Sample records for nascidos vivos procedimentos

  1. Lessons learned from vivo-morpholinos: How to avoid vivo-morpholino toxicity

    PubMed Central

    Ferguson, David P.; Dangott, Lawrence J.; Lightfoot, J. Timothy

    2014-01-01

    Vivo-morpholinos are a promising tool for gene silencing. These oligonucleotide analogs transiently silence genes by blocking either translation or pre-mRNA splicing. Little to no toxicity has been reported for vivo-morpholino treatment. However, in a recent study conducted in our lab, treatment of mice with vivo-morpholinos resulted in high mortality rates. We hypothesized that the deaths were the result of oligonucleotide hybridization, causing an increased cationic charge associated with the dendrimer delivery moiety of the vivo-morpholino. The cationic charge increased blood clot formation in whole blood treated with vivo-morpholinos, suggesting that clotting could have caused cardiac arrest in the deceased mice. Therefore, we investigate the mechanism by which some vivo-morpholinos increase mortality rates and propose techniques to alleviate vivo-morpholino toxicity. PMID:24806225

  2. Ex Vivo ERG analysis of photoreceptors using an In Vivo ERG system

    PubMed Central

    Vinberg, Frans; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2014-01-01

    The Function of the retina and effects of drugs on it can be assessed by recording transretinal voltage across isolated retina that is perfused with physiological medium. However, building ex vivo ERG apparatus requires substantial amount of time, resources and expertise. Here we adapted a commercial in vivo ERG system for transretinal ERG recordings from rod and cone photoreceptors and compared rod and cone signalling between ex vivo and in vivo environments. We found that the rod and cone a- and b-waves recorded with the transretinal ERG adapter and a standard in vivo ERG system are comparable to those obtained from live anesthetized animals. However, ex vivo responses are somewhat slower and their oscillatory potentials are suppressed as compared to those recorded in vivo. We found that rod amplification constant (A) was comparable between ex vivo and in vivo conditions, ∼10 - 30 s-2 depending on the choice of response normalization. We estimate that the A in cones is between 3 and 6 s-2 in ex vivo conditions and by assuming equal A in vivo we arrive to light funnelling factor of 3 for cones in the mouse retina. The ex vivo ERG adapter provides a simple and affordable alternative to designing a custom-built transretinal recordings setup for the study of photoreceptors. Our results provide a roadmap to the rigorous quantitative analysis of rod and cone responses made possible with such a system. PMID:24959652

  3. Behavior of Tip-Steerable Needles in ex vivo and in vivo Tissue

    PubMed Central

    Majewicz, Ann; Marra, Steven P.; van Vledder, Mark G.; Lin, MingDe; Choti, Michael A.; Song, Danny Y.; Okamura, Allison M.

    2012-01-01

    Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering though experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by pre-bent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver. PMID:22711767

  4. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.

    PubMed

    Ramo, Nicole L; Shetye, Snehal S; Streijger, Femke; Lee, Jae H T; Troyer, Kevin L; Kwon, Brian K; Cripton, Peter; Puttlitz, Christian M

    2018-03-01

    Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living

  5. Comparison of in vivo and ex vivo imaging of the microvasculature with 2-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Steinman, Joe; Koletar, Margaret; Stefanovic, Bojana; Sled, John G.

    2016-03-01

    This study evaluates 2-Photon fluorescence microscopy of in vivo and ex vivo cleared samples for visualizing cortical vasculature. Four mice brains were imaged with in vivo 2PFM. Mice were then perfused with a FITC gel and cleared in fructose. The same regions imaged in vivo were imaged ex vivo. Vessels were segmented automatically in both images using an in-house developed algorithm that accounts for the anisotropic and spatially varying PSF ex vivo. Through non-linear warping, the ex vivo image and tracing were aligned to the in vivo image. The corresponding vessels were identified through a local search algorithm. This enabled comparison of identical vessels in vivo/ex vivo. A similar process was conducted on the in vivo tracing to determine the percentage of vessels perfused. Of all the vessels identified over the four brains in vivo, 98% were present ex vivo. There was a trend towards reduced vessel diameter ex vivo by 12.7%, and the shrinkage varied between specimens (0% to 26%). Large diameter surface vessels, through a process termed 'shadowing', attenuated in vivo signal from deeper cortical vessels by 40% at 300 μm below the cortical surface, which does not occur ex vivo. In summary, though there is a mean diameter shrinkage ex vivo, ex vivo imaging has a reduced shadowing artifact. Additionally, since imaging depths are only limited by the working distance of the microscope objective, ex vivo imaging is more suitable for imaging large portions of the brain.

  6. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model

    NASA Astrophysics Data System (ADS)

    Salomatina, E.; Yaroslavsky, A. N.

    2008-06-01

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, μa, scattering coefficients, μs, and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 °C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 °C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  7. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.

    PubMed

    Salomatina, E; Yaroslavsky, A N

    2008-06-07

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, mu(a), scattering coefficients, mu(s), and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 degrees C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 degrees C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  8. Reproducibility and Variation of Diffusion Measures in the Squirrel Monkey Brain, In Vivo and Ex Vivo

    PubMed Central

    Schilling, Kurt; Gao, Yurui; Stepniewska, Iwona; Choe, Ann S; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    Purpose Animal models are needed to better understand the relationship between diffusion MRI (dMRI) and the underlying tissue microstructure. One promising model for validation studies is the common squirrel monkey, Saimiri sciureus. This study aims to determine (1) the reproducibility of in vivo diffusion measures both within and between subjects; (2) the agreement between in vivo and ex vivo data acquired from the same specimen and (3) normal diffusion values and their variation across brain regions. Methods Data were acquired from three healthy squirrel monkeys, each imaged twice in vivo and once ex vivo. Reproducibility of fractional anisotropy (FA), mean diffusivity (MD), and principal eigenvector (PEV) was assessed, and normal values were determined both in vivo and ex vivo. Results The calculated coefficients of variation (CVs) for both intra-subject and inter-subject MD were below 10% (low variability) while FA had a wider range of CVs, 2–14% intra-subject (moderate variability), and 3–31% inter-subject (high variability). MD in ex vivo tissue was lower than in vivo (30%–50% decrease), while FA values increased in all regions (30–39% increase). The mode of angular differences between in vivo and ex vivo PEVs was 12 degrees. Conclusion This study characterizes the diffusion properties of the squirrel monkey brain and serves as the groundwork for using the squirrel monkey, both in vivo and ex vivo, as a model for diffusion MRI studies. PMID:27587226

  9. 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods

    PubMed Central

    Steinman, Joe; Koletar, Margaret M.; Stefanovic, Bojana; Sled, John G.

    2017-01-01

    Ex vivo 2-photon fluorescence microscopy (2PFM) with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total) were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature. PMID:29053753

  10. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    PubMed

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Antimicrobial Blue Light Therapy for Infectious Keratitis: Ex Vivo and In Vivo Studies.

    PubMed

    Zhu, Hong; Kochevar, Irene E; Behlau, Irmgard; Zhao, Jie; Wang, Fenghua; Wang, Yucheng; Sun, Xiaodong; Hamblin, Michael R; Dai, Tianhong

    2017-01-01

    To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.

  12. In vivo and ex vivo imaging with ultrahigh resolution full-field OCT

    NASA Astrophysics Data System (ADS)

    Grieve, Kate; Moneron, Gael; Schwartz, Wilfrid; Boccara, Albert C.; Dubois, Arnaud

    2005-08-01

    Imaging of in vivo and ex vivo biological samples using full-field optical coherence tomography is demonstrated. Three variations on the original full-field optical coherence tomography instrument are presented, and evaluated in terms of performance. The instruments are based on the Linnik interferometer illuminated by a white light source. Images in the en face orientation are obtained in real-time without scanning by using a two-dimensional parallel detector array. An isotropic resolution capability better than 1 μm is achieved thanks to the use of a broad spectrum source and high numerical aperture microscope objectives. Detection sensitivity up to 90 dB is demonstrated. Image acquisition times as short as 10 μs per en face image are possible. A variety of in vivo and ex vivo imaging applications is explored, particularly in the fields of embryology, ophthalmology and botany.

  13. [Net power and energy of cooled antenna microwave ablation:ex vivo versus in vivo results in porcine liver].

    PubMed

    Jiang, Hua; Fan, Wei-jun; Zhang, Liang; Li, Xin; Zhang, Jian-lei

    2012-09-18

    To explore the net power and net energy of a cooled antenna radiator in ex vivo and in vivo porcine livers. All animal experiments complied with the guidelines of our animal use committee. Microwave ablation (MWA) was performed in ex vivo and in vivo porcine livers with a cooled-shaft antenna in different microwave ablation parameter groups (50, 80 and 110 W for 10 min). The energy losses from the microwave antenna or cables were calculated. And the net power, net energy and the relationship between net power and power readout were determined. When the power displayed by the machine indicated 50 W, 80 W and 110 W, the net power during MWA was 31.3 ± 0.6, 47.3 ± 0.8 and 62.1 ± 0.9 W ex vivo and 31.8 ± 0.8, 47.4 ± 0.3 and 61.7 ± 1.5 W in vivo. For the same power readout, the ex vivo or in vivo effective power was the same (P = 0.841, P = 0.133, P = 0.551). For both ex vivo and in vivo experiments, the ratio of microwave antenna energy loss to microwave antenna input energy was relatively constant (P = 0.613, 0.326). For the same treatment time and net power, the difference was significant between ex vivo and in vivo ablation volumes (P = 0.001, 0.006, 0.001). Using net power as a reference during MWA is more accurate compared to the traditional power readout. And net energy offers a more realistic reflection of MWA energy in tissues.

  14. [Anti-platelet actions of salicylates: in vivo, ex vivo and in vitro effects of choline salicylate].

    PubMed

    Irino, O; Saitoh, K; Ohkubo, K

    1985-07-01

    Effects of choline salicylate, sodium salicylate, choline chloride and acetylsalicylic acid on platelet aggregation in vivo, ex vivo and in vitro in mice were studied. These drugs all inhibited adenosine diphosphate (ADP)-induced respiratory depression, which is closely related to platelet aggregation in vivo, with choline salicylate showing the strongest inhibitory effect. Choline salicylate had a tendency to reduce the mortality of animals injected intravenously with endotoxin, but the other drugs had no such effect. The inhibitory effects of these drugs on ADP-induced platelet aggregation ex vivo were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate greater than choline chloride congruent to no effect, and plasma concentrations of protein-unbound salicylic acid at 1 hr after oral administration of drugs were in the order of choline salicylate greater than acetylsalicylic acid congruent to sodium salicylate. The in vitro effects of these drugs were in the order of choline salicylate congruent to sodium salicylate greater than choline chloride congruent to acetylsalicylic acid congruent to no effect. Therefore, it was considered that salicylic acid played an important role on the in vivo, ex vivo and in vitro effects of choline salicylate and that choline increased plasma concentrations of salicylic acid and consequently enhanced the in vivo and ex vivo effects of salicylic acid. Furthermore, the ex vivo effects of choline salicylate were found when ADP-induced platelet aggregation was measured with platelet-rich plasma prepared from blood collected with heparin as anti-coagulant, but not when blood was collected with citrate.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ex vivo MR volumetry of human brain hemispheres.

    PubMed

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  16. Radical protection in the visible and infrared by a hyperforin-rich cream--in vivo versus ex vivo methods.

    PubMed

    Arndt, Sophia; Haag, Stefan F; Kleemann, Anke; Lademann, Juergen; Meinke, Martina C

    2013-05-01

    The formation of radicals plays an important role in the development of atopic eczema or barrier-disrupted skin. We evaluated the radical scavenging effect of a cream containing a Hypericum perforatum extract rich in hyperforin in a double-blind placebo-controlled study on 11 healthy volunteers. Electron paramagnetic resonance spectroscopy was applied to determine radical formation during VIS/NIR irradiation of the inner forearm. The results were compared to ex vivo investigations on excised porcine ear skin after a single application of the creams. The non-treated skin was measured as control. The absolute values and the kinetics are not comparable for ex vivo and in vivo radical formation. Whereas in vivo, the radical production decreases with time, it remains stable ex vivo over the investigated timescale. Nevertheless, ex vivo methods could be developed to estimate the protection efficiency of creams. In vivo as well as ex vivo, the radical formation could be reduced by almost 80% when applying the hyperforin-rich cream onto the skin, whereas placebo resulted in about 60%. In vivo, a daylong protection effect could be validated after a 4-week application time of the cream indicating that a regular application is necessary to obtain the full effect. © 2013 John Wiley & Sons A/S.

