the purpose... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-044)] NASA Advisory Council; Science... 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  5. A Small Fission Power System for NASA Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; hide

    2011-01-01

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  6. NASA Science Mission Directorate's Year of the Solar System: An Opportunity for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, S.; Boonstra, D.; Shupla, C.; CoBabe-Ammann, E.; LaConte, K.; Ristvey, J.; Wessen, A.; Zimmerman-Bachman, R.; Science E/PO Community, Planetary

    2010-10-01

    Between October 2010 and August 2012 - across a Martian year - a large number of Science Mission Directorate's (SMD) planetary missions will pass milestones (e.g., EPOXI, Stardust-NExT, MESSENGER, Dawn, Juno, GRAIL, and Mars Science Laboratory), with many other missions continuing to explore (e.g., Lunar Reconnaissance Orbiter, Mars Odyssey, Mars Exploration Rovers, Mars Reconnaissance Orbiter, Mars Express, Cassini, New Horizons, and Voyager). This Year of the Solar System (YSS) offers the Planetary Science Education and Public Outreach (E/PO) community an opportunity to collaborate with each other and the science community. Based on audience needs from formal and informal educators, YSS is structured to have monthly thematic topics that are driven by mission milestones, as well as observing opportunities. YSS will connect to ongoing and planned events nationwide. A website for YSS is in development and will be hosted off of the existing JPL Solar System website (http://solarsystem.nasa.gov/index.cfm). Once live, scientists, educators, and E/PO professionals will have a place to interact and collaborate. YSS will tie to NASA's Big Questions in Planetary Science - how did the Sun's family of planets and minor bodies originate and how have they evolved? - how did life begin and evolve on Earth, is it elsewhere, and what characteristics of the solar system lead to the origins of life? The thematic topics are broad in order to encompass many missions and planetary bodies each month, as well as address the Big Questions. YSS will kick off in October with the theme "Solar System Components and Scale” and a national event involving building solar system scale models across the country. Scientists are encouraged to contact schools, museums, planetaria, etc. in their communities to give presentations, provide science content, and collaborate on educational materials and events related to YSS.

  7. NASA's astrophysics archives at the National Space Science Data Center

    NASA Technical Reports Server (NTRS)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  8. USSR Space Life Sciences Digest, issue 32

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)

    1992-01-01

    This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.

  9. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  10. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  11. Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992

    NASA Technical Reports Server (NTRS)

    Powers, Janet V.

    1994-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  12. NASA Tech Briefs, Spring 1977. Volume 2, No. 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selted innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  13. NASA Tech Briefs, Summer 1977. Volume 2, No. 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  14. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the

  15. NASA Extends Chandra Science and Operations Support Contract

    NASA Astrophysics Data System (ADS)

    2010-01-01

    NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov

  16. New Directions in NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.

  17. Reuse of Software Assets for the NASA Earth Science Decadal Survey Missions

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Downs, Robert R.; Marshall, James J.; Most, Neal F.; Samadi, Shahin

    2010-01-01

    Software assets from existing Earth science missions can be reused for the new decadal survey missions that are being planned by NASA in response to the 2007 Earth Science National Research Council (NRC) Study. The new missions will require the development of software to curate, process, and disseminate the data to science users of interest and to the broader NASA mission community. In this paper, we discuss new tools and a blossoming community that are being developed by the Earth Science Data System (ESDS) Software Reuse Working Group (SRWG) to improve capabilities for reusing NASA software assets.

  18. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  19. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  20. KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  1. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  2. NASA Tech Briefs, Winter 1977. Volume 2, No. 4

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  3. NASA Tech Briefs, Summer 1979. Volume 4, No. 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of neW products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  4. NASA Tech Briefs, Summer 1981. Volume 6, No. 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  5. NASA Tech Briefs, Winter 1980. Volume 5, No. 4

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  6. NASA Tech Briefs, Fall 1980. Volume 5, No. 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovatio.ns of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  7. NASA Tech Briefs, Fall 1978. Volume 3, No. 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  8. NASA Tech Briefs, Summer 1984. Volume 8, No. 4

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Science.

