Sample records for nascent sense organs

  1. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  2. Nascent body ego: metapsychological and neurophysiological aspects.

    PubMed

    Lehtonen, Johannes; Partanen, Juhani; Purhonen, Maija; Valkonen-Korhonen, Minna; Kononen, Mervi; Saarikoski, Seppo; Launiala, Kari

    2006-10-01

    For Freud, body ego was the organizing basis of the structural theory. He defined it as a psychic projection of the body surface. Isakower's and Lewin's classical findings suggest that the body surface experiences of nursing provide the infant with sensory-affective stimulation that initiates a projection of sensory processes towards the psychic realm. During nursing, somato-sensory, gustatory and olfactory modalities merge with a primitive somatic affect of satiation, whereas auditory modality is involved more indirectly and visual contact more gradually. Repeated regularly, such nascent experiences are likely to play a part in the organization of the primitive protosymbolic mental experience. In support of this hypothesis, the authors review findings from a neurophysiological study of infants before, during and after nursing. Nursing is associated with a significant amplitude change in the newborn electroencephalogram (EEG), which wanes before the age of 3 months, and is transformed at the age of 6 months into rhythmic 3-5 Hz hedonic theta-activity. Sucking requires active physiological work, which is shown in a regular rise in heart rate. The hypothesis of a sensory-affective organization of the nascent body ego, enhanced by nursing and active sucking, seems concordant with neurophysiological phenomena related to nursing.

  3. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen.

    PubMed

    Mossabeb, Roschanak; Seiberler, Susanne; Mittermann, Irene; Reininger, Renate; Spitzauer, Susanne; Natter, Susanne; Verdino, Petra; Keller, Walter; Kraft, Dietrich; Valenta, Rudolf

    2002-10-01

    The nascent polypeptide-associated complex is required for intracellular translocation of newly synthesized polypeptides in eukaryotic cells. It may also act as a transcriptional coactivator in humans and various eukaryotic organisms and binds to nucleic acids. Recently, we provided evidence that a component of nascent polypeptide-associated complex, alpha-nascent polypeptide-associated complex, represents an IgE-reactive autoantigen for atopic dermatitis patients. By oligonucleotide screening we isolated a complete cDNA coding for a so far unknown alpha-nascent polypeptide-associated complex isoform from a human epithelial cDNA library. Southern blot hybridization experiments provided further evidence that alpha-nascent polypeptide-associated complex is encoded by a gene family. Recombinant alpha-nascent polypeptide-associated complex was expressed in Escherichia coli as a soluble, His-tagged protein, and purified via nickel affinity chromatography. By circular dichroism analysis it is demonstrated that purified recombinant alpha-nascent polypeptide-associated complex represents a folded protein of mixed alpha-helical and beta-sheet conformation with unusual high thermal stability and remarkable refolding capacity. Complete recombinant alpha-nascent polypeptide-associated complex (215 amino acids) and its 86 amino acid C-terminal fragment specifically bound IgE autoantibodies. Recombinant alpha-nascent polypeptide-associated complex also inhibited IgE binding to natural alpha-nascent polypeptide-associated complex, demonstrating the presence of common IgE epitopes between the recombinant and natural protein. Furthermore, recombinant alpha-nascent polypeptide-associated complex induced specific lymphoproliferative responses in peripheral blood mononuclear cells of a sensitized atopic dermatitis patient. As has been proposed for environmental allergens it is possible that T cell responses to IgE-defined autoantigens may contribute to the chronic skin manifestations

  4. Nascent Phosphorus Oxide

    NASA Astrophysics Data System (ADS)

    Sumida, David Shuji

    PO(X('2)(PI)) is produced via the collision-free infrared multiple photon dissociation (IRMPD) of volatile organophosphorus molecules, and is detected by 2-frequency 2-photon ionization, using the B('2)(SIGMA)('+) state to provide a spectral signature from which X('2)(PI) populations are obtained. Sequential dissociations occur during the IR laser photolysis, in which nascent fragments continue to undergo IRMPD, and PO(X('2)(PI)) accrues from a series of bond fission reactions. Nascent vibrational, rotational, and translational excitations are in sensible accord with this mechanism, except for a few rotational states near J = 19.5. Unlike the nuclear degrees of freedom, the PO(X('2)(PI)) spin-orbit states are populated quite selectively. The ('2)(PI)(,3/2) state, lying only 224 cm('-1) above the ('2)(PI)(,1/2) ground state, contains only (TURN)11% of the population, compared to 34% for a 300K sample. This result is unambiguous; it persists with all precursors, laser fluences, etc., and is verified by comparisons to spectra obtained using a microwave discharge, a flame, and when thermalizing nascent excitations with an inert diluent. This result underscores the sanctity of the separate potential surfaces which correlate to the product spin -orbit states, and the small amount of ('2)(PI)(,3/2) population can be accounted for by non-adiabatic coupling during dissociation, and/or 'freezing' the amount of S(,1) character in an excited precursor in which S(,0) and S(,1) are coupled non-radiatively. We note that such electronic specificity should be dealt with in the analogous recombination reactions. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089.).

  5. Seipin is required for converting nascent to mature lipid droplets

    PubMed Central

    Wang, Huajin; Becuwe, Michel; Housden, Benjamin E; Chitraju, Chandramohan; Porras, Ashley J; Graham, Morven M; Liu, Xinran N; Thiam, Abdou Rachid; Savage, David B; Agarwal, Anil K; Garg, Abhimanyu; Olarte, Maria-Jesus; Lin, Qingqing; Fröhlich, Florian; Hannibal-Bach, Hans Kristian; Upadhyayula, Srigokul; Perrimon, Norbert; Kirchhausen, Tomas; Ejsing, Christer S; Walther, Tobias C; Farese, Robert V

    2016-01-01

    How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs. DOI: http://dx.doi.org/10.7554/eLife.16582.001 PMID:27564575

  6. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.

    PubMed

    Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D

    2018-06-20

    Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.

  7. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. An international organization for remote sensing

    NASA Technical Reports Server (NTRS)

    Helm, Neil R.; Edelson, Burton I.

    1991-01-01

    A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.

  9. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.

    PubMed

    Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke

    2010-05-18

    The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.

  10. DYNAMICS OF NASCENT AND ACTIVE ZONE ULTRASTRUCTURE AS SYNAPSES ENLARGE DURING LTP IN MATURE HIPPOCAMPUS

    PubMed Central

    Bell, Maria Elizabeth; Bourne, Jennifer N.; Chirillo, Michael A.; Mendenhall, John M.; Kuwajima, Masaaki; Harris, Kristen M.

    2014-01-01

    Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation and comparisons were made to control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ~35% of synapses in perfusion-fixed hippocampus and as many as ~50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased without significant change in synapse area, suggesting that presynaptic vesicles were recruited to pre-existing nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed that glutamate receptors can be found in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170±5 nm in perfusion-fixed hippocampus to 251±4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that falloff in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP. PMID:25043676

  11. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  12. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    NASA Astrophysics Data System (ADS)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis

  13. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    PubMed Central

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  14. Nascent RNA kinetics: Transient and steady state behavior of models of transcription

    NASA Astrophysics Data System (ADS)

    Choubey, Sandeep

    2018-02-01

    Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-inglr cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.

  15. Topographic control on the nascent Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Gasser, M.; Pelegrí, J. L.; Nash, J. D.; Peters, H.; García-Lafuente, J.

    2011-12-01

    Data collected during a 12-day cruise in July 2009 served to examine the structure of the nascent Mediterranean Outflow Water (MOW) immediately west of the Espartel Sill, the westernmost sill in the Strait of Gibraltar. The MOW is characterized by high salinities (>37.0 and reaching 38.3) and high velocities (exceeding 1 m s-1 at 100 m above the seafloor), and follows a submerged valley along a 30 km stretch, the natural western extension of the strait. It is approx. 150 m thick and 10 km wide, and experiences a substantial drop from 420 to 530 m over a distance of some 3 km between two relatively flat regions. Measurements indicate that the nascent MOW behaves as a gravity current with nearly maximal traveling speed; if this condition is maintained, then the maximum MOW velocity would decrease slowly with distance from the Espartel Sill, remaining significantly high until the gravity current excess density is only a small fraction of its original value. The sharp pycnocline between the Mediterranean and the overlying North Atlantic Central waters is dynamically unstable, particularly where the flow interacts with the 100 m decrease in bottom depth. Here, subcritical gradient Richardson numbers coincide with the development of large interfacial undulations and billows. The very energetic downslope flow is likely responsible for the development of a narrow V-shaped channel downstream of the seafloor drop along the axis of the submerged valley, this probably being the very first erosional scour produced by the nascent MOW. The coincidence of subcritical gradient Richardson numbers with relatively high turbidity values above the channel flanks suggests it may be undergoing upstream erosion.

  16. Device Engineered Organic Transistors for Flexible Sensing Applications.

    PubMed

    Zang, Yaping; Huang, Dazhen; Di, Chong-An; Zhu, Daoben

    2016-06-01

    Organic thin-film transistors (OFETs) represent a promising candidate for next-generation sensing applications because of the intrinsic advantages of organic semiconductors. The development of flexible sensing devices has received particular interest in the past few years. The recent efforts of developing OFETs for sensitive and specific flexible sensors are summarized from the standpoint of device engineering. The tuning of signal transduction and signal amplification are highlighted based on an overview of active-layer thickness modulation, functional receptor implantation and device geometry optimization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Entrepreneurial Identity and Role Expectations in Nascent Entrepreneurship

    ERIC Educational Resources Information Center

    Lundqvist, Mats; Middleton, Karen Williams; Nowell, Pamela

    2015-01-01

    Entrepreneurship has been defined as an individual?new value creation dialogic. To study how entrepreneurial identity evolves, this article, drawing on entrepreneurial learning theory, adds an entrepreneurial role expectations dialogic. Longitudinal evidence from nascent entrepreneurs working in venture teams on invention disclosures offers an…

  18. Accelerators as Authentic Training Experiences for Nascent Entrepreneurs

    ERIC Educational Resources Information Center

    Miles, Morgan P.; de Vries, Huibert; Harrison, Geoff; Bliemel, Martin; de Klerk, Saskia; Kasouf, Chick J.

    2017-01-01

    Purpose: The purpose of this paper is to address the role of accelerators as authentic learning-based entrepreneurial training programs. Accelerators facilitate the development and assessment of entrepreneurial competencies in nascent entrepreneurs through the process of creating a start-up venture. Design/methodology/approach: Survey data from…

  19. Hybrid organic semiconductor lasers for bio-molecular sensing.

    PubMed

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  20. Pharyngeal sense organs drive robust sugar consumption in Drosophila

    PubMed Central

    LeDue, Emily E; Chen, Yu-Chieh; Jung, Aera Y; Dahanukar, Anupama; Gordon, Michael D

    2015-01-01

    The fly pharyngeal sense organs lie at the transition between external and internal nutrient sensing mechanisms. Here, we investigate the function of pharyngeal sweet gustatory receptor neurons (GRNs), demonstrating that they express a subset of the nine previously identified sweet receptors and respond to stimulation with a panel of sweet compounds. We show that pox-neuro (poxn) mutants lacking taste function in the legs and labial palps have intact pharyngeal sweet taste, which is both necessary and sufficient to drive preferred consumption of sweet compounds by prolonging ingestion. Moreover, flies putatively lacking all sweet taste show little preference for nutritive or non-nutritive sugars in a short-term feeding assay. Together, our data demonstrate that pharyngeal sense organs play an important role in directing sustained consumption of sweet compounds, and suggest that post-ingestive sugar sensing does not effectively drive food choice in a simple short-term feeding paradigm. PMID:25807033

  1. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    DOE PAGES

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; ...

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRNmore » to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.« less

  2. Self-organizing sensing and actuation for automatic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, George Shu-Xing

    A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.

  3. Cloning of nascent monkey DNA synthesized early in the cell cycle.

    PubMed

    Kaufmann, G; Zannis-Hadjopoulos, M; Martin, R G

    1985-04-01

    To study the structure and complexity of animal cell replication origins, we have isolated and cloned nascent DNA from the onset of S phase as follows: African green monkey kidney cells arrested in G1 phase were serum stimulated in the presence of the DNA replication inhibitor aphidicolin. After 18 h, the drug was removed, and DNA synthesis was allowed to proceed in vivo for 1 min. Nuclei were then prepared, and DNA synthesis was briefly continued in the presence of Hg-dCTP. The mercury-labeled nascent DNA was purified in double-stranded form by extrusion (M. Zannis-Hadjopoulos, M. Perisco, and R. G. Martin, Cell 27:155-163, 1981) followed by sulfhydryl-agarose affinity chromatography. Purified nascent DNA (ca. 500 to 2,000 base pairs) was treated with mung bean nuclease to remove single-stranded ends and inserted into the NruI site of plasmid pBR322. The cloned fragments were examined for their time of replication by hybridization to cellular DNA fractions synthesized at various intervals of the S phase. Among five clones examined, four hybridized preferentially with early replicating fractions.

  4. Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks

    PubMed Central

    Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928

  5. Structure of nascent replicative form DNA of coliphage M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, S.; Mitra, S.

    Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H, unlike the RFI produced either in vivo or from RFII with E. coli DNA polymerase I and E. coli DNA ligase. The ribonucleotides are located at one site and predominantly in one strand ofmore » the nascent RF DNA. Furthermore, these molecules contain multiple small gaps, randomly located, and one large gap in the intracistronic region.« less

  6. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  7. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain

    PubMed Central

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan

    2017-01-01

    Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621

  8. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides

    PubMed Central

    Kostova, Kamena K.; Hickey, Kelsey L.; Osuna, Beatriz A.; Hussmann, Jeffrey A.; Frost, Adam; Weinberg, David E.; Weissman, Jonathan S.

    2017-01-01

    Ribosome stalling leads to recruitment of the Ribosome Quality control Complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a Carboxy-terminal Alanine and Threonine (CAT) tail through a non-canonical elongation reaction. Here we explore the role of CATtailing in nascent-chain degradation in budding yeast. We show that Ltn1p can efficiently access only nascent chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enables degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. PMID:28751611

  9. Prefoldin–Nascent Chain Complexes in the Folding of Cytoskeletal Proteins

    PubMed Central

    Hansen, William J.; Cowan, Nicholas J.; Welch, William J.

    1999-01-01

    In vitro transcription/translation of actin cDNA and analysis of the translation products by native-PAGE was used to study the maturation pathway of actin. During the course of actin synthesis, several distinct actin-containing species were observed and the composition of each determined by immunological procedures. After synthesis of the first ∼145 amino acids, the nascent ribosome-associated actin chain binds to the recently identified heteromeric chaperone protein, prefoldin (PFD). PFD remains bound to the relatively unfolded actin polypeptide until its posttranslational delivery to cytosolic chaperonin (CCT). We show that α- and β-tubulin follow a similar maturation pathway, but to date find no evidence for an interaction between PFD and several noncytoskeletal proteins. We conclude that PFD functions by selectively targeting nascent actin and tubulin chains pending their transfer to CCT for final folding and/or assembly. PMID:10209023

  10. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Apparatus for sensing volatile organic chemicals in fluids

    DOEpatents

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  12. 38 CFR 4.87a - Schedule of ratings-other sense organs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ratings—other sense organs. Rating 6275Sense of smell, complete loss 10 6276Sense of taste, complete loss 10 Note: Evaluation will be assigned under diagnostic codes 6275 or 6276 only if there is an anatomical or pathological basis for the condition. (Authority: 38 U.S.C. 1155) [64 FR 25210, May 11, 1999...

  13. Light sensing in a photoresponsive, organic-based complementary inverter.

    PubMed

    Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon

    2011-05-01

    A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

  14. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides.

    PubMed

    Kostova, Kamena K; Hickey, Kelsey L; Osuna, Beatriz A; Hussmann, Jeffrey A; Frost, Adam; Weinberg, David E; Weissman, Jonathan S

    2017-07-28

    Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Photoluminescent Metal–Organic Frameworks for Gas Sensing

    PubMed Central

    Lin, Rui‐Biao; Liu, Si‐Yang; Ye, Jia‐Wen; Li, Xu‐Yu

    2016-01-01

    Luminescence of porous coordination polymers (PCPs) or metal–organic frameworks (MOFs) is sensitive to the type and concentration of chemical species in the surrounding environment, because these materials combine the advantages of the highly regular porous structures and various luminescence mechanisms, as well as diversified host‐guest interactions. In the past few years, luminescent MOFs have attracted more and more attention for chemical sensing of gas‐phase analytes, including common gases and vapors of solids/liquids. While liquid‐phase and gas‐phase luminescence sensing by MOFs share similar mechanisms such as host‐guest electron and/or energy transfer, exiplex formation, and guest‐perturbing of excited‐state energy level and radiation pathways, via various types of host‐guest interactions, gas‐phase sensing has its unique advantages and challenges, such as easy utilization of encapsulated guest luminophores and difficulty for accurate measurement of the intensity change. This review summarizes recent progresses by using luminescent MOFs as reusable sensing materials for detection of gases and vapors of solids/liquids especially for O2, highlighting various strategies for improving the sensitivity, selectivity, stability, and accuracy, reducing the materials cost, and developing related devices. PMID:27818903

  16. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    PubMed

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

  18. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling.

    PubMed

    Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W

    2018-06-15

    Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.

  19. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  20. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    PubMed

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  1. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling.

    PubMed

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein-EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.

  2. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling

    PubMed Central

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529

  3. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  4. Theory of Force Regulation by Nascent Adhesion Sites

    PubMed Central

    Bruinsma, Robijn

    2005-01-01

    The mechanical coupling of a cell with the extracellular matrix relies on adhesion sites, clusters of membrane-associated proteins that communicate forces generated along the F-Actin filaments of the cytoskeleton to connecting tissue. Nascent adhesion sites have been shown to regulate these forces in response to tissue rigidity. Force-regulation by substrate rigidity of adhesion sites with fixed area is not possible for stationary adhesion sites, according to elasticity theory. A simple model is presented to describe force regulation by dynamical adhesion sites. PMID:15849245

  5. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains

    PubMed Central

    Shen, Peter S.; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H.; Cox, James; Cheng, Yifan; Lambowitz, Alan M.; Weissman, Jonathan S.; Brandman, Onn; Frost, Adam

    2015-01-01

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the Ribosome Quality control Complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here, we report cryoEM structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S at sites exposed after 40S dissociation, placing the Ltn1p RING domain near the exit channel and Rqc2p over the P-site tRNA. We further demonstrate that Rqc2p recruits alanine and threonine charged tRNA to the A-site and directs elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis in which a protein—not an mRNA—determines tRNA recruitment and the tagging of nascent chains with Carboxy-terminal Ala and Thr extensions (“CAT tails”). PMID:25554787

  6. Sensing of volatile organic compounds by copper phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  7. Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing.

    PubMed

    Zhang, Yu; Li, Jun; Li, Rui; Sbircea, Dan-Tiberiu; Giovannitti, Alexander; Xu, Junling; Xu, Huihua; Zhou, Guodong; Bian, Liming; McCulloch, Iain; Zhao, Ni

    2017-11-08

    Liquid electrolyte-gated organic field effect transistors and organic electrochemical transistors have recently emerged as powerful technology platforms for sensing and simulation of living cells and organisms. For such applications, the transistors are operated at a gate voltage around or below 0.3 V because prolonged application of a higher voltage bias can lead to membrane rupturing and cell death. This constraint often prevents the operation of the transistors at their maximum transconductance or most sensitive regime. Here, we exploit a solid-liquid dual-gate organic transistor structure, where the threshold voltage of the liquid-gated conduction channel is controlled by an additional gate that is separated from the channel by a metal-oxide gate dielectric. With this design, the threshold voltage of the "sensing channel" can be linearly tuned in a voltage window exceeding 0.4 V. We have demonstrated that the dual-gate structure enables a much better sensor response to the detachment of human mesenchymal stem cells. In general, the capability of tuning the optimal sensing bias will not only improve the device performance but also broaden the material selection for cell-based organic bioelectronics.

  8. Nascent life cycles and the emergence of higher-level individuality.

    PubMed

    Ratcliff, William C; Herron, Matthew; Conlin, Peter L; Libby, Eric

    2017-12-05

    Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms evolve to become parts of a new, 'higher-level' organism. One of the first major hurdles that must be overcome during an ETI is the emergence of Darwinian evolvability in the higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in the lower-level units (e.g. individual cells). Here, we examine how simple higher-level life cycles are a key innovation during an ETI, allowing this transfer of fitness to occur 'for free'. Specifically, we show how novel life cycles can arise and lead to the origin of higher-level individuals by (i) mitigating conflicts between levels of selection, (ii) engendering the expression of heritable higher-level traits and (iii) allowing selection to efficiently act on these emergent higher-level traits. Further, we compute how canonical early life cycles vary in their ability to fix beneficial mutations via mathematical modelling. Life cycles that lack a persistent lower-level stage and develop clonally are far more likely to fix 'ratcheting' mutations that limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an evolutionary transition in individuality, nascent higher-level life cycles may play a crucial role in the origin of complex life.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  9. An Annotation Agnostic Algorithm for Detecting Nascent RNA Transcripts in GRO-Seq.

    PubMed

    Azofeifa, Joseph G; Allen, Mary A; Lladser, Manuel E; Dowell, Robin D

    2017-01-01

    We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed. Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.

  10. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome

    PubMed Central

    Ullers, Ronald S.; Houben, Edith N.G.; Raine, Amanda; ten Hagen-Jongman, Corinne M.; Ehrenberg, Måns; Brunner, Joseph; Oudega, Bauke; Harms, Nellie; Luirink, Joen

    2003-01-01

    As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. PMID:12756233

  11. Drug-Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation

    PubMed Central

    Arenz, Stefan; Meydan, Sezen; Starosta, Agata L.; Berninghausen, Otto; Beckmann, Roland; Vázquez-Laslop, Nora; Wilson, Daniel N.

    2014-01-01

    SUMMARY During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site leading to inhibition of peptide bond formation and translation arrest. PMID:25306253

  12. Luminescent metal-organic frameworks for chemical sensing and explosive detection.

    PubMed

    Hu, Zhichao; Deibert, Benjamin J; Li, Jing

    2014-08-21

    Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.

  13. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  14. A study on a nascent entomopathogenic association between caenorhabditis briggsae and serratia sp.SCBI

    NASA Astrophysics Data System (ADS)

    Abebe-Akele, Feseha

    Life is inconceivable in the absence of interactions which could be cooperative, antagonistic or neutral. Interactions are in constant flux because on one hand it is often difficult to demarcate where one form of interaction ends and the other begins on the other hand what is cooperative at one point in time could evolve into antagonistic or neutral or vice versa. Thus, organisms, as a consequence of mutation, adaptation and natural selection would inevitably enter into natural associations from which they emerge as mutual partners, inveterate enemies or passive cohabitants. Entomopathogenic nematode (EPN) partnerships are tripartite interactions where a nematode-bacteria symbiont duo attacks a third organism -an insect or insect larva-for the mutual benefit of the attacking partners and the detriment of the insect they invade. All three participants in the interaction---the nematode worms with their symbiont bacteria and the target insect host-are among the most ancient, diverse and abundant species on earth, however, these EPN partnerships are not as common as circumstances would suggest. EPN associations, which are arguably at the peak of evolutionary co adaptations, where two primitive forms of life cooperate to take advantage of a larger species are not only fascinating but immensely important for humans. The biological and molecular mechanisms underlying entomopathogenesis have been studied in great detail for decades for their potential as biological control agents against invasive insects. In spite of intense research in The EPN field, the evolutionary history of EPN associations are largely unknown because there are no known intermediate forms. In this thesis, a nascent EPN partnership is described between Caenorhabditid nematodes and Serratia sp. SCBI. Comparative analysis of this association with other EPNs suggests that crucial aspect of EPN associations may be the ability of partners to co-exist without killing each other and that the end results of

  15. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study.

    PubMed

    DelBove, Claire E; Deng, Xian-Zhen; Zhang, Qi

    2018-06-21

    Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.

  16. RNA polymerase pausing and nascent RNA structure formation are linked through clamp domain movement

    PubMed Central

    Hein, Pyae P.; Kolb, Kellie E.; Windgassen, Tricia; Bellecourt, Michael J.; Darst, Seth A.; Mooney, Rachel A.; Landick, Robert

    2014-01-01

    The rates of RNA synthesis and nascent RNA folding into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA exit channel can increase pausing by interacting with bacterial RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain is proposed to mediate some effects of nascent RNA structures. However, the connections among RNA structure formation, clamp movement, and catalytic activity remain uncertain. We assayed exit-channel structure formation in Escherichia coli RNAP together with disulfide crosslinks that favor closed or open clamp conformations and found that clamp position directly influences RNA structure formation and catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening and through interactions with the flap that slow translocation. PMID:25108353

  17. SOIL GAS SENSING FOR DETECTION AND MAPPING OF VOLATILE ORGANICS

    EPA Science Inventory

    The document is an attempt at compiling all pertinent information on the current state of the art of soil gas sensing as it relates to the detection of subsurface organic contaminants. It is hoped that such a document will better assist all those individuals who are faced with as...

  18. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  19. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    PubMed Central

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  20. Substantial Goodness and Nascent Human Life.

    PubMed

    Floyd, Shawn

    2015-09-01

    Many believe that moral value is--at least to some extent--dependent on the developmental states necessary for supporting rational activity. My paper rejects this view, but does not aim simply to register objections to it. Rather, my essay aims to answer the following question: if a human being's developmental state and occurrent capacities do not bequeath moral standing, what does? The question is intended to prompt careful consideration of what makes human beings objects of moral value, dignity, or (to employ my preferred term) goodness. Not only do I think we can answer this question, I think we can show that nascent human life possesses goodness of precisely this sort. I appeal to Aquinas's metaethics to establish the conclusion that the goodness of a human being--even if that being is an embryo or fetus--resides at the substratum of her existence. If she possesses goodness, it is because human existence is good.

  1. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    PubMed

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  3. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation

    PubMed Central

    Vallerga, María Belén; Mansilla, Sabrina F.; Federico, María Belén; Bertolin, Agustina P.; Gottifredi, Vanesa

    2015-01-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates. PMID:26627254

  4. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  5. Nascent starbursts: a missing link in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Roussel, Helene; Beck, Rainer; Condon, Jim; Helou, George; Smith, John-David

    2005-06-01

    We have identified a rare category of galaxies characterized by an extreme deficiency in synchro- tron radiation, relative to dust emission, and very high dust temperatures. We studied in detail the most extreme such object, and concluded in favor of a starburst just breaking out, less than one megayear old, in a galaxy having undergone no major star formation episode in the last 100 Myr. Such systems offer a perfect setting to study the initial conditions and early dynamics of starbursts and understand better the regulation of the infrared-radio continuum correlation in galaxies. For the prototypical nascent starburst, the mid-infrared spectrum is quite peculiar, suggesting tran- sient dust species and high optical depth; tracers of dust and molecular gas are the only indicators of unusual activity, and the active regions are likely very compact and dust-bounded, suppressing ionization. Only Spitzer data can provide the needed physical diagnostics for such regions. A sample of 25 nascent starbursts was drawn from the cross-correlation of the IRAS Faint Source Catalog and the NVSS VLA radio survey, and carefully selected based on our multi-wavelength VLA maps to span a range of infrared to radio ratios and luminosities. This sample allows a first step beyond studying prototypes toward a statistical analysis addressing systematic physical pro- perties, classification and search for starburst development sequences. We propose imaging and spectroscopic observations from 3 to 160 microns to characterize the state of the interstellar medium and the gas and dust excitation origin. Our aim is to learn from these unique systems how a star formation burst may develop in its very earliest phases, how it affects the fueling material and the host galaxy. Acquired observations of the radio continuum, cold molecular gas and tracers of shocks and HII regions will help us interpret the rich Spitzer data set and extract a coherent picture of the interstellar medium in our targets.

  6. Carbon dioxide-sensing in organisms and its implications for human disease

    PubMed Central

    Cummins, Eoin P.; Selfridge, Andrew C.; Sporn, Peter H.; Sznajder, Jacob I.; Taylor, Cormac T.

    2013-01-01

    The capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease. PMID:24045706

  7. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  8. Organic nanoparticles for photovoltaic and sensing applications

    NASA Astrophysics Data System (ADS)

    Venkatraman, B. Harihara

    2011-12-01

    Can organic semiconducting nanoparticles be used as building blocks for fabricating electronic devices? The first half of this dissertation focuses on addressing this question and the associated research challenges for attaining morphological control pertaining to organic photovoltaic devices by nanoparticle assembly. Conjugated polymer nanoparticles were synthesized using miniemulsion technique and their optical, charge transfer and charge transport properties were studied. Some degree of control in polymer chain packing within the nanoparticle was also demonstrated. The optical, charge transfer and charge transport properties of these nanoparticles were found to be similar to that of parent conjugated polymer irrespective of the surface charge. From the initial photovoltaic measurements, it is shown that these nanoparticles are potential candidates for fabricating future photovoltaic devices. The second half of this dissertation is focused on developing a novel and viable strategy for sensing aqueous based nitroaromatic compounds. Nitroaromatic compounds are commonly used as explosives and possess serious health hazards. Thiophene-based conjugated polymer nanoparticles were synthesized and were shown to effectively detect aqueous based nitroaromatic explosives.