  17. In vivo and ex vivo sentinel node mapping does not identify the same lymph nodes in colon cancer.

    PubMed

    Andersen, Helene Schou; Bennedsen, Astrid Louise Bjørn; Burgdorf, Stefan Kobbelgaard; Eriksen, Jens Ravn; Eiholm, Susanne; Toxværd, Anders; Riis, Lene Buhl; Rosenberg, Jacob; Gögenur, Ismail

    2017-07-01

    Identification of lymph nodes and pathological analysis is crucial for the correct staging of colon cancer. Lymph nodes that drain directly from the tumor area are called "sentinel nodes" and are believed to be the first place for metastasis. The purpose of this study was to perform sentinel node mapping in vivo with indocyanine green and ex vivo with methylene blue in order to evaluate if the sentinel lymph nodes can be identified by both techniques. Patients with colon cancer UICC stage I-III were included from two institutions in Denmark from February 2015 to January 2016. In vivo sentinel node mapping with indocyanine green during laparoscopy and ex vivo sentinel node mapping with methylene blue were performed in all patients. Twenty-nine patients were included. The in vivo sentinel node mapping was successful in 19 cases, and ex vivo sentinel node mapping was successful in 13 cases. In seven cases, no sentinel nodes were identified. A total of 51 sentinel nodes were identified, only one of these where identified by both techniques (2.0%). In vivo sentinel node mapping identified 32 sentinel nodes, while 20 sentinel nodes were identified by ex vivo sentinel node mapping. Lymph node metastases were found in 10 patients, and only two had metastases in a sentinel node. Placing a deposit in relation to the tumor by indocyanine green in vivo or of methylene blue ex vivo could only identify sentinel lymph nodes in a small group of patients.

  18. Ex-vivo MR Volumetry of Human Brain Hemispheres

    PubMed Central

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  19. Fluorophore-labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging

    PubMed Central

    Shi, Yang; Kunjachan, Sijumon; Wu, Zhuojun; Gremse, Felix; Moeckel, Diana; van Zandvoort, Marc; Kiessling, Fabian; Storm, Gert; van Nostrum, Cornelus F.; Hennink, Wim E.; Lammers, Twan

    2015-01-01

    Aim To enable multimodal in vivo and ex vivo optical imaging of the biodistribution and tumor accumulation of core-crosslinked polymeric micelles (CCPM). Materials & Methods mPEG-b-p(HPMAm-Lac)-based polymeric micelles, core-crosslinked via cystamine and covalently labeled with two fluorophores (Dy-676/488) were synthesized. The CCPM were intravenously injected in CT26 tumor-bearing mice. Results Upon intravenous injection, the CCPM accumulated in CT26 tumors reasonably efficiently, with values reaching ~4 %ID at 24 hours. Ex vivo TPLSM confirmed efficient extravasation of the iCCPM out of tumor blood vessels and deep penetration into the tumor interstitium. Conclusions CCPM were labeled with multiple fluorophores, and they exemplify that combining different in vivo and ex vivo optical imaging techniques is highly useful for analyzing the biodistribution and tumor accumulation of nanomedicines. PMID:25929568

  20. Susceptibility weighted imaging of cartilage canals in porcine epiphyseal growth cartilage ex vivo and in vivo.

    PubMed

    Nissi, Mikko J; Toth, Ferenc; Zhang, Jinjin; Schmitter, Sebastian; Benson, Michael; Carlson, Cathy S; Ellermann, Jutta M

    2014-06-01

    High-resolution visualization of cartilage canals has been restricted to histological methods and contrast-enhanced imaging. In this study, the feasibility of non-contrast-enhanced susceptibility weighted imaging (SWI) for visualization of the cartilage canals was investigated ex vivo at 9.4 T, further explored at 7 and 3 T and demonstrated in vivo at 7 T, using a porcine animal model. SWI scans of specimens of distal femur and humerus from 1 to 8 week-old piglets were conducted at 9.4 T using 3D-GRE sequence and SWI post-processing. The stifle joints of a 2-week old piglet were scanned ex vivo at 7 and 3 T. Finally, the same sites of a 3-week-old piglet were scanned, in vivo, at 7 T under general anesthesia using the vendor-provided sequences. High-contrast visualization of the cartilage canals was obtained ex vivo, especially at higher field strengths; the results were confirmed histologically. In vivo feasibility was demonstrated at 7 T and comparison of ex vivo scans at 3 and 7 T indicated feasibility of using SWI at 3 T. High-resolution 3D visualization of cartilage canals was demonstrated using SWI. This demonstration of fully noninvasive visualization opens new avenues to explore skeletal maturation and the role of vascular supply for diseases such as osteochondrosis. Copyright © 2013 Wiley Periodicals, Inc.

  1. PASSIVE CAVITATION DETECTION DURING PULSED HIFU EXPOSURES OF EX VIVO TISSUES AND IN VIVO MOUSE PANCREATIC TUMORS

    PubMed Central

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-01-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been demonstrated to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rarefactional focal pressures (1–12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms, pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KPC mice and closely recapitulate human disease in their morphology. The cavitation threshold, defined at 50 % cavitation probability, was found to vary broadly among the investigated tissues (within 2.5–10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but ex vivo it decreased rapidly and stopped over the first few pulses

  2. Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.

    PubMed

    Li, Tong; Chen, Hong; Khokhlova, Tatiana; Wang, Yak-Nam; Kreider, Wayne; He, Xuemei; Hwang, Joo Ha

    2014-07-01

    Pulsed high-intensity focused ultrasound (pHIFU) has been shown to enhance vascular permeability, disrupt tumor barriers and enhance drug penetration into tumor tissue through acoustic cavitation. Monitoring of cavitation activity during pHIFU treatments and knowing the ultrasound pressure levels sufficient to reliably induce cavitation in a given tissue are therefore very important. Here, three metrics of cavitation activity induced by pHIFU and evaluated by confocal passive cavitation detection were introduced: cavitation probability, cavitation persistence and the level of the broadband acoustic emissions. These metrics were used to characterize cavitation activity in several ex vivo tissue types (bovine tongue and liver and porcine adipose tissue and kidney) and gel phantoms (polyacrylamide and agarose) at varying peak-rare factional focal pressures (1-12 MPa) during the following pHIFU protocol: frequency 1.1 MHz, pulse duration 1 ms and pulse repetition frequency 1 Hz. To evaluate the relevance of the measurements in ex vivo tissue, cavitation metrics were also investigated and compared in the ex vivo and in vivo murine pancreatic tumors that develop spontaneously in transgenic KrasLSL.G12 D/+; p53 R172 H/+; PdxCretg/+ (KPC) mice and closely re-capitulate human disease in their morphology. The cavitation threshold, defined at 50% cavitation probability, was found to vary broadly among the investigated tissues (within 2.5-10 MPa), depending mostly on the water-lipid ratio that characterizes the tissue composition. Cavitation persistence and the intensity of broadband emissions depended both on tissue structure and lipid concentration. Both the cavitation threshold and broadband noise emission level were similar between ex vivo and in vivo pancreatic tumor tissue. The largest difference between in vivo and ex vivo settings was found in the pattern of cavitation occurrence throughout pHIFU exposure: it was sporadic in vivo, but it decreased rapidly and stopped

  3. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo.

    PubMed

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Felder, Paul; Cusumano, Andrew; Moley, Kelle H

    2018-01-01

    Male exposure to cigarette smoke is associated with seminal defects and with congenital anomalies and childhood cancers in offspring. In mice, paternal exposure to cigarette smoke condensate (CSC) causes molecular defects in germ cells and phenotypic effects in their offspring. Here we used an ex vivo testicular explant model and in vivo exposure to determine the concentration at which CSC impairs spermatogenesis and offspring development. We explanted testis tissue at postnatal day (P)5.5 and cultured it until P11.5. Assessment of growth parameters by analyzing expression of cell-specific markers revealed that the explant system maintained structural and functional integrity. We exposed the P5.5 to -11.5 explants to various concentrations (40-160 µg/ml) of CSC and confirmed that nicotine in the CSC was metabolized to cotinine. We assessed various growth and differentiation parameters, as well as testosterone production, and observed that many spermatogenesis features were impaired at 160 µg/ml CSC. The same parameters were impaired by a similar CSC concentration in vivo Finally, females mated to males that were exposed to 160 µg/ml CSC neonatally had increased rates of pup resorption. We conclude that male exposure to CSC impairs offspring development and that the concentration at which CSC impairs spermatogenesis is similar in vivo and ex vivo. Given that the concentrations of CSC we used contained similar doses of nicotine as human smokers are exposed to, we argue that our model mimics human male reproductive effects of smoking.-Esakky, P., Hansen, D. A., Drury, A. M., Felder, P., Cusumano, A., Moley, K. H. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo . © FASEB.

  4. Ex-vivo quantitative susceptibility mapping of human brain hemispheres

    PubMed Central

    Kotrotsou, Aikaterini; Tamhane, Ashish A.; Dawe, Robert J.; Kapasi, Alifiya; Leurgans, Sue E.; Schneider, Julie A.; Bennett, David A.; Arfanakis, Konstantinos

    2017-01-01

    Ex-vivo brain quantitative susceptibility mapping (QSM) allows investigation of brain characteristics at essentially the same point in time as histopathologic examination, and therefore has the potential to become an important tool for determining the role of QSM as a diagnostic and monitoring tool of age-related neuropathologies. In order to be able to translate the ex-vivo QSM findings to in-vivo, it is crucial to understand the effects of death and chemical fixation on brain magnetic susceptibility measurements collected ex-vivo. Thus, the objective of this work was twofold: a) to assess the behavior of magnetic susceptibility in both gray and white matter of human brain hemispheres as a function of time postmortem, and b) to establish the relationship between in-vivo and ex-vivo gray matter susceptibility measurements on the same hemispheres. Five brain hemispheres from community-dwelling older adults were imaged ex-vivo with QSM on a weekly basis for six weeks postmortem, and the longitudinal behavior of ex-vivo magnetic susceptibility in both gray and white matter was assessed. The relationship between in-vivo and ex-vivo gray matter susceptibility measurements was investigated using QSM data from eleven older adults imaged both antemortem and postmortem. No systematic change in ex-vivo magnetic susceptibility of gray or white matter was observed over time postmortem. Additionally, it was demonstrated that, gray matter magnetic susceptibility measured ex-vivo may be well modeled as a linear function of susceptibility measured in-vivo. In conclusion, magnetic susceptibility in gray and white matter measured ex-vivo with QSM does not systematically change in the first six weeks after death. This information is important for future cross-sectional ex-vivo QSM studies of hemispheres imaged at different postmortem intervals. Furthermore, the linear relationship between in-vivo and ex-vivo gray matter magnetic susceptibility suggests that ex-vivo QSM captures

  5. Identification of an Effective Early Signaling Signature during Neo-Vasculogenesis In Vivo by Ex Vivo Proteomic Profiling

    PubMed Central

    Rohban, Rokhsareh; Reinisch, Andreas; Etchart, Nathalie; Schallmoser, Katharina; Hofmann, Nicole A.; Szoke, Krisztina; Brinchmann, Jan E.; Rad, Ehsan Bonyadi; Rohde, Eva; Strunk, Dirk

    2013-01-01

    Therapeutic neo-vasculogenesis in vivo can be achieved by the co-transplantation of human endothelial colony-forming progenitor cells (ECFCs) with mesenchymal stem/progenitor cells (MSPCs). The underlying mechanism is not completely understood thus hampering the development of novel stem cell therapies. We hypothesized that proteomic profiling could be used to retrieve the in vivo signaling signature during the initial phase of human neo-vasculogenesis. ECFCs and MSPCs were therefore either transplanted alone or co-transplanted subcutaneously into immune deficient mice. Early cell signaling, occurring within the first 24 hours in vivo, was analyzed using antibody microarray proteomic profiling. Vessel formation and persistence were verified in parallel transplants for up to 24 weeks. Proteomic analysis revealed significant alteration of regulatory components including caspases, calcium/calmodulin-dependent protein kinase, DNA protein kinase, human ErbB2 receptor-tyrosine kinase as well as mitogen-activated protein kinases. Caspase-4 was selected from array results as one therapeutic candidate for targeting vascular network formation in vitro as well as modulating therapeutic vasculogenesis in vivo. As a proof-of-principle, caspase-4 and general caspase-blocking led to diminished endothelial network formation in vitro and significantly decreased vasculogenesis in vivo. Proteomic profiling ex vivo thus unraveled a signaling signature which can be used for target selection to modulate neo-vasculogenesis in vivo. PMID:23826172

  6. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy.

    PubMed

    Holmes, Holly E; Powell, Nick M; Ma, Da; Ismail, Ozama; Harrison, Ian F; Wells, Jack A; Colgan, Niall; O'Callaghan, James M; Johnson, Ross A; Murray, Tracey K; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M Jorge; Modat, Marc; O'Neill, Michael J; Collins, Emily C; Fisher, Elizabeth M C; Ourselin, Sébastien; Lythgoe, Mark F

    2017-01-01

    With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our "in-skull" preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.

  7. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Infant mortality by color or race from Rondônia, Brazilian Amazon.