  9. NASA Tech Briefs, Spring 1978. Volume 3, No. 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  10. NASA Tech Briefs, Winter 1978. Volume 3, No. 4

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  11. NASA Tech Briefs, Winter 1983. Volume 8, No. 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;

  12. NASA Tech Briefs, Winter 1982. Volume 7, No. 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  13. NASA Tech Briefs, Spring 1981. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  14. NASA Tech Briefs, Winter 1979. Volume 4, No. 4

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you In learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  15. NASA Tech Briefs, Fall 1977. Volume 2, No. 3

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  16. NASA Tech Briefs, Summer 1980. Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  17. NASA Tech Briefs, Fall 1982. Volume 7, No. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the develop ment of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  18. NASA Tech Briefs, Spring 1979. Volume 4, No. 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;

  19. NASA Tech Briefs, Fall 1983. Volume 8, No. 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  20. NASA Tech Briefs, Winter 1976. Volume 1, No. 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of val ue to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  1. NASA Tech Briefs, Spring 1983. Volume 7, No. 3

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;

  2. NASA Tech Briefs, Spring 1980. Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  3. NASA Tech Briefs, Fall 1979. Volume 4, No. 3

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  4. NASA Tech Briefs, Spring 1984. Volume 8, No. 3

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  5. NASA Tech Briefs, Summer 1983. Volume 7, No. 4

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and information Sciences.

  6. NASA Tech Briefs, Fall 1976. Volume 1, No. 3

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  7. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  8. Evaluating the Effectiveness of the 2003-2004 NASA SCIence Files(trademark) Program

    NASA Technical Reports Server (NTRS)

    Caton, Randall H.; Ricles, Shannon S.; Pinelli, Thomas E.; Legg, Amy C.; Lambert, Matthew A.

    2005-01-01

    The NASA SCI Files is an Emmy award-winning series of instructional programs for grades 3-5. Produced by the NASA Center for Distance Learning, programs in the series are research-, inquiry-, standards-, teacher- and technology-based. Each NASA SCI Files program (1) integrates mathematics, science, and technology; (2) uses Problem-Based Learning (PBL) to enhance and enrich the teaching and learning of science; (3) emphasizes science as inquiry and the scientific method; (4) motivates students to become critical thinkers and active problem solvers; and (5) uses NASA research, facilities, and personnel to raise student awareness of careers and to exhibit the "real-world" application of mathematics, science, and technology. In April 2004, 1,500 randomly selected registered users of the NASA SCI Files were invited to complete a survey containing a series of questions. A total of 263 surveys were received. This report contains the quantitative and qualitative results of that survey.

  9. Data handling and visualization for NASA's science programs

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joseph H. (Editor)

    1995-01-01

    Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.

  10. NASA Tech Briefs, Fall 1985. Volume 9, No. 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  11. Technology Needs for the Next Generation of NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2013-01-01

    In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.

  12. A Small Fission Power System with Stirling Power Conversion for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Carmichael, Chad

    2011-01-01

    In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.

  13. NASA Tech Briefs, May 1991. Volume 15, No. 5

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  14. NASA Tech Briefs, January 1991. Volume 15, No. 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;Life Sciences.

  15. NASA Tech Briefs, September 1991. Volume 15, No. 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  16. NASA Tech Briefs, June 1990. Volume 14, No. 6

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  17. NASA Tech Briefs, August 1991. Volume 15, No. 8

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  18. NASA Tech Briefs, February 1991. Volume 15, No. 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  19. NASA Tech Briefs, March 1991. Volume 15, No. 3

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  20. NASA Tech Briefs, December 1990. Volume 14, No. 12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  1. NASA Tech Briefs, June 1991. Volume 15, No. 6

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  2. NASA Tech Briefs, May 1990. Volume 14, No. 5

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  3. NASA Tech Briefs, Winter 1985. Volume 9, No. 4

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits;Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  4. NASA Tech Briefs, April 1991. Volume 15, No. 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  5. NASA Tech Briefs, October 1990. Volume 14, No. 10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, October 1991. Volume 15, No. 10

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  7. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  8. Girl Scout Camps and Badges: Engaging Girls in NASA Science

    NASA Astrophysics Data System (ADS)

    Harman, P. K.; DeVore, E. K.

    2017-12-01

    Reaching for the Stars: NASA Science for Girl Scouts (Girl Scout Stars) disseminates NASA STEM education-related resources, fosters interaction between Girl Scouts and NASA Subject Matter Experts (SMEs), and engages Girl Scouts in NASA science and programs through space science badges and summer camps. A space science badge is in development for each of the six levels of Girl Scouts: Daisies, Grades K - 1; Brownies, Grades 2 -3; Juniors, Grades 4 -5; Cadettes, Grades 6 -8; Seniors, Grades 9 -10: and Ambassadors, Grades 11 -12. Daisy badge will be accomplished by following three steps with two choices each. Brownie to Ambassador badges will be awarded by completing five steps with three choices for each. The badges are interwoven with science activities, role models (SMEs), and steps that lead girls to explore NASA missions. External evaluators monitor three rounds of field-testing and deliver formative assessment reports. Badges will be released in Fall of 2018 and 2019. Girl Scout Stars supports two unique camp experiences. The University of Arizona holds an Astronomy Destination, a travel and immersion adventure for individual girls ages 13 and older, which offers dark skies and science exploration using telescopes, and interacting with SMEs. Girls lean about motion of celestial objects and become astronomers. Councils send teams of two girls, a council representative and an amateur astronomer to Astronomy Camp at Goddard Space Flight Center. The teams were immersed in science content and activities, and a star party; and began to plan their new Girl Scout Astronomy Clubs. The girls will lead the clubs, aided by the council and amateur astronomer. Camps are evaluated by the Girl Scouts Research Institute. In Girl Scouting, girls discover their skills, talents and what they care about; connect with other Girl Scouts and people in their community; and take action to change the world. This is called the Girl Scout Leadership Experience. With girl-led, hands on