  9. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.

    PubMed

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-09-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.

  10. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    NASA Astrophysics Data System (ADS)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  11. The Fluid Dynamics of Nascent Biofilms

    NASA Astrophysics Data System (ADS)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  12. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing.

    PubMed

    Yan, Bing

    2017-11-21

    Metal-organic frameworks (MOFs) possess an important advantage over other candidate classes for chemosensory materials because of their exceptional structural tunability and properties. Luminescent sensing using MOFs is a simple, intuitive, and convenient method to recognize species, but the method has limitations, such as insufficient chemical selectivity and signal loss. MOFs contain versatile building blocks (linkers or ligands) with special chemical reactivity, and postsynthetic modification (PSM) provides an opportunity to exploit and expand their unique properties. The linkers in most MOFs contain aromatic subunits that can readily display luminescence after ultraviolet or visible (typically blue) excitation, and this is the main luminescent nature of most MOFs. The introduction of photoactive lanthanide ions (Ln 3+ ) into the MOF hosts may produce new luminescent signals at different positions from that of the MOF linker, but this depends on the intramolecular energy transfer (antenna effect) from the MOF (linkers) to the Ln 3+ ions. Controlling the Ln 3+ content in MOF hybrids may create multiple luminescent centers. The nature of the unique luminescent centers may cause different responses to sensing species (i.e., ratiometric sensing), which may provide a new opportunity for luminescence research with applications to chemical sensing. In this Account, recent research progress on using lanthanide-functionalized MOF hybrid materials to create multiple luminescent centers for chemical sensing is described. Here we propose a general strategy to functionalize MOF hosts with lanthanide ions, compounds, or other luminescent species (organic dyes or carbon dots) and to assemble types of photofunctional hybrid systems based on lanthanide-functionalized MOFs. Five main methods were used to functionalize the MOFs and assemble the hybrid materials: in situ composition, ionic doping, ionic exchange, covalent PSM, and coordinated PSM. Through the lanthanide

  13. SWI/SNF Associates with Nascent Pre-mRNPs and Regulates Alternative Pre-mRNA Processing

    PubMed Central

    Tyagi, Anu; Ryme, Jessica; Brodin, David; Östlund Farrants, Ann Kristin; Visa, Neus

    2009-01-01

    The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced. PMID:19424417

  14. Probing the Role of Nascent Helicity in p27 Function as a Cell Cycle Regulator

    PubMed Central

    Otieno, Steve; Kriwacki, Richard

    2012-01-01

    p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs). Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27. PMID:23071750

  15. Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells

    PubMed Central

    Guyochin, Aurélia; Maenner, Sylvain; Chu, Erin Tsi-Jia; Hentati, Asma; Attia, Mikael; Avner, Philip; Clerc, Philippe

    2014-01-01

    Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome. PMID:25546018

  16. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  17. Organic electrochemical transistors for cell-based impedance sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain currentmore » measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.« less

  18. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    PubMed

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  19. A Primer on the Pathway to Scholarly Writing: Helping Nascent Writers to Unlearn Conditioned Habits

    ERIC Educational Resources Information Center

    McDougall, Dennis; Ornelles, Cecily; Rao, Kavita

    2015-01-01

    In this article, we identify eight common error patterns of nascent writers when they attempt to navigate the pathway to scholarly writing. We illustrate each error pattern via examples and counter-examples (corrections). We also describe how to identify such patterns, why those patterns might occur and persist, and why each pattern is…

  20. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  1. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne

    2004-01-01

    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  2. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  3. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    PubMed

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A novel compound inhibits rHDL assembly and blocks nascent HDL biogenesis downstream of apoAI binding to ABCA1 expressing cells

    PubMed Central

    Lyssenko, Nicholas N.; Brubaker, Gregory; Smith, Bradley D.; Smith, Jonathan D.

    2011-01-01

    Objective Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. Methods and Results Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that two compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate), the more active of the two, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein (AcLDL) and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. Conclusions The inhibitory effects of compound 1 support a three-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells. PMID:21836073

  5. Hybrid organic-inorganic porous semiconductor transducer for multi-parameters sensing.

    PubMed

    Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca

    2015-07-06

    Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Community Organizations and Sense of Community: Further Development in Theory and Measurement

    ERIC Educational Resources Information Center

    Peterson, N. Andrew; Speer, Paul W.; Hughey, Joseph; Armstead, Theresa L.; Schneider, John E.; Sheffer, Megan A.

    2008-01-01

    The Community Organization Sense of Community Scale (COSOC) is a frequently used or cited measure of the construct in community psychology and other disciplines, despite a lack of confirmation of its underlying 4-factor framework. Two studies were conducted to test the hypothesized structure of the COSOC, the potential effects of method bias on…

  7. Biological and remote sensing perspectives of pigmentation in coral reef organisms.

    PubMed

    Hedley, John D; Mumby, Peter J

    2002-01-01

    Coral reef communities face unprecedented pressures on local, regional and global scales as a consequence of climate change and anthropogenic disturbance. Optical remote sensing, from satellites or aircraft, is possibly the only means of measuring the effects of such stresses at appropriately large spatial scales (many thousands of square kilometres). To map key variables such as coral community structure, percentages of living coral or percentages of dead coral, a remote sensing instrument must be able to distinguish the reflectance spectra (i.e. "spectral signature", reflected light as a function of wavelength) of each category. For biotic classes, reflectance is a complex function of pigmentation, structure and morphology. Studies of coral "colour" fall into two disparate but potentially complementary types. Firstly, biological studies tend to investigate the structure and significance of pigmentation in reef organisms. These studies often lack details that would be useful from a remote sensing perspective such as intraspecific variation in pigment concentration or the contribution of fluorescence to reflectance. Secondly, remote sensing studies take empirical measurements of spectra and seek wavelengths that discriminate benthic categories. Benthic categories used in remote sensing sometimes consist of species groupings that are biologically or spectrally inappropriate (e.g. merging of algal phyla with distinct pigments). Here, we attempt to bridge the gap between biological and remote sensing perspectives of pigmentation in reef taxa. The aim is to assess the extent to which spectral discrimination can be given a biological foundation, to reduce the ad hoc nature of discriminatory criteria, and to understand the fundamental (biological) limitations in the spectral separability of biotic classes. Sources of pigmentation in reef biota are reviewed together with remote sensing studies where spectral discrimination has been effectively demonstrated between benthic

  8. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors

    PubMed Central

    Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.

    2013-01-01

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969

  9. Physical limits of flow sensing in the left-right organizer

    PubMed Central

    Ferreira, Rita R; Vilfan, Andrej; Jülicher, Frank; Supatto, Willy; Vermot, Julien

    2017-01-01

    Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI: http://dx.doi.org/10.7554/eLife.25078.001 PMID:28613157

  10. A Qualitative Organic Analysis that Exploits the Senses of Smell, Touch, and Sound

    ERIC Educational Resources Information Center

    Bromfield-Lee, Deborah C.; Oliver-Hoyo, Maria T.

    2007-01-01

    This laboratory experiment utilizes the characteristic aromas of some functional groups to exploit the sense of smell as a discriminating tool in an organic qualitative analysis scheme. Students differentiate a variety of compounds by their aromas and based on their olfactory classification identify an unknown functional group. Students then…

  11. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    PubMed Central

    Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.

    2016-01-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967

  12. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    NASA Astrophysics Data System (ADS)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K.

    2016-05-01

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  13. EGFR and HER2 activate rigidity sensing only on rigid matrices

    NASA Astrophysics Data System (ADS)

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang; Wolfenson, Haguy; Hone, James; Sheetz, Michael P.

    2017-07-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.

  14. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    PubMed

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers.

  15. Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum.

    PubMed

    Chaudhari, Vimla; Gosai, Haren; Raval, Shreya; Kothari, Vijay

    2014-09-01

    To investigate the effect of seed extracts of Pongamia pinnata, Pyrus pyrifolia, and Manilkara hexandra, bacterial pigment prodigiosin, and three organic solvents (ethanol, methanol, and dimethylsulfoxide), on quorum sensing (QS) in Chromobacterium violaceum (C. violaceum). C. violaceum was challenged with plant extracts prepared by microwave assisted extraction method, prodigiosin, and organic solvents. Effect of these test substances on C. violaceum growth, and quorum sensing regulated pigment (violacein) production was studied by broth dilution assay. High performance liquid chromatography was also applied to generate chromatographic fingerprint of the active extracts. Effect of sub-minimum inhibitory concentration level of the antibiotic streptomycin on quorum sensing regulated pigment production was also studied. Pongamia pinnata seed extracts and prodigiosin were found to possess anti-QS, and Manilkara hexandra and Pyrus pyrifolia seed extracts to possess QS-enhancing effect in C. violaceum. Dimethylsulfoxide was found to enhance violacein production, whereas ethanol and methanol reduced violacein production in C. violaceum. Streptomycin at sub-minimum inhibitory concentration level was able to significantly arrest QS-regulated pigment production in C. violaceum and Serratia marcescens. Prodigiosin and the seed extracts used in this study could affect quorum sensing in C. violaceum to a notable extent. Results of this study also emphasize the importance of inclusion of appropriate solvent controls (negative controls) in bioassays designed for screening of antimicrobial and/or anti-QS compounds. Antipathogenic potential of low concentrations of streptomycin was also demonstrated. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    PubMed

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  17. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposuremore » with vapours. A variation in the activation energies was also observed with exposure of vapours.« less

  18. Concentric-electrode organic electrochemical transistors: case study for selective hydrazine sensing

    NASA Astrophysics Data System (ADS)

    Pecqueur, S.; Lenfant, S.; Guérin, D.; Alibart, F.; Vuillaume, D.

    2017-12-01

    We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting in concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, PEDOT:PSS-based OECTs have been studied as aqueous sensors, specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10-5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for 9 other water soluble common analytes, the capability to recover entirely its base signal after water flushing and a very low voltage operation. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode and enables increasing the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 μm and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device, more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talking, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore promotes further the development of OECT biosensors.

  19. Gravitational radiation from rapidly rotating nascent neutron stars

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1995-01-01

    We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.

  20. Cultural carrying capacity: Organ donation advocacy, discursive framing, and social media engagement.

    PubMed

    Bail, Christopher A

    2016-09-01

    Social media sites such as Facebook have become a powerful tool for public health outreach because they enable advocacy organizations to influence the rapidly increasing number of people who frequent these forums. Yet the very open-ness of social media sites creates fierce competition for public attention. The vast majority of social media messages provoke little or no reaction because of the sheer volume of information that confronts the typical social media user each day. In this article, I present a theory of the "cultural carrying capacity" of social media messaging campaigns. I argue that advocacy organizations inspire more endorsements, comments, and shares by social media users if they diversify the discursive content of their messages. Yet too much diversification creates large, disconnected audiences that lack the sense of shared purpose necessary to sustain an online movement. To evaluate this theory, I created a Facebook application that collects social media posts produced by forty-two organ donation advocacy organizations over 1.5 years, as well as supplemental information about the organization, its audience, and the broader social context in which they interact. Time series models provide strong evidence for my theory net of demographic characteristics of social media users, the resources and tactics of each organization, and broader external factors. I conclude by discussing the implications of these findings for public health, cultural sociology, and the nascent field of computational social science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Does Ethicality Wane with Adulthood? A Study of the Ethical Values of Entrepreneurship Students and Nascent Entrepreneurs

    ERIC Educational Resources Information Center

    Lourenço, Fernando; Sappleton, Natalie; Cheng, Ranis

    2015-01-01

    The authors examined the following questions: Does gender influence the ethicality of enterprise students to a greater extent than it does nascent entrepreneurs? If this is the case, then is it due to factors associated with adulthood such as age, work experience, marital status, and parental status? Sex-role socialization theory and moral…

  2. A humidity sensing organic-inorganic composite for environmental monitoring.

    PubMed

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S

    2013-03-14

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  3. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    PubMed Central

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.

    2013-01-01

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124

  4. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

    PubMed Central

    Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong

    2017-01-01

    A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal–organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer. PMID:28665406

  5. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong

    2017-06-01

    A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

  6. The Exosome Associates Cotranscriptionally with the Nascent Pre-mRNP through Interactions with Heterogeneous Nuclear Ribonucleoproteins

    PubMed Central

    Hessle, Viktoria; Björk, Petra; Sokolowski, Marcus; de Valdivia, Ernesto González; Silverstein, Rebecca; Artemenko, Konstantin; Tyagi, Anu; Maddalo, Gianluca; Ilag, Leopold; Helbig, Roger; Zubarev, Roman A.

    2009-01-01

    Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins. PMID:19494042

  7. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria

    PubMed Central

    Ishii, Eiji; Chiba, Shinobu; Hashimoto, Narimasa; Kojima, Seiji; Homma, Michio; Ito, Koreaki; Akiyama, Yoshinori; Mori, Hiroyuki

    2015-01-01

    SecDF interacts with the SecYEG translocon in bacteria and enhances protein export in a proton-motive-force-dependent manner. Vibrio alginolyticus, a marine-estuarine bacterium, contains two SecDF paralogs, V.SecDF1 and V.SecDF2. Here, we show that the export-enhancing function of V.SecDF1 requires Na+ instead of H+, whereas V.SecDF2 is Na+-independent, presumably requiring H+. In accord with the cation-preference difference, V.SecDF2 was only expressed under limited Na+ concentrations whereas V.SecDF1 was constitutive. However, it is not the decreased concentration of Na+ per se that the bacterium senses to up-regulate the V.SecDF2 expression, because marked up-regulation of the V.SecDF2 synthesis was observed irrespective of Na+ concentrations under certain genetic/physiological conditions: (i) when the secDF1VA gene was deleted and (ii) whenever the Sec export machinery was inhibited. VemP (Vibrio export monitoring polypeptide), a secretory polypeptide encoded by the upstream ORF of secDF2VA, plays the primary role in this regulation by undergoing regulated translational elongation arrest, which leads to unfolding of the Shine–Dalgarno sequence for translation of secDF2VA. Genetic analysis of V. alginolyticus established that the VemP-mediated regulation of SecDF2 is essential for the survival of this marine bacterium in low-salinity environments. These results reveal that a class of marine bacteria exploits nascent-chain ribosome interactions to optimize their protein export pathways to propagate efficiently under different ionic environments that they face in their life cycles. PMID:26392525

  8. Binding of transcription termination protein nun to nascent RNA and template DNA.

    PubMed

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  9. Sense-Making in a Temporary Organization: Implementing a New Curriculum in a Swedish Municipality

    ERIC Educational Resources Information Center

    Nordholm, Daniel Erik

    2015-01-01

    This article explores sense-making in a municipality-led temporary organization established in response to the introduction of a new curriculum and marking system in Sweden. Qualitative data were extracted from audio-recorded interviews (n = 18) and observations of central subject group meetings (n = 6). By applying core elements of sociological…

  10. Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    NASA Astrophysics Data System (ADS)

    Fardindoost, Somayeh; Hatamie, Shadie; Iraji Zad, Azam; Razi Astaraei, Fatemeh

    2018-01-01

    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery times below 12 s at 15 °C. Also, they show stable, repeatable and selective responses to the target gas which make it suitable for the development of a high performance hydrogen sensor.

  11. EGFR and HER2 Activate Rigidity Sensing Only on Rigid Matrices

    PubMed Central

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang

    2017-01-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by 10-fold after 4 hours. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in absence of EGF both for normal and cancerous growth. PMID:28459445

  12. Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Nagasawa, M.; Lin, D. N. C.; Ida, S.

    2003-04-01

    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.

  13. Mechanical Modulation of Nascent Stem Cell Lineage Commitment in Tissue Engineering Scaffolds

    PubMed Central

    Song, Min Jae; Dean, David; Tate, Melissa L. Knothe

    2013-01-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to “map the mechanome”, defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. PMID:23660249

  14. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    PubMed

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

    DOE PAGES

    Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing; ...

    2017-06-06

    In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less

  16. Plasmonic nanopatch array with integrated metal–organic framework for enhanced infrared absorption gas sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing

    In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal–organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO 2) with high capacity. Additionally, experimental results show that this hybrid plasmonic–MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. Lastly, the demonstration of infrared absorption spectroscopy of CO 2 using the hybrid plasmonic–MOF device proves amore » promising strategy for future on-chip gas sensing with ultra-compact size.« less

  17. A Proteomic Characterization of Factors Enriched at Nascent DNA Molecules

    PubMed Central

    Lopez-Contreras, Andres J.; Ruppen, Isabel; Nieto-Soler, Maria; Murga, Matilde; Rodriguez-Acebes, Sara; Remeseiro, Silvia; Rodrigo-Perez, Sara; Rojas, Ana M.; Mendez, Juan; Muñoz, Javier; Fernandez-Capetillo, Oscar

    2013-01-01

    SUMMARY DNA replication is facilitated by multiple factors that concentrate in the vicinity of replication forks. Here, we developed an approach that combines the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. In addition to known replisome components, we provide a broad list of proteins that reside in the vicinity of the replisome, some of which were not previously associated with replication. For instance, our data support a link between DNA replication and the Williams-Beuren syndrome and identify ZNF24 as a replication factor. In addition, we reveal that SUMOylation is wide-spread for factors that concentrate near replisomes, which contrasts with lower UQylation levels at these sites. This resource provides a panoramic view of the proteins that concentrate in the surroundings of the replisome, which should facilitate future investigations on DNA replication and genome maintenance. PMID:23545495

  18. Early Development of Gravity-Sensing Organs in Microgravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, Michael L.; Gao, Wenyuan; Harrison, Jeffrey L.; Parker, Kevin A.

    2003-01-01

    Most animals have organs that sense gravity. These organs use dense stones (called otoliths or statoconia), which rest on the sensitive hairs of specialized gravity- and motion-sensing cells. The weight of the stones bends the hairs in the direction of gravitational pull. The cells in turn send a coded representation of the gravity or motion stimulus to the central nervous system. Previous experiments, in which the eggs or larvae of a marine mollusk (Aplysia californica, the sea hare) were raised on a centrifuge, demonstrated that the size of the stones (or test mass) was reduced in a graded manner as the gravity field was increased. This suggests that some control mechanism was acting to normalize the weight of the stones. The experiments described here were designed to test the hypothesis that, during their initial development, the mass of the stones is regulated to achieve a desired weight. If this is the case, we would expect a larger-than-normal otolith would develop in animals reared in the weightlessness of space. To test this, freshwater snails and swordtail fish were studied after spaceflight. The snails mated in space, and the stones (statoconia) in their statocysts developed in microgravity. Pre-mated adult female swordtail fish were flown on the Space Shuttle, and the developing larvae were collected after landing. Juvenile fish, where the larval development had taken place on the ground, were also flown. In snails that developed in space, the total volume of statoconia forming the test mass was 50% greater than in size-matched snails reared in functionally identical equipment on the ground. In the swordtail fish, the size of otoliths was compared between ground- and flight-reared larvae of the same size. For later-stage larvae, the growth of the otolith was significantly greater in the flight-reared fish. However, juvenile fish showed no significant difference in otolith size between flight- and ground-reared fish. Thus, it appears that fish and snails

  19. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  20. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  1. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    PubMed

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  2. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds

    PubMed Central

    Öztürk, Sadullah; Kösemen, Arif; Şen, Zafer; Kılınç, Necmettin; Harbeck, Mika

    2016-01-01

    Poly(3-methylthiophene) (PMeT) thin films were electrochemically deposited on quartz crystal microbalance QCM transducers to investigate their volatile organic compound (VOC) sensing properties depending on ambient conditions. Twelve different VOCs including alcohols, ketones, chlorinated compounds, amines, and the organosphosphate dimethyl methylphosphonate (DMMP) were used as analytes. The responses of the chemical sensors against DMMP were the highest among the tested analytes; thus, fabricated chemical sensors based on PMeT can be evaluated as potential candidates for selectively detecting DMMP. Generally, detection limits in the low ppm range could be achieved. The gas sensing measurements were recorded at various humid air conditions to investigate the effects of the humidity on the gas sensing properties. The sensing performance of the chemical sensors was slightly reduced in the presence of humidity in ambient conditions. While a decrease in sensitivity was observed for humidity levels up to 50% r.h., the sensitivity was nearly unaffected for higher humidity levels and a reliable detection of the VOCs and DMMP was possible with detection limits in the low ppm range. PMID:27023539

  3. Remote sensing procurement package: Remote Sensing Industry Directory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A directory of over 140 firms and organizations which contains detailed information in the types of products, services and equipment which they offer is presented. Also included for each firm or organization are addresses, phone numbers, contact person(s), and experience in the remote sensing field.

  4. Organ-level quorum sensing directs regeneration in hair stem cell populations

    PubMed Central

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V.; Jiang, Ting Xin; Murray, Philip J.; Ramos, Raul; Guerrero-Juarez, Christian F.; Hughes, Michael W; Lee, Oscar K.; Shi, Songtao; Widelitz, Randall B.; Lander, Arthur D.; Chuong, Cheng Ming

    2015-01-01

    SUMMARY Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair removal, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Removing hair at different densities leads to a regeneration of up to 5 times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  5. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media

    NASA Astrophysics Data System (ADS)

    Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa

    2017-08-01

    This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.

  6. Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection.

    PubMed

    Zhang, Rui; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-03-21

    Highly sensitive and stable gas sensors have attracted much attention because they are the key to innovations in the fields of environment, health, energy savings and security, etc. Sensing materials, which influence the practical sensing performance, are the crucial parts for gas sensors. Metal-organic frameworks (MOFs) are considered as alluring sensing materials for gas sensors because of the possession of high specific surface area, unique morphology, abundant metal sites, and functional linkers. Herein, four kinds of porous hierarchical Co 3 O 4 structures have been selectively controlled by optimizing the thermal decomposition (temperature, rate, and atmosphere) using ZIF-67 as precursor that was obtained from coprecipitation method with the co-assistance of cobalt salt and 2-methylimidazole in the solution of methanol. These hierarchical Co 3 O 4 structures, with controllable cross-linked channels, meso-/micropores, and adjustable surface area, are efficient catalytic materials for gas sensing. Benefits from structural advantages, core-shell, and porous core-shell Co 3 O 4 exhibit enhanced sensing performance compared to those of porous popcorn and nanoparticle Co 3 O 4 to acetone gas. These novel MOF-templated Co 3 O 4 hierarchical structures are so fantastic that they can be expected to be efficient sensing materials for development of low-temperature operating gas sensors.

  7. Recalibrating sleep: is recalibration and readjustment of sense organs and brain-body connections the core function of sleep?

    PubMed

    Smetacek, Victor

    2010-10-01

    Sleep is an enigma because we all know what it means and does to us, yet a scientific explanation for why animals including humans need to sleep is still lacking. However, the enigma can be resolved if the animal body is regarded as a purposeful machine whose moving parts are coordinated with spatial information provided by a disparate array of sense organs. The performance of all complex machines deteriorates with time due to inevitable instrument drift of the individual sensors combined with wear and tear of the moving parts which result in declining precision and coordination. Peak performance is restored by servicing the machine, which involves calibrating the sensors against baselines and standards, then with one another, and finally readjusting the connections between instruments and moving parts. It follows that the animal body and its sensors will also require regular calibration of sense organs and readjustment of brain-body connections which will need to be carried out while the animal is not in functional but in calibration mode. I suggest that this is the core function of sleep. This recalibration hypothesis of sleep can be tested subjectively. We all know from personal experience that sleep is needed to recover from tiredness that sets in towards the end of a long day. This tiredness, which is quite distinct from mental or muscular exhaustion caused by strenuous exertion, manifests itself in deteriorating general performance: the sense organs lose precision, movements become clumsy and the mind struggles to maintain focus. We can all agree that sleep sharpens the sense organs and restores agility to mind and body. I now propose that the sense of freshness and buoyancy after a good night's sleep is the feeling of recalibrated sensory and motor systems. The hypothesis can be tested rigorously by examining available data on sleep cycles and stages against this background. For instance, REM and deep sleep cycles can be interpreted as successive, separate

  8. Useless hearing in male Emblemasoma auditrix (Diptera, Sarcophagidae)--a case of intralocus sexual conflict during evolution of a complex sense organ?

    PubMed

    Lakes-Harlan, Reinhard; Devries, Thomas; Stölting, Heiko; Stumpner, Andreas

    2014-01-01

    Sensory modalities typically are important for both sexes, although sex-specific functional adaptations may occur frequently. This is true for hearing as well. Consequently, distinct behavioural functions were identified for the different insect hearing systems. Here we describe a first case, where a trait of an evolutionary novelty and a highly specialized hearing organ is adaptive in only one sex. The main function of hearing of the parasitoid fly Emblemasoma auditrix is to locate the host, males of the cicada species Okanagana rimosa, by their calling song. This task is performed by female flies, which deposit larvae into the host. We show that male E. auditrix possess a hearing sense as well. The morphology of the tympanal organ of male E. auditrix is rather similar to the female ear, which is 8% broader than the male ear. In both sexes the physiological hearing threshold is tuned to 5 kHz. Behavioural tests show that males are able to orient towards the host calling song, although phonotaxis often is incomplete. However, despite extensive observations in the field and substantial knowledge of the biology of E. auditrix, no potentially adaptive function of the male auditory sense has been identified. This unique hearing system might represent an intralocus sexual conflict, as the complex sense organ and the behavioural relevant neuronal network is adaptive for only one sex. The correlated evolution of the sense organ in both sexes might impose substantial constraints on the sensory properties of the ear. Similar constraints, although hidden, might also apply to other sensory systems in which behavioural functions differ between sexes.

  9. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition.

    PubMed

    Viscarra Rossel, Raphael A; Lobsey, Craig R; Sharman, Chris; Flick, Paul; McLachlan, Gordon

    2017-05-16

    Soil information is needed for environmental monitoring to address current concerns over food, water and energy securities, land degradation, and climate change. We developed the Soil Condition ANalysis System (SCANS) to help address these needs. It integrates an automated soil core sensing system (CSS) with statistical analytics and modeling to characterize soil at fine depth resolutions and across landscapes. The CSS's sensors include a γ-ray attenuation densitometer to measure bulk density, digital cameras to image the measured soil, and a visible-near-infrared (vis-NIR) spectrometer to measure iron oxides and clay mineralogy. The spectra are also modeled to estimate total soil organic carbon (C), particulate, humus, and resistant organic C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity (AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise, quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central role soil plays in our environment.

  10. THE EPA REMOTE SENSING ARCHIVE

    EPA Science Inventory

    What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...

  11. Fabrication of Organic Transistors Using Nanomaterials for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Harb, Mohamed E.; Ebrahim, Shaker; Soliman, Moataz; Shabana, Mahmoud

    2018-01-01

    In this work, an organic field-effect transistor (OFET) was fabricated and characterized based on the bottom contact of a polyaniline (PANI) or PANI/TiO2 nanocomposite as an active layer and SiO2 as an insulating layer to be used for ammonia gas sensing applications. The OFET sensors exhibited a change in the drain current when exposed to NH3. Titanium dioxide (TiO2) nanoparticles with different weight percentages (0-50 wt.%) were added to dope PANI and enhance charge carrier transport, although the response of both the PANI OFET sensor and PANI/TiO2 OFET sensor has reached saturation value at almost the same period. The response of PANI/TiO2 transistor is (2.5), which is much higher than that of PANI (0.17). The results showed that the sensor response of the OFET device fabricated with PANI/TiO2 is 15 times greater than that with an OFET device fabricated using pristine PANI.

  12. Sall1 Maintains Nephron Progenitors and Nascent Nephrons by Acting as Both an Activator and a Repressor

    PubMed Central

    Kanda, Shoichiro; Tanigawa, Shunsuke; Ohmori, Tomoko; Taguchi, Atsuhiro; Kudo, Kuniko; Suzuki, Yutaka; Sato, Yuki; Hino, Shinjiro; Sander, Maike; Perantoni, Alan O.; Sugano, Sumio; Nakao, Mitsuyoshi

    2014-01-01

    The balanced self-renewal and differentiation of nephron progenitors are critical for kidney development and controlled, in part, by the transcription factor Six2, which antagonizes canonical Wnt signaling-mediated differentiation. A nuclear factor, Sall1, is expressed in Six2-positive progenitors as well as differentiating nascent nephrons, and it is essential for kidney formation. However, the molecular functions and targets of Sall1, especially the functions and targets in the nephron progenitors, remain unknown. Here, we report that Sall1 deletion in Six2-positive nephron progenitors results in severe progenitor depletion and apoptosis of the differentiating nephrons in mice. Analysis of mice with an inducible Sall1 deletion revealed that Sall1 activates genes expressed in progenitors while repressing genes expressed in differentiating nephrons. Sall1 and Six2 co-occupied many progenitor-related gene loci, and Sall1 bound to Six2 biochemically. In contrast, Sall1 did not bind to the Wnt4 locus suppressed by Six2. Sall1-mediated repression was also independent of its binding to DNA. Thus, Sall1 maintains nephron progenitors and their derivatives by a unique mechanism, which partly overlaps but is distinct from that of Six2: Sall1 activates progenitor-related genes in Six2-positive nephron progenitors and represses gene expression in Six2-negative differentiating nascent nephrons. PMID:24744442

  13. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  14. Embedded Touch Sensing Circuit Using Mutual Capacitance for Active-Matrix Organic Light-Emitting Diode Display

    NASA Astrophysics Data System (ADS)

    Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun

    2011-03-01

    We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.