    PubMed

    Gava, Caroline; Cardoso, Andrey Moreira; Basta, Paulo Cesar

    2017-04-10

    To analyze the quality of records for live births and infant deaths and to estimate the infant mortality rate for skin color or race, in order to explore possible racial inequalities in health. Descriptive study that analyzed the quality of records of the Live Births Information System and Mortality Information System in Rondônia, Brazilian Amazonian, between 2006-2009. The infant mortality rates were estimated for skin color or race with the direct method and corrected by: (1) proportional distribution of deaths with missing data related to skin color or race; and (2) application of correction factors. We also calculated proportional mortality by causes and age groups. The capture of live births and deaths improved in relation to 2006-2007, which required lower correction factors to estimate infant mortality rate. The risk of death of indigenous infant (31.3/1,000 live births) was higher than that noted for the other skin color or race groups, exceeding by 60% the infant mortality rate in Rondônia (19.9/1,000 live births). Black children had the highest neonatal infant mortality rate, while the indigenous had the highest post-neonatal infant mortality rate. Among the indigenous deaths, 15.2% were due to ill-defined causes, while the other groups did not exceed 5.4%. The proportional infant mortality due to infectious and parasitic diseases was higher among indigenous children (12.1%), while among black children it occurred due to external causes (8.7%). Expressive inequalities in infant mortality were noted between skin color or race categories, more unfavorable for indigenous infants. Correction factors proposed in the literature lack to consider differences in underreporting of deaths for skin color or race. The specific correction among the color or race categories would likely result in exacerbation of the observed inequalities. Analisar a qualidade dos registros de nascidos vivos e de óbitos infantis e estimar a taxa de mortalidade infantil segundo cor ou

  9. Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study.

    PubMed

    Lohan, Silke B; Müller, Robert; Albrecht, Stephanie; Mink, Kathrin; Tscherch, Kathrin; Ismaeel, Fakher; Lademann, Jürgen; Rohn, Sascha; Meinke, Martina C

    2016-05-01

    Sunlight represents an exogenous factor stimulating formation of free radicals which can induce cell damage. To assess the effect of the different spectral solar regions on the development of free radicals in skin, in vivo electron paramagnetic resonance (EPR) investigations with human volunteers and ex vivo studies on excised human and porcine skin were carried out. For all skin probes, the ultraviolet (UV) spectral region stimulates the most intensive radical formation, followed by the visible (VIS) and the near infrared (NIR) regions. A comparison between the different skin models shows that for UV light, the fastest and highest production of free radicals could be detected in vivo, followed by excised porcine and human skin. The same distribution pattern was found for the VIS/NIR spectral regions, whereby the differences in radical formation between in vivo and ex vivo were less pronounced. An analysis of lipid composition in vivo before and after exposure to UV light clearly showed modifications in several skin lipid components; a decrease of ceramide subclass [AP2] and an increase of ceramide subclass [NP2], sodium cholesterol sulphate and squalene (SQ) were detectable. In contrast, VIS/NIR irradiation led to an increase of ceramides [AP2] and SCS, and a decrease of SQ. These results, which are largely comparable for the different skin models investigated in vivo and ex vivo, indicate that radiation exposure in different spectral regions strongly influences radical production in skin and also results in changes in skin lipid composition, which is essential for barrier function. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Contrast-enhanced CT with a High-Affinity Cationic Contrast Agent for Imaging ex Vivo Bovine, Intact ex Vivo Rabbit, and in Vivo Rabbit Cartilage

    PubMed Central

    Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.

    2013-01-01

    Purpose: To quantify the affinity of a cationic computed tomography (CT) contrast agent (CA4+) and that of an anionic contrast agent (ioxaglate) to glycosaminoglycans (GAGs) in ex vivo cartilage tissue explants and to characterize the in vivo diffusion kinetics of CA4+ and ioxaglate in a rabbit model. Materials and Methods: All in vivo procedures were approved by the institutional animal care and use committee. The affinities of ioxaglate and CA4+ to GAGs in cartilage (six bovine osteochondral plugs) were quantified by means of a modified binding assay using micro-CT after plug equilibration in serial dilutions of each agent. The contrast agents were administered intraarticularly to the knee joints of five New Zealand white rabbits to determine the in vivo diffusion kinetics and cartilage tissue imaging capabilities. Kinetics of diffusion into the femoral groove cartilage and relative contrast agent uptake into bovine plugs were characterized by means of nonlinear mixed-effects models. Diffusion time constants (τ) were compared by using a Student t test. Results: The uptake of CA4+ in cartilage was consistently over 100% of the reservoir concentration, whereas it was only 59% for ioxaglate. In vivo, the contrast material–enhanced cartilage reached a steady CT attenuation for both CA4+ and ioxaglate, with τ values of 13.8 and 6.5 minutes, respectively (P = .04). The cartilage was easily distinguishable from the surrounding tissues for CA4+ (12 mg of iodine per milliliter); comparatively, the anionic contrast agent provided less favorable imaging results, even when a higher concentration was used (80 mg of iodine per milliliter). Conclusion: The affinity of the cationic contrast agent CA4+ to GAGs enables high-quality imaging and segmentation of ex vivo bovine and rabbit cartilage, as well as in vivo rabbit cartilage. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112246/-/DC1 PMID:23192774

  11. In vivo studies of opiate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantlymore » to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.« less

  12. Nanocrystal Targeting In Vivo

    DTIC Science & Technology

    2002-08-01

    Shearwater Polymers , Huntsville, AL) was thiolated with iminothiolane. Thiolated PEG was directly added to a solution of mercaptoacetic acid- coated qdots...Nanocrystal targeting in vivo Maria E. Åkerman*†‡, Warren C. W. Chan†‡, Pirjo Laakkonen*, Sangeeta N. Bhatia†, and Erkki Ruoslahti*§ *Cancer Research...set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (᝺ nm) inorganic nanocrystals

  13. High embryonic recovery rates with in vivo and ex vivo techniques in the bitch.

    PubMed

    Luz, M R; de Holanda, C C; Pereira, J J; Freitas, P M C; Salgado, A E P; Giannotti, J Di Giorgio; de Oliveira, S B; Teixeira, N S; Guaitolini, C R de Freitas

    2011-08-01

    The embryonic collection techniques in dogs present a vast methodological variation and low recovery rates. The objectives were to compare and describe two techniques as to the recovery of canine embryos, on the 12th day after the first mating or artificial insemination. Embryos were recovered through uterine horn flushing in vivo, before performing the ovariohysterectomy (OHE) (Group 1; n = 9) or ex vivo, immediately after the OHE (Group 2; n = 9). In total, 43 and 47 embryonic structures were recovered in Groups 1 and 2, respectively. There was no significant difference (p > 0.05) between groups on recovery rates (72.8% and 81.0%, respectively). We inferred that both in vivo and ex vivo techniques allow a high rate of embryonic recovery; in the collection technique prior to the OHE, it is essential to carefully handle the reproductive system during the trans-surgical period and that the 12th day (D12) after the first mating/artificial insemination is an efficient option for the high recovery rate of morulae and blastocysts. © 2010 Blackwell Verlag GmbH.

  14. Comparison of In Vivo and Ex Vivo MRI for the Detection of Structural Abnormalities in a Mouse Model of Tauopathy

    PubMed Central

    Holmes, Holly E.; Powell, Nick M.; Ma, Da; Ismail, Ozama; Harrison, Ian F.; Wells, Jack A.; Colgan, Niall; O'Callaghan, James M.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M. Jorge; Modat, Marc; O'Neill, Michael J.; Collins, Emily C.; Fisher, Elizabeth M. C.; Ourselin, Sébastien; Lythgoe, Mark F.

    2017-01-01

    With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes. PMID:28408879

  15. In vivo and ex vivo characterization of a novel Er fiber laser system for fractional treatment of soft oral tissues

    NASA Astrophysics Data System (ADS)

    Shatilova, Ksenia; Aloian, Georgii; Karabut, Maria; Ryabova, Valentina; Yaroslavsky, Ilya V.; Altshuler, Gregory

    2018-02-01

    In this work, we present the first histological in vivo and ex vivo study of effects of fractional Er fiber laser (wavelength 1550 nm, peak power 25 W) on keratinized gum and alveolar mucosa for gum regeneration. Biopsy with subsequent NBTC staining was used as primary evaluation technique. Ex vivo, porcine tissue model was used. Effects of pulse energy, beam diameter, and beam divergence were investigated in detail. It has been demonstrated that under optimal conditions columns up to 800 μm in depth could be reliably produced with 130 mJ pulses. Clinically, 2 subjects were treated and 4 punch biopsies were collected. The results were compared with ex vivo data. Both ex vivo and in vivo datasets suggest feasibility of a dental fractional system intended for gum regeneration.

  16. In vivo and ex vivo cetuximab sensitivity assay using three-dimensional primary culture system to stratify KRAS mutant colorectal cancer

    PubMed Central

    Tashiro, Takahiro; Okuyama, Hiroaki; Endo, Hiroko; Kawada, Kenji; Ashida, Yasuko; Ohue, Masayuki; Sakai, Yoshiharu; Inoue, Masahiro

    2017-01-01

    In clinic, cetuximab, an anti-EGFR antibody, improves treatment outcomes in colorectal cancer (CRC). KRAS-mutant CRC is generally resistant to cetuximab, although difference of the sensitivity among KRAS-mutants has not been studied in detail. We previously developed the cancer tissue-originated spheroid (CTOS) method, a primary culture method for cancer cells. We applied CTOS method to investigate whether ex vivo cetuximab sensitivity assays reflect the difference in sensitivity in the xenografts. Firstly, in vivo cetuximab treatment was performed with xenografts derived from 10 CTOS lines (3 KRAS-wildtype and 7 KRAS mutants). All two CTOS lines which exhibited tumor regression were KRAS-wildtype, meanwhile all KRAS-mutant CTOS lines grew more than the initial size: were resistant to cetuximab according to the clinical evaluation criteria, although the sensitivity was quite diverse. We divided KRAS-mutants into two groups; partially responsive group in which cetuximab had a substantial growth inhibitory effect, and resistant group which exhibited no effect. The ex vivo signaling assay with EGF stimulation revealed that the partially responsive group, but not the resistant group, exhibited suppressed ERK phosphorylation ex vivo. Furthermore, two lines from the partially responsive group, but none of the lines in the resistant group, exhibited a combinatory effect of cetuximab and trametinib, a MEK inhibitor, ex vivo and in vivo. Taken together, the results indicate that ex vivo signaling assay reflects the difference in sensitivity in vivo and stratifies KRAS mutant CTOS lines by sensitivity. Therefore, coupling the in vivo and ex vivo assays with CTOS can be a useful platform for understanding the mechanism of diversity in drug sensitivity. PMID:28301591

  17. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans.

    PubMed

    Wegner, Alexander; Benson, Sven; Rebernik, Laura; Spreitzer, Ingo; Jäger, Marcus; Schedlowski, Manfred; Elsenbruch, Sigrid; Engler, Harald

    2017-07-01

    Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.

  18. Convection Enhanced Delivery: A Comparison of infusion characteristics in ex vivo and in vivo non-human primate brain tissue.

    PubMed

    Miranpuri, Gurwattan; Hinchman, Angelica; Wang, Anyi; Schomberg, Dominic; Kubota, Ken; Brady, Martin; Raghavan, Raghu; Bruner, Kevin; Brodsky, Ethan; Block, Walter; Grabow, Ben; Raschke, Jim; Alexander, Andrew; Ross, Chris; Simmons, Heather; Sillay, Karl

    2013-07-01

    Convection enhanced delivery (CED) is emerging as a promising infusion toolto facilitate delivery of therapeutic agents into the brain via mechanically controlled pumps. Infusion protocols and catheter design have an important impact on delivery. CED is a valid alternative for systemic administration of agents in clinical trials for cell and gene therapies. Where gel and ex vivo models are not sufficient in modeling the disease, in vivo models allow researchers to better understand the underlying mechanisms of neuron degeneration, which is helpful in finding novel approaches to control the process or reverse the progression. Determining the risks, benefits, and efficacy of new gene therapies introduced via CED will pave a way to enter human clinical trial. The objective of this study is to compare volume distribution (Vd)/ volume infused (Vi) ratios and backflow measurements following CED infusions in ex vivo versus in vivo non-human primate brain tissue, based on infusion protocols developed in vitro. In ex vivo infusions, the first brain received 2 infusions using a balloon catheter at rates of 1 μL/min and 2 μL/min for 30 minutes. The second and third brains received infusions using a valve-tip (VT) catheter at 1 μL/min for 30 minutes. The fourth brain received a total of 45 μL infused at a rate of 1 μL/min for 15 minutes followed by 2 μL/min for 15 minutes. Imaging was performed (SPGR FA34) every 3 minutes. In the in vivo group, 4 subjects received a total of 8 infusions of 50 μL. Subjects 1 and 2 received infusions at 1.0 μL/min using a VT catheter in the left hemisphere and a smart-flow (SF) catheter in the right hemisphere. Subjects 3 and 4 each received 1 infusion in the left and right hemisphere at 1.0 μL/min. MRI calculations of Vd/Vi did not significantly differ from those obtained on post-mortem pathology. The mean measured Vd/Vi of in vivo (5.23 + /-1.67) compared to ex vivo (2.17 + /-1.39) demonstrated a significantly larger Vd/Vi for in vivo

  19. Ex vivo and in vivo label-free imaging of lymphatic vessels using OCT lymphangiography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Es'haghian, Shaghayegh; Karnowski, Karol; Rea, Suzanne; Wood, Fiona M.; Yu, Dao-Yi; McLaughlin, Robert A.; Sampson, David D.