  9. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  10. Science Goal Monitor: Science Goal Driven Automation for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles

    2004-01-01

    Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated

  11. Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.

  12. USSR Space Life Sciences Digest, issue 15

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 15th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 59 papers published in Russian language periodicals or presented at conferences and of two new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is a review of a conference devoted to the physiology of extreme states. The abstracts included in this issue have been identified as relevant to 29 areas of space biology and medicine. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, enzymology, equipment and instrumentation, exobiology, genetics, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception. personnel selection, psychology, radiobiology, reproductive biology, and space biology and medicine.

  13. USSR Space Life Sciences Digest, issue 21

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  14. NASA Tech Briefs, Summer 1976. Volume 1, No. 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences. Also included are; NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; and New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products.

  15. NASA Tech Briefs, September 1988. Volume 12, No. 8

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  16. NASA Tech Briefs, October 1988. Volume 12, No. 9

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  17. NASA Tech Briefs, July 1991. Volume 15, No. 7

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  18. NASA Tech Briefs, March 1987. Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  19. NASA Tech Briefs, May 1987. Volume 11, No. 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  20. NASA Tech Briefs, October 1987. Volume 11, No. 9

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  1. NASA Tech Briefs, June 1989. Volume 13, No. 6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  2. NASA Tech Briefs, February 1987. Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  3. NASA Tech Briefs, January 1987. Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  4. NASA Tech Briefs, July 1990. Volume 14, No. 7

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  5. NASA Tech Briefs, August 1990. Volume 14, No. 8

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  6. NASA Tech Briefs, April 1987. Volume 11, No. 4

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  7. NASA Tech Briefs, June 1987. Volume 11, No. 6

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  8. NASA Tech Briefs, August 1989. Volume 13, No. 8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  9. NASA Tech Briefs, September 1987. Volume 11, No. 8

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  10. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  11. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  12. Arctic Research NASA's Cryospheric Sciences Program

    NASA Technical Reports Server (NTRS)

    Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.

  13. KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  14. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  15. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    NASA Astrophysics Data System (ADS)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  16. KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  17. KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  18. KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  19. KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

    NASA Image and Video Library

    2003-11-19

    KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  20. Embracing Open Source for NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  1. NASA Tech Briefs, November 1988. Volume 12, No. 10

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  2. NASA Tech Briefs, September 1990. Volume 14, No. 9

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  3. NASA Tech Briefs, March 1988. Volume 12, No. 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  4. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  5. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  6. Life Sciences Data Archive (LSDA) in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2009-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management, the systematic use and reuse of information/experience/expertise to achieve a specific goal, are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries from the science communities.

  7. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

  8. NASA Tech Briefs, Fall/Winter 1981. Vol. 6, No. 3

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics covered: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  9. NASA Tech Briefs, January 1988. Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.

  10. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists

  11. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  12. Science is Cool with NASA's "Space School Musical"

    NASA Astrophysics Data System (ADS)

    Asplund, S.

    2011-10-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery and New Frontiers Programs have collaborated with KidTribe to create "Space School Musical," an innovative approach for teaching about the solar system. It's an educational "hip-hopera" that raps, rhymes, moves and grooves its way into the minds and memories of students and educators alike. The solar system comes alive, combining science content with music, fun lyrics, and choreography. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. The videos, songs, lyrics, and guides are available to all with free downloads at http://discovery.nasa.gov/

  13. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  14. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  15. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Astrophysics Data System (ADS)

    Committee On Science Opportunities Enabled By Nasa'S Constellation System, National Research Council

    To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.

  16. NASA Tech Briefs, January/February 1986. Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  17. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  18. Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration

    NASA Astrophysics Data System (ADS)

    Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.

    2017-12-01

    Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.