  15. Systematic review of smartphone-based passive sensing for health and wellbeing.

    PubMed

    Cornet, Victor P; Holden, Richard J

    2018-01-01

    To review published empirical literature on the use of smartphone-based passive sensing for health and wellbeing. A systematic review of the English language literature was performed following PRISMA guidelines. Papers indexed in computing, technology, and medical databases were included if they were empirical, focused on health and/or wellbeing, involved the collection of data via smartphones, and described the utilized technology as passive or requiring minimal user interaction. Thirty-five papers were included in the review. Studies were performed around the world, with samples of up to 171 (median n = 15) representing individuals with bipolar disorder, schizophrenia, depression, older adults, and the general population. The majority of studies used the Android operating system and an array of smartphone sensors, most frequently capturing accelerometry, location, audio, and usage data. Captured data were usually sent to a remote server for processing but were shared with participants in only 40% of studies. Reported benefits of passive sensing included accurately detecting changes in status, behavior change through feedback, and increased accountability in participants. Studies reported facing technical, methodological, and privacy challenges. Studies in the nascent area of smartphone-based passive sensing for health and wellbeing demonstrate promise and invite continued research and investment. Existing studies suffer from weaknesses in research design, lack of feedback and clinical integration, and inadequate attention to privacy issues. Key recommendations relate to developing passive sensing strategies matching the problem at hand, using personalized interventions, and addressing methodological and privacy challenges. As evolving passive sensing technology presents new possibilities for health and wellbeing, additional research must address methodological, clinical integration, and privacy issues. Doing so depends on interdisciplinary collaboration

  16. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    PubMed

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  17. On the Use of Ocean Color Remote Sensing to Measure the Transport of Dissolved Organic Carbon by the Mississippi River Plume

    NASA Technical Reports Server (NTRS)

    DelCastillo, Carlos E.; Miller, Richard L.

    2007-01-01

    We investigated the use of ocean color remote sensing to measure transport of dissolved organic carbon (DOC) by the Mississippi River to the Gulf of Mexico. From 2000 to 2005 we recorded surface measurements of DOC, colored dissolved organic matter (CDOM), salinity, and water-leaving radiances during five cruises to the Mississippi River Plume. These measurements were used to develop empirical relationships to derive CDOM, DOC, and salinity from monthly composites of SeaWiFS imagery collected from 1998 through 2005. We used river flow data and a two-end-member mixing model to derive DOC concentrations in the river end-member, river flow, and DOC transport using remote sensing data. We compared our remote sensing estimates of river flow and DOC transport with data collected by the United States Geological Survey (USGS) from 1998 through 2005. Our remote sensing estimates of river flow and DOC transport correlated well (r2 0.70) with the USGS data. Our remote sensing estimates and USGS field data showed low variability in DOC concentrations in the river end-member (7-11%), and high seasonal variability in river flow (50%). Therefore, changes in river flow control the variability in DOC transport, indicating that the remote sensing estimate of river flow is the most critical element of our DOC transport measurement. We concluded that it is possible to use this method to estimate DOC transport by other large rivers if there are data on the relationship between CDOM, DOC, and salinity in the river plume.

  18. The role of the style as a sense-organ in relation to wilting of the flower.

    PubMed

    Gilissen, L J

    1976-01-01

    Pollen tube growth in the style (Petunia ♀xNicotiana ♂) accelerated wilting. Pollination and germination on the stigmatic surface (Petunia ♀xAtropa ♂) did not change the stage of flowering in comparison with unpollinated flowers. Wilting of the corolla was accelerated by cutting off the stigma or cutting the style half-way down. Removal of the entire style also brought about an acceleration, however, to a lesser extent. The role of the style as a sense-organ with regard to the transmission of information from stigma and style to other flower organs is discussed.

  19. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure

    PubMed Central

    Zhang, Jinwei; Landick, Robert

    2016-01-01

    The vectorial (5′-to-3′ at varying velocity) synthesis of RNA by cellular RNA polymerases creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNA polymerase and nascent RNA structure. We categorize and attempt to rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. PMID:26822487

  20. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.

    PubMed

    Zhang, Jinwei; Landick, Robert

    2016-04-01

    The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Philipson, W. R. (Principal Investigator)

    1983-01-01

    Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.

  2. Earth view: A business guide to orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1990-01-01

    The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.

  3. Assembly of ZIF-67 Metal-Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO2 Gas Sensing.

    PubMed

    DMello, Marilyn Esclance; Sundaram, Nalini G; Kalidindi, Suresh Babu

    2018-05-03

    Metal-organic frameworks (MOFs) are widely known for their record storage capacities of small gas molecules (H 2 , CO 2 , and CH 4 ). Assembly of such porous materials onto well-known chemiresistive gas sensing elements such as SnO 2 could be an attractive prospect to achieve novel sensing properties as this affects the surface chemistry of SnO 2 . Cobalt-imidazole based ZIF-67 MOF was grown onto preformed SnO 2 nanoparticles to realize core-shell like architecture and explored for greenhouse gas CO 2 sensing. CO 2 sensing over SnO 2 is a challenge because its interaction with SnO 2 surface is minimal. The ZIF-67 coating over SnO 2 improved the response of SnO 2 up to 12-fold (for 50 % CO 2 ). The SnO 2 @ZIF-67 also showed a response of 16.5±2.1 % for 5000 ppm CO 2 (threshold limit value (TLV)) at 205 °C, one of the best values reported for a SnO 2 -based sensor. The observed novel CO 2 sensing characteristics are assigned to electronic structure changes at the interface of ZIF-67 and SnO 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Directional gravity sensing in gravitropism.

    PubMed

    Morita, Miyo Terao

    2010-01-01

    Plants can reorient their growth direction by sensing organ tilt relative to the direction of gravity. With respect to gravity sensing in gravitropism, the classic starch statolith hypothesis, i.e., that starch-accumulating amyloplast movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Several lines of experimental evidence have demonstrated that starch is important but not essential for gravity sensing and have suggested that it is reasonable to regard plastids (containers of starch) as statoliths. Although the word statolith means sedimented stone, actual amyloplasts are not static but instead possess dynamic movement. Recent studies combining genetic and cell biological approaches, using Arabidopsis thaliana, have demonstrated that amyloplast movement is an intricate process involving vacuolar membrane structures and the actin cytoskeleton. This review covers current knowledge regarding gravity sensing, particularly gravity susception, and the factors modulating the function of amyloplasts for sensing the directional change of gravity. Specific emphasis is made on the remarkable differences in the cytological properties, developmental origins, tissue locations, and response of statocytes between root and shoot systems. Such an approach reveals a common theme in directional gravity-sensing mechanisms in these two disparate organs.

  5. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain

    PubMed Central

    Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.

    2017-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820

  6. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones

    PubMed Central

    Pausch, Patrick; Singh, Ujjwala; Ahmed, Yasar Luqman; Pillet, Benjamin; Murat, Guillaume; Altegoer, Florian; Stier, Gunter; Thoms, Matthias; Hurt, Ed; Sinning, Irmgard; Bange, Gert; Kressler, Dieter

    2015-01-01

    Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1's WD-repeat β-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation. PMID:26112308

  7. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  8. Making sense of polarities in health organizations for policy and leadership.

    PubMed

    Martin, Carmel M

    2010-10-01

    Making sense of complex adaptive clinical practice and health systems is a pressing challenge as health services continue to struggle to adapt to changing internal and external constraints. In this Forum, we begin with Dervin's Sense-Making theories and research in communications. This provides a conceptual and theoretical context for this editions research on comparative complexity of family medicine consultations in the USA, models for adaptive leadership in clinical care and social networking to make sense of health promotion challenges for young people. Finally, a Sense-Making schema is proposed. © 2010 Blackwell Publishing Ltd.

  9. Selective ribosome profiling as a tool to study the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes

    PubMed Central

    Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd

    2014-01-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347

  10. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    PubMed

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  11. Photoionization mass spectrometry for the investigation of combustion generated nascent nanoparticles and their relation to laser induced incandescence

    NASA Astrophysics Data System (ADS)

    Grotheer, H.-H.; Wolf, K.; Hoffmann, K.

    2011-08-01

    Premixed laminar flat ethylene flames were investigated for nascent nanoparticles through photoionization mass spectrometry (PIMS). Using an atmospheric McKenna burner and ethylene air flames coupled to an atmospheric sampling system, within a relatively narrow C/O range two modes of these particles were found, which can be clearly distinguished with regard to their temperature dependence, their reactivity, and their ionization behaviour. Behind a diesel engine the same particles were observed. These results were corroborated using a low pressure ethylene-O2 flame coupled to a high resolution mass spectrometer. In this case, due to a special inlet system, it was possible to operate the flame in a fairly wide C/O range without clogging of the inlet nozzles. This allowed pursuing the development of particle size distribution functions (PSDF) well into the regime of mature soot. In addition, on the low mass side of the particle spectra measurements with unity resolution were possible and this allowed gaining information concerning their growth mechanism and structure. Finally, in an attempt to mimic Laser Induced Incandescence (LII) experiments the soot-laden molecular beam was exposed to IR irradiation. This resulted in a near complete destruction of nascent particles under LII typical fluences. Small C clusters between 3 and 17 C atoms were found. In addition and with much higher intensities, clusters comprising several hundreds of C atoms were also detected, the latter even at very low fluences when small clusters were totally absent.

  12. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  13. RNA editing in nascent RNA affects pre-mRNA splicing

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni

    2018-01-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793

  14. Self-organized Motion During Dictyostelium amoebae aggregation

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2004-03-01

    After starvation, amoeba of the cellular slime mold Dictyostelium discoideum aggregate to form rudimentary multicellular organisms. The coordination of the individual motions of hundreds of thousands of individual cells is an important ingredient in the success of this process. This coordination is accomplished by chemical signaling during the early stages and by direct cell-cell interactions once the cells reach the nascent mound. This talk will review the basic nonequilibrium physics underlying the spatial patterns formed by these cooperative motions, including high-density incoming streams and spontaneously rotating mounds.

  15. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and

  16. Science & the Senses: Perceptions & Deceptions

    ERIC Educational Resources Information Center

    Stansfield, William D.

    2012-01-01

    Science requires the acquisition and analysis of empirical (sense-derived) data. Given the same physical objects or phenomena, the sense organs of all people do not respond equally to these stimuli, nor do their minds interpret sensory signals identically. Therefore, teachers should develop lectures on human sensory systems that include some…

  17. Monitoring spatial variations in soil organic carbon using remote sensing and geographic information systems

    NASA Astrophysics Data System (ADS)

    Jaber, Salahuddin M.

    Soil organic carbon (SOC) sequestration is a component of larger strategies to control the accumulation of greenhouse gases that may be causing global warming. To implement this approach, it is necessary to improve the methods of measuring SOC content. Among these methods are indirect remote sensing and geographic information systems (GIS) techniques that are required to provide non-intrusive, low cost, and spatially continuous information that cover large areas on a repetitive basis. The main goal of this study is to evaluate the effects of using Hyperion hyperspectral data on improving the existing remote sensing and GIS-based methodologies for rapidly, efficiently, and accurately measuring SOC content on farmland. The study area is Big Creek Watershed (BCW) in Southern Illinois. The methodology consists of compiling a GIS database (consisting of remote sensing and soil variables) for 303 composite soil samples collected from representative pixels along the Hyperion coverage area of the watershed. Stepwise procedures were used to calibrate and validate linear multiple regression models where SOC was regarded as the response and the other remote sensing and soil variables as the predictors. Two models were selected. The first was the best all variables model and the second was the best only raster variables model. Map algebra was implemented to extrapolate the best only raster variables model and produce a SOC map for the BGW. This study concluded that Hyperion data marginally improved the predictability of the existing SOC statistical models based on multispectral satellite remote sensing sensors with correlation coefficient of 0.37 and root mean square error of 3.19 metric tons/hectare to a 15-cm depth. The total SOC pool of the study area is about 225,232 metric tons to 15-cm depth. The nonforested wetlands contained the highest SOC density (34.3 metric tons/hectare/15cm) with total SOC content of about 2,003.5 metric tons to 15-cm depth, where croplands had

  18. Structural Basis for Recognition and Sequestration of UUUOH 3 ' Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova,M.; Yuan, Y.; Phan, A.

    2006-01-01

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUUOH 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 Angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the {beta} sheet edge,more » rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUUOH 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.« less

  19. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    PubMed Central

    Foulk, Michael S.; Urban, John M.; Casella, Cinzia; Gerbi, Susan A.

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. PMID:25695952

  20. Sense of place among New England organic farmers and commercial fishermen: How social context shapes identity and environmentally responsible behavior

    NASA Astrophysics Data System (ADS)

    Mueller, Anneliese Marie

    Given the prominence of sense of place in new environmental education curricula, this study aims to strengthen the conceptual and empirical foundations of sense of place, and to determine how sense of place may be linked to environmentally responsible behavior. For this study, five commercial fishermen and five organic farmers from the New England Seacoast region participated in a series of in-depth phenomenological interviews and observations. The data was systematically coded in order to allow themes and categories to emerge. The results indicate that aspects of the existing conceptual framework of sense of place, such as place attachment, ecological knowledge, and public involvement, do in fact describe the relationship between people and place. However, the results also indicate that two conceptual elements---attention to social context and awareness of moral theory---are missing from the current conceptual framework in EE theory. These results suggest that the current framework should be expanded to emphasize the role of human and non-human communities: the development of a sense of place and the learning of environmentally responsible behavior must be situated within a social context. This study lends support to the view that for sense of place to move people to ethical action, it is crucial for them to recognize, and to participate in, a community of support and care.

  1. Plastids and gravitropic sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1997-01-01

    Data and theories about the identity of the mass that acts in gravitropic sensing are reviewed. Gravity sensing may have evolved several times in plants and algae in processes such as gravitropism of organs and tip-growing cells, gravimorphism, gravitaxis, and the regulation of cytoplasmic streaming in internodal cells of Chara. In the latter and in gravitaxis, the mass of the entire cell may function in sensing. But gravitropic sensing appears to rely upon the mass of amyloplasts that sediment since (i) the location of cells with sedimentation is highly regulated, (ii) such cells contain other morphological specializations favoring sedimentation, (iii) sedimentation always correlates with gravitropic competence in wild-type plants, (iv) magnetophoretic movement of rootcap amyloplasts mimics gravitropism, and (v) starchless and intermediate starch mutants show reduced gravitropic sensitivity. The simplest interpretation of these data is that gravitropic sensing is plastid-based.

  2. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  3. Metal–Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform

    DOE PAGES

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T.; ...

    2018-01-18

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability ofmore » MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2, N 2, O 2, and CO) with rapid (< tens of seconds) response time and excellent reversibility, which can be well correlated to the physisorption of gases into a nanoporous MOF. We propose a refractive index based sensing mechanism for the MOF-integrated optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.« less

  4. Detection of volatile organic compounds through a sensing film of TiO II doped with organic dyes deposited on an optical fiber

    NASA Astrophysics Data System (ADS)

    Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.

    2007-03-01

    The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.

  5. Proximal sensing for soil carbon accounting

    NASA Astrophysics Data System (ADS)

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-05-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible-near-infrared (vis-NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.

  6. Gas Phase Sensing of Alcohols by Metal Organic Framework–Polymer Composite Materials

    PubMed Central

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in a Matrimid polymer matrix with different weight ratios (0–100 wt %) and drop-casted on planar capacitive transducer devices. These coated devices were electrically analyzed using impedance spectroscopy and investigated for their sensing properties toward the detection of a series of alcohols and water in the gas phase. The measurements indicated a reversible and reproducible response in all devices. Sensor devices containing 40 wt % NH2-MIL-53(Al) in Matrimid showed a maximum response for methanol and water. The sensor response time slowed down with increasing MOF concentration until 40 wt %. The half time of saturation response (τ0.5) increased by ∼1.75 times for the 40 wt % composition compared to devices coated with Matrimid only. This is attributed to polymer rigidification near the MOF/polymer interface. Higher MOF loadings (≥50 wt %) resulted in brittle coatings with a response similar to the 100 wt % MOF coating. Cross-sensitivity studies showed the ability to kinetically distinguish between the different alcohols with a faster response for methanol and water compared to ethanol and 2-propanol. The observed higher affinity of the pure Matrimid polymer toward methanol compared to water allows also for a higher uptake of methanol in the composite matrices. Also, as indicated by the sensing studies with a mixture of water and methanol, the methanol uptake is independent of the presence of water up to 6000 ppm of water. The NH2-MIL-53(Al) MOFs dispersed in the Matrimid matrix show a sensitive and reversible capacitive response, even in the presence of water. By tuning the precise compositions, the affinity kinetics and overall affinity can be tuned, showing

  7. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  8. RNA editing in nascent RNA affects pre-mRNA splicing.

    PubMed

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu

    2018-06-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes).

    PubMed

    Fields, R D; Bullock, T H; Lange, G D

    1993-01-01

    Ampullary sense organs are distributed in groups over the head of Hydrolagus colliei with their pores in clusters and innervated by the buccal, hyomandibular and superficial ophthalmic branches of the anterior lateral line nerve. The ampullae contain ciliated sense cells in an alveolate-shaped epithelium, which communicates to the surface through a jelly-filled tube. The sense cells synapse at their bases with the afferent nerve fibers that terminate in the dorsal nucleus of the anterior lateral line lobe of the medulla. The anatomy and ultrastructure support the homology with the ampullae of Lorenzini of elasmobranchs. Single units recorded from the buccal branch of the anterior lateral line nerve are either lateral line or ampullary in character, the former being sensitive only to mechanical stimuli, the latter to both mechanical and to weak electric stimuli. They are also distinguished by the positions of their receptive fields. The electroreceptive units are spontaneously active and are excited by a cathode placed near the opening of their pore and inhibited by an anode. Compound evoked potentials are recorded from beneath the lateral aspect of the tectum in response to weak electric fields in the bath. Each recording locus has a best position and orientation of the electric field. The electric fields are effective if their duration is longer than ca. 2 ms; longer than 10 ms makes no difference until an OFF effect becomes distinct at ca. 50 ms. The reception is tuned to low frequencies but is not sensitive to maintained current (DC). Evoked potentials summating moderate numbers of responses are clear at < 1 microV/cm. Ratfish were conditioned in a ring-shaped tank to reverse the direction of swimming when an electric field was switched ON. The stimulus was a 5 Hz square wave or the onset of a DC of 1-10 microA between a pair of electrodes on the floor of the tank. The fish responded to fields as weak as 0.2 microV/cm. A specialized sense modality for

  10. A novel microbial fuel cell sensor with biocathode sensing element.

    PubMed

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-08-15

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA% -1 cm -2 ) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA% -1 cm -2 ). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  12. Structural basis for recognition and sequestration of UUU(OH) 3' temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen.

    PubMed

    Teplova, Marianna; Yuan, Yu-Ren; Phan, Anh Tuân; Malinina, Lucy; Ilin, Serge; Teplov, Alexei; Patel, Dinshaw J

    2006-01-06

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUU(OH) 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the beta sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUU(OH) 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.

  13. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins.

    PubMed

    Foulk, Michael S; Urban, John M; Casella, Cinzia; Gerbi, Susan A

    2015-05-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand-independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo-controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na(+) instead of K(+) in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. © 2015 Foulk et al.; Published by Cold Spring Harbor Laboratory Press.

  14. A luminescent ytterbium(III)-organic framework for highly selective sensing of 2,4,6-trinitrophenol

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Zhang, Minghui; Ji, Shijie; Dong, Hanxiao; Zhang, Liangliang

    2018-06-01

    An ytterbium(III)-organic framework, [Yb4(abtc)3(HCOO) (H2O)]·(C2H8N) (H2O) (UPC-22, H4abtc = 3,3‧,5,5‧-azobenzene-tetracarboxylic acid) was synthesized under solvothermal conditions and characterized. UPC-22 exhibited strong H4abtc-based luminescence and can be used for sensing nitroaromatic compounds (NACs) in an ethanol suspension with outstanding selectivity and sensitivity. The most striking property of UPC-22 is its ability to selectively detect 2,4,6-trinitrophenol (TNP), thereby rendering it a promising TNP-selective luminescence probe.

  15. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.; Newhouse, M. E.

    1974-01-01

    Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.

  16. Multi-imaging analysis of nascent surface structures generated during femtosecond laser irradiation of silicon in high vacuum

    NASA Astrophysics Data System (ADS)

    Gesuele, F.; JJ Nivas, J.; Fittipaldi, R.; Altucci, C.; Bruzzese, R.; Maddalena, P.; Amoruso, S.

    2018-02-01

    We report a correlative imaging analysis of a crystalline silicon target after irradiation with a low number of 1055 nm, 850 fs laser pulses with several microscopy techniques (e.g., scanning electron microscopy, atomic force microscopy, Raman micro-imaging and confocal optical microscopy). The analysis is carried out on samples irradiated both in high vacuum and at atmospheric pressure conditions, evidencing interesting differences induced by the ambient environment. In high-vacuum conditions, the results evidence the formation of a halo, which is constituted by alternate stripes of amorphous and crystalline silicon, around the nascent ablation crater. In air, such an effect is drastically reduced, due to the significant back-deposition of nanoparticulate material induced by the larger ambient pressure.

  17. Remote sensing capacity of Raman spectroscopy in identification of mineral and organic constituents

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Stoker, Carol; Cabrol, Nathalie; McKay, Christopher P.

    2007-09-01

    We present design, integration and test results for a field Raman spectrometer science payload, integrated into the Mars Analog Research and Technology (MARTE) drilling platform. During the drilling operation, the subsurface Raman spectroscopy inspection system has obtained signatures of organic and mineral compositions. We also performed ground truth studies using both this field unit and a laboratory micro Raman spectrometer equipped with multiple laser excitation wavelengths on series of field samples including Mojave rocks, Laguna Verde salty sediment and Rio Tinto topsoil. We have evaluated laser excitation conditions and optical probe designs for further improvement. We have demonstrated promising potential for Raman spectroscopy as a non-destructive in situ, high throughput, subsurface detection technique, as well as a desirable active remote sensing tool for future planetary and space missions.

  18. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  19. An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate

    PubMed Central

    MacKinnon, Andrew L; Paavilainen, Ville O; Sharma, Ajay; Hegde, Ramanujan S; Taunton, Jack

    2014-01-01

    Membrane protein biogenesis requires the coordinated movement of hydrophobic transmembrane domains (TMD) from the cytosolic vestibule of the Sec61 channel into the lipid bilayer. Molecular insight into TMD integration has been hampered by the difficulty of characterizing intermediates during this intrinsically dynamic process. In this study, we show that cotransin, a substrate-selective Sec61 inhibitor, traps nascent TMDs in the cytosolic vestibule, permitting detailed interrogation of an early pre-integration intermediate. Site-specific crosslinking revealed the pre-integrated TMD docked to Sec61 near the cytosolic tip of the lateral gate. Escape from cotransin-arrest depends not only on cotransin concentration, but also on the biophysical properties of the TMD. Genetic selection of cotransin-resistant cancer cells uncovered multiple mutations clustered near the lumenal plug of Sec61α, thus revealing cotransin’s likely site of action. Our results suggest that TMD/lateral gate interactions facilitate TMD transfer into the membrane, a process that is allosterically modulated by cotransin binding to the plug. DOI: http://dx.doi.org/10.7554/eLife.01483.001 PMID:24497544

  20. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Nascent PO(X 2Π) E,V,R,T excitations from collision-free IR laser photolysis: Specificity toward the PO(X 2Pi 1/2) spin-orbit statea)

    NASA Astrophysics Data System (ADS)

    Chou, Jim-Son; Sumida, David S.; Wittig, C.

    1985-02-01

    PO (X 2Π) is produced via the collision-free infrared multiple photon dissociation (IRMPD) of volatile organophosphorous molecules, and is detected by two-frequency two-photon ionization, using the B 2Σ+ state to provide a spectral signature from which X 2Π populations are obtained. Sequential dissociations occur during the IR laser photolysis, in which nascent fragments continue to undergo IRMPD, and PO (X 2Π) accrues from a series of bond fission reactions. Nascent vibrational, rotational, and translational excitations are in sensible accord with this mechanism, except for a few rotational states near J=19.5. Unlike the nuclear degrees of freedom, the PO (X 2Π) spin-orbit states are populated quite selectively. The 2Π3/2 state, lying only 224 cm-1 above the 2Π1/2 ground state, contains only ˜11% of the population, compared to 34% for a 300 K sample. This result is unambiguous; it persists with all precursors, laser fluences, etc., and is verified by comparisons to spectra obtained using a microwave discharge, a flame, and when thermalizing nascent excitations with an inert diluent. This result underscores the importance of the separate potential surfaces which correlate to the product spin-orbit states, and the small amount of 2Π3/2 population can be accounted for by nonadiabatic coupling during dissociation, and/or ``freezing'' the amount of S1 character in an excited precursor in which S0 and S1 are coupled nonradiatively. We note that such electronic specificity should be dealt with in the analogous recombination reactions.

  2. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.

    PubMed

    Kolinjivadi, Arun Mouli; Sannino, Vincenzo; De Antoni, Anna; Zadorozhny, Karina; Kilkenny, Mairi; Técher, Hervé; Baldi, Giorgio; Shen, Rong; Ciccia, Alberto; Pellegrini, Luca; Krejci, Lumir; Costanzo, Vincenzo

    2017-09-07

    Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    PubMed Central

    Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432

  4. Remote sensing of ecology, biodiversity and conservation: a review from the perspective of remote sensing specialists.

    PubMed

    Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc

    2010-01-01

    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).

  5. Isolation of nucleoli from Ehrlich ascites tumor cells and dynamics of nascent RNA within isolated nucleoli.

    PubMed

    Thiry, Marc; Ploton, Dominique

    2008-01-01

    Here we describe a new, rapid method for isolating nucleoli from Ehrlich tumor cells that preserves their morphological integrity and high transcriptional activity. Until now, methods for isolation of nucleoli were generally assumed to empty one of their three main compartments, the fibrillar center, of its contents. This new method consists of sonicating cells in an isotonic medium containing MgSO(4), spermidine, and spermine, followed by separation of nucleoli through a Percoll density gradient. Using the nonisotopic approach of labelling with BrUTP, we have further investigated the dynamics of nascent ribosomal RNAs (rRNAs) within morphologically intact isolated nucleoli at the electron microscope level. We show that ribosomal transcripts are elongated in the cortex of the fibrillar center and then enter the surrounding dense fibrillar component.

  6. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  7. Self-organization of muscle cell structure and function.

    PubMed

    Grosberg, Anna; Kuo, Po-Ling; Guo, Chin-Lin; Geisse, Nicholas A; Bray, Mark-Anthony; Adams, William J; Sheehy, Sean P; Parker, Kevin Kit

    2011-02-01

    The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.

  8. NASA Workshop on Animal Gravity-Sensing Systems

    NASA Technical Reports Server (NTRS)

    Corcoran, M. L. (Editor)

    1986-01-01

    The opportunity for space flight has brought about the need for well-planned research programs that recognize the significance of space flight as a scientific research tool for advancing knowledge of life on Earth, and that utilize each flight opportunity to its fullest. For the first time in history, gravity can be almost completely eliminated. Thus, studies can be undertaken that will help to elucidate the importance of gravity to the normal functioning of living organisms, and to determine the effects microgravity may have on an organism. This workshop was convened to organize a plan for space research on animal gravity-sensing systems and the role that gravity plays in the development and normal functioning of these systems. Scientists working in the field of animal gravity-sensing systems use a wide variety of organisms in their research. The workshop presentations dealt with topics which ranged from the indirect gravity receptor of the water flea, Daphnia (whose antennal setae apparently act as current-sensing receptors as the animal moves up and down in water), through specialized statocyst structures found in jellyfish and gastropods, to the more complex vestibular systems that are characteristic of amphibians, avians, and mammals.

  9. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  10. Indicators of international remote sensing activities

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1977-01-01

    The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.

  11. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    PubMed Central

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F.

    2018-01-01

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds. PMID:29346281

  12. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    PubMed

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  13. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    PubMed

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    Boylan, M.; Vlasin, R. D.

    1976-01-01

    Uses of remote sensing imagery were investigated based on exploring and evaluating the capability and reliability of all kinds of imagery for improving decision making on issues of land use at all scales of governmental administration. Emphasis was placed on applications to solving immediate problems confronting public agencies and private organizations. Resulting applications of remote sensing use by public agencies, public organizations, and related private corporations are described.