    2017-02-01

    We have been developing an automated method to image lymphatic vessels both ex vivo and in vivo with optical coherence tomography (OCT), using their optical transparency. Our method compensates for the OCT signal attenuation for each A-scan in combination with the correction of the confocal function and sensitivity fall-off, enabling reliable thresholding of lymphatic vessels from the OCT scans. Morphological image processing with a segment-joining algorithm is also incorporated into the method to mitigate partial-volume artifacts, which are particularly evident with small lymphatic vessels. Our method is demonstrated for two different clinical application goals: the monitoring of conjunctival lymphatics for surgical guidance and assessment of glaucoma treatment; and the longitudinal monitoring of human burn scars undergoing laser ablation treatment. We present examples of OCT lymphangiography ex vivo on porcine conjunctivas and in vivo on human burn scars, showing the visualization of the lymphatic vessel network and their longitudinal changes due to treatment.

  20. In Vivo Histamine Optical Nanosensors

    PubMed Central

    Cash, Kevin J.; Clark, Heather A.

    2012-01-01

    In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores. PMID:23112690

  1. Cancer CRISPR Screens In Vivo.

    PubMed

    Chow, Ryan D; Chen, Sidi

    2018-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) screening is a powerful toolset for investigating diverse biological processes. Most CRISPR screens to date have been performed with in vitro cultures or cellular transplant models. To interrogate cancer in animal models that more closely recapitulate the human disease, autochthonous direct in vivo CRISPR screens have recently been developed that can identify causative drivers in the native tissue microenvironment. By empowering multiplexed mutagenesis in fully immunocompetent animals, direct in vivo CRISPR screens enable the rapid generation of patient-specific avatars that can guide precision medicine. This Opinion article discusses the current status of in vivo CRISPR screens in cancer and offers perspectives on future applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. In vivo histamine optical nanosensors.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2012-01-01

    In this communication we discuss the development of ionophore based nanosensors for the detection and monitoring of histamine levels in vivo. This approach is based on the use of an amine-reactive, broad spectrum ionophore which is capable of recognizing and binding to histamine. We pair this ionophore with our already established nanosensor platform, and demonstrate in vitro and in vivo monitoring of histamine levels. This approach enables capturing rapid kinetics of histamine after injection, which are more difficult to measure with standard approaches such as blood sampling, especially on small research models. The coupling together of in vivo nanosensors with ionophores such as nonactin provide a way to generate nanosensors for novel targets without the difficult process of designing and synthesizing novel ionophores.

  3. A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation.

    PubMed

    Chiang, Jason; Hynes, Kieran A; Bedoya, Mariajose; Brace, Christopher L

    2013-08-01

    To compare the performance of a microwave antenna design with two annular slots to that of a monopole antenna design in creating a more spherical ablation zone. Animal care and use committee approval was obtained before in vivo experiments were performed. Microwave ablation zones were created by using dual-slot and monopole control antennas for 2, 5, and 10 minutes at 50 and 100 W in ex vivo bovine livers. Dual-slot and monopole antennas were then used to create ablation zones at 100 W for 5 minutes in in vivo porcine livers, which also underwent intraprocedural imaging. Ablation diameter, length, and aspect ratio (diameter ÷ length) were measured at gross pathologic examination and compared at each combination of power and time by using the paired Student t test. A P value less than .05 was considered to indicate a significant difference. Aspect ratios closer to 1 reflected a more spherical ablation zone. The dual-slot antenna created ablation zones with a higher aspect ratio at 50 W for 2 minutes (0.75 vs 0.53, P = .003) and 5 minutes (0.82 vs 0.63, P = .053) than did the monopole antenna in ex vivo liver tissue, although the difference was only significant at 2 minutes. At 100 W, the dual-slot antenna had a significantly higher aspect ratio at 2 minutes (0.52 vs 0.42, P = .002). In vivo studies showed significantly higher aspect ratios at 100 W for 5 minutes (0.63 vs 0.53, respectively, P = .029). Intraprocedural imaging confirmed this characterization, showing higher rates of ablation zone growth and heating primarily at the early stages of the ablation procedure when the dual-slot antenna was used. The dual-slot microwave antenna created a more spherical ablation zone than did the monopole antenna both in vivo and ex vivo liver tissue. Greater control over power delivery can potentially extend the advantages of the dual-slot antenna design to higher power and longer treatment times.

  4. Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements.

    PubMed

    Farrugia, L; Wismayer, P Schembri; Mangion, L Zammit; Sammut, C V

    2016-01-01

    In this article, we report on the characterization of the dielectric properties of in vivo rat liver at 36.4°C from 500 MHz up to 40 GHz with less than 5% uncertainty. The measured data were fitted to a Cole-Cole model and dielectric parameters are presented together with their respective 95% confidence interval. The root mean square error is 0.42. Moreover, ex vivo measurements were conducted in situ at 1, 2, 4 and 6 min after animal death and are compared to in vivo measurements. The results show that immediate changes in [Formula: see text]and [Formula: see text] are within experimental uncertainty, and therefore changes between in vivo and published ex vivo dielectric properties can be attributed to tissue hydration.

  5. Multiparameter comparative analysis reveals differential impacts of various cytokines on CART cell phenotype and function ex vivo and in vivo

    PubMed Central

    Xu, Xiao-Jun; Song, De-Gang; Poussin, Mathilde; Ye, Qunrui; Sharma, Prannda; Rodríguez-García, Alba; Tang, Yong-Min; Powell, Daniel J.

    2016-01-01

    Exogenous cytokines are widely applied to enhance the anti-tumor ability of immune cells. However, systematic comparative studies of their effects on chimeric antigen receptor (CAR)-engineered T (CART) cells are lacking. In this study, CART cells targeting folate receptor-alpha were generated and expanded ex vivo in the presence of different cytokines (IL-2, IL-7, IL-15, IL-18, and IL-21), and their expansion, phenotype and cytotoxic capacity were evaluated, in vitro and in vivo. Moreover, the effect of the administration of these cytokines along with CART cells in vivo was also studied. IL-2, IL-7, and IL-15 favored the ex vivo expansion of CART cells compared to other cytokines or no cytokine treatment. IL-7 induced the highest proportion of memory stem cell-like CART cells in the final product, and IL-21 supported the expansion of CART cells with a younger phenotype, while IL-2 induced more differentiated CART cells. IL-2 and IL-15-exposed CART cells secreted more proinflammatory cytokines and presented stronger tumor-lysis ability in vitro. However, when tested in vivo, CART cells exposed to IL-2 ex vivo showed the least anti-tumor effect. In contrast, the administration of IL-15 and IL-21 in combination with CART cells in vivo increased their tumor killing capacity. According to our results, IL-7 and IL-15 show promise to promote ex vivo expansion of CART cells, while IL-15 and IL-21 seem better suited for in vivo administration after CART cell infusion. Collectively, these results may have a profound impact on the efficacy of CART cells in both hematologic and solid cancers. PMID:27409425

  6. Assessment and management of pain in newborns hospitalized in a Neonatal Intensive Care Unit: a cross-sectional study.

    PubMed

    Sposito, Natália Pinheiro Braga; Rossato, Lisabelle Mariano; Bueno, Mariana; Kimura, Amélia Fumiko; Costa, Taine; Guedes, Danila Maria Batista

    2017-09-12

    to determine the frequency of pain, to verify the measures adopted for pain relief during the first seven days of hospitalization in the Neonatal Intensive Care Unit and to identify the type and frequency of invasive procedures to which newborns are submitted. cross-sectional retrospective study. Out of the 188 hospitalizations occurred during the 12-month period, 171 were included in the study. The data were collected from the charts and the presence of pain was analyzed based on the Neonatal Infant Pain Scale and on nursing notes suggestions of pain. For statistical analysis, the Statistical Package for the Social Sciences was used, and the significance level was set at 5%. there was at least one record of pain in 50.3% of the hospitalizations, according to the pain scale adopted or nursing note. The newborns underwent a mean of 6.6 invasive procedures per day. Only 32.5% of the pain records resulted in the adoption of pharmacological or non-pharmacological intervention for pain relief. newborns are frequently exposed to pain and the low frequency of pharmacological or non-pharmacological interventions reinforces the undertreatment of this condition. determinar a frequência de dor e verificar as medidas realizadas para seu alívio durante os sete primeiros dias de internação na Unidade de Terapia Intensiva Neonatal, bem como identificar o tipo e frequência de procedimentos invasivos aos quais os recém-nascidos foram submetidos. estudo retrospectivo transversal. Das 188 internações ocorridas no período estipulado de 12 meses, 171 foram incluídas na pesquisa. Os dados foram coletados a partir dos prontuários e a presença de dor foi analisada tanto com base na escala de dor Neonatal Infant Pain Scale quanto mediante anotação de enfermagem sugestiva de dor. Para análise estatística, utilizou-se o programa Statistical Package for the Social Sciences, adotando-se nível de significância de 5%. em 50,3% das internações houve ao menos um registro de dor

  7. Glioma survival prediction with the combined analysis of in vivo 11C-MET-PET, ex vivo and patient features by supervised machine learning.

    PubMed

    Papp, Laszlo; Poetsch, Nina; Grahovac, Marko; Schmidbauer, Victor; Woehrer, Adelheid; Preusser, Matthias; Mitterhauser, Markus; Kiesel, Barbara; Wadsak, Wolfgang; Beyer, Thomas; Hacker, Marcus; Traub-Weidinger, Tatjana

    2017-11-24

    Gliomas are the most common types of tumors in the brain. While the definite diagnosis is routinely made ex vivo by histopathologic and molecular examination, diagnostic work-up of patients with suspected glioma is mainly done by using magnetic resonance imaging (MRI). Nevertheless, L-S-methyl- 11 C-methionine ( 11 C-MET) Positron Emission Tomography (PET) holds a great potential in characterization of gliomas. The aim of this study was to establish machine learning (ML) driven survival models for glioma built on 11 C-MET-PET, ex vivo and patient characteristics. Methods: 70 patients with a treatment naïve glioma, who had a positive 11 C-MET-PET and histopathology-derived ex vivo feature extraction, such as World Health Organization (WHO) 2007 tumor grade, histology and isocitrate dehydrogenase (IDH1-R132H) mutation status were included. The 11 C-MET-positive primary tumors were delineated semi-automatically on PET images followed by the feature extraction of tumor-to-background ratio based general and higher-order textural features by applying five different binning approaches. In vivo and ex vivo features, as well as patient characteristics (age, weight, height, body-mass-index, Karnofsky-score) were merged to characterize the tumors. Machine learning approaches were utilized to identify relevant in vivo, ex vivo and patient features and their relative weights for 36 months survival prediction. The resulting feature weights were used to establish three predictive models per binning configuration based on a combination of: in vivo/ex vivo and clinical patient information (M36IEP), in vivo and patient-only information (M36IP), and in vivo only (M36I). In addition a binning-independent ex vivo and patient-only (M36EP) model was created. The established models were validated in a Monte Carlo (MC) cross-validation scheme. Results: Most prominent ML-selected and -weighted features were patient and ex vivo based followed by in vivo features. The highest area under the

  8. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations.

    PubMed

    Meinke, Martina C; Müller, Robert; Bechtel, Anne; Haag, Stefan F; Darvin, Maxim E; Lohan, Silke B; Ismaeel, Fakher; Lademann, Jürgen

    2015-03-01

    UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches.