  19. STS-40 Spacelab Life Sciences 1 (SLS-1): The first dedicated spacelab life sciences mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Successful exploration of space depends on the health and well-being of people who travel and work there. For this reason, the National Aeronautics and Space Administration (NASA) has dedicated several Space Shuttle missions to examine how living and working in space affects the human body. Spacelab Life Sciences 1 (SLS-1) is the first of these missions. The main purpose of the SLS-1 mission is to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight and to investigate the consequences of the body's adaptation to microgravity and readjustment to gravity upon return to Earth. How does space flight influence the heart and circulatory system, metabolic processes, the muscles and bones, and the cells? If responses to weightlessness are undesirable, how can they be prevented or controlled? Will the human body maintain its physical and chemical equilibrium during months aboard a space station and years-long missions to Mars? When crews return to Earth, what can they expect to experience as their bodies readjust to Earth's gravity? With the SLS-1 experiments, NASA is addressing some of these questions. Various aspects of the SLS-1 are discussed.

  20. NASA Tech Briefs, July/August 1988. Volume 12, No. 7

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  1. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  2. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Lawton, Brandon; Berendsen, Marni; Gurton, Suzanne; Smith, Denise A.; NASA SMD Astrophysics E/PO Community, The

    2014-06-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov.The presenter will share the Forum-led Collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  3. USSR Space Life Sciences Digest, Issue 18

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  4. USSR Space Life Sciences Digest, issue 16

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  5. USSR Space Life Sciences Digest, issue 6

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  6. NASA Tech Briefs, September/October 1986. Volume 10, No. 5

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  7. NASA Tech Briefs, November/December 1986. Volume 10, No. 6

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  8. NASA Tech Briefs, May/June 1986. Volume 10, No. 3

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics discussed include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  9. NASA Tech Briefs, November/December 1987. Volume 11, No. 10

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  10. NASA Tech Briefs, July/August 1987. Volume 11, No. 7

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.

  11. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. From left are moderator Claire Saravia, NASA Communications; Paul Hertz, Astrophysics Division director, NASA Headquarters; George Ricker, TESS principal investigator, Massachusetts Institute of Technology; Padi Boyd, TESS Guest Investigator Program lead, NASA’s Goddard Space Flight Center; Stephen Rinehart, TESS Project scientist, NASA’s Goddard Space Flight Center; and Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  12. In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

    2005-01-01

    The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

  13. NASA Ames 2016 Highlights

    NASA Image and Video Library

    2016-12-28

    2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!

  14. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  15. NASA Tech Briefs, March/April 1986. Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.

  16. Searching for Good Science - The Cancellation of NASA's SETI Program

    NASA Astrophysics Data System (ADS)

    Garber, S. J.

    On Columbus Day, 1992, the National Aeronautics and Space Administration (NASA) formally initiated a radio astronomy program called SETI (Search for Extraterrestrial Intelligence). Less than a year later, Congress abruptly canceled the program. Why? While there was and still is a debate over the likelihood of finding intelligent extraterrestrial life, virtually all informed parties agreed that the SETI program constituted worthwhile, valid science. Yet, fervor over the federal budget deficit, lack of support from other scientists and aerospace contractors and a significant history of unfounded associations with nonscientific elements combined with bad timing in fall 1993 to make the program an easy target to eliminate. Thus SETI was a relative anomaly in terms of a small, scientifically valid program that was canceled for political expediency.

  17. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This catalog presents a reference guide to NASA Earth science education programs and products. The topics include: 1) Student Support (Elementary and Secondary, Undergraduate and Graduate, Postgraduate, and Postdoctorate); 2) Teacher/Faculty Preparation and Enhancement; 3) Systemic Change; 4) Curriculum Support; and 5) Resources.

  18. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ..., (202) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will... identifying information 3 working days in advance by contacting Marian Norris via e-mail at [email protected]nasa.gov... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-012)] NASA Advisory Council; Science...

  19. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be... at [email protected]nasa.gov or by telephone at (202) 358-4452. Dated: August 12, 2010. P. Diane Rausch... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-089)] NASA Advisory Council; Science...

  20. Distance Mentoring in the NASA/Kennedy Space Center Virtual Science Mentor Program.

    ERIC Educational Resources Information Center

    Buckingham, Gregg

    This study examines the results of a three year video mentoring program, the NASA Virtual Science Mentor (VSM) program, which paired 56 NASA mentor engineers and scientists with 56 middle school science teachers in seven Southwest Florida counties. The study sought to determine the impact on students, mentors, and teachers participating in the…

  1. OSI in the NASA science internet: An analysis

    NASA Technical Reports Server (NTRS)