  15. Position-specific binding of FUS to nascent RNA regulates mRNA length

    PubMed Central

    Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen

    2015-01-01

    More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189

  16. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  17. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    PubMed

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Active and Passive Remote Sensing of Ice

    DTIC Science & Technology

    1993-01-26

    92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers

  19. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    PubMed Central

    Hromadka, Jiri; Korposh, Sergiy; Partridge, Matthew; James, Stephen W.; Davis, Frank; Crump, Derrick; Tatam, Ralph P.

    2017-01-01

    A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4]) or p-sulphanato calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH) and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006) was used to test the LPG sensor performance. PMID:28208691

  20. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  1. Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae).

    PubMed

    Alt, Joscha A; Lakes-Harlan, Reinhard

    2018-05-01

    Detection of substrate vibrations is an evolutionarily old sensory modality and is important for predator detection as well as for intraspecific communication. In insects, substrate vibrations are detected mainly by scolopidial (chordotonal) sense organs found at different sites in the legs. Among these sense organs, the tibial subgenual organ (SGO) is one of the most sensitive sensors. The neuroanatomy and physiology of vibratory sense organs of cicadas is not well known. Here, we investigated the leg nerve by neuronal tracing and summed nerve recordings. Tracing with Neurobiotin revealed that the cicada Okanagana rimosa (Say) (Hemiptera: Cicadidae) has a femoral chordotonal organ with about 20 sensory cells and a tibial SGO with two sensory cells. Recordings from the leg nerve show that the vibrational response is broadly tuned with a threshold of about 1 m/s2 and a minimum latency of about 6 ms. The vibratory sense of cicadas might be used in predator avoidance and intraspecific communication, although no tuning to the peak frequency of the calling song (9 kHz) could be found.

  2. Development of gravity-sensing organs in altered gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1997-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in microgravity on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high g. Newt larvae launched before any of the otoconia were formed and reared for 15 days in microgravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in microgravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in microgravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  3. Development of Gravity-Sensing Organs in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.

    1996-01-01

    Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in micro-g on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high gravity Newt larvae launched before any of the otoconia were formed and reared for 15 days in micro-gravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in micro-gravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in micro-gravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.

  4. Size matters: the interplay between sensing and size in aquatic environments

    NASA Astrophysics Data System (ADS)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  5. Self-Organization and Forces in the Mitotic Spindle.

    PubMed

    Pavin, Nenad; Tolić, Iva M

    2016-07-05

    At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles. These transport processes rely on directed forces that are precisely regulated in space and time. In this review, we discuss how microtubule dynamics and their rotational movement drive spindle self-organization, as well as how the forces acting in the spindle are generated, balanced, and regulated.

  6. Multiaxis sensing using metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talin, Albert Alec; Allendorf, Mark D.; Leonard, Francois

    2017-01-17

    A sensor device including a sensor substrate; and a thin film comprising a porous metal organic framework (MOF) on the substrate that presents more than one transduction mechanism when exposed to an analyte. A method including exposing a porous metal organic framework (MOF) on a substrate to an analyte; and identifying more than one transduction mechanism in response to the exposure to the analyte.

  7. Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiu-Mei, E-mail: zhangxiumeilb@126.com; Li, Peng; Gao, Wei

    Three lanthanide metal-organic frameworks (Ln-MOFs), [Ln(TZI)(H{sub 2}O){sub 4}]·3H{sub 2}O (Ln=Gd (1) and Tb (2) and Dy (3), H{sub 3}TZI=5-(1H-tetrazol-5-yl)isophthalic acid), have been synthesized under hydrothermal conditions. Single crystal X-ray diffraction reveals that 1–3 are isostructural and display a 1D double chain based on dinuclear motifs with (μ-COO){sub 2} double bridges. Magnetic studies indicate antiferromagnetic interactions in 1, ferromagnetic interactions in 2 and 3. Furthermore, compound 3 displays a slow relaxation behavior. Compound 2 exhibits intense characteristic green emission of Tb(III) ions in the solid state, which can be observed by the naked eye under UV light. Interestingly, 2 can selectivelymore » sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. The luminescence quenching mechanisms have been investigated in detail. The study on luminescence Ln-MOFs as a probe for sensing Pb{sup 2+} and Fe{sup 3+} ions is exceedingly rare example. - Graphical abstract: Three Ln-MOFs were successfully synthesized using a 5-(1H-tetrazol-5-yl)isophthalic acid ligand. They displays different magnetic behavior. Especially, the Dy(III) compound slow relaxation behavior. Interestingly, the Tb(III) compound can selectively sense Pb{sup 2+} and Fe{sup 3+} ions through luminescence enhancement and quenching, respectively. - Highlights: • Three Ln-MOFs with tetrazolate dicarboxylate ligand. • Dy(III) compound displays slow relaxation behavior. • The Tb(III) compound shows highly selective luminescence sensing of the Fe{sup 3+} and Pb{sup 2+} ions.« less

  8. Remote sensing estimation of terrestrially derived colored dissolved organic matterinput to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Li, J.; Yu, Q.; Tian, Y. Q.

    2017-12-01

    The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.

  9. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: Quantifiable evaluation of luminescent sensing mechanisms towards Fe{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun-Cheng; Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012; Guo, Rui-Li

    2016-11-15

    A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insightsmore » into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.« less

  10. Metal-organic framework thin films on a surface of optical fibre long period grating for chemical sensing

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Tokay, B.; James, S.; Korposh, S.

    2017-04-01

    An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.

  11. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    PubMed

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cell-free synthetic biology for environmental sensing and remediation.

    PubMed

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Crystalline Microporous Organosilicates with Reversed Functionalities of Organic and Inorganic Components for Room-Temperature Gas Sensing.

    PubMed

    Fabbri, Barbara; Bonoldi, Lucia; Guidi, Vincenzo; Cruciani, Giuseppe; Casotti, Davide; Malagù, Cesare; Bellussi, Giuseppe; Millini, Roberto; Montanari, Luciano; Carati, Angela; Rizzo, Caterina; Montanari, Erica; Zanardi, Stefano

    2017-07-26

    A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

  14. Regular Wounding in a Natural System: Bacteria Associated With Reproductive Organs of Bedbugs and Their Quorum Sensing Abilities

    PubMed Central

    Otti, Oliver; Deines, Peter; Hammerschmidt, Katrin; Reinhardt, Klaus

    2017-01-01

    During wounding, tissues are disrupted so that bacteria can easily enter the host and trigger a host response. Both the host response and bacterial communication can occur through quorum sensing (QS) and quorum sensing inhibition (QSI). Here, we characterize the effect of wounding on the host-associated bacterial community of the bed bug. This is a model system where the male is wounding the female during every mating. Whereas several aspects of the microbial involvement during wounding have been previously examined, it is not clear to what extent QS and QSI play a role. We find that the microbiome differs depending on mating and feeding status of female bedbugs and is specific to the location of isolation. Most organs of bedbugs harbor bacteria, which are capable of both QS and QSI signaling. By focusing on the prokaryotic quorum communication system, we provide a baseline for future research in this unique system. We advocate the bedbug system as suitable for studying the effects of bacteria on reproduction and for addressing prokaryote and eukaryote communication during wounding. PMID:29326722

  15. Remote sensing - A new view for public health

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Barnes, C. M.; Fuller, C. E.

    1973-01-01

    It is shown that the technology of remote sensing can be of great importance to the field of public health. This possibility is based on the deepened understanding of the biologies and ecologies of the vector/organism/host interelationships of arthropod-, soil-, and water-borne diseases to result from the information that remote sensing can provide.

  16. Remote sensing utility in a disaster struck urban environment

    NASA Technical Reports Server (NTRS)

    Rush, M.; Holguin, A.; Vernon, S.

    1974-01-01

    A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.

  17. Bibliography of Remote Sensing Techniques Used in Wetland Research

    DTIC Science & Technology

    1993-01-01

    8217 is investigating the application of remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic...search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research...efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.

  18. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling.

    PubMed

    Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland

    2017-05-30

    Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.

  19. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    PubMed Central

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A.; Thomas, George

    2013-01-01

    SUMMARY Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. PMID:23831031

  20. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    PubMed

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  2. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  3. Development of the gravity-sensing organs in the Japanese red-bellied newt, Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Wiederhold, Michael L.; Yamashita, Masamichi; Asashima, Makoto

    1992-01-01

    Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, schedule for 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoliths). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development would be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which the otoliths and their associated sensory epithelium appear and increase in size. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 40 demonstrate the first appearance, relative position and growth of the otoliths. In adult newts, the otoconia in the utricle appear similar to mammalian otoconia, which are composed of calcite. The newt saccular otoconia are at least 99% aragonite, as is found in most aquatic species. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least the utricular weight might be regulated.

  4. The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling

    PubMed Central

    Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland

    2017-01-01

    Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50–55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome. DOI: http://dx.doi.org/10.7554/eLife.25642.001 PMID:28556777

  5. A short history of nearly every sense - The evolutionary history of vertebrate sensory cell types.

    PubMed

    Schlosser, Gerhard

    2018-05-08

    Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears and olfactory epithelia. However, the photoreceptors, mechanoreceptors and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.

  6. Magnetic porous carbon nanocomposites derived from metal-organic frameworks as a sensing platform for DNA fluorescent detection.

    PubMed

    Tan, Hongliang; Tang, Gonge; Wang, Zhixiong; Li, Qian; Gao, Jie; Wu, Shimeng

    2016-10-12

    Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Quorum signaling and sensing by nontypeable Haemophilus influenzae.

    PubMed

    Swords, W Edward

    2012-01-01

    Quorum signals are diffusible factors produced by bacteria that coordinate communal responses. For nontypeable Haemophilus influenzae (NTHi), a series of recent papers indicate that production and sensing of quorum signals are determinants of biofilm formation/maturation and persistence in vivo. In this mini-review I will summarize the current knowledge about quorum signaling/sensing by this organism, and identify specific topics for additional study.

  8. Quorum signaling and sensing by nontypeable Haemophilus influenzae

    PubMed Central

    Swords, W. Edward

    2012-01-01

    Quorum signals are diffusible factors produced by bacteria that coordinate communal responses. For nontypeable Haemophilus influenzae (NTHi), a series of recent papers indicate that production and sensing of quorum signals are determinants of biofilm formation/maturation and persistence in vivo. In this mini-review I will summarize the current knowledge about quorum signaling/sensing by this organism, and identify specific topics for additional study. PMID:22919689

  9. Evolution of photoperiod sensing in plants and algae.

    PubMed

    Serrano-Bueno, Gloria; Romero-Campero, Francisco J; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico

    2017-06-01

    Measuring day length confers a strong fitness improvement to photosynthetic organisms as it allows them to anticipate light phases and take the best decisions preceding diurnal transitions. In close association with signals from the circadian clock and the photoreceptors, photoperiodic sensing constitutes also a precise way to determine the passing of the seasons and to take annual decisions such as the best time to flower or the beginning of dormancy. Photoperiodic sensing in photosynthetic organisms is ancient and two major stages in its evolution could be identified, the cyanobacterial time sensing and the evolutionary tool kit that arose in green algae and developed into the photoperiodic system of modern plants. The most recent discoveries about the evolution of the perception of light, measurement of day length and relationship with the circadian clock along the evolution of the eukaryotic green lineage will be discussed in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    PubMed

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quorum sensing and microbial drug resistance.

    PubMed

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  12. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed Central

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions. PMID:23882282

  13. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).

    PubMed

    Eastman, Joseph T; Lannoo, Michael J

    2004-04-01

    The Channichthyidae, one of five Antarctic notothenioid families, includes 16 species and 11 genera. Most live at depths of 200-800 m and are a major component of fish biomass in many shelf areas. Channichthyids are unique among adult fishes in possessing pale white blood containing a few vestigal erythrocytes and no hemoglobin. Here we describe the brains of seven species and special sense organs of eight species of channichthyids. We emphasize Chionodraco hamatus and C. myersi, compare these species to other channichthyids, and relate our findings to what is known about brains and sense organs of red-blooded notothenioids living sympatrically on the Antarctic shelf. Brains of channichthyids generally resemble those of their bathydraconid sister group. Among channichthyids the telencephalon is slightly regressed, resulting in a stalked appearance, but the tectum, corpus cerebellum, and mechanoreceptive areas are well developed. Interspecific variation is present but slight. The most interesting features of channichthyid brains are not in the nervous tissue but in support structures: the vasculature and the subependymal expansions show considerable elaboration. Channichthyids have large accessory nasal sacs and olfactory lamellae are more numerous than in other notothenioids. The eyes are relatively large and laterally oriented with similar duplex (cone and rod) retinae in all eight species. Twin cones are the qualitatively dominant photoreceptor in histological sections and, unlike bathydraconids, there are no species with rod-dominated retinae. Eyes possess the most extensive system of hyaloid arteries known in teleosts. Unlike the radial pattern seen in red-blooded notothenioids and most other teleosts, channichthyid hyaloid arteries arise from four or five main branches and form a closely spaced anastomosing series of parallel channels. Cephalic lateral line canals are membranous and some exhibit extensions (canaliculi), but canals are more ossified than those

  14. [Acute toxicity analysis performance of CellSense biosensor with E. coli].

    PubMed

    Wang, Xue-Jiang; Wang, Hong; Zhao, Jian-Fu; Xia, Si-Qing; Zhao, Hong-Ning

    2009-04-15

    E. coli microbial electrodes for CellSense biosensor were prepared by polycarbonate membrane immobilization process, and their performance for heavy metals and toxic organic compounds acute toxicity determination were studied. The results showed that when E. coli was in logarithmic and stationary phase, the CellSense biosensor with E. coli showed good performance in heavy metal ions and organic pollutants acute toxicity analysis, when E. coli was in its decline phase, the stability and sensitivity of the CellSense biosensor was poor. The EC50 values of Hg2+, Cu2+, Zn2+, o-chlorophenol (2-CP) and p-nitrophenol (4-NP) detected by CellSense biosensor with E. coli were 0.6, 3.1, 5.8, 180 and 94 microg/mL, respectively. The immobilized E. coli electrodes could still suit for acute toxicity assessment after 2 months storage at 4 degrees C.

  15. Bimaterial Microcantilevers as a Hybrid Sensing Platform

    DTIC Science & Technology

    2008-01-01

    cantilevers are immersed in dilute solution (milli molar) of desired organic molecule (e.g., alkanethiols) in aqueous or organic solvent (e.g., water... active layers, and some of the im- portant applications. Emphasizing the material design aspects, the review underscores the most important findings... active sensing materials in microelectromechanical systems (MEMS), soft matter-inclusive sensors bring a desir- able diversity in signal transduction

  16. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less

  17. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer.

    PubMed

    Yandell, Margaret A; King, Sarah B; Neumark, Daniel M

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.

  18. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks.

    PubMed

    Cao, Anping; Shan, Meixia; Paltrinieri, Laura; Evers, Wiel H; Chu, Liangyong; Poltorak, Lukasz; Klootwijk, Johan H; Seoane, Beatriz; Gascon, Jorge; Sudhölter, Ernst J R; de Smet, Louis C P M

    2018-04-19

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  19. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    PubMed

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  20. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect.

    PubMed

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-03-06

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  1. Irregular chiasm-C-roughest, a member of the immunoglobulin superfamily, affects sense organ spacing on the Drosophila antenna by influencing the positioning of founder cells on the disc ectoderm.

    PubMed

    Venugopala Reddy, G; Reiter, C; Shanbhag, S; Fischbach, K F; Rodrigues, V

    1999-10-01

    We describe a role for Irregular chiasmC-roughest (IrreC-rst), an immunoglobulin (Ig) superfamily member, in patterning sense organs on the Drosophila antenna. IrreC-rst protein is initially expressed homogeneously on apical profiles of ectodermal cells in regions of the antennal disc. During specification of founder cells (FCs), the intracellular protein distribution changes and becomes concentrated in regions where specific intercellular contacts presumably occur. Loss of function mutations as well as misexpression of irreC-rst results in an altered arrangement of FCs within the disc compared to wildtype. Sense organ development occurs normally, although spacing is affected. Unlike its role in interommatidial spacing, irreC-rst does not affect apoptosis during antennal development. We propose that IrreC-rst affects the spatial relationship between sensory and ectodermal cells during FC delamination.

  2. Effect of water content and organic carbon on remote sensing of crop residue cover

    NASA Astrophysics Data System (ADS)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  3. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    PubMed

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer

  4. Testing the limits of gradient sensing

    PubMed Central

    Lakhani, Vinal

    2017-01-01

    The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738

  5. High-performance 3D compressive sensing MRI reconstruction.

    PubMed

    Kim, Daehyun; Trzasko, Joshua D; Smelyanskiy, Mikhail; Haider, Clifton R; Manduca, Armando; Dubey, Pradeep

    2010-01-01

    Compressive Sensing (CS) is a nascent sampling and reconstruction paradigm that describes how sparse or compressible signals can be accurately approximated using many fewer samples than traditionally believed. In magnetic resonance imaging (MRI), where scan duration is directly proportional to the number of acquired samples, CS has the potential to dramatically decrease scan time. However, the computationally expensive nature of CS reconstructions has so far precluded their use in routine clinical practice - instead, more-easily generated but lower-quality images continue to be used. We investigate the development and optimization of a proven inexact quasi-Newton CS reconstruction algorithm on several modern parallel architectures, including CPUs, GPUs, and Intel's Many Integrated Core (MIC) architecture. Our (optimized) baseline implementation on a quad-core Core i7 is able to reconstruct a 256 × 160×80 volume of the neurovasculature from an 8-channel, 10 × undersampled data set within 56 seconds, which is already a significant improvement over existing implementations. The latest six-core Core i7 reduces the reconstruction time further to 32 seconds. Moreover, we show that the CS algorithm benefits from modern throughput-oriented architectures. Specifically, our CUDA-base implementation on NVIDIA GTX480 reconstructs the same dataset in 16 seconds, while Intel's Knights Ferry (KNF) of the MIC architecture even reduces the time to 12 seconds. Such level of performance allows the neurovascular dataset to be reconstructed within a clinically viable time.

  6. Energy efficiency in cognitive radio network: Study of cooperative sensing using different channel sensing methods

    NASA Astrophysics Data System (ADS)

    Cui, Chenxuan

    When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle bandwidth. There are several methods for CR to make a decision on either the channel is occupied or idle, for example, energy detection scheme, cyclostationary detection scheme and matching filtering detection scheme [1]. Among them, the most common method is energy detection scheme because of its algorithm and implementation simplicities [2]. There are two major methods for sensing, the first one is to sense single channel slot with varying bandwidth, whereas the second one is to sense multiple channels and each with same bandwidth. After sensing periods, samples are compared with a preset detection threshold and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the sensing and decision results can be erroneous, for example, false alarm error and misdetection error may occur. In order to better control error probabilities and improve CR network performance (i.e. energy efficiency), we introduce cooperative sensing; in which several CR within a certain range detect and make decisions on channel availability together. The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final decision on channel availability. After the final decision is been made, DFC sends back the decision to the CRs in order to tell them to stay idle or start to transmit data to secondary receiver (SR) within a preset transmission time. After the transmission, a new cycle starts again with sensing. This thesis report is organized as followed: Chapter II review some of the papers on optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy efficiency when CR senses single channel with changing bandwidth and with constrain on misdetection threshold in order to protect PU; furthermore, a case study is given and we calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy efficiency when CR

  7. Neuromorphic circuits impart a sense of touch

    NASA Astrophysics Data System (ADS)

    Bartolozzi, Chiara

    2018-06-01

    The sense of touch is the ability to perceive consistency, texture, and shape of objects that we manipulate, and the forces we exchange with them. Touch is a source of information that we effortlessly decode to smoothly and naturally grasp and manipulate objects, maintain our posture while walking, or avoid stumbling into obstacles, allowing us to plan, adapt, and correct actions in an ever-changing external world. As such, artificial devices, such as robots or prostheses, that aim to accomplish similar tasks must possess artificial tactile-sensing systems. On page 998 of this issue, Kim et al. (1) report on a “neuromorphic” tactile sensory system based on organic, flexible, electronic circuits that can measure the force applied on the sensing regions. The encoding of the signal is similar to that used by human nerves that are sensitive to tactile stimuli (mechanoreceptors), so the device outputs can substitute for them and communicate with other nerves (e.g., residual nerve fibers of amputees or motor neurons). The proposed system exploits organic electronics that allow for three-dimensional printing of flexible structures that conform to large curved surfaces, as required for placing sensors on robots (2) and prostheses.

  8. Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis

    PubMed Central

    Gu, Ying; Deng, Zhiping; Paredez, Alexander R.; DeBolt, Seth; Wang, Zhi-Yong; Somerville, Chris

    2008-01-01

    Newly translated tubulin molecules undergo a series of complex interactions with nascent chain-binding chaperones, including prefoldin (PFD) and chaperonin-containing TCP-1 (CCT). By screening for oryzalin hypersensitivity, we identified several mutants of Arabidopsis that have lesions in PFD subunits. The pfd6–1 mutant exhibits a range of microtubule defects, including hypersensitivity to oryzalin, defects in cell division, cortical array organization, and microtubule dynamicity. Consistent with phenotypic analysis, proteomic analysis indicates several isoforms of tubulins were reduced in pfd6–1. These results support the concept that the function of microtubules is critically dependent on the absolute amount of tubulins. PMID:19004800

  9. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  10. The Impact of Organic Surfactants and Coatings in Regulating Heterogeneous N2O5 Reaction Kinetics on Nascent Marine Aerosol

    NASA Astrophysics Data System (ADS)

    Ryder, O. S.; Campbell, N.; Schill, S.; Pöhlker, C.; Andreae, M. O.; Bertram, T. H.

    2013-12-01

    The heterogeneous reaction of N2O5 on aerosol particles impacts both the lifetime of nitrogen oxides, and the production rate of chlorine radicals following the activation of particulate chloride to nitryl chloride in both coastal and continental regions. The extent to which N2O5 reactivity impacts oxidant loadings depends on the heterogeneous reaction rate, which is directly influenced by aerosol chemical composition, morphology, and physical phase state. In the marine environment, the chemical composition of aerosol particles produced via wave induced bubble bursting mechanisms varies greatly and is influenced by the composition of the sea surface microlayer . Here, we present direct measurements of N2O5 reaction kinetics determined using model sea-spray particles generated in a novel Marine Aerosol Reference Tank (MART), capable of generating accurate mimics of ambient sea spray particles, in a lab environment. Here, a synthetic sea salt ocean was sequentially doped with organic molecules chosen to mimic organic species present in natural sea water over the course of a phytoplankton bloom in the open ocean. These included sterol, galactose, lippolysaccharide, BSA protein, and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). These observations permit discussion of the role of marine organics in regulating heterogeneous reaction kinetics, as well a re-evaluation of potential organic lab proxies for marine organics.

  11. Zeolite based microconcentrators for volatile organic compounds sensing at trace-level: fabrication and performance

    NASA Astrophysics Data System (ADS)

    Almazán, Fernando; Pellejero, Ismael; Morales, Alberto; Urbiztondo, Miguel A.; Sesé, Javier; Pina, M. Pilar; Santamaría, Jesús

    2016-08-01

    A novel 6-step microfabrication process is proposed in this work to prepare microfluidic devices with integrated zeolite layers. In particular, microfabricated preconcentrators designed for volatile organic compounds (VOC) sensing applications are fully described. The main novelty of this work is the integration of the pure siliceous MFI type zeolite (silicalite-1) polycrystalline layer, i.e. 4.0  ±  0.5 μm thick, as active phase, within the microfabrication process just before the anodic bonding step. Following this new procedure, Si microdevices with an excellent distribution of the adsorbent material, integrated resistive heaters and Pyrex caps have been obtained. Firstly, the microconcentrator performance has been assessed by means of the normal hexane breakthrough curves as a function of sampling and desorption flowrates, temperature and micropreconcentrator design. In a step further, the best preconcentrator device has been tested in combination with downstream Si based microcantilevers deployed as VOC detectors. Thus, a preliminar evaluation of the improvement on detection sensitivity by silicalite-1 based microconcentrators is presented.

  12. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  13. A Water-Stable Proton-Conductive Barium(II)-Organic Framework for Ammonia Sensing at High Humidity.

    PubMed

    Guo, Kaimeng; Zhao, Lili; Yu, Shihang; Zhou, Wenyan; Li, Zifeng; Li, Gang

    2018-06-07

    In view of environmental protection and the need for early prediction of major diseases, it is necessary to accurately monitor the change of trace ammonia concentration in air or in exhaled breath. However, the adoption of proton-conductive metal-organic frameworks (MOFs) as smart sensors in this field is limited by a lack of ultrasensitive gas-detecting performance at high relative humidity (RH). Here, the pellet fabrication of a water-stable proton-conductive MOF, Ba( o-CbPhH 2 IDC)(H 2 O) 4 ] n (1) ( o-CbPhH 4 IDC = 2-(2-carboxylphenyl)-1 H-imidazole-4,5-dicarboxylic acid) is reported. The MOF 1 displays enhanced sensitivity and selectivity to NH 3 gas at high RHs (>85%) and 30 °C, and the sensing mechanism is suggested. The electrochemical impedance gas sensor fabricated by MOF 1 is a promising sensor for ammonia at mild temperature and high RHs.

  14. The Five Senses of Christmas Chemistry

    ERIC Educational Resources Information Center

    Jackson, Derek A.; Dicks, Andrew P.

    2012-01-01

    This article describes the organic chemistry of five compounds that are directly associated with the Christmas season. These substances and related materials are presented within the framework of the five senses: silver fulminate (sound), alpha-pinene (sight), sodium acetate (touch), tryptophan (taste), and gingerol (smell). Connections with the…

  15. Disseminating technological information on remote sensing to potential users

    NASA Technical Reports Server (NTRS)

    Russell, J. D.; Lindenlaub, J. C.

    1977-01-01

    The Laboratory for Applications of Remote Sensing developed materials and programs which range from short tutorial brochures to post-doctoral research programs which may span several years. To organize both the content and the instructional techniques, a matrix of instructional materials was conceptualized. Each row in the matrix represents a subject area in remote sensing and each column in the matrix represents a different type media or instructional strategy.

  16. Organizational identification and commitment: correlates of sense of belonging and affective commitment.

    PubMed

    Dávila, Ma Celeste; Jiménez García, Gemma

    2012-03-01

    The general purpose of this work is to analyze the overlap between organizational identification and commitment. Specifically, our study focuses on the analysis of the differences and similarities between sense of belonging (a dimension of organizational identification) and affective commitment (a dimension of organizational commitment). In order to do this, we analyzed their discriminant validity and raised their relationship with variables that previous research had showed like precedent and subsequent variables of them: value congruence, perceived support, organizational citizenship behavior, and intention to continue in the organization. A total of 292 people at one organization completed surveys measuring the variables previously described. The results showed that sense of belonging and affective commitment are different concepts and they have different relationships with relation to precedent and subsequent variables. Affective commitment seems to be more useful than sense of belonging to predict organizational citizenship behavior aimed at the organization and intention to continue. Some practical implications are described.

  17. Quantitative interpretation of Great Lakes remote sensing data

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Salzman, J.; Svehla, R. A.; Gedney, R. T.

    1980-01-01

    The paper discusses the quantitative interpretation of Great Lakes remote sensing water quality data. Remote sensing using color information must take into account (1) the existence of many different organic and inorganic species throughout the Great Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial variations in types and concentration of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported.

  18. Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance.

    PubMed

    Higaki, Tatsuya; Zhou, Meng; Lambright, Kelly J; Kirschbaum, Kristin; Sfeir, Matthew Y; Jin, Rongchao

    2018-05-02

    The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au 279 (SR) 84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au 279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au 246 (SR) 80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au 279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au 246 to metallic Au 279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.

  19. Photogrammetry and remote sensing education subjects

    NASA Astrophysics Data System (ADS)

    Lazaridou, Maria A.; Karagianni, Aikaterini Ch.

    2017-09-01

    The rapid technologic advances in the scientific areas of photogrammetry and remote sensing require continuous readjustments at the educational programs and their implementation. The teaching teamwork should deal with the challenge to offer the volume of the knowledge without preventing the understanding of principles and methods and also to introduce "new" knowledge (advances, trends) followed by evaluation and presentation of relevant applications. This is of particular importance for a Civil Engineering Faculty as this in Aristotle University of Thessaloniki, as the framework of Photogrammetry and Remote Sensing is closely connected with applications in the four educational Divisions of the Faculty. This paper refers to the above and includes subjects of organizing the courses in photogrammetry and remote sensing in the Civil Engineering Faculty of Aristotle University of Thessaloniki. A scheme of the general curriculum as well the teaching aims and methods are also presented.