    PubMed

    Kim, Yong Ho; Boykin, Elizabeth; Stevens, Tina; Lavrich, Katelyn; Gilmour, M Ian

    2014-11-26

    Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compound, and may not take into account special properties related to the small size and high surface area of ENM. While it is important to properly screen and predict the potential toxicity of ENM, there is also concern that current toxicity tests will require even heavier use of experimental animals, and reliable alternatives should be developed and validated. Here we assessed the comparative respiratory toxicity of ENM in three different methods which employed in vivo, in vitro and ex vivo toxicity testing approaches. Toxicity of five ENM (SiO2 (10), CeO2 (23), CeO2 (88), TiO2 (10), and TiO2 (200); parentheses indicate average ENM diameter in nm) were tested in this study. CD-1 mice were exposed to the ENM by oropharyngeal aspiration at a dose of 100 μg. Mouse lung tissue slices and alveolar macrophages were also exposed to the ENM at concentrations of 22-132 and 3.1-100 μg/mL, respectively. Biomarkers of lung injury and inflammation were assessed at 4 and/or 24 hr post-exposure. Small-sized ENM (SiO2 (10), CeO2 (23), but not TiO2 (10)) significantly elicited pro-inflammatory responses in mice (in vivo), suggesting that the observed toxicity in the lungs was dependent on size and chemical composition. Similarly, SiO2 (10) and/or CeO2 (23) were also more toxic in the lung tissue slices (ex vivo) and alveolar macrophages (in vitro) compared to other ENM. A similar pattern of inflammatory response (e.g., interleukin-6) was observed in both ex vivo and in vitro when a dose metric based on cell surface area (μg/cm(2)), but not culture medium volume (μg/mL) was employed. Exposure to ENM induced acute lung inflammatory effects in a size- and chemical composition-dependent manner. The cell culture and lung

  10. In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging

    PubMed Central

    Sonin, Dmitry; Papayan, Garry; Pochkaeva, Evgeniia; Chefu, Svetlana; Minasian, Sarkis; Kurapeev, Dmitry; Vaage, Jarle; Petrishchev, Nickolay; Galagudza, Michael

    2016-01-01

    The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size. PMID:28101408

  11. In vivo visualization and ex vivo quantification of experimental myocardial infarction by indocyanine green fluorescence imaging.

    PubMed

    Sonin, Dmitry; Papayan, Garry; Pochkaeva, Evgeniia; Chefu, Svetlana; Minasian, Sarkis; Kurapeev, Dmitry; Vaage, Jarle; Petrishchev, Nickolay; Galagudza, Michael

    2017-01-01

    The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size.

  12. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.

    PubMed

    Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles

    2011-01-01

    The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.

  13. Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sacconi, L.; Jasaitis, A.; O'Connor, R. P.; Massi, D.; Sestini, S.; de Giorgi, V.; Lotti, T.; Pavone, F. S.

    2008-09-01

    We have built a custom-made multidimensional non-linear microscope equipped with a combination of several non-linear laser imaging techniques involving fluorescence lifetime, multispectral two-photon and second-harmonic generation imaging. The optical system was mounted on a vertical honeycomb breadboard in an upright configuration, using two galvo-mirrors relayed by two spherical mirrors as scanners. A double detection system working in non-descanning mode has allowed both photon counting and a proportional regime. This experimental setup offering high spatial (micrometric) and temporal (sub-nanosecond) resolution has been used to image both ex-vivo and in-vivo biological samples, including cells, tissues, and living animals. Multidimensional imaging was used to spectroscopically characterize human skin lesions, as malignant melanoma and naevi. Moreover, two-color detection of two photon excited fluorescence was applied to in-vivo imaging of living mice intact neocortex, as well as to induce neuronal microlesions by femtosecond laser burning. The presented applications demonstrate the capability of the instrument to be used in a wide range of biological and biomedical studies.

  14. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo.

    PubMed

    Chemerovski-Glikman, Marina; Mimouni, Michael; Dagan, Yarden; Haj, Esraa; Vainer, Igor; Allon, Raviv; Blumenthal, Eytan Z; Adler-Abramovich, Lihi; Segal, Daniel; Gazit, Ehud; Zayit-Soudry, Shiri

    2018-06-19

    Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.

  15. Celiac Disease–Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics

    PubMed Central

    Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio

    2013-01-01

    A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706

  16. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo.

    PubMed

    Nedosekin, Dmitry A; Juratli, Mazen A; Sarimollaoglu, Mustafa; Moore, Christopher L; Rusch, Nancy J; Smeltzer, Mark S; Zharov, Vladimir P; Galanzha, Ekaterina I

    2013-06-01

    Circulating cells, bacteria, proteins, microparticles, and DNA in cerebrospinal fluid (CSF) are excellent biomarkers of many diseases, including cancer and infections. However, the sensitivity of existing methods is limited in their ability to detect rare CSF biomarkers at the treatable, early-stage of diseases. Here, we introduce novel CSF tests based on in vivo photoacoustic flow cytometry (PAFC) and ex vivo photothermal scanning cytometry. In the CSF of tumor-bearing mice, we molecularly detected in vivo circulating tumor cells (CTCs) before the development of breast cancer brain metastasis with 20-times higher sensitivity than with current assays. For the first time, we demonstrated assessing three pathways (i.e., blood, lymphatic, and CSF) of CTC dissemination, tracking nanoparticles in CSF in vivo and their imaging ex vivo. In label-free CSF samples, we counted leukocytes, erythrocytes, melanoma cells, and bacteria and imaged intracellular cytochromes, hemoglobin, melanin, and carotenoids, respectively. Taking into account the safety of PAFC, its translation for use in humans is expected to improve disease diagnosis beyond conventional detection limits. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Formulation Optimization and Ex Vivo and In Vivo Evaluation of Celecoxib Microemulsion-Based Gel for Transdermal Delivery.

    PubMed

    Cao, Mengyuan; Ren, Lili; Chen, Guoguang

    2017-08-01

    Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, S mix , and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.

  18. Arrhenius analysis of the relationship between hyperthermia and Hsp70 promoter activation: a comparison between ex vivo and in vivo data.

    PubMed

    Deckers, Roel; Debeissat, Christelle; Fortin, Pierre-Yves; Moonen, Chrit T W; Couillaud, Franck

    2012-01-01

    Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.

  19. Solar-simulating irradiation of the skin of human subjects in vivo produces Langerhans cell responses distinct from irradiation ex vivo and in vitro.

    PubMed

    Laihia, J K; Jansen, C T

    2000-08-01

    It has been postulated that Langerhans cells (LC) provide tolerogenic signals in the local impairment of cutaneous immune functions and antigen-specific tolerance induced by UV radiation. Studies in vitro and ex vivo have indicated that UV radiation may down-regulate the expression of costimulatory molecules on LC, leading to reduced antigen-presenting function. In contrast, we recently observed an up-regulatory stage in the number of human epidermal LC with induced expression of B7 costimulatory molecules 12-24 h after solar-simulating UV radiation (SSR) in vivo. To examine the apparent discrepancy between the observed human LC responses in vitro, ex vivo and in vivo, we compared the three protocols in a parallel fashion. The intact skin as well as skin explants and epidermal cell suspensions from the same individuals were irradiated with a single erythematogenic dose of SSR. The expression of cell surface markers in the epidermal cells was analysed with flow cytometry 24 h later. The number of CD1a+/HLA-DR+ LC increased post-SSR in vivo by a factor of 2.8+/-0.4, whereas in irradiated skin explants ex vivo or in cell suspensions in vitro, reduced numbers were seen. HLA-DR expression intensities were found to have increased on DR+ and CD1a+/DR+ cells in vivo. Similarly, SSR induced B7-2 (CD86) expression in CD1a+ cells significantly in vivo (P=0.031) but reduced the expression ex vivo or in vitro. We conclude that the early up-regulatory stage of human LC number and membrane markers, recorded at 24 h after a single exposure to SSR, is exclusively an in vivo phenomenon.

  20. In-vivo optical investigation of psoriasis

    NASA Astrophysics Data System (ADS)

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2011-03-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Cases of psoriasis were investigated in vivo with optical means in order to evaluate the potential of in vivo optical biopsy. A Polarization Multispectral Dermoscope was employed for the macroscopic observation. Features such as the 'dotted' blood vessels pattern was observed with high contrast. The average size of dot vessels in Psoriasis was measured to be 974 μm2 which is much higher compared to healthy skin. High resolution image sections of the epidermis and the dermis were produced with a custom made Multiphoton Microscope. Imaging extended from the surface of the lesion down to the papillary dermis, at a depth of 200 μm. In the epidermis, a characteristic morphology of the stratum corneum found only in Psoriasis was revealed. Additionally, the cytoplasmic area of the cells in the stratum spinosum layer was found to be smaller than normal. In the dermis the morphological features were more pronounced, where the elongated dermal papillae dominated the papillary layer. Their length exceeds 100μm, which is a far greater value compared to that of healthy skin. These in vivo observations are consistent with the ex vivo histopathological observations, supporting both the applicability and potentiality of multispectral dermoscopy and multiphoton microscopy in the field of in vivo optical investigation and biopsy of skin.

  1. Hepatic radiofrequency ablation: in vivo and ex vivo comparisons of 15-gauge (G) and 17-G internally cooled electrodes

    PubMed Central

    Song, K D; Park, H J; Cha, D I; Kang, T W; Lee, J; Moon, J Y; Rhim, H

    2015-01-01

    Objective: To compare the performance of the 15-G internally cooled electrode with that of the conventional 17-G internally cooled electrode. Methods: A total of 40 (20 for each electrode) and 20 ablation zones (10 for each electrode) were made in extracted bovine livers and in in vivo porcine livers, respectively. Technical parameters, three dimensions [long-axis diameter (Dl), vertical-axis diameter (Dv) and short-axis diameter (Ds)], volume and the circularity (Ds/Dl) of the ablation zone were compared. Results: The total delivered energy was higher in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (8.78 ± 1.06 vs 7.70 ± 0.98 kcal, p = 0.033; 11.20 ± 1.13 vs 8.49 ± 0.35 kcal, p = 0.001, respectively). The three dimensions of the ablation zone had a tendency to be larger in the 15-G group than in the 17-G group in both studies. The ablation volume was larger in the 15-G group than in the 17-G group in both ex vivo and in vivo studies (29.61 ± 7.10 vs 23.86 ± 3.82 cm3, p = 0.015; 10.26 ± 2.28 vs 7.79 ± 1.68 cm3, p = 0.028, respectively). The circularity of ablation zone was not significantly different in both the studies. Conclusion: The size of ablation zone was larger in the 15-G internally cooled electrode than in the 17-G electrode in both ex vivo and in vivo studies. Advances in knowledge: Radiofrequency ablation of hepatic tumours using 15-G electrode is useful to create larger ablation zones. PMID:25882688

  2. In Vivo Tumor Cell Targeting with “Click” Nanoparticles

    PubMed Central

    von Maltzahn, Geoffrey; Ren, Yin; Park, Ji-Ho; Min, Dal-Hee; Kotamraju, Venkata Ramana; Jayakumar, Jayanthi; Fogel, Valentina; Sailor, Michael J.; Ruoslahti, Erkki; Bhatia, Sangeeta N.

    2008-01-01

    The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or “click” reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of “click” chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that “click” chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, “click” nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of “click” nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development. PMID:18611045

  3. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    PubMed

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  4. Phosphorescent nanosensors for in vivo tracking of histamine levels.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2013-07-02

    Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.

  5. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence

  6. In vitro-in vivo correlation in skin permeation.

    PubMed

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  7. Outer Hair Cell Electromotility in vivo

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Nuttall, Alfred L.

    2011-11-01

    The effectiveness of outer hair cell (OHC) electro-motility in vivo has been challenged by the expected low-pass filtering of the transmembrane potential due to the cell's own capacitance. The OHC electromotility is characterized here by an electromechanical ratio defined as the ratio of the OHC contraction to the transmembrane potential. This ratio has been measured in isolated cells to be approximately 26 nm/mV. We estimate the OHC electromechanical ratio in vivo from the recently measured displacements of the reticular lamina and the basilar membrane near the 19 kHz characteristic frequency in the basal region of guinea pig cochlea. Our analysis strongly suggests OHC electromotility process is effective for cochlear amplification in vivo at least around the characteristic frequency of the basal location in spite of the low-pass filtering.

  8. Dissolution DNP for in vivo preclinical studies

    NASA Astrophysics Data System (ADS)

    Comment, Arnaud

    2016-03-01

    The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.