    Nitzan, Rebecca

    1990-01-01

    The Open Systems Interconnection (OSI) protocol suite is a result of a world-wide effort to develop international standards for networking. OSI is formalized through the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). The goal of OSI is to provide interoperability between network products without relying on one particular vendor, and to do so on a multinational basis. The National Institute for Standards and Technology (NIST) has developed a Government OSI Profile (GOSIP) that specified a subset of the OSI protocols as a Federal Information Processing Standard (FIPS 146). GOSIP compatibility has been adopted as the direction for all U.S. government networks. OSI is extremely diverse, and therefore adherence to a profile will facilitate interoperability within OSI networks. All major computer vendors have indicated current or future support of GOSIP-compliant OSI protocols in their products. The NASA Science Internet (NSI) is an operational network, serving user requirements under NASA's Office of Space Science and Applications. NSI consists of the Space Physics Analysis Network (SPAN) that uses the DECnet protocols and the NASA Science Network (NSN) that uses TCP/IP protocols. The NSI Project Office is currently working on an OSI integration analysis and strategy. A long-term goal is to integrate SPAN and NSN into one unified network service, using a full OSI protocol suite, which will support the OSSA user community.

  2. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... of the NASA Advisory Council Science Committee AGENCY: National Aeronautics and Space Administration... Astrophysics Subcommittee of the NASA Advisory Council (NAC) Science Committee. This Subcommittee reports to the Science Committee of the NAC. The meeting will be held via Teleconference and WebEx for the...

  3. NASA Global Hawk: A Unique Capability for the Pursuit of Earth Science

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2007-01-01

    For more than 2 years, the NASA Dryden Flight Research Center has been preparing for the receipt of two Advanced Concept Technology Demonstration Global Hawk air vehicles from the United States Air Force. NASA Dryden intends to establish a Global Hawk Project Office, which will be responsible for developing the infrastructure required to operate this unmanned aerial system and establishing a trained maintenance and operations team. The first flight of a NASA Global Hawk air vehicle is expected to occur in 2008. The NASA Global Hawk system can be used by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. Initially, the main focus of the research activities is expected to be Earth science related. A combination of the vehicle s range, endurance, altitude, payload power, payload volume, and payload weight capabilities separates the Global Hawk unmanned aerial system from all other platforms available to the science community. This report describes the NASA Global Hawk system and current plans for the NASA air vehicle concept of operations, and provides examples of potential missions with an emphasis on science missions.

  4. NASA Tech Briefs, Spring/Summer 1982. Volume 6, No. 4

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology. New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; and Machinery.

  5. NASA Tech Briefs, July/August 1986. Volume 10, No. 4

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topic include: NASA TU Serv1ces; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Physical Sciences; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences. 3

  6. NASA Astrophysics EPO Resources For Engaging Girls in Science

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.

  7. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  8. Results of the life sciences DSOs conducted aboard the space shuttle 1981-1986

    NASA Technical Reports Server (NTRS)

    Bungo, Michael W.; Bagian, Tandi M.; Bowman, Mark A.; Levitan, Barry M.

    1987-01-01

    Results are presented for a number of life sciences investigations sponsored by the Space Biomedical Research Institute at the NASA Lyndon B. Johnson Space Center and conducted as Detailed Supplementary Objectives (DSOs) on Space Shuttle flights between 1981 and 1986. An introduction and a description of the DSO program are followed by summary reports on the investigations. Reports are grouped into the following disciplines: Biochemistry and Pharmacology, Cardiovascular Effects and Fluid Shifts, Equipment Testing and Experiment Verification, Microbiology, Space Motion Sickness, and Vision. In the appendix, the status of every medical/life science DSO is presented in graphical form, which enables the flight history, the number of subjects tested, and the experiment results to be reviewed at a glance.

  9. Life in the Universe: Foundation for exciting multidisciplinary science activities for middle and elementary school classes

    NASA Technical Reports Server (NTRS)

    Milne, D.; O'Sullivan, K.

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994.The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  10. Life in the universe: foundation for exciting multidisciplinary science activities for middle and elementary school classes.

    PubMed

    Milne, D; O'Sullivan, K

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994. The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  11. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  12. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-048] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  13. USSR Space Life Sciences Digest, issue 19

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  14. Life sciences payloads for Shuttle

    NASA Technical Reports Server (NTRS)

    Dunning, R. W.

    1974-01-01

    The Life Sciences Program for utilization of the Shuttle in the 1980's is presented. Requirements for life sciences research experiments in space flight are discussed along with study results of designs to meet these requirements. The span of life sciences interests in biomedicine, biology, man system integration, bioinstrumentation and life support/protective systems is described with a listing of the research areas encompassed in these descriptions. This is followed by a description of the approach used to derive from the life sciences disciplines, the research functions and instrumentation required for an orbital research program. Space Shuttle design options for life sciences experiments are identified and described. Details are presented for Spacelab laboratories for dedicated missions, mini-labs with carry on characteristics and carry on experiments for shared payload missions and free flying satellites to be deployed and retrieved by the Shuttle.