  20. How cells (might) sense microgravity

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1999-01-01

    This article is a summary of a lecture presented at an ESA/NASA Workshop on Cell and Molecular Biology Research in Space that convened in Leuven, Belgium, in June 1998. Recent studies are reviewed which suggest that cells may sense mechanical stresses, including those due to gravity, through changes in the balance of forces that are transmitted across transmembrane adhesion receptors that link the cytoskeleton to the extracellular matrix and to other cells (e.g., integrins, cadherins, selectins). The mechanism by which these mechanical signals are transduced and converted into a biochemical response appears to be based, in part, on the finding that living cells use a tension-dependent form of architecture, known as tensegrity, to organize and stabilize their cytoskeleton. Because of tensegrity, the cellular response to stress differs depending on the level of pre-stress (pre-existing tension) in the cytoskeleton and it involves all three cytoskeletal filament systems as well as nuclear scaffolds. Recent studies confirm that alterations in the cellular force balance can influence intracellular biochemistry within focal adhesion complexes that form at the site of integrin binding as well as gene expression in the nucleus. These results suggest that gravity sensation may not result from direct activation of any single gravioreceptor molecule. Instead, gravitational forces may be experienced by individual cells in the living organism as a result of stress-dependent changes in cell, tissue, or organ structure that, in turn, alter extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal pre-stress in the cell-tissue matrix.--Ingber, D. How cells (might) sense microgravity.

  1. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  2. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  3. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).

    PubMed

    Zolot, Alexander M; Dagdigian, Paul J; Nesbitt, David J

    2008-11-21

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E(com)=0.7(3) kcalmol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(vNascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F+hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  4. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  5. Ethical challenges for accountable care organizations: a structured review.

    PubMed

    DeCamp, Matthew; Farber, Neil J; Torke, Alexia M; George, Maura; Berger, Zackary; Keirns, Carla C; Kaldjian, Lauris C

    2014-10-01

    Accountable care organizations (ACOs) are proliferating as a solution to the cost crisis in American health care, and already involve as many as 31 million patients. ACOs hold clinicians, group practices, and in many circumstances hospitals financially accountable for reducing expenditures and improving their patients' health outcomes. The structure of health care affects the ethical issues arising in the practice of medicine; therefore, like all health care organizational structures, ACOs will experience ethical challenges. No framework exists to assist key ACO stakeholders in identifying or managing these challenges. We conducted a structured review of the medical ACO literature using qualitative content analysis to inform identification of ethical challenges for ACOs. Our analysis found infrequent discussion of ethics as an explicit concern for ACOs. Nonetheless, we identified nine critical ethical challenges, often described in other terms, for ACO stakeholders. Leaders could face challenges regarding fair resource allocation (e.g., about fairly using ACOs' shared savings), protection of professionals' ethical obligations (especially related to the design of financial incentives), and development of fair decision processes (e.g., ensuring that beneficiary representatives on the ACO board truly represent the ACO's patients). Clinicians could perceive threats to their professional autonomy (e.g., through cost control measures), a sense of dual or conflicted responsibility to their patients and the ACO, or competition with other clinicians. For patients, critical ethical challenges will include protecting their autonomy, ensuring privacy and confidentiality, and effectively engaging them with the ACO. ACOs are not inherently more or less "ethical" than other health care payment models, such as fee-for-service or pure capitation. ACOs' nascent development and flexibility in design, however, present a time-sensitive opportunity to ensure their ethical operation

  6. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    NASA Astrophysics Data System (ADS)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  7. Making Sense of Learning: Insights from an Experientially-Based Undergraduate Entrepreneurship Programme

    ERIC Educational Resources Information Center

    Blackwood, Tony; Round, Anna; Pugalis, Lee; Hatt, Lucy

    2015-01-01

    Entrepreneurial learning is complex, reflecting the distinctive dispositions of entrepreneurs (including nascent entrepreneurs at an early stage in their entrepreneurial life course). The surge in entrepreneurship education programmes over recent decades and the attendant increase in scholarship have often contributed to this convoluted field.…

  8. Protease sensing using nontoxic silicon quantum dots.

    PubMed

    Cheng, Xiaoyu; McVey, Benjamin F P; Robinson, Andrew B; Longatte, Guillaume; O'Mara, Peter B; Tan, Vincent T G; Thordarson, Pall; Tilley, Richard D; Gaus, Katharina; Justin Gooding, John

    2017-08-01

    Herein is presented a proof-of-concept study of protease sensing that combines nontoxic silicon quantum dots (SiQDs) with Förster resonance energy transfer (FRET). The SiQDs serve as the donor and an organic dye as the acceptor. The dye is covalently attached to the SiQDs using a peptide linker. Enzymatic cleavage of the peptide leads to changes in FRET efficiency. The combination of interfacial design and optical imaging presented in this work opens opportunities for use of nontoxic SiQDs relevant to intracellular sensing and imaging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  10. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  11. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  12. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    PubMed

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. A Sense of Community: Collaboration in a Large Anthropology Class.

    ERIC Educational Resources Information Center

    Lancy, David F.; And Others

    1994-01-01

    A large introductory anthropology course at Utah State University was organized to promote collaboration among and between students and faculty. Students were divided into and worked in "clans" for the entire term. A study of the course suggests that learning and a sense of community resulted directly from this organization. (MSE)

  14. NASA Remote Sensing Research as Applied to Archaeology

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Thomas, Michael R.

    2002-01-01

    The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.

  15. Self-sensing in Bacillus subtilis quorum-sensing systems

    PubMed Central

    Bareia, Tasneem; Pollak, Shaul; Eldar, Avigdor

    2017-01-01

    Bacterial cell-cell signaling, or quorum sensing, is characterized by the secretion and group-wide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behavior in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of such self-sensing effect and its impact on bacterial physiology are unclear. Here, we explored the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we found that secreting cells consistently showed a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrated this effect to be a direct result of self-sensing and ruled out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affected persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria. PMID:29038467

  16. Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus.

    PubMed

    Bayas, Camille A; Wang, Jiarui; Lee, Marissa K; Schrader, Jared M; Shapiro, Lucy; Moerner, W E

    2018-04-17

    We report the dynamic spatial organization of Caulobacter crescentus RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in Escherichia coli , where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones. For both RNase E and ribosomes in Caulobacter , we observed a decrease in confinement and clustering upon transcription inhibition and subsequent depletion of nascent RNA, suggesting that RNA substrate availability for processing, degradation, and translation facilitates confinement and clustering. Importantly, RNase E cluster positions correlated with the subcellular location of chromosomal loci of two highly transcribed rRNA genes, suggesting that RNase E's function in rRNA processing occurs at the site of rRNA synthesis. Thus, components of the RNA degradosome and ribosome assembly are spatiotemporally organized in Caulobacter , with chromosomal readout serving as the template for this organization.

  17. Three examples of applied remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.

    1975-01-01

    Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.

  18. Embodiment and sense-making in autism

    PubMed Central

    De Jaegher, Hanne

    2013-01-01

    In this article, I sketch an enactive account of autism. For the enactive approach to cognition, embodiment, experience, and social interaction are fundamental to understanding mind and subjectivity. Enaction defines cognition as sense-making: the way cognitive agents meaningfully connect with their world, based on their needs and goals as self-organizing, self-maintaining, embodied agents. In the social realm, the interactive coordination of embodied sense-making activities with others lets us participate in each other's sense-making (social understanding = participatory sense-making). The enactive approach provides new concepts to overcome the problems of traditional functionalist accounts of autism, which can only give a piecemeal and disintegrated view because they consider cognition, communication, and perception separately, do not take embodied into account, and are methodologically individualistic. Applying the concepts of enaction to autism, I show: How embodiment and sense-making connect, i.e., how autistic particularities of moving, perceiving, and emoting relate to how people with autism make sense of their world. For instance, restricted interests or preference for detail will have certain sensorimotor correlates, as well as specific meaning for autistic people.That reduced flexibility in interactional coordination correlates with difficulties in participatory sense-making. At the same time, seemingly irrelevant “autistic behaviors” can be quite attuned to the interactive context. I illustrate this complexity in the case of echolalia. An enactive account of autism starts from the embodiment, experience, and social interactions of autistic people. Enaction brings together the sensorimotor, cognitive, social, experiential, and affective aspects of autism in a coherent framework based on a complex non-linear multi-causality. This foundation allows to build new bridges between autistic people and their often non-autistic context, and to improve quality

  19. Proposal and Implementation of a Robust Sensing Method for DVB-T Signal

    NASA Astrophysics Data System (ADS)

    Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi

    This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.

  20. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs

    PubMed Central

    Rouvinski, Alexander; Karniely, Sharon; Kounin, Maria; Moussa, Sanaa; Goldberg, Miri D.; Warburg, Gabriela; Lyakhovetsky, Roman; Papy-Garcia, Dulce; Kutzsche, Janine; Korth, Carsten; Carlson, George A.; Godsave, Susan F.; Peters, Peter J.; Luhr, Katarina; Kristensson, Krister

    2014-01-01

    Mammalian prions refold host glycosylphosphatidylinositol-anchored PrPC into β-sheet–rich PrPSc. PrPSc is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrPSc rather than on its truncated PrP27-30 product. We show that N-terminal PrPSc epitopes are exposed in their physiological context and visualize, for the first time, PrPSc in living cells. PrPSc resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrPSc amyloids. PMID:24493590

  1. Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.

    2013-12-01

    Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.

  2. Remote sensing procurement package: A management report for state and local governments

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview of the remote sensing procurement process is presented for chief executives, senior administrators, and other local and state officials responsible for purchasing remote sensing products, services, or equipment. Guidelines are provided for planning, organizing, staffing, and implementing such a procurement project. Other sections of the four-volume package are described and their benefits examined.

  3. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  4. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  5. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H₂ and Volatile Organic Compounds Sensing Purposes.

    PubMed

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz Del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Muñoz-Pacheco, Jesús Manuel; Chávez-Ramírez, Francisco

    2017-09-06

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen.

  6. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an

  7. The Citizens and Remote Sensing Observational Network (CARSON) Guide: Merging NASA Remote Sensing Data with Local Environmental Awareness

    NASA Technical Reports Server (NTRS)

    Acker, James; Riebeek, Holli; Ledley, Tamara Shapiro; Herring, David; Lloyd, Steven

    2008-01-01

    "Citizen science" generally refers to observatoinal research and data collection conducted by non-professionals, commonly as volunteers. In the environmental science field, citizen scientists may be involved with local nad regional issues such as bird and wildlife populations, weather, urban sprawl, natural hazards, wetlands, lakes and rivers, estuaries, and a spectrum of public health concerns. Some citizen scientists may be primarily motivated by the intellectual challenge of scientific observations. Citizen scientists may now examine and utilize remote-sensing data related to their particular topics of interest with the easy-to-use NASA Web-based tools Giovanni and NEO, which allow exploration and investigation of a wide variety of Earth remote sensing data sets. The CARSON (Citizens and Remote Sensing Observational Network) Guide will be an online resource consisting of chapters each demonstrating how to utilize Giovanni and NEO to access and analyze specific remote-sensing data. Integrated in each chapter will be descriptions of methods that citizen scientists can employ to collect, monitor, analyze, and share data related to the chapter topic which pertain to environmental and ecological conditions in their local region. A workshop held in August 2008 initiated the development of prototype chapters on water quality, air quality, and precipitation. These will be the initial chapters in the first release of the CARSON Guide, which will be used in a pilot project at the Maryland Science Center in spring 2009. The goal of the CARSON Guide is to augment and enhance citizen scientist environmental research with NASA satellite data by creating a participatory network consisting of motivated individuals, environmental groups and organizations, and science-focused institutions such as museuma and nature centers. Members of the network could potentially interact with government programs, academic research projects, and not-for-profit organizations focused on

  8. The Hygroscopicity Parameter of Marine Organics in Sea Spray Aerosols

    NASA Astrophysics Data System (ADS)

    Boyer, M.; Chang, R. Y. W.

    2015-12-01

    The effects of aerosols on climate are poorly understood, specifically with respect to their influence on cloud properties. Since oceans cover >70% of Earth's surface, sea spray aerosols (SSA), which act efficiently as cloud condensation nuclei (CCN), may have important implications on Earth's radiation budget. Surface active organic species readily accumulate in the sea surface microlayer (SML), located at the ocean-atmosphere interface, and transfer onto nascent SSA. While it is understood that SSA are commonly enriched with organics, the resulting effect of the organic content on CCN activation remains unresolved. The hygroscopicity parameter, kappa (k), allows for the cloud nucleating properties of individual components to be predicted in particles of mixed composition; however, most studies typically infer k from ambient measurements without assessing the contribution of the individual components to the overall k. In this study, a method for quantifying the cloud nucleating properties of the organic species in surface seawater using k-Kohler theory is proposed. Ambient SML and bulk water samples will be collected and atomized to generate particles such that the overall k can be inferred from CCN measurements. The inorganic and organic components will be quantified, and the organic component will be separated so that the hygroscopicity of only the organic constituents can be determined. By comparing the inferred k values for the samples before and after removal of the inorganic component, the hygroscopicity of the organic constituents alone can be calculated, providing insight on the effect of organic species on CCN activation in SSA.

  9. Molecular mechanisms of acid-base sensing by the kidney.

    PubMed

    Brown, Dennis; Wagner, Carsten A

    2012-05-01

    A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.

  10. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    PubMed

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  11. Chemical sensing of copper phthalocyanine sol-gel glass through organic vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridhi, R.; Gawri, Isha; Abbas, Saeed J.

    2015-05-15

    The sensitivities of metallophthalocyanine to vapor phase electron donors has gained significance in many areas and disciplines due to their sensing properties and ease of operation. In the present study the interaction mechanism of organic vapors in Copper Phthalocyanine (CuPc) sol-gel glass has been studied. The interaction mechanism is affected by many factors like morphology, electrical or optical properties of film. CuPc sol-gel glass has been synthesized using chemical route sol-gel method. Its structural characterization was conducted using XRD and the amorphous nature of the silicate glass was observed with characteristic α polymorph phase of CuPc at around 6.64° withmore » 13.30Å interplanar spacing. The size of the particle as determined using Debbye Scherre’s formula comes out around 15.5 nm. The presence of α phase of CuPc was confirmed using FTIR with the appearance of crystal parameter marker band at 787 cm-1. Apart from this A2u and Eu symmetry bands of CuPc have also been observed. The UV absorption spectrum of CuPc exhibits absorption peaks owing to π→ π* and n→ π* transitions. A blue shift in the prepared CuPc glass has been observed as compared to the dopant CuPc salt indicating increase of band gap. A split in B (Soret) band and Q band appears as observed with the help of Lorentzian fitting. CuPc sol gel glass has been exposed with chemical vapors of Methanol, Benzene and Bromine individually and the electrical measurements have been carried out. These measurements show the variation in conductivity and the interaction mechanism has been analyzed.« less

  12. Material requirements for bio-inspired sensing systems

    NASA Astrophysics Data System (ADS)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  13. Making Sense of Remotely Sensed Ultra-Spectral Infrared Data

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's Jet Propulsion Laboratory (JPL), Pasadena, California, Earth Observing System (EOS) programs, the Deep Space Network (DSN), and various Department of Defense (DOD) technology demonstration programs, combined their technical expertise to develop SEASCRAPE, a software program that obtains data when thermal infrared radiation passes through the Earth's atmosphere and reaches a sensor. Licensed by the California Institute of Technology (Caltech), SEASCRAPE automatically inverts complex infrared data and makes it possible to obtain estimates of the state of the atmosphere along the ray path. Former JPL staff members created a small entrepreneurial firm, Remote Sensing Analysis Systems, Inc., of Altadena, California, to commercialize the product. The founders believed that a commercial version of the software was needed for future U.S. government missions and the commercial monitoring of pollution. With the inversion capability of this software and remote sensing instrumentation, it is possible to monitor pollution sources from safe and secure distances on a noninterfering, noncooperative basis. The software, now know as SEASCRAPE_Plus, allows the user to determine the presence of pollution products, their location and their abundance along the ray path. The technology has been cleared by the Department of Commerce for export, and is currently used by numerous research and engineering organizations around the world.

  14. Integrated self-organization of transitional ER and early Golgi compartments.

    PubMed

    Glick, Benjamin S

    2014-02-01

    COPII coated vesicles bud from an ER domain termed the transitional ER (tER), but the mechanism that clusters COPII vesicles at tER sites is unknown. tER sites are closely associated with early Golgi or pre-Golgi structures, suggesting that the clustering of nascent COPII vesicles could be achieved by tethering to adjacent membranes. This model challenges the prevailing view that COPII vesicles are clustered by a scaffolding protein at the ER surface. Although Sec16 was proposed to serve as such a scaffolding protein, recent data suggest that rather than organizing COPII into higher-order structures, Sec16 acts at the level of individual COPII vesicles to regulate COPII turnover. A plausible synthesis is that tER sites are created by tethering to Golgi membranes and are regulated by Sec16. Meanwhile, the COPII vesicles that bud from tER sites are thought to nucleate new Golgi cisternae. Thus, an integrated self-organization process may generate tER-Golgi units. © 2014 WILEY Periodicals, Inc.

  15. Comparative VOCs sensing performance for conducting polymer and porphyrin functionalized carbon nanotubes based sensors

    NASA Astrophysics Data System (ADS)

    Datta, Kunal; Rushi, Arti; Ghosh, Prasanta; Shirsat, Mahendra

    2018-05-01

    We report sensors for detection of ethyl alcohol, a prominent volatile organic compound (VOC). Single walled carbon nanotubes were selected as main sensing backbone. As efficiency of sensor is dependent upon the choice of sensing materials, the performances of conducting polymer and porphyrin based sensors were compared. Chemiresistive sensing modality was adopted to observe the performance of sensors. It has been found that porphyrin based sensor shows higher affinity towards ethyl alcohol.

  16. Re-Evaluation of the Role of Starch in Gravitropic Sensing

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.

    1998-01-01

    Plant organs grow toward or away from gravity as a way to orient those organs for optimizing growth. Starch has long been thought to be important in sensing the direction of the g-vector in gravitropism, but that hypothesis has also evoked controversy. We have previously shown that starch-deficient mutants of Arabidopsis (TC7) and Nicotiana (NS458) are impaired in their gravitropism. While this suggests that starch is not necessary for reduced gravitropism, it also indicates that the mass of the starch contributes to sensing when present and thus is necessary for full gravitropic sensitivity. The research supported by this grant focused on three related projects, (1) the effect of light on hypocotyl gravitropism in NS458, (2) the effects of root phototropism on measurements of gravitropic sensitivity, and (3) the effects of starch overproduction on sedimentation and gravitropism. Collectively, our results provide additional strong support for the importance of starch in gravitropic sensing. First, by accounting for negative phototropism in roots of two starchless mutants of Arabidopsis we have established that these mutants are much less sensitive to gravity than previously thought. This work also demonstrates the importance of designing experimental protocols that remove the influence of root phototropism on measuring root gravitropism. Second, light apparently promotes gravitropism in starch-deficient Nicotiana hypocotyls by increasing the trace amounts of starch in the plastids, by inducing limited plastid sedimentation and thus by presumably increasing the signal provided by plastid mass. And finally, we show that excess starch in Arabidopsis seedlings has little effect on gravitropic sensitivity implying that the sensing system is already saturated. However, in light-grown stems where this mutation results in starch accumulation and where the wild-type practically lacks starch in the sensing cells, the mutant is much more sensitive than the wild-type again

  17. Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement.

    PubMed

    Jang, Ji-Soo; Koo, Won-Tae; Choi, Seon-Jin; Kim, Il-Doo

    2017-08-30

    Facile synthesis of porous nanobuilding blocks with high surface area and uniform catalyst functionalization has always been regarded as an essential requirement for the development of highly sensitive and selective chemical sensors. Metal-organic frameworks (MOFs) are considered as one of the most ideal templates due to their ability to encapsulate ultrasmall catalytic nanoparticles (NPs) in microporous MOF structures in addition to easy removal of the sacrificial MOF scaffold by calcination. Here, we introduce a MOFs derived n-type SnO 2 (n-SnO 2 ) sensing layer with hollow polyhedron structures, obtained from p-n transition of MOF-templated p-type Co 3 O 4 (p-Co 3 O 4 ) hollow cubes during galvanic replacement reaction (GRR). In addition, the Pd NPs encapsulated in MOF and residual Co 3 O 4 clusters partially remained after GRR led to uniform functionalization of efficient cocatalysts (PdO NPs and p-Co 3 O 4 islands) on the porous and hollow polyhedron SnO 2 structures. Due to high gas accessibility through the meso- and macrosized pores in MOF-templated oxides and effective modulation of electron depletion layer assisted by the creation of numerous p-n junctions, the GRR-treated SnO 2 structures exhibited 21.9-fold higher acetone response (R air /R gas = 22.8 @ 5 ppm acetone, 90%RH) compared to MOF-templated p-Co 3 O 4 hollow structures. To the best of our knowledge, the selectivity and response amplitudes reported here for the detection of acetone are superior to those MOF derived metal oxide sensing layers reported so far. Our results demonstrate that highly active MOF-derived sensing layers can be achieved via p-n semiconducting phase transition, driven by a simple and versatile GRR process combined with MOF templating route.

  18. Sensing, physiological effects and molecular response to elevated CO2 levels in eukaryotes

    PubMed Central

    Sharabi, Kfir; Lecuona, Emilia; Helenius, Iiro Taneli; Beitel, Greg J; Sznajder, Jacob Iasha; Gruenbaum, Yosef

    2009-01-01

    Carbon dioxide (CO2) is an important gaseous molecule that maintains biosphere homeostasis and is an important cellular signalling molecule in all organisms. The transport of CO2 through membranes has fundamental roles in most basic aspects of life in both plants and animals. There is a growing interest in understanding how CO2 is transported into cells, how it is sensed by neurons and other cell types and in understanding the physiological and molecular consequences of elevated CO2 levels (hypercapnia) at the cell and organism levels. Human pulmonary diseases and model organisms such as fungi, C. elegans, Drosophila and mice have been proven to be important in understanding of the mechanisms of CO2 sensing and response. PMID:19863692

  19. Ten ways remote sensing can contribute to conservation

    USGS Publications Warehouse

    Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2014-01-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  20. Ten ways remote sensing can contribute to conservation.

    PubMed

    Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara

    2015-04-01

    In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to

  1. Human‐Like Sensing and Reflexes of Graphene‐Based Films

    PubMed Central

    Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan

    2016-01-01

    Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005

  2. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel frameworkmore » for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical

  3. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  4. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    PubMed

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  5. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  6. Tuning the gas sensing performance of single PEDOT nanowire devices.

    PubMed

    Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V

    2011-06-07

    This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.

  7. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less

  8. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes

    PubMed Central

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando

    2017-01-01

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161

  9. A fluorescent paramagnetic Mn metal-organic framework based on semi-rigid pyrene tetra-carboxylic acid: sensing of solvent polarity and explosive nitroaromatics.

    PubMed

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-09-01

    An Mn metal-organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (E T (N)). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  10. Gene Expression Data from the Moon Jelly, Aurelia, Provide Insights into the Evolution of the Combinatorial Code Controlling Animal Sense Organ Development.

    PubMed

    Nakanishi, Nagayasu; Camara, Anthony C; Yuan, David C; Gold, David A; Jacobs, David K

    2015-01-01

    In Bilateria, Pax6, Six, Eya and Dach families of transcription factors underlie the development and evolution of morphologically and phyletically distinct eyes, including the compound eyes in Drosophila and the camera-type eyes in vertebrates, indicating that bilaterian eyes evolved under the strong influence of ancestral developmental gene regulation. However the conservation in eye developmental genetics deeper in the Eumetazoa, and the origin of the conserved gene regulatory apparatus controlling eye development remain unclear due to limited comparative developmental data from Cnidaria. Here we show in the eye-bearing scyphozoan cnidarian Aurelia that the ectodermal photosensory domain of the developing medusa sensory structure known as the rhopalium expresses sine oculis (so)/six1/2 and eyes absent/eya, but not optix/six3/6 or pax (A&B). In addition, the so and eya co-expression domain encompasses the region of active cell proliferation, neurogenesis, and mechanoreceptor development in rhopalia. Consistent with the role of so and eya in rhopalial development, developmental transcriptome data across Aurelia life cycle stages show upregulation of so and eya, but not optix or pax (A&B), during medusa formation. Moreover, pax6 and dach are absent in the Aurelia genome, and thus are not required for eye development in Aurelia. Our data are consistent with so and eya, but not optix, pax or dach, having conserved functions in sensory structure specification across Eumetazoa. The lability of developmental components including Pax genes relative to so-eya is consistent with a model of sense organ development and evolution that involved the lineage specific modification of a combinatorial code that specifies animal sense organs.

  11. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links

    PubMed Central

    Liang, Zhuo-qian

    2017-01-01

    This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method. PMID:29206188

  12. Lightweight Biometric Sensing for Walker Classification Using Narrowband RF Links.

    PubMed

    Liu, Tong; Liang, Zhuo-Qian

    2017-12-05

    This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method.

  13. One-Step to Prepare Self-Organized Nanoporous NiO/TiO2 Layers and its Use in Non-Enzymatic Glucose Sensing

    PubMed Central

    Gao, Zhi-Da; Han, Yuyao; Wang, Yongmei; Xu, Jingwen; Song, Yan-Yan

    2013-01-01

    A highly ordered nanoporous NiTi oxide layers were fabricated on Ti alloys with high Ni contents (50.6 at.%) by a combination of self-organizing anodization at 0°C and subsequent selective etching in H2O2. The key for successful formation of such layers is to sufficiently suppress the dissolve of NiO by applying lower temperature during anodization. The resulting nanoporous structure is connected and well-adhered, which exhibits a much higher electrochemical cycling stability in 0.1 M NaOH. Without further surface modification or the use of polymer binders, the layers can be behave as a low-cost, stable and sensitive platform in non-enzymatic glucose sensing. PMID:24270125

  14. Mobile Sensing Systems

    PubMed Central

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  15. Mobile sensing systems.

    PubMed

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  16. All-organic optoelectronic sensor for pulse oximetry

    NASA Astrophysics Data System (ADS)

    Lochner, Claire M.; Khan, Yasser; Pierre, Adrien; Arias, Ana C.

    2014-12-01

    Pulse oximetry is a ubiquitous non-invasive medical sensing method for measuring pulse rate and arterial blood oxygenation. Conventional pulse oximeters use expensive optoelectronic components that restrict sensing locations to finger tips or ear lobes due to their rigid form and area-scaling complexity. In this work, we report a pulse oximeter sensor based on organic materials, which are compatible with flexible substrates. Green (532 nm) and red (626 nm) organic light-emitting diodes (OLEDs) are used with an organic photodiode (OPD) sensitive at the aforementioned wavelengths. The sensor’s active layers are deposited from solution-processed materials via spin-coating and printing techniques. The all-organic optoelectronic oximeter sensor is interfaced with conventional electronics at 1 kHz and the acquired pulse rate and oxygenation are calibrated and compared with a commercially available oximeter. The organic sensor accurately measures pulse rate and oxygenation with errors of 1% and 2%, respectively.

  17. Suppressing the crosstalk between racetrack resonators by grating assisted couplers for WDM sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhi; Jiang, Junfeng; Liu, Kun; Yu, Zhe; Feng, Ming; Chen, Wenjie; Liu, Tiegen

    2017-12-01

    We proposed a uniform racetrack resonators based sensor for bio-chemical WDM sensing. The sensing channels are assigned by grating assisted contra-directional couplers. Each resonator only occupies one sensing channel. The crosstalk between sensing channels can be suppressed by aligning the center coupling wavelength of one resonator with the weak coupling wavelength of the others. Based on the simulation results obtained from transfer matrix method, the sensing channel gap can be reduced down to 2 FSRs (˜1.5 nm) of the resonator. The total crosstalk can be as low as 2.5 × 10-2 dB in a sensor with 23 channels covering the whole C band. This sensor with high throughput will be very important for analyzing a wide range of analytes, such as organic compounds or biological materials.

  18. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  19. A systems concept of the vestibular organs

    NASA Technical Reports Server (NTRS)

    Mayne, R.

    1974-01-01

    A comprehensive model of vestibular organ function is presented. The model is based on an analogy with the inertial guidance systems used in navigation. Three distinct operations are investigated: angular motion sensing, linear motion sensing, and computation. These operations correspond to the semicircular canals, the otoliths, and central processing respectively. It is especially important for both an inertial guidance system and the vestibular organs to distinguish between attitude with respect to the vertical on the one hand, and linear velocity and displacement on the other. The model is applied to various experimental situations and found to be corroborated by them.