  9. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Pearson, Robert; Perez, Sarah; Nissenbaum, Yizhak; Mertyna, Pawel; Libson, Eugene; Goldberg, S Nahum

    2010-02-01

    To prospectively optimize multistep algorithms for largest available multitined radiofrequency (RF) electrode system in ex vivo and in vivo tissues, to determine best energy parameters to achieve large predictable target sizes of coagulation, and to compare these algorithms with manufacturer's recommended algorithms. Institutional animal care and use committee approval was obtained for the in vivo portion of this study. Ablation (n = 473) was performed in ex vivo bovine liver; final tine extension was 5-7 cm. Variables in stepped-deployment RF algorithm were interrogated and included initial current ramping to 105 degrees C (1 degrees C/0.5-5.0 sec), the number of sequential tine extensions (2-7 cm), and duration of application (4-12 minutes) for final two to three tine extensions. Optimal parameters to achieve 5-7 cm of coagulation were compared with recommended algorithms. Optimal settings for 5- and 6-cm final tine extensions were confirmed in in vivo perfused bovine liver (n = 14). Multivariate analysis of variance and/or paired t tests were used. Mean RF ablation zones of 5.1 cm +/- 0.2 (standard deviation), 6.3 cm +/- 0.4, and 7 cm +/- 0.3 were achieved with 5-, 6-, and 7-cm final tine extensions in a mean of 19.5 min +/- 0.5, 27.9 min +/- 6, and 37.1 min +/- 2.3, respectively, at optimal settings. With these algorithms, size of ablation at 6- and 7-cm tine extension significantly increased from mean of 5.4 cm +/- 0.4 and 6.1 cm +/- 0.6 (manufacturer's algorithms) (P <.05, both comparisons); two recommended tine extensions were eliminated. In vivo confirmation produced mean diameter in specified time: 5.5 cm +/- 0.4 in 18.5 min +/- 0.5 (5-cm extensions) and 5.7 cm +/- 0.2 in 21.2 min +/- 0.6 (6-cm extensions). Large zones of coagulation of 5-7 cm can be created with optimized RF algorithms that help reduce number of tine extensions compared with manufacturer's recommendations. Such algorithms are likely to facilitate the utility of these devices for RF

  10. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue.

    PubMed

    Roszkowska, Anna; Tascon, Marcos; Bojko, Barbara; Goryński, Krzysztof; Dos Santos, Pedro Reck; Cypel, Marcelo; Pawliszyn, Janusz

    2018-06-01

    The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g -1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    PubMed

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  12. Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system

    NASA Astrophysics Data System (ADS)

    Huff, Terry Brandon

    A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the

  13. In Vivo and Ex Vivo Confocal Microscopy for Dermatologic and Mohs Surgeons.

    PubMed

    Longo, Caterina; Ragazzi, Moira; Rajadhyaksha, Milind; Nehal, Kishwer; Bennassar, Antoni; Pellacani, Giovanni; Malvehy Guilera, Josep

    2016-10-01

    Confocal microscopy is a modern imaging device that has been extensively applied in skin oncology. More specifically, for tumor margin assessment, it has been used in two modalities: reflectance mode (in vivo on skin patient) and fluorescence mode (on freshly excised specimen). Although in vivo reflectance confocal microscopy is an add-on tool for lentigo maligna mapping, fluorescence confocal microscopy is far superior for basal cell carcinoma and squamous cell carcinoma margin assessment in the Mohs setting. This article provides a comprehensive overview of the use of confocal microscopy for skin cancer margin evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In Vivo Production of Entomopathogenic Nematodes.

    PubMed

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes.

  15. In Vivo Monitoring Program Manual, PNL-MA-574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Timothy P.

    2010-07-01

    An overview of the administration for the In Vivo Monitoring Program (IVMP) for Hanford. This includes organizational structure and program responsibilities; coordination of in vivo measurements; scheduling measurements; performing measurements; reporting results; and quality assurance. Overall responsibility for the management of the IVMP rests with the Program Manager (PM). The PM is responsible for providing the required in vivo counting services for Hanford Site contractor employees in accordance with Department of Energy (DOE) requirements and the specific statements of work.

  16. Shuttle of lentiviral vectors via transplanted cells in vivo.

    PubMed

    Blömer, U; Gruh, I; Witschel, H; Haverich, A; Martin, U

    2005-01-01

    Lentiviral vectors have turned out to be an efficient method for stable gene transfer in vitro and in vivo. Not only do fields of application include cell marking and tracing following transplantation in vivo, but also the stable delivery of biological active proteins for gene therapy. A variety of cells, however, need immediate transplantation after preparation, for example, to prevent cell death, differentiation or de-differentiation. Although these cells are usually washed several times following lentiviral transduction, there may be the risk of viral vector shuttle via transplanted cells resulting in undesired in vivo transduction of recipient cells. We investigated whether infectious lentiviral particles are transmitted via ex vivo lentivirally transduced cells. To this end, we explored potential viral shuttle via ex vivo lentivirally transduced cardiomyocytes in vitro and following transplantation into the brain and peripheral muscle. We demonstrate that, even after extensive washing, infectious viral vector particles can be detected in cell suspensions. Those lentiviral vector particles were able to transduce target cells in transwell experiments. Moreover, transmitted vector particles stably transduced resident cells of the recipient central nervous system and muscle in vivo. Our results of lentiviral vector shuttle via transduced cardiomyocytes are significant for both ex vivo gene therapy and for lentiviral cell tracing, in particular for investigation of stem cell differentiation in transplantation models and co-cultivation systems.

  17. Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

    NASA Astrophysics Data System (ADS)

    Wei, Junchao; Yang, Bin; Voorhees, Andrew P.; Tran, Huong; Brazile, Bryn; Wang, Bo; Schuman, Joel; Smith, Matthew A.; Wollstein, Gadi; Sigal, Ian A.

    2018-02-01

    Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.

  18. Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo.

    PubMed

    Altenburg, Arwen F; van de Sandt, Carolien E; Li, Bobby W S; MacLoughlin, Ronan J; Fouchier, Ron A M; van Amerongen, Geert; Volz, Asisa; Hendriks, Rudi W; de Swart, Rik L; Sutter, Gerd; Rimmelzwaan, Guus F; de Vries, Rory D

    2017-08-17

    Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.

  19. (1)H magnetic resonance spectroscopy of preinvasive and invasive cervical cancer: in vivo-ex vivo profiles and effect of tumor load.

    PubMed

    Mahon, Marrita M; Cox, I Jane; Dina, Roberto; Soutter, W Patrick; McIndoe, G Angus; Williams, Andreanna D; deSouza, Nandita M

    2004-03-01

    To compare in vivo (1)H magnetic resonance (MR) spectra of preinvasive and invasive cervical lesions with ex vivo magic angle spinning (MAS) spectra of intact biopsies from the same subjects and to establish the effects of tumor load in the tissue sampled on the findings. A total of 51 subjects (nine with normal cervix, 10 with cervical intraepithelial neoplasia [CIN], and 32 with cervical cancer) underwent endovaginal MR at 1.5 T. Single-voxel (3.4 cm(3)) (1)H MR spectra were acquired and voxel tumor load was calculated (tumor volume within voxel as a percentage of voxel volume). Resonances from triglycerides -CH(2) and -CH(3) and choline-containing compounds (Cho) were correlated with voxel tumor load. Biopsies analyzed by (1)H MAS-MR spectroscopy (MRS) had metabolite levels correlated with tumor load in the sample at histology. In vivo studies detected Cho in normal, CIN, and cancer patients with no significant differences in levels (P = 0.93); levels were independent of voxel tumor load. Triglyceride -CH(2) and -CH(3) signals in-phase with Cho were present in 77% and 29%, respectively, of cancer subjects (but not in normal women or those with CIN), but did not correlate with voxel tumor load. Ex vivo cancer biopsies showed levels of triglycerides -CH(2) and -CH(3) and of Cho that were significantly greater than in normal or CIN biopsies (P < 0.05); levels were independent of the tumor load in the sample. The presence of -CH(2) in vivo predicted the presence of cancer with a sensitivity and specificity of 77.4% and 93.8% respectively, positive (PPV) and negative (NPV) predictive values were 96% and 68.2%; for -CH(2) ex vivo, sensitivity was 100%; specificity, 69%; PPV, 82%; and NPV, 100%. Elevated lipid levels are detected by MRS in vivo and ex vivo in cervical cancer and are independent of tumor load in the volume of tissue sampled. Copyright 2004 Wiley-Liss, Inc.

  20. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience

    PubMed Central

    Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D

    2009-01-01

    Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz–8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies. PMID:19491436

  1. Inducing pluripotency using in vivo gene therapy.

    PubMed

    Gardlik, Roman

    2012-08-01

    Since the original study of Takahashi and Yamanaka in 2006 [1], the field of induced pluripotent stem (iPS) cells has made a great progress. Since then, a number of different cell types have been successfully brought to a state of pluripotency and a different set of transcription factors have been reported to be sufficient to reprogram mouse and human somatic cells. Although still with low efficiency of reprogramming, the patient- and disease-specific therapy represents the most valuable outcome of the whole area of iPS cells. Herein we hypothesize that inducing pluripotency in vivo might be an interesting alternative to the standard ex vivo methods. In vivo reprogramming would benefit from the direct administration of the DNA encoding the reprogramming factors into the target tissue/organ of an individual. The target cells that are to be reprogrammed would be transduced in their natural environment that can provide all the necessary molecular and spatial factors that could be missing during ex vivo reprogramming. However, since no available data exist on in vivo induced pluripotency, it is difficult to predict if testing the hypothesis will provide any promising results. On the way to this point, a number of pilot experiments have to be performed to overcome many limitations and pitfalls that are arising from such a risky concept. Safety issues, such as the risk of somatic tumor formation, will likely be the crucial point to focus on during the process of proving the validity of the hypothesis. However, initial data from the study on inflammatory bowel disease suggest that there might be some beneficial effect of in vivo gene therapy based on reprogramming the target cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ex-vivo machine perfusion for kidney preservation.

    PubMed

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  3. Dynamics of in vivo ASC speck formation

    PubMed Central

    2017-01-01

    Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into specks, large signaling platforms considered hallmarks of inflammasome activation. Because a lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong ASC expression in the skin and other epithelia that act as barriers to insult. A toxic stimulus triggered speck formation and rapid pyroptosis in keratinocytes in vivo. Macrophages engulfed and digested that speck-containing, pyroptotic debris. A three-dimensional, ultrastructural reconstruction, based on correlative light and electron microscopy of the in vivo assembled specks revealed a compact network of highly intercrossed filaments, whereas pyrin domain (PYD) or caspase activation and recruitment domain alone formed filamentous aggregates. The effector caspase is recruited through PYD, whose overexpression induced pyroptosis but only after substantial delay. Therefore, formation of a single, compact speck and rapid cell-death induction in vivo requires a full-length ASC. PMID:28701426

  4. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  5. DNA damage in lens epithelium of cataract patients in vivo and ex vivo.

    PubMed

    Øsnes-Ringen, Oyvind; Azqueta, Amaia O; Moe, Morten C; Zetterström, Charlotta; Røger, Magnus; Nicolaissen, Bjørn; Collins, Andrew R

    2013-11-01

    DNA damage has been described in the human cataractous lens epithelium, and oxidative stress generated by UV radiation and endogenous metabolic processes has been suggested to play a significant role in the pathogenesis of cataract. In this study, the aim was to explore the quality and relative quantity of DNA damage in lens epithelium of cataract patients in vivo and after incubation in a cell culture system. Capsulotomy specimens were analysed, before and after 1 week of ex vivo cultivation, using the comet assay to measure DNA strand breaks, oxidized purine and pyrimidine bases and UV-induced cyclobutane pyrimidine dimers. DNA strand breaks were barely detectable, oxidized pyrimidines and pyrimidine dimers were present at low levels, whereas there was a relatively high level of oxidized purines, which further increased after cultivation. The observed levels of oxidized purines in cataractous lens epithelium may support a theory consistent with light damage and oxidative stress as mediators of molecular damage to the human lens epithelium. Damage commonly associated with UV-B irradiation was relatively low. The levels of oxidized purines increased further in a commonly used culture system. This is of interest considering the importance and versatility of ex vivo systems in studies exploring the pathogenesis of cataract. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  6. Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine.

    PubMed

    Nava, Guadalupe; Piñón, Elizabeth; Mendoza, Luis; Mendoza, Néstor; Quintanar, David; Ganem, Adriana

    2011-12-15

    The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT), which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of -12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4) at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i) a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii) a flux of 0.278 mg/cm2h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect) before reaching the receptor medium; (iii) a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping) and transepidermal water loss (TEWL) measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT.

  7. In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations.

    PubMed

    Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J

    2015-10-01

    (31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo

  8. In vivo and ex vivo EPR detection of spin-labelled ovalbumin in mice.

    PubMed

    Abramović, Zrinka; Brgles, Marija; Habjanec, Lidija; Tomasić, Jelka; Sentjurc, Marjeta; Frkanec, Ruza

    2010-10-01

    In this study, spin-labelled ovalbumin (SL-OVA), free or entrapped in liposomes, was administered to mice subcutaneously (s.c.) or intravenously (i.v.) with the aim to determine the conditions for pharmacokinetic studies of spin-labelled proteins by EPR and to measure the time course of SL-OVA distribution in vivo in live mice and ex vivo in isolated organs. Upon s.c. administration, the decay of the EPR signal was followed for 60min at the site of application using an L-band EPR spectrometer. Within this time period, the signal of free SL-OVA was diminished by about 70%. It was estimated with the help of the oxidizing agent K(3)[(FeCN)(6)] that approximately 30% was a consequence of the spin label reduction to EPR non-visible hydroxylamine and about 40% was due to the SL-OVA elimination from the site of measurement. For liposome encapsulated SL-OVA, the intensity diminished only by approx. 40% in the same period, indicating that liposomes successfully protect the protein from reduction. EPR signal could not be detected directly over live mouse organs within 60min after s.c. application of SL-OVA. With the available L-band EPR spectrometer, the measurements at the site of s.c. application are possible if the amount of SL-OVA applied to a mouse is more than 3mg. For the pharmacokinetic studies of the protein distribution in organs after s.c. or i.v. injection the concentration of the spin-labelled protein should be more than 0.5mmol/kg. After i.v. administration, only ex vivo measurements were possible using an X-band EPR spectrometer, since the total amount of SL-OVA was not sufficient for in vivo detection and also because of rapid reduction of nitroxide. After 2min, the protein was preferentially distributed to liver and, to a smaller extent, to spleen.