  15. NASA CORE (Central Operation of Resources for Educators) Educational Materials Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This educational materials catalog presents NASA CORE (Central Operation of Resources for Educators). The topics include: 1) Videocassettes (Aeronautics, Earth Resources, Weather, Space Exploration/Satellites, Life Sciences, Careers); 2) Slide Programs; 3) Computer Materials; 4) NASA Memorabilia/Miscellaneous; 5) NASA Educator Resource Centers; 6) and NASA Resources.

  16. NASA science boss quits amid cash woes

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2008-05-01

    He took the post promising that he could ease the festering problems of a flat budget with a hard-nosed approach to escalating project costs. But at the beginning of last month, just under a year after he was appointed NASA's chief executive of science, Alan Stern resigned.

  17. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  18. NASA Tech Briefs, February 1988. Volume 12, No. 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences.

  19. NASA Tech Briefs, April 1995. Volume 19, No. 4

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue of the NASA Tech Briefs has a special focus section on video and imaging, a feature on the NASA invention of the year, and a resource report on the Dryden Flight Research Center. The issue also contains articles on electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences and life sciences. In addition to the standard articles in the NASA Tech brief, this contains a supplement entitled "Laser Tech Briefs" which features an article on the National Ignition Facility, and other articles on the use of Lasers.

  20. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... the Solar System --Current Status of NASA's Planetary Protection Program It is imperative that the... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-026)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the...

  1. Investigations in Life Science, Junior High.

    ERIC Educational Resources Information Center

    Stephenson, Robert L.

    Developed for teachers of junior high school science classes, this unit presents ten investigations on plant growth, animal life, pond life, and general science interests. These investigations are designed to accompany any popular life science textbooks, may be used to supplement a year-long course in life science, are intended as a springboard…

  2. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  3. 75 FR 61778 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-118)] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...

  4. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  5. New Direction of NASA Exploration Life Support

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Lawson, B. Michael; Barta, Daniel J.

    2006-01-01

    NASA's activities in life support Research and Technology Development (R&TD) have changed in both focus and scope following implementation of recommendations from the Exploration System Architecture Study (ESAS). The limited resources available and the compressed schedule to conduct life support R&TD have required that future efforts address the needs of the Crew Exploration Vehicle (CEV), the Lunar Surface Access Module (LSAM) and Lunar Outpost (LO). Advanced Life Support (ALS) efforts related to long duration planetary bases have been deferred or canceled. This paper describes the scope of the new Exploration Life Support (ELS) project; how it differs from ALS, and how it supports critical needs for the CEV, LSAM and LO. In addition, this paper provides rationale for changes in the scope and focus of technical content within ongoing life support R&TD activities.

  6. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    NASA Technical Reports Server (NTRS)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  7. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  8. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  9. Environmental control and life support systems analysis for a Space Station life sciences animal experiment

    NASA Technical Reports Server (NTRS)

    So, Kenneth T.; Hall, John B., Jr.; Thompson, Clifford D.

    1987-01-01

    NASA's Langley and Goddard facilities have evaluated the effects of animal science experiments on the Space Station's Environmental Control and Life Support System (ECLSS) by means of computer-aided analysis, assuming an animal colony consisting of 96 rodents and eight squirrel monkeys. Thirteen ECLSS options were established for the reclamation of metabolic oxygen and waste water. Minimum cost and weight impacts on the ECLSS are found to accrue to the system's operation in off-nominal mode, using electrochemical CO2 removal and a static feed electrolyzer for O2 generation.

  10. 78 FR 49296 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-092] NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting. AGENCY: National Aeronautics and Space Administration. ACTION... of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  11. Creating Mobile and Web Application Programming Interfaces (APIs) for NASA Science Data

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Moore, S. W.

    2011-12-01

    The Atmospheric Science Data Center (ASDC) at the NASA Langley Research Center in Virginia houses almost three petabytes of data, a collection that increases every day. To put it into perspective, it is estimated that three petabytes of data storage could store a digitized copy of all printed material in U.S. research libraries. There are more than ten other NASA data centers like the ASDC. Scientists and the public use this data for research, science education, and to understand our environment. Most importantly these data provide the potential for all of us make new discoveries. NASA is about making discoveries. Galileo was quoted as saying, "All discoveries are easy to understand once they are discovered. The point is to discover them." To that end, NASA stores vast amounts of publicly available data. This paper examines an approach to create web applications that serve NASA data in ways that specifically address the mobile web application technologies that are quickly emerging. Mobile data is not a new concept. What is new, is that user driven tools have recently become available that allow users to create their own mobile applications. Through the use of these cloud-based tools users can produce complete native mobile applications. Thus, mobile apps can now be created by everyone, regardless of their programming experience or expertise. This work will explore standards and methods for creating dynamic and malleable application programming interfaces (APIs) that allow users to access and use NASA science data for their own needs. The focus will be on experiences that broaden and increase the scope and usage of NASA science data sets.