  20. Amino acid levels in nascent metabolic syndrome: A contributor to the pro-inflammatory burden.

    PubMed

    Reddy, Priya; Leong, Joseph; Jialal, Ishwarlal

    2018-05-01

    Metabolic Syndrome (MetS) is a cluster of cardio-metabolic risk factors characterized by low-grade inflammation which confers an increased risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Prior studies have linked elevated branched chain amino acids (BCAA) and aromatic amino acids (AAA) with T2DM and CVD. Due to the paucity of data in MetS, the aim of this study was to investigate the status of amino acids as early biomarkers of nascent MetS patients without T2DM and CVD or smoking. Healthy controls (n = 20) and MetS (n = 29) patients were recruited for the study. MetS was defined by criteria of National Cholesterol Education Program Adult Treatment Panel III of having at least 3 risk factors. Urinary amino acids were quantified by gas chromatography time-of-flight mass spectrometry at the Western NIH Metabolomics Center as expressed to urinary creatinine. Tyrosine and Isoleucine levels were significantly elevated in MetS patients. Isoleucine positively correlated with salient cardio-metabolic features and inflammatory biomarkers. Lysine and Methionine levels were decreased in MetS patients. Lysine correlated negatively with cardio-metabolic features and inflammatory bimarkers. Methionine also correlated negatively with blood pressure and certain inflammatory biomarkers. Our novel results suggest that with regards to the cardio-metabolic risk factors and pro-inflammatory features of MetS, isoleucine (BCAA) demonstrated a positive correlation while lysine demonstrated a negative correlation. Thus, increased levels of isoleucine and decreased levels of lysine could be potential early biomarkers of MetS. Copyright © 2018. Published by Elsevier Inc.

  1. Sensing of glucose in the brain.

    PubMed

    Thorens, Bernard

    2012-01-01

    The brain, and in particular the hypothalamus and brainstem, have been recognized for decades as important centers for the homeostatic control of feeding, energy expenditure, and glucose homeostasis. These structures contain neurons and neuronal circuits that may be directly or indirectly activated or inhibited by glucose, lipids, or amino acids. The detection by neurons of these nutrient cues may become deregulated, and possibly cause metabolic diseases such as obesity and diabetes. Thus, there is a major interest in identifying these neurons, how they respond to nutrients, the neuronal circuits they form, and the physiological function they control. Here I will review some aspects of glucose sensing by the brain. The brain is responsive to both hyperglycemia and hypoglycemia, and the glucose sensing cells involved are distributed in several anatomical sites that are connected to each other. These eventually control the activity of the sympathetic or parasympathetic nervous system, which regulates the function of peripheral organs such as liver, white and brown fat, muscle, and pancreatic islets alpha and beta cells. There is now evidence for an extreme diversity in the sensing mechanisms used, and these will be reviewed.

  2. Exploring the mammalian sensory space: co-operations and trade-offs among senses.

    PubMed

    Nummela, Sirpa; Pihlström, Henry; Puolamäki, Kai; Fortelius, Mikael; Hemilä, Simo; Reuter, Tom

    2013-12-01

    The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.

  3. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810

  4. Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nie, Yixiang

    Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.

  5. Molecular Nitrogen Fluorescence Lidar for Remote Sensing of the Auroral Ionosphere

    DTIC Science & Technology

    1994-02-24

    AD-A280 716 PL-TR-94-2044 MOLECULAR NITROGEN FLUORESCENCE LIDAR FOR REMOTE SENSING OF THE AURORAL IONOSPHERE Richard Garner Michael Burka...6. AUTHOR(S) Richard Garner Contract F19628-92-C-0160 Michael Burka 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...by Richard Dickmuaz of the HIPAS observatory and by Ralph Wuerker of UCLA PPL. 29 le

  6. Role of remote sensing in desert locust early warning

    NASA Astrophysics Data System (ADS)

    Cressman, Keith

    2013-01-01

    Desert locust (Schistocerca gregaria, Forskål) plagues have historically had devastating consequences on food security in Africa and Asia. The current strategy to reduce the frequency of plagues and manage desert locust infestations is early warning and preventive control. To achieve this, the Food and Agriculture Organization of the United Nations operates one of the oldest, largest, and best-known migratory pest monitoring systems in the world. Within this system, remote sensing plays an important role in detecting rainfall and green vegetation. Despite recent technological advances in data management and analysis, communications, and remote sensing, monitoring desert locusts and preventing plagues in the years ahead will continue to be a challenge from a geopolitical and financial standpoint for affected countries and the international donor community. We present an overview of the use of remote sensing in desert locust early warning.

  7. Tolerant compressed sensing with partially coherent sensing matrices

    NASA Astrophysics Data System (ADS)

    Birnbaum, Tobias; Eldar, Yonina C.; Needell, Deanna

    2017-08-01

    Most of compressed sensing (CS) theory to date is focused on incoherent sensing, that is, columns from the sensing matrix are highly uncorrelated. However, sensing systems with naturally occurring correlations arise in many applications, such as signal detection, motion detection and radar. Moreover, in these applications it is often not necessary to know the support of the signal exactly, but instead small errors in the support and signal are tolerable. Despite the abundance of work utilizing incoherent sensing matrices, for this type of tolerant recovery we suggest that coherence is actually beneficial . We promote the use of coherent sampling when tolerant support recovery is acceptable, and demonstrate its advantages empirically. In addition, we provide a first step towards theoretical analysis by considering a specific reconstruction method for selected signal classes.

  8. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM)

    USGS Publications Warehouse

    Slonecker, Terry; Jones, Daniel K.; Pellerin, Brian A.

    2016-01-01

    Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles.

  9. The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM).

    PubMed

    Slonecker, E Terrence; Jones, Daniel K; Pellerin, Brian A

    2016-06-30

    Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles. Published by Elsevier Ltd.

  10. Choosing sides--asymmetric centriole and basal body assembly.

    PubMed

    Pearson, Chad G

    2014-07-01

    Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. © 2014. Published by The Company of Biologists Ltd.

  11. Choosing sides – asymmetric centriole and basal body assembly

    PubMed Central

    Pearson, Chad G.

    2014-01-01

    ABSTRACT Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. PMID:24895399

  12. Curriculum evaluation and revision in a nascent field: the utility of the retrospective pretest--posttest model in a homeland security program of study.

    PubMed

    Pelfrey, William V; Pelfrey, William V

    2009-02-01

    Although most academic disciplines evolve at a measured pace, the emerging field of homeland security must, for reasons of safety and security, evolve rapidly. The Department of Homeland Security sponsored the establishment of a graduate educational program for key officials holding homeland security roles. Because homeland security is a nascent field, the establishment of a program curriculum was forced to draw from a variety of disciplines. Curriculum evaluation was complicated by the rapid changes occurring in the emerging discipline, producing response shift bias, and interfering with the pre-post assessments. To compensate for the validity threat associated with response shift bias, a retrospective pretest-posttest evaluative methodology was used. Data indicate the program has evolved in a significant and orderly fashion and these data support the use of this innovative evaluation approach in the development of any discipline.

  13. Advances in the development of remote sensing technology for agricultural applications

    NASA Technical Reports Server (NTRS)

    Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.

    1979-01-01

    The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.

  14. Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing

    NASA Astrophysics Data System (ADS)

    Narayanan, Aditya; Varnavski, Oleg; Mongin, Oliver; Majoral, Jean-Pierre; Blanchard-Desce, Mireille; Goodson, Theodore, III

    2008-03-01

    There is currently a need for superior stand-off detection schemes for protection against explosive weapons of mass destruction. Fluorescence detection at small distances from the target has proven to be attractive. A novel unexplored route in fluorescence chemical sensing that utilizes the exceptional spectroscopic capabilities of nonlinear optical methods is two-photon excited fluorescence. This approach utilizes infra-red light for excitation of remote sensors. Infra-red light suffers less scattering in porous materials which is beneficial for vapor sensing and has greater depth of penetration through the atmosphere, and there are fewer concerns regarding eye safety in remote detection schemes. We demonstrate this method using a novel dendritic system which possesses both excellent fluorescence sensitivity to the presence of TNT with infra-red pulses of light and high two-photon absorption (TPA) response. This illustrates the use of TPA for potential stand-off detection of energetic materials in the infra-red spectral regions in a highly two-photon responsive dendrimer.

  15. Famine Early Warning Systems and Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2008-01-01

    This book describes the interdisciplinary work of USAID's Famine Early Warning System Network (FEWS NET) and its influence on how food security crises are identified, documented and the kind of responses that result. The book describes FEWS NET's systems and methods for using satellite remote sensing to identify and describe how biophysical hazards impact the lives and livelihoods of the population where they occur. It presents several illustrative case studies that will demonstrate the integration of both physical and social science disciplines in its work. FEWS NET s operational needs have driven science in biophysical remote sensing applications through its collaboration with the US Geological Survey, the National Aeronautics and Space Administration, National Oceanographic and Atmospheric Administration, and US Department of Agriculture, as well as methodologies in the social science domain through its support of the US Agency for International Development, UNWorld Food Program and numerous international non-governmental organizations such as Save the Children, Oxfam and others. Because FEWS NET is an organization that must provide a global picture of food insecurity to decision makers, the information it relies on are by necessity observable and able to be documented. Thus many aspects of traditional livelihood analysis, for example, cannot be used by FEWS NET as they rely upon relationships, and ways of expressing power and knowledge at the local scale that cannot be easily scaled up to express variations in access to food at a community level. The book focuses on the ways that remote sensing information is transformed into an understanding of the actions that must be taken in order to ensure that lives and livelihoods are protected, including describing the remote sensing observations and models needed to identify hazards and the information gathering requirements and analytical frameworks needed to understand their impact. Its focus is primarily analysis

  16. Microbial detection method based on sensing molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.; Boykin, E. H.

    1974-01-01

    An approach involving the measurement of hydrogen evolution by test organisms was used to detect and enumerate various members of the Enterobacteriaceae group. The experimental setup for measuring hydrogen evolution consisted of a test tube containing two electrodes plus broth and organisms. The test tube was kept in a water bath at a temperature of 35 C. It is pointed out that the hydrogen-sensing method, coupled with the pressure transducer technique reported by Wilkins (1974) could be used in various experiments in which gas production by microorganisms is being measured.

  17. Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

    PubMed Central

    Mansilla, Sabrina F; Bertolin, Agustina P; Bergoglio, Valérie; Pillaire, Marie-Jeanne; González Besteiro, Marina A; Luzzani, Carlos; Miriuka, Santiago G; Hoffmann, Jean-Sébastien; Gottifredi, Vanesa

    2016-01-01

    The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI: http://dx.doi.org/10.7554/eLife.18020.001 PMID:27740454

  18. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  19. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: Analysis of the nascent OH products with the preferential population of the Π(A') component

    NASA Astrophysics Data System (ADS)

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-01

    The gas-phase reaction dynamics of ground-state atomic oxygen [O(3P) from the photo-dissociation of NO2] with vinyl radicals [C2H3 from the supersonic flash pyrolysis of vinyl iodide, C2H3I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], 10.1063/1.1748524, a new exothermic channel of O(3P) + C2H3 → C2H2 + OH (X 2Π: υ″ = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N″ components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A')/Π(A″) were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N″ regime as the major pathway and an addition-complex forming process in the high-N″ regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C2H2—OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  20. A combined crossed-beam and theoretical study of the reaction dynamics of O(3P) + C2H3 → C2H2 + OH: analysis of the nascent OH products with the preferential population of the Π(A') component.

    PubMed

    Park, Min-Jin; Jang, Su-Chan; Choi, Jong-Ho

    2012-11-28

    The gas-phase reaction dynamics of ground-state atomic oxygen [O((3)P) from the photo-dissociation of NO(2)] with vinyl radicals [C(2)H(3) from the supersonic flash pyrolysis of vinyl iodide, C(2)H(3)I] has been investigated using a combination of high-resolution laser-induced fluorescence spectroscopy in a crossed-beam configuration and ab initio calculations. Unlike the previous gas-phase bulk kinetic experiments by Baulch et al. [J. Phys. Chem. Ref. Data 34, 757 (2005)], a new exothermic channel of O((3)P) + C(2)H(3) → C(2)H(2) + OH (X (2)Π: υ" = 0) has been identified for the first time, and the population analysis shows bimodal nascent rotational distributions of OH products with low- and high-N" components with a ratio of 2.4:1. No spin-orbit propensities were observed, and the averaged ratios of Π(A('))∕Π(A") were determined to be 1.66 ± 0.27. On the basis of computations at the CBS-QB3 theory level and comparison with prior theory, the microscopic mechanisms responsible for the nascent populations can be understood in terms of two competing dynamical pathways: a direct abstraction process in the low-N" regime as the major pathway and an addition-complex forming process in the high-N" regime as the minor pathway. Particularly, during the bond cleavage process of the weakly bound van der Waals complex C(2)H(2)-OH, the characteristic pathway from the low dihedral-angle geometry was consistent with the observed preferential population of the Π(A') component in the nascent OH products. A molecular-level discussion of the reactivity, mechanism, and dynamical features of the title reaction are presented together with a comparison to gas-phase oxidation reactions of a series of prototypical hydrocarbon radicals.

  1. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    PubMed

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  2. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    PubMed Central

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  3. Detecting and measuring metabolic byproducts by electrochemical sensing

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Stoner, G. E.

    1974-01-01

    Method of detecting certain groups of bacteria is based on sensing buildup in molecular hydrogen. Apparatus is easy to assemble and use, and it has added advantage that hydrogen evolution by test micro-organisms can be measured automatically and accurately. System has been used to detect and enumerate variety of gram-negative bacteria of enterobacteriaceae group.

  4. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  5. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  6. Computational Sensing and in vitro Classification of GMOs and Biomolecular Events

    DTIC Science & Technology

    2008-12-01

    COMPUTATIONAL SENSING AND IN VITRO CLASSIFICATION OF GMOs AND BIOMOLECULAR EVENTS Elebeoba May1∗, Miler T. Lee2†, Patricia Dolan1, Paul Crozier1...modified organisms ( GMOs ) in the pres- ence of non-lethal agents. Using an information and coding- theoretic framework we develop a de novo method for...high through- put screening, distinguishing genetically modified organisms ( GMOs ), molecular computing, differentiating biological mark- ers

  7. Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm

    PubMed Central

    Shettigar, Nishan; Joshi, Asawari; Dalmeida, Rimple; Gopalkrishna, Rohini; Chakravarthy, Anirudh; Patnaik, Siddharth; Mathew, Manoj; Palakodeti, Dasaradhi; Gulyani, Akash

    2017-01-01

    Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple “eye” while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a “reflex-like,” eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the “processive” eye-brain–mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity–based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism. PMID:28782018

  8. Plotting the Self: Repurposing Our Stories as the Mythos of Second Phase Individuation

    ERIC Educational Resources Information Center

    Myrow, Neora

    2009-01-01

    Individuation is both the crowning idea of C. G. Jung's analytic psychology and directs how we read stories in the nascent field of mythological studies from a depth psychological perspective. This project considers individuation from a unique angle: its narrative form. It seeks the "plot" or "mythos" of individuation in an Aristotelian sense.…

  9. Visual Image Sensor Organ Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  10. Nutrient sensing in plant meristems.

    PubMed

    Francis, Dennis; Halford, Nigel G

    2006-04-01

    Plants need nutrient to grow and plant cells need nutrient to divide. The meristems are the factories and cells that are left behind will expand and differentiate. However, meristems are not simple homogenous entities; cells in different parts of the meristem do different things. Positional cues operate that can fate cells into different tissue domains. However, founder/stem cells persist in specific locations within the meristem e.g. the quiescent centre of root apical meristem (RAM) and the lower half of the central zone of the shoot apical meristem (SAM). Given the complexity of meristems, do their cells simply respond to a diffusing gradient of photosynthate? This in turn begs the question, why do stem cell populations tend to have longer cell cycles than their immediate descendants given that like all other cells they are directly in the path of diffusing nutrient? In this review, we have examined the extent to which nutrient sensing might be operating in meristems. The scene is set for sugar sensing, the plant cell cycle, SAMs and RAMs. Special emphasis is given to the metabolic regulator, SnRK1 (SNF1-related protein kinase 1), hexokinase and the trehalose pathway in relation to sugar sensing. The unique plant cell cycle gene, cyclin-dependent kinase B1;1 may have evolved to be particularly responsive to sugar signalling pathways. Also, the homeobox gene, STIMPY, emerges strongly as a link between sugar sensing, plant cell proliferation and development. Flowering can be influenced by sucrose and glucose levels and both meristem identity and organ identity genes could well be differentially sensitive to sucrose and glucose signals. We also describe how meristems deal with extra photosynthate as a result of exposure to elevated CO2. What we review are numerous instances of how developmental processes can be affected by sugars/nutrients. However, given the scarcity of knowledge we are unable to provide uncontested links between nutrient sensing and specific

  11. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont.

    PubMed

    Renoz, François; Champagne, Antoine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Foray, Vincent; Hance, Thierry

    2017-01-01

    Symbiotic bacteria are common in insects and can affect various aspects of their hosts' biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro , there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors). In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3 T . Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3 T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.

  12. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant

    PubMed Central

    Ma, Bing; Reynolds, C. Michael; Raetz, Christian R. H.

    2008-01-01

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42°C. 32Pi and [35S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42°C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42°C, consistent with a role for LptA in shuttling LPS across the periplasm. PMID:18768814

  13. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant.

    PubMed

    Ma, Bing; Reynolds, C Michael; Raetz, Christian R H

    2008-09-16

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.

  14. Reliability, validity, and significance of assessment of sense of contribution in the workplace.

    PubMed

    Takaki, Jiro; Taniguchi, Toshiyo; Fujii, Yasuhito

    2014-01-29

    The purpose of this study was to assess the validity and reliability of the Sense of Contribution Scale (SCS), a newly developed, 7-item questionnaire used to measure sense of contribution in the workplace. Workers at 272 organizations answered questionnaires that included the SCS. Because of non-participation or missing data, the number of subjects included in the analyses for internal consistency and validity varied from 1,675 to 2,462 (response rates 54.6%-80.2%). Fifty-four workers were included in the analysis of test-retest reliability (response rate, 77.1%). The SCS showed high internal consistency (Cronbach's α coefficients in men and women were 0.85 and 0.86, respectively) and test-retest reliability (intraclass correlation coefficient = 0.91). Significant (p < 0.001), positive, moderate correlations were found between the SCS score and scores for organization-based self-esteem and work engagement in both genders, which support the SCS's convergent and discriminant validity. The criterion validity of the SCS was supported by the finding that in both genders, the SCS scores were significantly (p < 0.05) and inversely associated with psychological distress and sleep disturbance in crude and in multivariable analyses that adjusted for demographics, organization-based self-esteem, work engagement, effort-reward ratio, workplace bullying, and procedural and interactional justice. The SCS is a psychometrically satisfactory measure of sense of contribution in the workplace. The SCS provides a new and useful instrument to measure sense of contribution, which is independently associated with mental health in workers, for studies in organizational science, occupational health psychology and occupational medicine.

  15. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing

  16. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    PubMed

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  17. Time-resolved diode laser infrared absorption spectroscopy of the nascent HCl in the infrared laser chemistry of 1,2-dichloro-1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Dietrich, Peter; Quack, Martin; Seyfang, George

    1990-04-01

    The IR multiphoton excitation and the frequency, fluence and intensity dependence of the IR-laser chemical yields of CF 2ClCH 2Cl have been studied in the fluence range of 1 to 10 J cm -2 yielding a steady-state constant k(st)/ I=0.74×10 6 s -1 MW -1 cm 2 which is approximately independent of intensity. Time-resolved IR absorption spectroscopy with diode laser sources has been used to observe the nascent HCl during the first few 100 ns indicating a population inversion between the levels ν=1, J=4 and ν=2, J=5. At low reactant pressures ( p⩽10 Pa) the time-resolved measurement gives a steady-state rate constant consistent with the theoretical result adjusted to the static yield measurements. The capability of state-selective and time-resolved IR spectroscopy is thus demonstrated, giving real-time determinations of rate constants.

  18. Person-Organization Fit and Research on Instruction

    ERIC Educational Resources Information Center

    Youngs, Peter; Pogodzinski, Ben; Grogan, Erin; Perrone, Frank

    2015-01-01

    Research from industrial and organizational (I-O) psychology indicates that outside of K-12 education, employees' sense of fit with their organizations is often associated with job satisfaction, performance, commitment, and retention. Person-organization (P-O) fit has been conceptualized as the degree of congruence between an…

  19. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    PubMed Central

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  20. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  1. Nascent Marine Aerosol Acting as Ultra-Efficient Cloud Nuclei

    NASA Astrophysics Data System (ADS)

    Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, C.; Seinfeld, J.; O'Dowd, C. D. D.

    2017-12-01

    Marine aerosol is an important part of the natural aerosol and often dominates the total burden in remote locations. Moreover, it contributes significantly to the global radiative budget through the formation of haze and cloud layers. Even if these layers are optically-thin at times, they can have a profound impact on the radiative budget as they overly a dark and extensive ocean surface. Since the postulation of marine aerosol global importance several decades ago1, understanding has progressed from evaluation of the nss-sulphate and sea salt effects to the acknowledgement of a significant role of organic aerosol2. Dependence of organic matter (OM) fraction enrichment in sea spray on phytoplankton biomass has been shown3 as well as an apparent dichotomous OM behaviour in terms of water uptake4. Hygroscopicity of organic aerosol in sub-saturated humidity fields is typically less than most common salts found in the atmospheric aerosol; however, the ability of organic aerosol to activate cloud droplets is predicted to be greatly increased in supersaturated air due a lowering of the droplets surface tension5. While this phenomenon has been acknowledged for some time, it has yet to be demonstrated in the real atmosphere. Here, we present evidence that recently-formed secondary organic aerosol particles, in marine air, lead to enhanced cloud droplet activation resulting from surface tension reduction. Whilst the surface tension lowering is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of solute ions by surfactant molecules at the droplet-vapour interface, we present new observational and theoretical evidence illustrating that, in ambient air, the former can prevail over the latter. Consideration of liquid-liquid phase-separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, explains the lack of suppression of the Raoult effect, while maintaining

  2. The Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT)

    Treesearch

    Constance I. Millar

    2004-01-01

    I represent a nascent effort in western North America that is committed to improving integration of climate-related research and its societal implications. We go under the name of CIRMOUNT, that is, Consortium for Integrated Climate-Related Research in Western North American Mountains. In a sense, CIRMOUNT is a North American answer (in the affirmative) to Thomas...

  3. Calcium-sensing receptor 20 years later

    PubMed Central

    Alfadda, Tariq I.; Saleh, Ahmad M. A.; Houillier, Pascal

    2014-01-01

    The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology. PMID:24871857

  4. Development and regeneration of the electric organ.

    PubMed

    Zakon, H H; Unguez, G A

    1999-05-01

    The electric organ has evolved independently from muscle in at least six lineages of fish. How does a differentiated muscle cell change its fate to become an electrocyte? Is the process by which this occurs similar in different lineages? We have begun to answer these questions by studying the formation and maintenance of electrocytes in the genus Sternopygus, a weakly electric teleost. Electrocytes arise from the fusion of fully differentiated muscle fibers, mainly those expressing fast isoforms of myosin. Electrocytes briefly co-express sarcomeric proteins, such as myosin and tropomyosin, and keratin, a protein not found in mature muscle. The sarcomeric proteins are subsequently down-regulated, but keratin expression persists. We investigated whether the maintenance of the electrocyte phenotype depends on innervation. We found that, after spinal cord transection, which silences the electromotor neurons that innervate the electrocytes, or destruction of the spinal cord, which denervates the electrocytes, mature electrocytes re-express sarcomeric myosin and tropomyosin, although keratin expression persists. Ultrastructural examination of denervated electrocytes revealed nascent sarcomeres. Thus, the maintenance of the electrocyte phenotype depends on neural activity.

  5. Organic nanofiber nanosensors

    NASA Astrophysics Data System (ADS)

    Madsen, M.; Schiek, M.; Thomsen, P.; Andersen, N. L.; Lützen, A.; Rubahn, H.-G.

    2007-09-01

    A new way of developing optical nanosensors is presented. Organic nanofibers serve as key elements in these new types of devices, which exploit both the smallness and brightness of the nanoaggregates to make new compact and sensitive optical nanosensors. On the basis of bottom up technology, we functionalize individual molecules, which are then intrinsically sensitive to specific agents. These molecules are used as building blocks for controlled growth of larger nanoscaled aggregates. The aggregates in turn can be used as sensing elements on the meso-scale in the size range from hundred nanometers to a few hundred microns. The organic nanofibers thereby might become a versatile tool within nanosensor technology, allowing sensing on the basis of individual molecules over small aggregates to large assemblies. First experiments of Bovine Serum Albumin (BSA) coupling to para-hexaphenyl (p-6P) nanofibers are presented, which could lead towards a new type of protein sensors. Besides large versatility and sensitivity, the nanofibers benefit from the fact that they can be integrated in devices, either in liquids by the use of microfluidic cavities or all in parallel.

  6. Migrating Myeloid Cells Sense Temporal Dynamics of Chemoattractant Concentrations.

    PubMed

    Petrie Aronin, Caren E; Zhao, Yun M; Yoon, Justine S; Morgan, Nicole Y; Prüstel, Thorsten; Germain, Ronald N; Meier-Schellersheim, Martin

    2017-11-21

    Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments. Published by Elsevier Inc.

  7. PREFACE: 35th International Symposium on Remote Sensing of Environment (ISRSE35)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    35th International Symposium on Remote Sensing of Environment (ISRSE35) 22-26 April, 2013, Beijing, China The 35th International Symposium on Remote Sensing of Environment (ISRSE35) was successfully convened in Beijing, China, from April 22nd to 26th, 2013. This was the first event in the ISRSE series being held in China. The symposium was hosted by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, and co-organized by the International Center for Remote Sensing of Environment (ICRSE), the International Society for Photogrammetry and Remote Sensing (ISPRS), the Group on Earth Observations (GEO), the International Society for Digital Earth (ISDE) and the Chinese Academy of Sciences (CAS). The theme of the symposium was ''Earth Observation and Global Environmental Change''. Back in 1962, the first ISRSE was convened at the University of Michigan, USA. Over the past 50 years, Earth observation has advanced significantly, and remote sensing has become a mature technology for observing the Earth and monitoring global environmental change. At present, remote sensing has already entered an era of integrated, coordinated and sustainable global Earth observation and rapid development of spatial information services. It is very exciting to see that remote sensing technologies have become indispensable tools in numerous fields of Earth systems science, and are playing more and more important roles in areas such as land resources surveying and mapping, crop and forest monitoring, mineral exploration, urban development, ocean and coastlines resources surveillance, and in the monitoring and assessment of floods, droughts, forest fires, landslides and earthquakes. Thus, remote sensing has made great contributions to the socio-economic development of the world and it is anticipated that it will provide more powerful support in advancing the fields of Earth systems science and global change research. The 35th ISRSE was a platform for scientists and

  8. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-02-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.

  9. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    PubMed Central

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-01-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW. PMID:26861412

  10. Video Storytelling in a Transient, Volunteer Organization

    ERIC Educational Resources Information Center

    Katzeff, Cecilia; Ware, Vanessa

    2007-01-01

    To make sense of and learn about work environments, people actively construct their own knowledge and share stories of their experience. Telling stories is particularly challenging in a transient organization where people are hired on a voluntary, temporary basis. Such is the case of a nonprofit music festival organization in Sweden, which is…

  11. PREFACE: 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies

    NASA Astrophysics Data System (ADS)

    Shuja Syed, Ahmed

    2013-12-01

    The 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies (ICSICCST-2013), took place in Karachi, Pakistan, from 24-26 June 2013. It was organized by Indus University, Karachi, in collaboration with HEJ Research Institute of Chemistry, University of Karachi, Karachi. More than 80 abstracts were submitted to the conference and were double blind-reviewed by an international scientific committee. The topics of the Conference were: Video, Image & Voice Sensing Sensing for Industry, Environment, and Health Automation and Controls Laser Sensors and Systems Displays for Innovative Applications Emerging Technologies Unmanned, Robotic, and Layered Systems Sensing for Defense, Homeland Security, and Law Enforcement The title of the conference, 'Sensing for Industry, Control, Communication & Security Technologies' is very apt in capturing the main issues facing the industry of Pakistan and the world. We believe the sensing industry, particularly in Pakistan, is currently at a critical juncture of its development. The future of the industry will depend on how the industry players choose to respond to the challenge of global competition and opportunities arising from strong growth in the Asian region for which we are pleased to note that the conference covered a comprehensive spectrum of issues with an international perspective. This will certainly assist industry players to make informed decisions in shaping the future of the industry. The conference gathered qualified researchers from developed countries like USA, UK, Sweden, Saudi Arabia, China, South Korea and Malaysia etc whose expertise resulting from the research can be drawn upon to build an exploitable area of new technology that has potential Defense, Homeland Security, and Military applicability. More than 250 researchers/students attended the event and made the event great success as the turnout was 100%. An exceptional line-up of speakers spoke at the occasion. We want

  12. Matrix of educational and training materials in remote sensing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Lube, B. M.

    1976-01-01

    Remote sensing educational and training materials developed by LARS have been organized in a matrix format. Each row in the matrix represents a subject area in remote sensing and the columns represent different types of instructional materials. This format has proved to be useful for displaying in a concise manner the subject matter content, prerequisite requirements and technical depth of each instructional module in the matrix. A general description of the matrix is followed by three examples designed to illustrate how the matrix can be used to synthesize training programs tailored to meet the needs of individual students. A detailed description of each of the modules in the matrix is contained in a catalog section.

  13. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch.