  9. In vivo gene delivery and expression by bacteriophage lambda vectors.

    PubMed

    Lankes, H A; Zanghi, C N; Santos, K; Capella, C; Duke, C M P; Dewhurst, S

    2007-05-01

    Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo luc expression was detected, which peaked within 24 h of delivery and declined to undetectable levels within a week. Display of an integrin-binding peptide increased cellular internalization of phage in vitro and enhanced phage-mediated gene transfer in vivo. Finally, in vivo depletion of phagocytic cells using clodronate liposomes had only a minor effect on the efficiency of phage-mediated gene transfer. Unmodified lambda phage particles are capable of transducing mammalian cells in vivo, and may be taken up -- at least in part -- by nonphagocytic mechanisms. Surface modifications that enhance phage uptake result in more efficient in vivo gene transfer. These experiments shed light on the mechanisms involved in phage-mediated gene transfer in vivo, and suggest new approaches that may enhance the efficiency of this process.

  10. Detecting apoptosis in vivo and ex vivo using spectroscopic OCT and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Giles, Anoja; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2014-03-01

    We present an in vivo implementation of a multi-parametric technique for detecting apoptosis using optical coherence tomography in a mouse tumor model. Solid tumors were grown from acute myeloid leukemia cells in the hind leg of SCID mice and treated with a single dose of cisplatin and dexamethasone to induce apoptosis. Both spectral features and speckle decorrelation times indicated good consistency between control mice and reasonable agreement with in vitro measurements. The integrated backscatter increased significantly in tumors responding to treatment while the spectral slope and decorrelation time did not show significant changes. This study demonstrates the feasibility of using spectroscopic OCT and dynamic light scattering for treatment monitoring in vivo.

  11. Hematopoietic Stem Cells: Transcriptional Regulation, Ex Vivo Expansion and Clinical Application

    PubMed Central

    Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H.

    2012-01-01

    Maintenance of ex vivo hematopoietic stem cells (HSC) pool and its differentiated progeny is regulated by complex network of transcriptional factors, cell cycle proteins, extracellular matrix, and their microenvironment through an orchestrated fashion. Strides have been made to understand the mechanisms regulating in vivo quiescence and proliferation of HSCs to develop strategies for ex vivo expansion. Ex vivo expansion of HSCs is important to procure sufficient number of stem cells and as easily available source for HSC transplants for patients suffering from hematological disorders and malignancies. Our lab has established a nanofiber-based ex vivo expansion strategy for HSCs, while preserving their stem cell characteristics. Ex vivo expanded cells were also found biologically functional in various disease models. However, the therapeutic potential of expanded stem cells at clinical level still needs to be verified. This review outlines transcriptional factors that regulate development of HSCs and their commitment, genes that regulate cell cycle status, studies that attempt to develop an effective and efficient protocol for ex vivo expansion of HSCs and application of HSC in various non-malignant and malignant disorders. Overall the goal of the current review is to deliver an understanding of factors that are critical in resolving the challenges that limit the expansion of HSCs in vivo and ex vivo. PMID:22082480

  12. Transmucosal delivery of domperidone from bilayered buccal patches: in vitro, ex vivo and in vivo characterization.

    PubMed

    Palem, Chinna Reddy; Gannu, Ramesh; Doodipala, Narender; Yamsani, Vamshi Vishnu; Yamsani, Madhusudan Rao

    2011-10-01

    Bilayered mucoadhesive buccal patches for systemic administration of domperidone (DOM), a dopamine-receptor (D(2)) antagonist, were developed using hydroxy propyl methyl cellulose and PVPK30 as a primary layer and Eudragit RLPO and PEO as a secondary layer. Ex vivo drug permeation through porcine buccal membrane was performed. Bilayered buccal patches were developed by solvent casting technique and evaluated for in vitro drug release, moisture absorption, mechanical properties, surface pH, in vitro bioadhesion, in vivo residence time and ex vivo permeation of DOM through porcine buccal membrane from a bilayered buccal patch. Formulation DB4 was associated with 99.5% drug release with a higuchi model release profile and 53.9% of the drug had permeated in 6 h, with a flux of 0.492 mg/h/cm(2) through porcine buccal membrane. DB4 showed 5.58 N and 3.28 mJ peak detachment force and work of adhesion, respectively. The physicochemical interactions between DOM and the polymer were investigated by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) Spectroscopy. DSC and FTIR studies revealed no interaction between drug and polymer. Stability studies for optimized patch DB4 was carried out at 40°C/75% relative humidity. The formulations were found to be stable over a period of 3 months with respect to drug content, in vitro release and ex vivo permeation through porcine buccal membrane. The results indicate that suitable bilayered mucoadhesive buccal patches with desired permeability could be prepared.

  13. Nanodiamonds for In Vivo Applications.

    PubMed

    van der Laan, KiranJ; Hasani, Masoumeh; Zheng, Tingting; Schirhagl, Romana

    2018-05-01

    Due to their unique optical properties, diamonds are the most valued gemstones. However, beyond the sparkle, diamonds have a number of unique properties. Their extreme hardness gives them outstanding performance as abrasives and cutting tools. Similar to many materials, their nanometer-sized form has yet other unique properties. Nanodiamonds are very inert but still can be functionalized on the surface. Additionally, they can be made in very small sizes and a narrow size distribution. Nanodiamonds can also host very stable fluorescent defects. Since they are protected in the crystal lattice, they never bleach. These defects can also be utilized for nanoscale sensing since they change their optical properties, for example, based on temperature or magnetic fields in their surroundings. In this Review, in vivo applications are focused upon. To this end, how different diamond materials are made and how this affects their properties are discussed first. Next, in vivo biocompatibility studies are reviewed. Finally, the reader is introduced to in vivo applications of diamonds. These include drug delivery, aiding radiology, labeling, and use in cosmetics. The field is critically reviewed and a perspective on future developments is provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.; Gatley, J.; Gifford, A.

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less

  15. Long-term ex vivo and in vivo monitoring of tumor progression by using dual luciferases.

    PubMed

    Morita, Naoki; Haga, Sanae; Ohmiya, Yoshihiro; Ozaki, Michitaka

    2016-03-15

    We propose a new concept of tumor progression monitoring using dual luciferases in living animals to reduce stress for small animals and the cost of luciferin. The secreted Cypridina luciferase (CLuc) was used as an ex vivo indicator to continuously monitor tumor progression. On the other hand, the non-secreted firefly luciferase was used as an in vivo indicator to analyze the spatial distribution of the tumor at suitable time points indicated by CLuc. Thus, the new monitoring systems that use dual luciferases are available, allowing long-term bioluminescence imaging under minimal stress for the experimental animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. HIM-herbal ingredients in-vivo metabolism database.

    PubMed

    Kang, Hong; Tang, Kailin; Liu, Qi; Sun, Yi; Huang, Qi; Zhu, Ruixin; Gao, Jun; Zhang, Duanfeng; Huang, Chenggang; Cao, Zhiwei

    2013-05-31

    Herbal medicine has long been viewed as a valuable asset for potential new drug discovery and herbal ingredients' metabolites, especially the in vivo metabolites were often found to gain better pharmacological, pharmacokinetic and even better safety profiles compared to their parent compounds. However, these herbal metabolite information is still scattered and waiting to be collected. HIM database manually collected so far the most comprehensive available in-vivo metabolism information for herbal active ingredients, as well as their corresponding bioactivity, organs and/or tissues distribution, toxicity, ADME and the clinical research profile. Currently HIM contains 361 ingredients and 1104 corresponding in-vivo metabolites from 673 reputable herbs. Tools of structural similarity, substructure search and Lipinski's Rule of Five are also provided. Various links were made to PubChem, PubMed, TCM-ID (Traditional Chinese Medicine Information database) and HIT (Herbal ingredients' targets databases). A curated database HIM is set up for the in vivo metabolites information of the active ingredients for Chinese herbs, together with their corresponding bioactivity, toxicity and ADME profile. HIM is freely accessible to academic researchers at http://www.bioinformatics.org.cn/.

  17. In-vivo morphologic and spectroscopic investigation of Psoriasis

    NASA Astrophysics Data System (ADS)

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2011-07-01

    Psoriasis is an autoimmune disease of the skin characterized by hyperkeratosis, hyperproliferation of the epidermis, inflammatory cell accumulation and increased dilatation of dermal papillary blood vessels. Cases of psoriasis were investigated in vivo with optical means in order to evaluate the potential of in vivo optical biopsy. A Polarization Multispectral Dermoscope was employed for the macroscopic observation. Features such as the 'dotted' blood vessels pattern was observed with high contrast. High resolution image sections of the epidermis and the dermis were produced with a custom made Multiphoton Microscope. Imaging extended from the surface of the lesion down to the papillary dermis, at a depth of 200 μm. In the epidermis, a characteristic morphology of the stratum corneum found only in Psoriasis was revealed. Additionally, the cytoplasmic area of the cells in the stratum spinosum layer was found to be smaller than normal. In the dermis the morphological features were more pronounced, where the elongated dermal papillae dominated the papillary layer. Their length exceeds 100μm, which is a far greater value compared to that of healthy skin. These in vivo observations are consistent with the ex vivo histopathological observations, supporting both the applicability and potentiality of multispectral dermoscopy and multiphoton microscopy in the field of in vivo optical investigation and biopsy of skin.

  18. Programmable in vivo selection of arbitrary DNA sequences.

    PubMed

    Ben Yehezkel, Tuval; Biezuner, Tamir; Linshiz, Gregory; Mazor, Yair; Shapiro, Ehud

    2012-01-01

    The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.

  19. Variability within Systemic In Vivo Toxicity Studies (ASCCT)

    EPA Science Inventory

    In vivo studies have long been considered the gold standard for toxicology screening. Often time models developed in silico and/or using in vitro data to estimate points of departures (POD) are compared to the in vivo data to benchmark and evaluate quality and goodness of fit. ...

  20. THz imaging system for in vivo human cornea.

    PubMed

    Sung, Shijun; Selvin, Skyler; Bajwa, Neha; Chantra, Somporn; Nowroozi, Bryan; Garritano, James; Goell, Jacob; Li, Alex; Deng, Sophie X; Brown, Elliott; Grundfest, Warren S; Taylor, Zachary D

    2018-01-01

    Terahertz (THz) imaging of corneal tissue water content (CTWC) is a proposed method for early, accurate detection and study of corneal diseases. Despite promising results from ex vivo and in vivo cornea studies, interpretation of the reflectivity data is confounded by the contact between corneal tissue and rigid dielectric window used to flatten the imaging field. This work develops a novel imaging system and image reconstruction methods specifically for nearly spherical targets such as human cornea. A prototype system was constructed using a 650 GHz multiplier source and Schottky diode detector. Resolution and imaging field strength measurement from characterization targets correlate well with those predicted by the quasioptical theory and physical optics analysis. Imaging experiments with corneal phantoms and ex vivo corneas demonstrate the hydration sensitivity of the imaging system and reliable measurement of CTWC. We present successful acquisition of non-contact THz images of in vivo human cornea, and discuss strategies for optimizing the imaging system design for clinical use.

  1. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: Effects that cannot be reflected by ex-vivo assessment of NK cytotoxicity

    PubMed Central

    Meron, G.; Tishler, Y.; Shaashua, L.; Rosenne, E.; Levi, B.; Melamed, R.; Gotlieb, N.; Matzner, P.; Sorski, L.; Ben-Eliyahu, S.

    2013-01-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE2 administration. In vivo and ex-vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex-vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE2 on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE2 are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex-vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex-vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. PMID:23153554

  2. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: effects that cannot be reflected by ex vivo assessment of NK cytotoxicity.

    PubMed

    Meron, G; Tishler, Y; Shaashua, L; Rosenne, E; Levi, B; Melamed, R; Gotlieb, N; Matzner, P; Sorski, L; Ben-Eliyahu, S

    2013-02-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE(2) administration. In vivo and ex vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE(2) on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE(2) are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. EarthCollab, building geoscience-centric implementations of the VIVO semantic software suite

    NASA Astrophysics Data System (ADS)

    Rowan, L. R.; Gross, M. B.; Mayernik, M. S.; Daniels, M. D.; Krafft, D. B.; Kahn, H. J.; Allison, J.; Snyder, C. B.; Johns, E. M.; Stott, D.