  12. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  13. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  14. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  15. Lynda Barry Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Cartoonist and professor of creativity Lynda Barry presented the benefits of creativity in everyday life as part of Goddard's Office of Communications Story Lab seminar series. Read more: www.nasa.gov/feature/goddard/2016/cartoonist-discusses-cr... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies

  17. Data Preservation, Information Preservation, and life-cyle of information management at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Khayat, M. G.; Deshong, B.; Esfandiari, A. E.; Gerasimov, I. V.; Johnson, J. E.; Kempler, S. J.; Wei, J. C.

    2014-12-01

    Data lifecycle management awareness is common today; planners are more likely to consider lifecycle issues at mission start. NASA remote sensing missions are typically subject to life cycle management plans of the Distributed Active Archive Center (DAAC), and NASA invests in these national centers for the long-term safeguarding and benefit of future generations. As stewards of older missions, it is incumbent upon us to ensure that a comprehensive enough set of information is being preserved to prevent the risk for "information loss". This risk is greater when the original data experts have moved on or are no longer available. Preservation of items like documentation related to processing algorithms, pre-flight calibration data, or input/output configuration parameters used in product generation, are examples of digital artifacts that are sometimes not fully preserved. This is the grey area of "information preservation"; the importance of these items is not always clear and requires careful consideration. Missing important "metadata" about intermediate steps used to derive a product could lead to serious challenges in the reproducibility of results or conclusions.Organizations are rapidly recognizing that the focus of life-cycle preservation needs to be enlarged from the strict raw data to the more encompassing arena of "information lifecycle management". By understanding what constitutes information, and the complexities involved, we are better equipped to deliver longer lasting value about the original data and derived knowledge (information) from them. The "NASA Earth Science Data Preservation Content Specification" is an attempt to define the content necessary for long-term preservation. It requires new lifecycle infrastructure approach along with content repositories to accommodate artifacts other than just raw data. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) setup an open-source Preservation System capable of long

  18. Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on a NASA Dryden pilot. F

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on pilot Craig Bomben at NASA Dryden Flight Research Center, Edwards, Calif. Built by Gentex Corp., Carbondale, Pa., the helmet was evaluated by five NASA pilots during the summer and fall of 2002. The objective was to obtain data on helmet fit, comfort and functionality. The inner helmet of the modular system is fitted to the individual crewmember. The outer helmet features a fully integrated spectral mounted helmet display and a binocular helmet mounted display. The helmet will be adaptable to all flying platforms. The Dryden evaluation was overseen by the Center's Life Support office. Assessments have taken place during normal proficiency flights and some air-to-air combat maneuvering. Evaluation platforms included the F-18, B-52 and C-12. The prototype helmet is being developed by the Naval Air Science and Technology Office and the Aircrew Systems Program Office, Patuxent River, Md.

  19. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  20. NASA Tech Briefs, March 1989. Volume 13, No. 3

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This issue's special features cover the NASA inventor of the year, and the other nominees for the year. Other Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  1. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  2. KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  3. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  4. 77 FR 70482 - Notice of Establishment of a NASA Federal Advisory Committee; Applied Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Analysis Group (ASAG) as a task group under the auspices of the Earth Science Subcommittee of the NASA... and prioritizing the Earth Science Division's Applied Sciences Program activities and has served as a... recommendations to the Director, Earth Science Division, Science Mission Directorate, NASA Headquarters, on...

  5. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  6. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  7. Data Serving Climate Simulation Science at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2011-01-01

    The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.

  8. NASA Applied Sciences' DEVELOP Program Fosters the Next Generation of Earth Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Brozen, Madeline W.; Gleason, Jonathan L.; Silcox, Tracey L.; Rea, Mimi; Holley, Sharon D.; Renneboog, Nathan; Underwood, Lauren W.; Ross, Kenton W.

    2009-01-01

    Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.

  9. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Goddard Heliophysics Education Consortium

    2017-10-01

    The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.

  10. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  11. Powering the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Miley, Steven C.

    2009-01-01

    This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?

  12. USSR Space Life Sciences Digest, issue 29

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  13. USSR Space Life Sciences Digest, issue 7

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  14. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  15. Informal science education: lifelong, life-wide, life-deep.

    PubMed

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  16. 75 FR 39974 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ..., DC 20546, (202) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The... identifying information 3 working days in advance by contacting Marian Norris via e-mail at [email protected]nasa.gov... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-075)] NASA Advisory Council; Science...