    PubMed

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

  14. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  15. Laser Spectroscopy for Atmospheric and Environmental Sensing

    PubMed Central

    Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon

    2009-01-01

    Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184

  16. Evolution and physiology of neural oxygen sensing

    PubMed Central

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  17. Reliability, Validity, and Significance of Assessment of Sense of Contribution in the Workplace

    PubMed Central

    Takaki, Jiro; Taniguchi, Toshiyo; Fujii, Yasuhito

    2014-01-01

    The purpose of this study was to assess the validity and reliability of the Sense of Contribution Scale (SCS), a newly developed, 7-item questionnaire used to measure sense of contribution in the workplace. Workers at 272 organizations answered questionnaires that included the SCS. Because of non-participation or missing data, the number of subjects included in the analyses for internal consistency and validity varied from 1,675 to 2,462 (response rates 54.6%–80.2%). Fifty-four workers were included in the analysis of test–retest reliability (response rate, 77.1%). The SCS showed high internal consistency (Cronbach’s α coefficients in men and women were 0.85 and 0.86, respectively) and test–retest reliability (intraclass correlation coefficient = 0.91). Significant (p < 0.001), positive, moderate correlations were found between the SCS score and scores for organization-based self-esteem and work engagement in both genders, which support the SCS’s convergent and discriminant validity. The criterion validity of the SCS was supported by the finding that in both genders, the SCS scores were significantly (p < 0.05) and inversely associated with psychological distress and sleep disturbance in crude and in multivariable analyses that adjusted for demographics, organization-based self-esteem, work engagement, effort–reward ratio, workplace bullying, and procedural and interactional justice. The SCS is a psychometrically satisfactory measure of sense of contribution in the workplace. The SCS provides a new and useful instrument to measure sense of contribution, which is independently associated with mental health in workers, for studies in organizational science, occupational health psychology and occupational medicine. PMID:24481035

  18. Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing

    EPA Science Inventory

    Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...

  19. Long-Peptide Cross-Presentation by Human Dendritic Cells Occurs in Vacuoles by Peptide Exchange on Nascent MHC Class I Molecules.

    PubMed

    Ma, Wenbin; Zhang, Yi; Vigneron, Nathalie; Stroobant, Vincent; Thielemans, Kris; van der Bruggen, Pierre; Van den Eynde, Benoît J

    2016-02-15

    Cross-presentation enables dendritic cells to present on their MHC class I molecules antigenic peptides derived from exogenous material, through a mechanism that remains partly unclear. It is particularly efficient with long peptides, which are used in cancer vaccines. We studied the mechanism of long-peptide cross-presentation using human dendritic cells and specific CTL clones against melanoma Ags gp100 and Melan-A/MART1. We found that cross-presentation of those long peptides does not depend on the proteasome or the transporter associated with Ag processing, and therefore follows a vacuolar pathway. We also observed that it makes use of newly synthesized MHC class I molecules, through peptide exchange in vesicles distinct from the endoplasmic reticulum and classical secretory pathway, in an SEC22b- and CD74-independent manner. Our results indicate a nonclassical secretion pathway followed by nascent HLA-I molecules that are used for cross-presentation of those long melanoma peptides in the vacuolar pathway. Our results may have implications for the development of vaccines based on long peptides. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetra­carboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    PubMed Central

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-01-01

    An Mn metal–organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt’s solvent polarity parameter (E T N). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF. PMID:26306197

  1. Development of multifunctional materials exhibiting distributed sensing and actuation inspired by fish

    NASA Astrophysics Data System (ADS)

    Philen, Michael

    2011-04-01

    This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.

  2. Biomimicry of quorum sensing using bacterial lifecycle model.

    PubMed

    Niu, Ben; Wang, Hong; Duan, Qiqi; Li, Li

    2013-01-01

    Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm intelligence optimization algorithms

  3. Biomimicry of quorum sensing using bacterial lifecycle model

    PubMed Central

    2013-01-01

    Background Recent microbiologic studies have shown that quorum sensing mechanisms, which serve as one of the fundamental requirements for bacterial survival, exist widely in bacterial intra- and inter-species cell-cell communication. Many simulation models, inspired by the social behavior of natural organisms, are presented to provide new approaches for solving realistic optimization problems. Most of these simulation models follow population-based modelling approaches, where all the individuals are updated according to the same rules. Therefore, it is difficult to maintain the diversity of the population. Results In this paper, we present a computational model termed LCM-QS, which simulates the bacterial quorum-sensing (QS) mechanism using an individual-based modelling approach under the framework of Agent-Environment-Rule (AER) scheme, i.e. bacterial lifecycle model (LCM). LCM-QS model can be classified into three main sub-models: chemotaxis with QS sub-model, reproduction and elimination sub-model and migration sub-model. The proposed model is used to not only imitate the bacterial evolution process at the single-cell level, but also concentrate on the study of bacterial macroscopic behaviour. Comparative experiments under four different scenarios have been conducted in an artificial 3-D environment with nutrients and noxious distribution. Detailed study on bacterial chemotatic processes with quorum sensing and without quorum sensing are compared. By using quorum sensing mechanisms, artificial bacteria working together can find the nutrient concentration (or global optimum) quickly in the artificial environment. Conclusions Biomimicry of quorum sensing mechanisms using the lifecycle model allows the artificial bacteria endowed with the communication abilities, which are essential to obtain more valuable information to guide their search cooperatively towards the preferred nutrient concentrations. It can also provide an inspiration for designing new swarm

  4. A new centrifuge microscope reveals that mobile plastids trigger gravity sensing in Arabidopsis inflorescence stems

    NASA Astrophysics Data System (ADS)

    Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon

    2012-07-01

    The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with

  5. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  6. Remote sensing of water quality and contaminants in the California Bay-Delta

    NASA Astrophysics Data System (ADS)

    Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.

    2014-12-01

    The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.

  7. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.

    PubMed

    Chang, Andy J

    2017-11-01

    Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models. Copyright © 2017 the American Physiological Society.

  8. NemR Is a Bleach-sensing Transcription Factor*

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Parker, Benjamin W.; Kim, Minwook; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active component of household bleach, also functions as a powerful antimicrobial during the innate immune response. Despite its widespread use, surprisingly little is known about how cells sense or respond to HOCl. We now demonstrate that Escherichia coli NemR is a redox-regulated transcriptional repressor, which uses the oxidation status of HOCl-sensitive cysteine residues to respond to bleach and related reactive chlorine species. NemR controls bleach-mediated expression of two enzymes required for detoxification of reactive electrophiles: glyoxalase I and N-ethylmaleimide reductase. Both enzymes contribute to bacterial bleach survival. These results provide evidence that bleach resistance relies on the capacity of organisms to specifically sense reactive chlorine species and respond with the up-regulation of enzymes dedicated to detoxification of methylglyoxal and other reactive electrophiles. PMID:23536188

  9. EDITORIAL: Sensors and sensing systems

    NASA Astrophysics Data System (ADS)

    Dewhurst, Richard; Tian, Gui Yun

    2008-02-01

    Sensors are very important for measurement science and technology. They serve as a vital component in new measurement techniques and instrumentation systems. Key qualities of a good sensor system are high resolution, high reliability, low cost, appropriate output for a given input (good sensitivity), rapid response time, small random error in results, and small systematic error. Linearity is also useful, but with the advent of lookup tables and software, it is not as important as it used to be. In the last several years, considerable effort around the world has been devoted to a wide range of sensors from nanoscale sensors to sensor networks. Collectively, these vast and multidisciplinary efforts are developing important technological roadmaps to futuristic sensors with new modalities, significantly enhanced effectiveness and integrated functionality (data processing, computation, decision making and communications). When properly organized, they will have important relevance to life science and security applications, e.g. the sensing and monitoring of chemical, biological, radiological and explosive threats. A special feature in this issue takes a snapshot of some recent developments that were first presented at an international conference, the 2007 IEEE International Conference on Networking, Sensing and Control (ICNSC). The conference discussed recent developments, from which a few papers have since been brought together in this special feature. Gas sensing for environmental monitoring remains a topical subject, and two papers deal with this issue. One is concerned with the exploitation of nanostructured Au-doped cobalt oxyhydroxide-based carbon monoxide sensors for fire detection at its earlier stages (Zhuiykov and Dowling), whilst another examines the role of oxygen in high temperature hydrogen sulfide detection using MISiC sensors (Weng et al). Again for environmental monitoring, another paper deals with accurate sound source localization in a reverberant

  10. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    PubMed

    Lee, K H; Ruby, E G

    1994-04-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.

  11. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    PubMed Central

    Lee, K H; Ruby, E G

    1994-01-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization. PMID:8144466

  12. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    PubMed

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  13. From planets to crops and back: Remote sensing makes sense

    NASA Astrophysics Data System (ADS)

    Mustard, John F.

    2017-04-01

    Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.

  14. Microtubule nucleation and organization in dendrites

    PubMed Central

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  15. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.

    PubMed

    Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2016-03-01

    Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

  16. An overview of remote sensing technology transfer in Canada and the United States

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  17. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  18. Propagation Limitations in Remote Sensing.

    DTIC Science & Technology

    Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .

  19. An anthropological exploration of contemporary bioethics: the varieties of common sense.

    PubMed

    Turner, L

    1998-04-01

    Patients and physicians can inhabit distinctive social worlds where they are guided by diverse understandings of moral practice. Despite the contemporary presence of multiple moral traditions, religious communities and ethnic backgrounds, two of the major methodological approaches in bioethics, casuistry and principlism, rely upon the notion of a common morality. However, the heterogeneity of ethnic, moral, and religious traditions raises questions concerning the singularity of common sense. Indeed, it might be more appropriate to consider plural traditions of moral reasoning. This poses a considerable challenge for bioethicists because the existence of plural moral traditions can lead to difficulties regarding "closure" in moral reasoning. The topics of truth-telling, informed consent, euthanasia, and brain death and organ transplantation reveal the presence of different understandings of common sense. With regard to these subjects, plural accounts of "common sense" moral reasoning exist.

  20. An anthropological exploration of contemporary bioethics: the varieties of common sense.

    PubMed Central

    Turner, L

    1998-01-01

    Patients and physicians can inhabit distinctive social worlds where they are guided by diverse understandings of moral practice. Despite the contemporary presence of multiple moral traditions, religious communities and ethnic backgrounds, two of the major methodological approaches in bioethics, casuistry and principlism, rely upon the notion of a common morality. However, the heterogeneity of ethnic, moral, and religious traditions raises questions concerning the singularity of common sense. Indeed, it might be more appropriate to consider plural traditions of moral reasoning. This poses a considerable challenge for bioethicists because the existence of plural moral traditions can lead to difficulties regarding "closure" in moral reasoning. The topics of truth-telling, informed consent, euthanasia, and brain death and organ transplantation reveal the presence of different understandings of common sense. With regard to these subjects, plural accounts of "common sense" moral reasoning exist. PMID:9603001

  1. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  2. Embedded Piezoresistive Microcantilever Sensors for Chemical and Biological Sensing

    NASA Astrophysics Data System (ADS)

    Porter, Timothy; Eastman, Michael; Kooser, Ara; Manygoats, Kevin; Zhine, Rosalie

    2003-03-01

    Microcantilever sensors based on embedded piezoresisative technology offer a promising, low-cost method of sensing chemical and biological species. Here, we present data on the detection of various gaseous analytes, including volatile organic compounds (VOC's) and carbon monoxide. Also, we have used these sensors to detect the protein bovine serum albumin (BSA), a protein important in the study of human childhood diabetes.

  3. A sense of time: how molecular clocks organize metabolism.

    PubMed

    Kohsaka, Akira; Bass, Joseph

    2007-01-01

    The discovery of an internal temporal clockwork that coordinates behavior and metabolism according to the rising and setting of the sun was first revealed in flies and plants. However, in the past decade, a molecular transcription-translation feedback loop with similar properties has also been identified in mammals. In mammals, this transcriptional oscillator programs 24-hour cycles in sleep, activity and feeding within the master pacemaker neurons of the suprachiasmatic nucleus of the hypothalamus. More recent studies have shown that the core transcription mechanism is also present in other locations within the brain, in addition to many peripheral tissues. Processes ranging from glucose transport to gluconeogenesis, lipolysis, adipogenesis and mitochondrial oxidative phosphorylation are controlled through overlapping transcription networks that are tied to the clock and are thus time sensitive. Because disruption of tissue timing occurs when food intake, activity and sleep are altered, understanding how these many tissue clocks are synchronized to tick at the same time each day, and determining how each tissue 'senses time' set by these molecular clocks might open new insight into human disease, including disorders of sleep, circadian disruption, diabetes and obesity.

  4. Environmental Sense Box: A Strategy for Helping Elementary School Students Understand Abstract Environments through Concrete Learning Activities.

    ERIC Educational Resources Information Center

    Sesow, F. Wm.

    This paper suggests a technique for the development, collection, and organization of materials that will aid learning through the use of the senses by building an environmental sense box. England is used as an example of a place that provides many sensory experiences which can be duplicated in such a box. The box can be made from a cardboard…

  5. Emergent sensing of complex environments by mobile animal groups.

    PubMed

    Berdahl, Andrew; Torney, Colin J; Ioannou, Christos C; Faria, Jolyon J; Couzin, Iain D

    2013-02-01

    The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.

  6. Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex.

    PubMed

    Strauß, Johannes; Lakes-Harlan, Reinhard

    2013-11-01

    The subgenual organ is a scolopidial sense organ located in the tibia of many insects. In this study the neuroanatomy of the subgenual organ complex of stick insects is clarified for two species, Carausius morosus and Siyploidea sipylus. Neuronal tracing shows a subgenual organ complex that consists of a subgenual organ and a distal organ. There are no differences in neuroanatomy between the three thoracic leg pairs, and the sensory structures are highly similar in both species. A comparison of the neuroanatomy with other orthopteroid insects highlights two features unique in Phasmatodea. The subgenual organ contains a set of densely arranged sensory neurons in the anterior-ventral part of the organ, and a distal organ with 16-17 scolopidial sensilla in C. morosus and 20-22 scolopidial sensilla in S. sipylus. The somata of sensory neurons in the distal organ are organized in a linear array extending distally into the tibia, with only a few exceptions of closely associated neurons. The stick insect sense organs show a case of an elaborate scolopidial sense organ that evolved in addition to the subgenual organ. The neuroanatomy of stick insects is compared to that studied in other orthopteroid taxa (cockroaches, locusts, crickets, tettigoniids). The comparison of sensory structures indicates that elaborate scolopidial organs have evolved repeatedly among orthopteroids. The distal organ in stick insects has the highest number of sensory neurons known for distal organs so far. Copyright © 2013 Wiley Periodicals, Inc.

  7. Crystallizing Classroom Chemists: From Isolated Disorder to Organized Interaction in the Teaching of Chemistry. A History of the Effort To Create a National Chemical Education Organization

    NASA Astrophysics Data System (ADS)

    Bohning, James J.

    2003-06-01

    Chemistry was an integral part of the culture of the earliest settlements in America, but for almost two centuries it languished as a nascent profession, plagued in part by a lack of suitable textbooks and a "dearth of competent teachers". A few individuals, such as Benjamin Silliman and Amos Eaton, acted as seed crystals in attracting and preparing some chemistry teachers, yet as late as the beginning of World War I, "the average isolated teacher had to work out his own salvation as best he could with the aid of an occasional book agent". Small regional organizations of teachers did exist at this time, but achieved little in connecting teachers on a national level. It was out of this amorphous mixture that the American Chemical Society‘s Division of Chemical Education (DIVCHED) solidified, uniting at last a dedicated group of teachers with common problems and a passionate dedication to their discipline and their students.

  8. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science.

    PubMed

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-03-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.

  9. Sensing our Environment: Remote sensing in a physics classroom

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  10. Photoredox Catalysis in Organic Chemistry

    PubMed Central

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  11. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    PubMed

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Active touch sensing

    PubMed Central

    Prescott, Tony J.; Diamond, Mathew E.; Wing, Alan M.

    2011-01-01

    Active sensing systems are purposive and information-seeking sensory systems. Active sensing usually entails sensor movement, but more fundamentally, it involves control of the sensor apparatus, in whatever manner best suits the task, so as to maximize information gain. In animals, active sensing is perhaps most evident in the modality of touch. In this theme issue, we look at active touch across a broad range of species from insects, terrestrial and marine mammals, through to humans. In addition to analysing natural touch, we also consider how engineering is beginning to exploit physical analogues of these biological systems so as to endow robots with rich tactile sensing capabilities. The different contributions show not only the varieties of active touch—antennae, whiskers and fingertips—but also their commonalities. They explore how active touch sensing has evolved in different animal lineages, how it serves to provide rapid and reliable cues for controlling ongoing behaviour, and even how it can disintegrate when our brains begin to fail. They demonstrate that research on active touch offers a means both to understand this essential and primary sensory modality, and to investigate how animals, including man, combine movement with sensing so as to make sense of, and act effectively in, the world. PMID:21969680

  13. SenseLab

    PubMed Central

    Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.

    2009-01-01

    This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162

  14. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  15. Olfactory function in painters exposed to organic solvents.

    PubMed

    Sandmark, B; Broms, I; Löfgren, L; Ohlson, C G

    1989-02-01

    The olfactory receptor cells are in direct contact with the exterior environment, and some chemical agents can impair olfactory function. The olfactory function of 54 painters exposed to organic solvents was compared with that of 42 unexposed referents. A new clinical test validated for the sense of smell was used, the University of Pennsylvania Smell Identification Test. Age, smoking habits, exposure to organic solvents, and medical disorders of importance for the sense of smell were recorded. The painters had a somewhat lower test score than the referents. However, the influence of the exposure variable was not statistically significant in a multiple regression analysis including age and smoking habits. The exposure to organic solvents was low, and therefore an effect of high exposure on olfactory function cannot be ruled out. Since some of the painters had earlier been highly exposed, the effects of high exposure are likely to be reversible.

  16. Regulation of Manganese Antioxidants by Nutrient Sensing Pathways in Saccharomyces cerevisiae

    PubMed Central

    Reddi, Amit R.; Culotta, Valeria C.

    2011-01-01

    In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers’ yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness. PMID:21926297

  17. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    NASA Astrophysics Data System (ADS)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  18. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems.

    PubMed

    Wu, Jun; Su, Zhou; Wang, Shen; Li, Jianhua

    2017-07-30

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on "friend" relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems.

  19. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  20. Assessment of the role of remote sensing in the study of inland and coastal waters

    NASA Technical Reports Server (NTRS)

    Curfman, H. J.; Oberholtzer, J. D.; Schertler, R. J.

    1980-01-01

    Several problems within Great Lakes, coastal, and continental shelf water were selected and organized under the topical headings of Productivity, Sedimentation, Water Dynamics, Eutrophication, and Hazardous Substances. The measurements required in the study of each of the problems were identified. An assessment was made of the present capability and the potential of remote sensing to make these measurements. The relevant remote-sensing technology for each of these classifications was discussed and needed advancements indicated.

  1. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  2. Latinx College Student Sense of Belonging: The Role of Campus Subcultures

    ERIC Educational Resources Information Center

    Garcia, Crystal E.

    2017-01-01

    This qualitative, multiple case study incorporated elements of a grounded theory approach to explore the role of involvement in a particular university subculture, Latinx Greek letter organizations, in how Latinx college students develop and make meaning of their sense of belonging within predominantly White institutions. The study was guided by…

  3. Organic Electronics for Point-of-Care Metabolite Monitoring.

    PubMed

    Pappa, Anna-Maria; Parlak, Onur; Scheiblin, Gaetan; Mailley, Pascal; Salleo, Alberto; Owens, Roisin M

    2018-01-01

    In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  5. Microfabrication of IPMC cilia for bio-inspired flow sensing

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Li, Wen; Tan, Xiaobo

    2012-04-01

    As the primary flow sensing organ for fishes, the lateral line system plays a critical role in fish behavior. Analogous to its biological counterpart, an artificial lateral line system, consisting of arrays of micro flow sensors, is expected to be instrumental in the navigation and control of underwater robots. In this paper we investigate the microfabrication of ionic polymer-metal composite (IPMC) cilia for the purpose of flow sensing. While existing macro- and microfabrication methods for IPMCs have predominantly focused on planar structures, we propose a device where micro IPMC beams stand upright on a substrate to effectively interact with the flow. Challenges in the casting of 3D Nafion structure and selective formation of electrodes are discussed, and potential solutions for addressing these challenges are presented together with preliminary microfabrication results.

  6. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    PubMed Central

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  7. How cells jump: Ultrafast motions in the single-celled micro-organism Halteria grandinella

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Cockenpot, Fabien; Prakash, Manu

    Here we describe a novel behavior of ''jumping'' in micro-organisms, observed in the common freshwater ciliate Halteria grandinella. This organism's swimming motion is characterized by periods of forward swimming at around 10 body lengths/s punctuated by extremely rapid backward ''jumps'' where the organism reaches speeds of more than 150 body lengths/s. We show, using detailed measurements of the swimming motion through high-speed video microscopy, that the extreme swimming speeds are achieved by the motile cilia transitioning to a beating mode characterized by a significantly larger beat amplitude and an associated reversal in the direction of thrust production. We further show that H.grandinella cells can sense a fluid shear stress signal and ''jump'' in response: a possible predator avoidance mechanism. We investigate this mechanism of shear sensing and study the role of the long, slender structures known as ''cirri'' as microscale sensors of shear stress. The jumping of H.grandinella is at the limits of the metabolic rate of the organism and thus offers insights into the limiting factors governing energy storage and mechanical power release at the microscale. Concurrently their sensing apparatus allows an understanding of the physical limits of microscale mechanical sensing. This material is based on work supported by, or in part by, the US Army Research Laboratory and the US Army Research Office under contract/Grant Number W911NF-15-1-0358.

  8. Why Audit Communication in Organizations?

    ERIC Educational Resources Information Center

    White, Noel D.; Greenbaum, Howard H.

    The purpose of this paper is to present a common sense proposal, as opposed to a documented proposal, arguing for the adoption of a periodic communication audit procedure in organizations. The paper presents an approach and information the communication consultant can utilize in addressing management practitioners on the topic: "Why Audit…

  9. Finding Meaning: Sense Inventories for Improved Word Sense Disambiguation

    ERIC Educational Resources Information Center

    Brown, Susan Windisch

    2010-01-01

    The deep semantic understanding necessary for complex natural language processing tasks, such as automatic question-answering or text summarization, would benefit from highly accurate word sense disambiguation (WSD). This dissertation investigates what makes an appropriate and effective sense inventory for WSD. Drawing on theories and…

  10. Seismic Imaging of a Nascent Batholith in the Central Andes

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Christensen, D. H.; Mcfarlin, H. L.

    2013-12-01

    Cordilleran mountain belts, such as the modern central Andes and Mesozoic western North American Cordillera formed in regions of significant upper plate compression and were punctuated by high flux magmatic events that coalesced into large composite batholiths. Unlike the North American Cordillera, compressive mountain building is still active in the central Andes and any large modern batholith still at depth must be inferred from surface volcanics and geophysical data. In the Andes it has been suggested that a modern batholith exists beneath the Altiplano-Puna Volcanic Complex (APVC), the location of a 11-1 Ma ignimbrite flare-up, however, the magmatic underpinnings has only been geophysically investigated in a few widely spaced locations and a migmatite zone of crustal melt with minimal mantle input remains a viable competing interpretation. We present new high-resolution 3-D seismic images of the APVC crust based on a joint inversion of ambient noise surface-wave dispersion data and receiver functions from broadband stations and identify a shallow (<20 km depth) low-velocity body that we interpret as a magmatic mush zone, the Altiplano-Puna Mush Body (APMB). Below the APMB, we observe near-vertical zones of low velocity that bifurcate near the base of the crust with one arm of low velocity migrating under the main volcanic arc and a second separate arm of low velocity below the voluminous backarc volcanism. Previous attenuation tomography studies have traced these zones through the mantle where they intersect the top of the subducting Nazca slab at locations with elevated seismic activity, providing strong evidence that the deeper near-vertical zones of low velocity we are imaging are related to dewatering of the slab and associated mantle-sourced melt pathways. Based on these considerations, we suggest the ~200 km diameter and ~20 km thick body is a nascent silicic batholith compatible with the magma mush model of batholith formation. The direct imaging of this

  11. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site

    PubMed Central

    Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Williamson, Adam J.; Kergoat, Loïg; Rivnay, Jonathan; Khodagholy, Dion; Berggren, Magnus; Bernard, Christophe; Malliaras, George G.

    2016-01-01

    Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents. PMID:27506784

  12. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  13. Organizing for Instruction: A Comparative Study of Public, Charter, and Catholic Schools

    ERIC Educational Resources Information Center

    Dorner, Lisa M.; Spillane, James P.; Pustejovsky, James

    2011-01-01

    Guided by theories of institutions, organizations, and sense-making, this manuscript examines how public, charter, and Catholic school staff in a large urban area organize for instruction and respond to educational change. To build theory about institutional processes of "organizing" from participants' perspectives, data included a…

  14. Interface and gate bias dependence responses of sensing organic thin-film transistors.

    PubMed

    Tanese, Maria Cristina; Fine, Daniel; Dodabalapur, Ananth; Torsi, Luisa

    2005-11-15

    The effects of the exposure of organic thin-film transistors, comprising different organic semiconductors and gate dielectrics, to 1-pentanol are investigated. The transistor sensors exhibited an increase or a decrease of the transient source-drain current in the presence of the analyte, most likely as a result of a trapping or of a doping process of the organic active layer. The occurrence of these two effects, that can also coexist, depend on the gate-dielectric/organic semiconductor interface and on the applied gate field. Evidence of a systematic and sizable response enhancement for an OTFT sensor operated in the enhanced mode is also presented.

  15. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    PubMed

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Survey and analysis of potential users of remote sensing data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Remote sensing applications for the activities of the regional interstate organizations, the federal agencies, and the private sector are examined. The survey covered activities in all 50 states. Emphasis has been placed on on-going operational programs and no attempt was made to cover the activities of the federal agencies except insofar as they impinged on State or other regional or metropolitan programs.

  17. Common sense about taste: from mammals to insects.

    PubMed

    Yarmolinsky, David A; Zuker, Charles S; Ryba, Nicholas J P

    2009-10-16

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities.

  18. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard

    2011-02-01

    A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.

  19. Room temperature ammonia and VOC sensing properties of CuO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations frommore » 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.« less

  20. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Dunlea, E. J.; Roberts, G. C.; Tomlinson, J. M.; Collins, D. R.; Howell, S. G.; Kapustin, V. N.; McNaughton, C. S.; Zhou, J.

    2009-09-01

    Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100 nm particles decreased with increasing organic fraction of non-refractory mass of submicron particles (OMF) as 0.34-0.20×OMF over Central Mexico and 0.47-0.43×OMF over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(-1/3), within measurement uncertainty (~20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70×OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemical composition and CCN activity over Central Mexico.

  1. Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B

    NASA Astrophysics Data System (ADS)

    Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Dunlea, E. J.; Roberts, G. C.; Tomlinson, J. M.; Collins, D. R.; Howell, S. G.; Kapustin, V. N.; McNaughton, C. S.; Zhou, J.

    2009-05-01

    Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ, was calculated from hygroscopicity measured under saturation. κ for dry 100-nm particles decreased with the organic fraction of non-refractory mass of submicron particles (OMF) as 10(-0.43-0.44*OMF) over Central Mexico and 10(-0.29-0.70*OMF) over the US West Coast. These fits represent the critical dry diameter, centered near 100 nm for 0.2% supersaturation but varied as κ(-1/3), within measurement uncertainty (~20%). The decreasing trends of CCN activity with the organic content, evident also in our direct CCN counts, were consistent with previous ground and laboratory observations of highly organic particles. The wider range of OMF, 0-0.8, for our research areas means that aerosol composition will be more critical for estimation of CCN concentration than at the fixed sites previously studied. Furthermore, the wavelength dependence of extinction was anti-correlated with OMF as -0.70*OMF+2.0 for Central Mexico's urban and industrial pollution air masses, for unclear reasons. The Angstrom exponent of absorption increased with OMF, more rapidly under higher single scattering albedo, as expected for the interplay between soot and colored weak absorbers (some organic species and dust). Because remote sensing products currently use the wavelength dependence of extinction albeit in the column integral form and may potentially include that of absorption, these regional spectral dependencies are expected to facilitate retrievals of aerosol bulk chemistry and CCN activity over Central Mexico.

  2. Roles of the International Council for Laboratory Animal Science (ICLAS) and International Association of Colleges of Laboratory Animal Medicine (IACLAM) in the Global Organization and Support of 3Rs Advances in Laboratory Animal Science

    PubMed Central

    Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe

    2015-01-01

    Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964

  3. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

    PubMed Central

    Pejcic, Bobby; Myers, Matthew; Ross, Andrew

    2009-01-01

    The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed. PMID:22454582

  4. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  5. Model for the Interpretation of Hyperspectral Remote-Sensing Reflectance

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Carder, Kendall L.; Hawes, Steve K.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.