  17. 76 FR 21411 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ..., Washington, DC 20546, (202) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION... advance by contacting Marian Norris via e-mail at [email protected]nasa.gov or by telephone at (202) 358-4452... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-041)] NASA Advisory Council; Science...

  18. 75 FR 80850 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...) 358-4452, fax (202) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be... identifying information 3 working days in advance by contacting Marian Norris via e-mail at [email protected]nasa.gov... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-168)] NASA Advisory Council; Science...

  19. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  20. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  1. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Claire Saravia, NASA Communications, moderated the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  2. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Paul Hertz, Astrophysics Division director, NASA Headquarters, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  3. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Felicia Chou, NASA Communications, asks questions from online participants during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  4. NASA Historical Data Book. Volume 5; NASA Launch Systems, Space Transportation, Human Spaceflight and Space Science, 1979-1988

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A. (Compiler)

    1999-01-01

    In 1973, NASA published the first volume of the NASA Historical Data Book, a hefty tome containing mostly tabular data on the resources of the space agency between 1958 and 1968. There, broken into detailed tables, were the facts and figures associated with the budget, facilities, procurement, installations, and personnel of NASA during that formative decade. In 1988, NASA reissued that first volume of the data book and added two additional volumes on the agency's programs and projects, one each for 1958-1968 and 1969-1978. NASA published a fourth volume in 1994 that addressed NASA resources for the period between 1969 and 1978. This fifth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of four critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the development and operation of launch systems, space transportation, human spaceflight, and space science during this era. As such, it contains in-depth statistical information about the early Space Shuttle program through the return to flight in 1988, the early efforts to build a space station, the development of new launch systems, and the launching of seventeen space science missions. A companion volume will appear late in 1999, documenting the space applications, support operations, aeronautics, and resources aspects of NASA during the period between 1979 and 1988. NASA began its operations as the nation's civilian space agency in 1958 following the passage of the National Aeronautics and Space Act. It succeeded the National Advisory Committee for Aeronautics (NACA). The new organization was charged with preserving the role of the United States "as a leader in aeronautical and space science and technology" and in its application, with expanding our knowledge of the Earth's atmosphere and space, and with

  5. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  6. The Science Goals of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Grunsfeld, John

    2004-01-01

    The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer

  7. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  8. 76 FR 69768 - NASA Advisory Council; Science Committee Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ...) 358-4118, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to the public up... November 18, 2011, to Marian Norris via email at [email protected]nasa.gov or by telephone at (202) 358-4452... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-114] NASA Advisory Council; Science...

  9. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  10. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  11. WCS Challenges for NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cantrell, S.; Swentek, L.; Khan, A.

    2017-12-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1's ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  12. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  13. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  14. Life Sciences Data Archive (LSDA)

    NASA Technical Reports Server (NTRS)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  15. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  16. USSR space life sciences digest, issue 27

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 30 journal papers or book chapters published in Russian and of 2 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, botany, cardiovascular and respiratory systems, endocrinology, enzymology, exobiology, habitability and environmental effects, hematology, immunology, metabolism, musculoskeletal system, neurophysiology, radiobiology, and space medicine. A Soviet book review of a British handbook of aviation medicine and a description of the work of the division on aviation and space medicine of the Moscow Physiological Society are also included.

  17. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  18. Sweet potato in a vegetarian menu plan for NASA's Advanced Life Support Program.

    PubMed

    Wilson, C D; Pace, R D; Bromfield, E; Jones, G; Lu, J Y

    1998-01-01

    Sweet potato has been selected as one of the crops for NASA's Advanced Life Support Program. Sweet potato primarily provides carbohydrate--an important energy source, beta-carotene, and ascorbic acid to a space diet. This study focuses on menus incorporating two sets of sweet potato recipes developed at Tuskegee University. One set includes recipes for 10 vegetarian products containing fom 6% to 20% sweet potato on a dry weight basis (pancakes, waffles, tortillas, bread, pie, pound cake, pasta, vegetable patties, doughnuts, and pretzels) that have been formulated, subjected to sensory evaluation, and determined to be acceptable. These recipes and the other set of recipes, not tested organoleptically, were substituted in a 10-day vegetarian menu plan developed by the American Institute of Biological Sciences (AIBS) Kennedy Space Center Biomass Processing Technical Panel. At least one recipe containing sweet potato was included in each meal. An analysis of the nutritional quality of this menu compared to the original AIBS menu found improved beta-carotene content (p<0.05). All other nutrients, except vitamin B6, and calories were equal and in some instances greater than those listed for NASA's Controlled Ecological Life Support Systems RDA. These results suggest that sweet potato products can be used successfully in menus developed for space with the added benefit of increased nutrient value and dietary variety.

  19. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  20. 77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...