    1994-01-01

    Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do not covary with the pigment concentration, confound data interpretation. In this research, remote-sensing reflectance models are suggested for coastal waters, to which contributions that are due to bottom reflectance, CDOM fluorescence, and water Raman scattering are included. Through the use of two parameters to model the combination of the backscattering coefficient and the Q factor, excellent agreement was achieved between the measured and modeled remote-sensing reflectance for waters from the West Florida Shelf to the Mississippi River plume. These waters cover a range of chlorophyll of 0.2-40 mg/cu m and gelbstoff absorption at 440 nm from 0.02-0.4/m. Data with a spectral resolution of 10 nm or better, which is consistent with that provided by the airborne visible and infrared imaging spectrometer (AVIRIS) and spacecraft spectrometers, were used in the model evaluation.

  6. The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Brown, C. W.; Hine, A. C.

    1997-01-01

    Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.

  7. WaterSense Partners

    EPA Pesticide Factsheets

    WaterSense partners are ambassadors that promote the value of water efficiency and WaterSense-labeled products, new homes, and programs. Partners help educate communities while transforming the marketplace.

  8. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems

    PubMed Central

    Wu, Jun; Su, Zhou; Li, Jianhua

    2017-01-01

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on “friend” relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems. PMID:28758943

  9. Organic nanofibrils based on linear carbazole trimer for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Yang, Xiaomei; Bunes, Benjamin R; Zang, Ling

    2010-08-14

    Organic fluorescent nanofibrils were fabricated from a linear carbazole trimer and employed for expedient detection of nitroaromatic explosives (DNT and TNT) and highly volatile nitroaliphatic explosives (nitromethane).

  10. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  11. Sensing Super-Position: Human Sensing Beyond the Visual Spectrum

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2007-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This paper addresses the technical feasibility of augmenting human vision through Sensing Super-position by mixing natural Human sensing. The current implementation of the device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of Lie human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system. The

  12. Reflectance spectroscopy of organic compounds: 1. Alkanes

    NASA Astrophysics Data System (ADS)

    Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.; Swayze, Gregg A.

    2009-03-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 μm. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  13. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  14. Remote Sensing Tropical Coral Reefs: The View from Above.

    PubMed

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  15. Remote Sensing Tropical Coral Reefs: The View from Above

    NASA Astrophysics Data System (ADS)

    Purkis, Sam J.

    2018-01-01

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  16. [Distant mental influence on living organisms].

    PubMed

    Bonilla, Ernesto

    2013-12-01

    This article reviews studies of distant mental influence on living organisms, including mental suggestions of sleeping and awakening, mental influence at long distances, mental interactions with remote biological systems, mental effects on physiological activity and the sense of being stared at. Significant effects of distant mental influence have been shown in several randomized controlled trials in humans, animals, plants, bacteria and cells in the laboratory. Although distant mental influence on living organisms appears to contradict our ordinary sense of reality and the laws defined by conventional science, several hypotheses have been proposed to explain the observed effects; they include skeptical, signal transfer, field, multidimensional space/time and quantum mechanics hypotheses. In conclusion, as the progress of physics continues to expand our comprehension of reality, a rational explanation for distant mind-matter interaction will emerge and, as history has shown repeatedly, the supernatural events will evolve into paranormal and then, into normal ones, as the scientific frontiers expand.

  17. Sensing hypoxia: physiology, genetics and epigenetics

    PubMed Central

    Prabhakar, Nanduri R

    2013-01-01

    The carotid body is a sensory organ for detecting arterial blood O2 levels and reflexly mediates systemic cardiac, vascular and respiratory responses to hypoxia. This article presents a brief review of the roles of gaseous messengers in the sensory transduction at the carotid body, genetic and epigenetic influences on hypoxic sensing and the role of the carotid body chemoreflex in cardiorespiratory diseases. Type I (also called glomus) cells, the site of O2 sensing in the carotid body, express haem oxygenase-2 and cystathionine-γ-lyase, the enzymes which catalyse the generation of CO and H2S, respectively. Physiological studies have shown that CO is an inhibitory gas messenger, which contributes to the low sensory activity during normoxia, whereas H2S is excitatory and mediates sensory stimulation by hypoxia. Hypoxia-evoked H2S generation in the carotid body requires the interaction of cystathionine-γ-lyase with haem oxygenase-2, which generates CO. Hypoxia-inducible factors 1 and 2 constitute important components of the genetic make-up in the carotid body, which influence hypoxic sensing by regulating the intracellular redox state via transcriptional regulation of pro- and antioxidant enzymes. Recent studies suggest that developmental programming of the carotid body response to hypoxia involves epigenetic changes, e.g. DNA methylation of genes encoding redox-regulating enzymes. Emerging evidence implicates heightened carotid body chemoreflex in the progression of autonomic morbidities associated with cardiorespiratory diseases, such as sleep-disordered breathing with apnoea, congestive heart failure and essential hypertension. PMID:23459758

  18. Common Sense about Taste: From Mammals to Insects

    PubMed Central

    Yarmolinsky, David A.; Zuker, Charles S.; Ryba, Nicholas J.P.

    2013-01-01

    The sense of taste is a specialized chemosensory system dedicated to the evaluation of food and drink. Despite the fact that vertebrates and insects have independently evolved distinct anatomic and molecular pathways for taste sensation, there are clear parallels in the organization and coding logic between the two systems. There is now persuasive evidence that tastant quality is mediated by labeled lines, whereby distinct and strictly segregated populations of taste receptor cells encode each of the taste qualities. PMID:19837029

  19. Understanding global changes on the land - A potential focus for NASA earth sciences and land remote sensing

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Tuyahov, A. J.; Hogg, H. C.

    1983-01-01

    Planned NASA contributions to the study of the interaction of living organisms with their physical and chemical environments are discussed. Five major land-related research objectives are stated and the role of remote sensing in achieving them is addressed. The importance of improved sensors and cooperation with domestic and international organizations is stressed.

  20. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  1. Metabolic sensing neurons and the control of energy homeostasis.

    PubMed

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  2. When paranoia makes sense.

    PubMed

    Kramer, Roderick M

    2002-07-01

    On September 11, 2001, in the space of a few horrific minutes, Americans realized the fragility of trust. The country's evident vulnerability to deadly terrorism rocked our faith in the systems we rely on for security. Our trust was shaken again only a few months later with the stunning collapse of Enron, forcing us to question many of the methods and assumptions underpinning the way we work. These two crises are obviously very different, yet both serve as reminders of the perils of trusting too much. The abiding belief that trust is a strength now seems dangerously naive. This new doubtfulness runs contrary to most management literature, which has traditionally touted trust as an organizational asset. It's an easy case to make. When there are high levels of trust, employees can fully commit themselves to the organization because they can be confident that their efforts will be recognized and rewarded. Trust also means that leaders don't have to worry so much about putting the right spin on things. They can act and speak forthrightly and focus on essentials. In short, trust is an organizational superglue. Nevertheless, two decades of research on trust and cooperation in organizations have convinced social psychologist Roderick Kramer that--despite its costs--distrust can be beneficial in the workplace. Kramer has observed that a moderate form of suspicion, which he calls prudent paranoia, can in many cases prove highly beneficial to the distrustful individual or organization. In this article, he describes situations in which prudent paranoia makes sense and shows how, when properly deployed, it can serve as a powerful morale booster--even a competitive weapon--for organizations.

  3. Graphene-like layers as promising chemiresistive sensing material for detection of alcohols at low concentration

    NASA Astrophysics Data System (ADS)

    Gargiulo, Valentina; Alfano, Brigida; Di Capua, Roberto; Alfé, Michela; Vorokhta, Mykhailo; Polichetti, Tiziana; Massera, Ettore; Miglietta, Maria Lucia; Schiattarella, Chiara; Di Francia, Girolamo

    2018-01-01

    In the manifold of materials for Volatile Organic Compound (VOC) sensing, graphene related materials (GRMs) gain special attention thanks to their versatility and overall chemico-physical tunability as a function of specific applications. In this work, the sensing performances of graphene-like (GL) layers, a new material belonging to the GRM family, are tested against ethanol and n-butanol. Two typologies of GL samples were produced by employing two different approaches and tested in view of their application as VOC sensors. The experiments were performed under atmospheric pressure, in dry air, and at room temperature and demonstrated that the sensing capabilities are related to the film surface features. The results indicated that GL films are promising candidates for the detection of low concentrations of VOCs at room temperature. The present investigation thus paves the way for VOC sensing optimization using cost-effective and easily scalable materials.

  4. Qualitative research to make practical sense of sustainability in primary health care projects implemented by non-governmental organizations.

    PubMed

    Sarriot, Eric G; Winch, Peter J; Ryan, Leo J; Edison, Jay; Bowie, Janice; Swedberg, Eric; Welch, Rikki

    2004-01-01

    Sustainability continues to be a serious concern for Primary Health Care (PHC) interventions targeting the death of millions of children in developing countries each year. Our work with over 30 Non-Governmental Organizations (NGOs) implementing USAID's Child Survival and Health Grants Program (CSHGP)-funded projects revealed the need for a study to develop a framework for sustainability assessment in these projects. We surveyed NGO informants and project managers through semi-structured interviews and questionnaires. This paper summarizes our study findings. The NGOs share key values about sustainability, but are skeptical about approaches perceived as disconnected from field reality. In their experience, sustainable achievements occur through the interaction of capable local stakeholders and communities. This depends strongly on enabling conditions, which NGO projects should advance. Sustainability assessment is multidimensional, value-based and embeds health within a larger sustainable development perspective. It reduces, but does not eliminate, the unpredictability of long-term outcomes. It should start with the consideration of the 'local systems' which need to develop a common purpose. Our ability to address the complexity inherent to sustainability thinking rests with the validity of the models used to design interventions. A participant, qualitative research approach helped us make sense of sustainability in NGO field practice.

  5. High Performance Asynchronous Limited Sensing Algorithms for CSMA and CSMA-CD Channels.

    DTIC Science & Technology

    1985-03-01

    for CSM and CSMA-CD Channels" M. Geargiopoulos L. Merakos P. Papantoni-Kazakos- Technical Report UCT/ DEECS /TR-85-2 Mrh1985 iDISTRIBUTION STAEmEN 2j C...Perforance Asynchronous Limited Sensing Algoit~5 forCSMAandCSMA-CD Channels" M1. Georgiop0 ul 0 5 L. Merakos P. PaPantoni-.Kazakos Technical Report UCT/ DEECS ...SCHEDULE unlimited. 4 PERFORMING ORGANiZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBERIS" UCT/ DEECS /TR-85-2 SR-TR. 85-0 398 6& NAME OF

  6. Global Organizing Themes for Biology Students.

    ERIC Educational Resources Information Center

    LoPresti, Vin; Garafalo, Fred

    1994-01-01

    Discusses how the use of organizing themes can help to convey to students a sense of internal continuity within the discipline of biology and at the same time emphasize to them that viewing the study of biology as merely applied chemistry and physics is inaccurate and overly simplistic. (ZWH)

  7. Tiling solutions for optimal biological sensing

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.

    2015-10-01

    Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.

  8. Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions.

    PubMed

    Truong, Tuyet T A; Hardy, Giles E St J; Andrew, Margaret E

    2017-01-01

    Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental scales are enabled by readily available downscaled climate surfaces together with an increasing number of digitized and georeferenced species occurrence records and species distribution modeling techniques. However, predictions at a finer scale and in landscapes with less topographic variation may require predictors that capture biotic processes and local abiotic conditions. Contemporary remote sensing (RS) data can enhance predictions by providing a range of spatial environmental data products at fine scale beyond climatic variables only. In this study, we used the Global Biodiversity Information Facility (GBIF) and empirical maximum entropy (MaxEnt) models to model the potential distributions of 14 invasive plant species across Southeast Asia (SEA), selected from regional and Vietnam's lists of priority weeds. Spatial environmental variables used to map invasion risk included bioclimatic layers and recent representations of global land cover, vegetation productivity (GPP), and soil properties developed from Earth observation data. Results showed that combining climate and RS data reduced predicted areas of suitable habitat compared with models using climate or RS data only, with no loss in model accuracy. However, contributions of RS variables were relatively limited, in part due to uncertainties in the land cover data. We strongly encourage greater adoption of quantitative remotely sensed estimates of ecosystem structure and function for habitat suitability modeling. Through comprehensive maps of overall predicted area and diversity of invasive species, we found that among lifeforms (herb, shrub, and vine), shrub species have higher potential invasion risk in SEA. Native

  9. Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions

    PubMed Central

    Truong, Tuyet T. A.; Hardy, Giles E. St. J.; Andrew, Margaret E.

    2017-01-01

    Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging economies. Modeling potential distributions of invasive weeds can prioritize locations for monitoring and control efforts, increasing management efficiency. Forecasts of invasion risk at regional to continental scales are enabled by readily available downscaled climate surfaces together with an increasing number of digitized and georeferenced species occurrence records and species distribution modeling techniques. However, predictions at a finer scale and in landscapes with less topographic variation may require predictors that capture biotic processes and local abiotic conditions. Contemporary remote sensing (RS) data can enhance predictions by providing a range of spatial environmental data products at fine scale beyond climatic variables only. In this study, we used the Global Biodiversity Information Facility (GBIF) and empirical maximum entropy (MaxEnt) models to model the potential distributions of 14 invasive plant species across Southeast Asia (SEA), selected from regional and Vietnam’s lists of priority weeds. Spatial environmental variables used to map invasion risk included bioclimatic layers and recent representations of global land cover, vegetation productivity (GPP), and soil properties developed from Earth observation data. Results showed that combining climate and RS data reduced predicted areas of suitable habitat compared with models using climate or RS data only, with no loss in model accuracy. However, contributions of RS variables were relatively limited, in part due to uncertainties in the land cover data. We strongly encourage greater adoption of quantitative remotely sensed estimates of ecosystem structure and function for habitat suitability modeling. Through comprehensive maps of overall predicted area and diversity of invasive species, we found that among lifeforms (herb, shrub, and vine), shrub species have higher potential invasion risk in SEA

  10. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  11. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  12. Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide.

    PubMed

    Tian, Xiuyun; He, Guang-Jun; Hu, Pengjie; Chen, Lei; Tao, Changyu; Cui, Ying-Lu; Shen, Lan; Ke, Weixin; Xu, Haijiao; Zhao, Youbao; Xu, Qijiang; Bai, Fengyan; Wu, Bian; Yang, Ence; Lin, Xiaorong; Wang, Linqi

    2018-06-01

    Bacterial quorum sensing is a well-characterized communication system that governs a large variety of collective behaviours. By comparison, quorum sensing regulation in eukaryotic microbes remains poorly understood, especially its functional role in eukaryote-specific behaviours, such as sexual reproduction. Cryptococcus neoformans is a prevalent fungal pathogen that has two defined sexual cycles (bisexual and unisexual) and is a model organism for studying sexual reproduction in fungi. Here, we show that the quorum sensing peptide Qsp1 serves as an important signalling molecule for both forms of sexual reproduction. Qsp1 orchestrates various differentiation and molecular processes, including meiosis, the hallmark of sexual reproduction. It activates bisexual mating, at least in part through the control of pheromone, a signal necessary for bisexual activation. Notably, Qsp1 also plays a major role in the intercellular regulation of unisexual initiation and coordination, in which pheromone is not strictly required. Through a multi-layered genetic screening approach, we identified the atypical zinc finger regulator Cqs2 as an important component of the Qsp1 signalling cascade during both bisexual and unisexual reproduction. The absence of Cqs2 eliminates the Qsp1-stimulated mating response. Together, these findings extend the range of behaviours governed by quorum sensing to sexual development and meiosis.

  13. Electron microscopic visualization of sites of nascent DNA synthesis by streptavidin-gold binding to biotinylated nucleotides incorporated in vivo

    PubMed Central

    1988-01-01

    Biotinylated nucleotides (bio-11-dCTP, bio-11-dUTP, and bio-7-dATP) were microinjected into unfertilized and fertilized Xenopus laevis eggs. The amounts introduced were comparable to in vivo deoxy- nucleoside triphosphate pools. At various times after microinjection, DNA was extracted from eggs or embryos and subjected to electrophoresis on agarose gels. Newly synthesized biotinylated DNA was analyzed by Southern transfer and visualized using either the BluGENE or Detek-hrp streptavidin-based nucleic acid detection systems. Quantitation of the amount of biotinylated DNA observed at various times showed that the microinjected biotinylated nucleotides were efficiently incorporated in vivo, both into replicating endogenous chromosomal DNA and into replicating microinjected exogenous plasmid DNA. At least one biotinylated nucleotide could be incorporated in vivo for every eight nucleotides of DNA synthesized. Control experiments also showed that heavily biotinylated DNA was not subjected to detectable DNA repair during early embryogenesis (for at least 5 h after activation of the eggs). The incorporated biotinylated nucleotides were visualized by electron microscopy by using streptavidin-colloidal gold or streptavidin-ferritin conjugates to bind specifically to the biotin groups projecting from the newly replicated DNA. The incorporated biotinylated nucleotides were thus made visible as electron-dense spots on the underlying DNA molecules. Biotinylated nucleotides separated by 20-50 bases could be resolved. We conclude that nascent DNA synthesized in vivo in Xenopus laevis eggs can be visualized efficiently and specifically using the techniques described. PMID:3392102

  14. Heightened sense for sensing: recent advances in pathogen immunoassay sensing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, N; Tarasow, T; Tok, J B

    2007-01-09

    As part of its own defense mechanism, most bacteria have developed an innate ability to enable toxic secretion to ward off potential predators or invaders. However, this naturally occurring process has been abused since over production of the bacteria's toxin molecules could render them as potential bioweapons. As these processes (also known as ''black biology'') can be clandestinely performed in a laboratory, the threat of inflicting enormous potential damage to a nation's security and economy is invariably clear and present. Thus, efficient detection of these biothreat agents in a timely and accurate manner is highly desirable. A wealth of publicationsmore » describing various pathogen immuno-sensing advances has appeared over the last few years, and it is not the intent of this review article to detail each reported approach. Instead, we aim to survey a few recent highlights in hopes of providing the reader an overall sense of the breath of these sensing systems and platforms. Antigen targets are diverse and complex as they encompass proteins, whole viruses, and bacterial spores. The signaling processes for these reported immunoassays are usually based on colorimetric, optical, or electrochemical changes. Of equal interest is the type of platform in which the immunoassay can be performed. A few platforms suitable for pathogen detection are described.« less

  15. Cellulose-Organic Montmorillonite Nanocomposites as Biomacromolecular Quorum-Sensing Inhibitor.

    PubMed

    Demircan, Deniz; Ilk, Sedef; Zhang, Baozhong

    2017-10-09

    The aim of this study was to develop simple cellulose nanocomposites that can interfere with the quorum-sensing (QS)-regulated physiological process of bacteria, which will provide a sustainable and inexpensive solution to the serious challenges caused by bacterial infections in various products like food packaging or biomedical materials. Three cellulose nanocomposites with 1-5 w% octadecylamine-modified montmorillonite (ODA-MMT) were prepared by regeneration of cellulose from ionic liquid solutions in the presence of ODA-MMT suspension. Structural characterization of the nanocomposites showed that the ODA-MMT can be exfoliated or intercalated, depending on the load level of the nanofiller. Thermal gravimetric analysis showed that the incorporation of ODA-MMT nanofiller can improve the thermal stability of the nanocomposites compared with regenerated cellulose. Evaluation of the anti-QS effect against a pigment-producing bacteria C. violaceum CV026 by disc diffusion assay and flask incubation assay revealed that the QS-regulated violacein pigment production was significantly inhibited by the cellulose nanocomposites without interfering the bacterial vitality. Interestingly, the nanocomposite with the lowest load of ODA-MMT exhibited the most significant anti-QS effect, which may be correlated to the exfoliation of nanofillers. To our knowledge, this is the first report on the anti-QS effect of cellulose nanocomposites without the addition of any small molecular agents. Such inexpensive and nontoxic biomaterials will thus have great potential in the development of new cellulosic materials that can effectively prevent the formation of harmful biofilms.

  16. Evidence for the involvement of carbonic anhydrase and urease in calcium carbonate formation in the gravity-sensing organ of Aplysia californica

    NASA Technical Reports Server (NTRS)

    Pedrozo, H. A.; Schwartz, Z.; Dean, D. D.; Harrison, J. L.; Campbell, J. W.; Wiederhold, M. L.; Boyan, B. D.

    1997-01-01

    To better understand the mechanisms that could modulate the formation of otoconia, calcium carbonate granules in the inner ear of vertebrate species, we examined statoconia formation in the gravity-sensing organ, the statocyst, of the gastropod mollusk Aplysia californica using an in vitro organ culture model. We determined the type of calcium carbonate present in the statoconia and investigated the role of carbonic anhydrase (CA) and urease in regulating statocyst pH as well as the role of protein synthesis and urease in statoconia production and homeostasis in vitro. The type of mineral present in statoconia was found to be aragonitic calcium carbonate. When the CA inhibitor, acetazolamide (AZ), was added to cultures of statocysts, the pH initially (30 min) increased and then decreased. The urease inhibitor, acetohydroxamic acid (AHA), decreased statocyst pH. Simultaneous addition of AZ and AHA caused a decrease in pH. Inhibition of urease activity also reduced total statoconia number, but had no effect on statoconia volume. Inhibition of protein synthesis reduced statoconia production and increased statoconia volume. In a previous study, inhibition of CA was shown to decrease statoconia production. Taken together, these data show that urease and CA play a role in regulating statocyst pH and the formation and maintenance of statoconia. CA produces carbonate ion for calcium carbonate formation and urease neutralizes the acid formed due to CA action, by production of ammonia.

  17. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  18. Join WaterSense

    EPA Pesticide Factsheets

    WaterSense depends on partners who make, sell, and promote WaterSense labeled products and homes, and certify irrigation pros. They also help educate consumers about water efficiency. Signing up is easy - and best of all, it's free!

  19. Famine Early Warning Systems and Their Use of Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Essam, Timothy; Leonard, Kenneth

    2011-01-01

    Famine early warning organizations have experience that has much to contribute to efforts to incorporate climate and weather information into economic and political systems. Food security crises are now caused almost exclusively by problems of food access, not absolute food availability, but the role of monitoring agricultural production both locally and globally remains central. The price of food important to the understanding of food security in any region, but it needs to be understood in the context of local production. Thus remote sensing is still at the center of much food security analysis, along with an examination of markets, trade and economic policies during food security analyses. Technology including satellite remote sensing, earth science models, databases of food production and yield, and modem telecommunication systems contributed to improved food production information. Here we present an econometric approach focused on bringing together satellite remote sensing and market analysis into food security assessment in the context of early warning.

  20. Remote sensing and image interpretation

    NASA Technical Reports Server (NTRS)

    Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)

    1979-01-01

    A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

  1. All-soft, battery-free, and wireless chemical sensing platform based on liquid metal for liquid- and gas-phase VOC detection.

    PubMed

    Kim, Min-Gu; Alrowais, Hommood; Kim, Choongsoon; Yeon, Pyungwoo; Ghovanloo, Maysam; Brand, Oliver

    2017-06-27

    Lightweight, flexible, stretchable, and wireless sensing platforms have gained significant attention for personal healthcare and environmental monitoring applications. This paper introduces an all-soft (flexible and stretchable), battery-free, and wireless chemical microsystem using gallium-based liquid metal (eutectic gallium-indium alloy, EGaIn) and poly(dimethylsiloxane) (PDMS), fabricated using an advanced liquid metal thin-line patterning technique based on soft lithography. Considering its flexible, stretchable, and lightweight characteristics, the proposed sensing platform is well suited for wearable sensing applications either on the skin or on clothing. Using the microfluidic sensing platform, detection of liquid-phase and gas-phase volatile organic compounds (VOC) is demonstrated using the same design, which gives an opportunity to have the sensor operate under different working conditions and environments. In the case of liquid-phase chemical sensing, the wireless sensing performance and microfluidic capacitance tunability for different dielectric liquids are evaluated using analytical, numerical, and experimental approaches. In the case of gas-phase chemical sensing, PDMS is used both as a substrate and a sensing material. The gas sensing performance is evaluated and compared to a silicon-based, solid-state gas sensor with a PDMS sensing film.

  2. Making Sense in the Edge of Chaos: A Framework for Effective Initial Response Efforts to Large-Scale Incidents

    DTIC Science & Technology

    2010-09-01

    working with equally experienced partners who can, cumulatively, help each other make sense of chaotic situations. “Human brains collect, organize...but a process reinforced by years of Fire Department training. No matter what we do, even an optimally functioning human brain will prepare for...trick or reorganize the brain of those who will be first responding incident commanders to an edge-of-chaos event into creatively making sense of

  3. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

    PubMed Central

    Frezza, Ludivine; Sandtner, Walter

    2013-01-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing. PMID:24127524

  4. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    PubMed

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  5. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.

    PubMed

    Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi

    2016-08-16

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

  6. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    PubMed Central

    Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi

    2016-01-01

    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896

  7. Cochlea-inspired sensing node for compressive sensing

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Lynch, Jerome P.

    2013-04-01

    While sensing technologies for structural monitoring applications have made significant advances over the last several decades, there is still room for improvement in terms of computational efficiency, as well as overall energy consumption. The biological nervous system can offer a potential solution to address these current deficiencies. The nervous system is capable of sensing and aggregating information about the external environment through very crude processing units known as neurons. Neurons effectively communicate in an extremely condensed format by encoding information into binary electrical spike trains, thereby reducing the amount of raw information sent throughout a neural network. Due to its unique signal processing capabilities, the mammalian cochlea and its interaction with the biological nervous system is of particular interest for devising compressive sensing strategies for dynamic engineered systems. The cochlea uses a novel method of place theory and frequency decomposition, thereby allowing for rapid signal processing within the nervous system. In this study, a low-power sensing node is proposed that draws inspiration from the mechanisms employed by the cochlea and the biological nervous system. As such, the sensor is able to perceive and transmit a compressed representation of the external stimulus with minimal distortion. Each sensor represents a basic building block, with function similar to the neuron, and can form a network with other sensors, thus enabling a system that can convey input stimulus in an extremely condensed format. The proposed sensor is validated through a structural monitoring application of a single degree of freedom structure excited by seismic ground motion.

  8. Smart Sensing and Recognition Based on Models of Neural Networks

    DTIC Science & Technology

    1990-11-15

    9P-o ,yY𔄃-’. AD-A230 701 University of Pensylvania Philadelphia, PA 19104-6390 SMART SENSING AND RECOGNITION BASED ON MODELS OF NEURAL NETWORKS ... networks , photonic 1 implementations, nonlinear dynamical signal processing 9 ABSTRACT (Continue on reverse if necessary and identify by block number...not develop in isolation but in synergism with sensory organs and their feature forming networks . This means that development of artificial pattern

  9. Methods for quantifying simple gravity sensing in Drosophila melanogaster.

    PubMed

    Inagaki, Hidehiko K; Kamikouchi, Azusa; Ito, Kei

    2010-01-01

    Perception of gravity is essential for animals: most animals possess specific sense organs to detect the direction of the gravitational force. Little is known, however, about the molecular and neural mechanisms underlying their behavioral responses to gravity. Drosophila melanogaster, having a rather simple nervous system and a large variety of molecular genetic tools available, serves as an ideal model for analyzing the mechanisms underlying gravity sensing. Here we describe an assay to measure simple gravity responses of flies behaviorally. This method can be applied for screening genetic mutants of gravity perception. Furthermore, in combination with recent genetic techniques to silence or activate selective sets of neurons, it serves as a powerful tool to systematically identify neural substrates required for the proper behavioral responses to gravity. The assay requires 10 min to perform, and two experiments can be performed simultaneously, enabling 12 experiments per hour.

  10. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  11. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    PubMed Central

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  12. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  13. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore.

    PubMed

    Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

    2016-05-01

    In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.

  14. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  15. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  16. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

    PubMed Central

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.

    2014-01-01

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383

  17. Exploitation, autonomy, and the case for organ sales.

    PubMed

    Hughes, P M

    1998-01-01

    A recent argument in favor of a free market in human organs claims that such a market enhances personal autonomy. I argue here that such a market would, on the contrary, actually compromise the autonomy of those most likely to sell their organs, namely, the least well off members of society. A Marxian-inspired notion of exploitation is deployed to show how, and in what sense, this is the case.

  18. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  19. Messing with Bacterial Quorum Sensing

    PubMed Central

    González, Juan E.; Keshavan, Neela D.

    2006-01-01

    Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria. PMID:17158701

  20. A survey for the use of remote sensing in the Chesapeake Bay region

    NASA Technical Reports Server (NTRS)

    Ulanowicz, R. E.

    1974-01-01

    Environmental problem areas concerning the Chesapeake Bay region are reviewed along with ongoing remote sensing programs pertaining to these problems, and recommendations are presented to help fill lacunae in present research and to utilize the remote sensing capabilities of NASA to their fullest. A list of interested organizations and individuals is presented for each category. The development of technologies to monitor dissolved nutrients in bay waters, the initiation of a census of the disappearing rooted acquatic plants in the littoral zones, and the mapping of natural building constraints in the growth regions of the states of Maryland and Virginia are among the recommendations presented.