    2017-12-01

    EarthCollab, an EarthCube Building Block project, is extending an existing open-source semantic web application, VIVO, to enable the exchange of information about scientific researchers and resources across institutions. EarthCollab is a collaboration between UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy, The Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory, and Cornell University. VIVO has been implemented by more than 100 universities and research institutions to highlight research and institutional achievements. This presentation will discuss benefits and drawbacks of working with and extending open source software. Some extensions include plotting georeferenced objects on a map, a mobile-friendly theme, integration of faceting via Elasticsearch, extending the VIVO ontology to capture geoscience-centric objects and relationships, and the ability to cross-link between VIVO instances. Most implementations of VIVO gather information about a single organization. The EarthCollab project created VIVO extensions to enable cross-linking of VIVO instances to reduce the amount of duplicate information about the same people and scientific resources and to enable dynamic linking of related information across VIVO installations. As the list of customizations grows, so does the effort required to maintain compatibility between the EarthCollab forks and the main VIVO code. For example, dozens of libraries and dependencies were updated prior to the VIVO v1.10 release, which introduced conflicts in the EarthCollab cross-linking code. The cross-linking code has been developed to enable sharing of data across different versions of VIVO, however, using a JSON output schema standardized across versions. We will outline lessons learned in working with VIVO and its open source dependencies, which include Jena, Solr, Freemarker, and jQuery and discuss future

  4. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  5. In vivo veritas, in vitro artificia

    PubMed Central

    Matarese, Giuseppe; La Cava, Antonio; Horvath, Tamas L.

    2012-01-01

    Recently, the understanding of dynamic cellular changes that occur in vivo has advanced significantly, both at the extracellular and intracellular levels. These changes might fluctuate with daily, circadian, weekly, or monthly intervals, and the approaches used to understand these changing conditions in vitro should parallel in vivo studies. In addition, the in vitro milieu should be optimized and better defined, so that artefacts due to in vitro culture systems would not pose dangers for the proper interpretation of results. In this article, we discuss some of these issues and propose solutions. PMID:22682514

  6. On-line 3-dimensional confocal imaging in vivo.

    PubMed

    Li, J; Jester, J V; Cavanagh, H D; Black, T D; Petroll, W M

    2000-09-01

    In vivo confocal microscopy through focusing (CMTF) can provide a 3-D stack of high-resolution corneal images and allows objective measurements of corneal sublayer thickness and backscattering. However, current systems require time-consuming off-line image processing and analysis on multiple software platforms. Furthermore, there is a trade off between the CMTF speed and measurement precision. The purpose of this study was to develop a novel on-line system for in vivo corneal imaging and analysis that overcomes these limitations. A tandem scanning confocal microscope (TSCM) was used for corneal imaging. The TSCM video camera was interfaced directly to a PC image acquisition board to implement real-time digitization. Software was developed to allow in vivo 2-D imaging, CMTF image acquisition, interactive 3-D reconstruction, and analysis of CMTF data to be performed on line in a single user-friendly environment. A procedure was also incorporated to separate the odd/even video fields, thereby doubling the CMTF sampling rate and theoretically improving the precision of CMTF thickness measurements by a factor of two. In vivo corneal examinations of a normal human and a photorefractive keratectomy patient are presented to demonstrate the capabilities of the new system. Improvements in the convenience, speed, and functionality of in vivo CMTF image acquisition, display, and analysis are demonstrated. This is the first full-featured software package designed for in vivo TSCM imaging of the cornea, which performs both 2-D and 3-D image acquisition, display, and processing as well as CMTF analysis. The use of a PC platform and incorporation of easy to use, on line, and interactive features should help to improve the clinical utility of this technology.

  7. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    PubMed

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  8. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics

    PubMed Central

    Pourghodrat, Abolfazl; Nelson, Carl A.

    2017-01-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications. PMID:28070227

  9. Ex-vivo assessment and non-invasive in vivo imaging of internal hemorrhages in Aga2/+ mutant mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermolayev, Vladimir; Cohrs, Christian M.; Mohajerani, Pouyan

    Highlights: ► Aga2/+ mice, model for Osteogenesis imperfecta, have type I collagen mutation. ► Aga2/+ mice display both moderate and severe phenotypes lethal 6–11th postnatal. ► Internal hemorrhages studied in Aga2/+ vs. control mice at 6 and 9 days postnatal. ► Anatomical and functional findings in-vivo contrasted to the ex-vivo appearance. -- Abstract: Mutations in type I collagen genes (COL1A1/2) typically lead to Osteogenesis imperfecta, the most common heritable cause of skeletal fractures and bone deformation in humans. Heterozygous Col1a1{sup Aga2/+}, animals with a dominant mutation in the terminal C-propeptide domain of type I collagen develop typical skeletal hallmarks andmore » internal hemorrhages starting from 6 day after birth. The disease progression for Aga2/+ mice, however, is not uniform differing between severe phenotype lethal at the 6–11th day of life, and moderate-to-severe one with survival to adulthood. Herein we investigated whether a new modality that combines X-ray computer tomography with fluorescence tomography in one hybrid system can be employed to study internal bleedings in relation to bone fractures and obtain insights into disease progression. The disease phenotype was characterized on Aga2/+ vs. wild type mice between 6 and 9 days postnatal. Anatomical and functional findings obtained in-vivo were contrasted to the ex-vivo appearance of the same tissues under cryo-slicing.« less

  10. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system

    PubMed Central

    Zhang, Jialing; Rector, John; Lin, John Q.; Young, Jonathan H.; Sans, Marta; Katta, Nitesh; Giese, Noah; Yu, Wendong; Nagi, Chandandeep; Suliburk, James; Liu, Jinsong; Bensussan, Alena; DeHoog, Rachel J.; Garza, Kyana Y.; Ludolph, Benjamin; Sorace, Anna G.; Syed, Anum; Zahedivash, Aydin; Milner, Thomas E.; Eberlin, Livia S.

    2018-01-01

    Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules. We used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer thin tissue sections and 253 human patient tissue samples including normal and cancerous tissues from breast, lung, thyroid, and ovary. The mass spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers identified as metabolites, lipids, and proteins. Statistical classifiers built from the histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer. Notably, our classifier allowed accurate diagnosis of cancer in marginal tumor regions presenting mixed histologic composition. Last, we demonstrate that the MasSpec Pen is suited for in vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. Our results provide evidence that the MasSpec Pen could potentially be used as a clinical and intraoperative technology for ex vivo and in vivo cancer diagnosis. PMID:28878011

  11. The c-FOS Protein Immunohistological Detection: A Useful Tool As a Marker of Central Pathways Involved in Specific Physiological Responses In Vivo and Ex Vivo

    PubMed Central

    Perrin-Terrin, Anne-Sophie; Jeton, Florine; Pichon, Aurelien; Frugière, Alain; Richalet, Jean-Paul; Bodineau, Laurence; Voituron, Nicolas

    2016-01-01

    Many studies seek to identify and map the brain regions involved in specific physiological regulations. The proto-oncogene c-fos, an immediate early gene, is expressed in neurons in response to various stimuli. The protein product can be readily detected with immunohistochemical techniques leading to the use of c-FOS detection to map groups of neurons that display changes in their activity. In this article, we focused on the identification of brainstem neuronal populations involved in the ventilatory adaptation to hypoxia or hypercapnia. Two approaches were described to identify involved neuronal populations in vivo in animals and ex vivo in deafferented brainstem preparations. In vivo, animals were exposed to hypercapnic or hypoxic gas mixtures. Ex vivo, deafferented preparations were superfused with hypoxic or hypercapnic artificial cerebrospinal fluid. In both cases, either control in vivo animals or ex vivo preparations were maintained under normoxic and normocapnic conditions. The comparison of these two approaches allows the determination of the origin of the neuronal activation i.e., peripheral and/or central. In vivo and ex vivo, brainstems were collected, fixed, and sliced into sections. Once sections were prepared, immunohistochemical detection of the c-FOS protein was made in order to identify the brainstem groups of cells activated by hypoxic or hypercapnic stimulations. Labeled cells were counted in brainstem respiratory structures. In comparison to the control condition, hypoxia or hypercapnia increased the number of c-FOS labeled cells in several specific brainstem sites that are thus constitutive of the neuronal pathways involved in the adaptation of the central respiratory drive. PMID:27167092

  12. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  13. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of Sequential Drug Release in Vitro and in Vivo

    PubMed Central

    Sundararaj, Sharath C.; Al-Sabbagh, Mohanad; Rabek, Cheryl L.; Dziubla, Thomas D.; Thomas, Mark V.; Puleo, David A.

    2015-01-01

    Development of drug delivery devices typically involves characterizing in vitro release performance with the inherent assumption that this will closely approximate in vivo performance. Yet, as delivery devices become more complex, for instance with a sequential drug release pattern, it is important to confirm that in vivo properties correlate with the expected “programming” achieved in vitro. In this work, a systematic comparison between in vitro and in vivo biomaterial erosion and sequential release was performed for a multilayered association polymer system comprising cellulose acetate phthalate and Pluronic F-127. After assessing the materials during incubation in phosphate-buffered saline, devices were implanted supracalvarially in rats. Devices with two different doses and with different erosion rates were harvested at increasing times post-implantation, and the in vivo thickness loss, mass loss, and the drug release profiles were compared with their in vitro counterparts. The sequential release of four different drugs observed in vitro was successfully translated to in vivo conditions. Results suggest, however, that the total erosion time of the devices was longer and release rates of the four drugs were different, with drugs initially released more quickly and then more slowly in vivo. Whereas many comparative studies of in vitro and in vivo drug release from biodegradable polymers involved a single drug, the present research demonstrated that sequential release of four drugs can be maintained following implantation. PMID:26111338

  15. Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

    PubMed Central

    Cernat, Ramona; Tatla, Taran S.; Pang, Jingyin; Tadrous, Paul J.; Bradu, Adrian; Dobre, George; Gelikonov, Grigory; Gelikonov, Valentin; Podoleanu, Adrian Gh.

    2012-01-01

    A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient

  16. Ex Vivo Artifacts and Histopathologic Pitfalls in the Lung.

    PubMed

    Thunnissen, Erik; Blaauwgeers, Hans J L G; de Cuba, Erienne M V; Yick, Ching Yong; Flieder, Douglas B

    2016-03-01

    Surgical and pathologic handling of lung physically affects lung tissue. This leads to artifacts that alter the morphologic appearance of pulmonary parenchyma. To describe and illustrate mechanisms of ex vivo artifacts that may lead to diagnostic pitfalls. In this study 4 mechanisms of ex vivo artifacts and corresponding diagnostic pitfalls are described and illustrated. The 4 patterns of artifacts are: (1) surgical collapse, due to the removal of air and blood from pulmonary resections; (2) ex vivo contraction of bronchial and bronchiolar smooth muscle; (3) clamping edema of open lung biopsies; and (4) spreading of tissue fragments and individual cells through a knife surface. Morphologic pitfalls include diagnostic patterns of adenocarcinoma, asthma, constrictive bronchiolitis, and lymphedema. Four patterns of pulmonary ex vivo artifacts are important to recognize in order to avoid morphologic misinterpretations.

  17. In Vitro, Ex Vivo and In Vivo Techniques to Study Neuronal Migration in the Developing Cerebral Cortex

    PubMed Central

    Azzarelli, Roberta; Oleari, Roberto; Lettieri, Antonella; Andre', Valentina; Cariboni, Anna

    2017-01-01

    Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration. PMID:28448448

  18. In Vivo and Ex Vivo Transcutaneous Glucose Detection Using Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Ke

    Diabetes mellitus is widely acknowledged as a large and growing health concern. The lack of practical methods for continuously monitoring glucose levels causes significant difficulties in successful diabetes management. Extensive validation work has been carried out using surface-enhanced Raman spectroscopy (SERS) for in vivo glucose sensing. This dissertation details progress made towards a Raman-based glucose sensor for in vivo, transcutaneous glucose detection. The first presented study combines spatially offset Raman spectroscopy (SORS) with SERS (SESORS) to explore the possibility of in vivo, transcutaneous glucose sensing. A SERS-based glucose sensor was implanted subcutaneously in Sprague-Dawley rats. SERS spectra were acquired transcutaneously and analyzed using partial least-squares (PLS). Highly accurate and consistent results were obtained, especially in the hypoglycemic range. Additionally, the sensor demonstrated functionality at least17 days after implantation. A subsequent study further extends the application of SESORS to the possibility of in vivo detection of glucose in brain through skull. Specifically, SERS nanoantennas were buried in an ovine tissue behind a bone with 8 mm thickness and detected by using SESORS. In addition, quantitative detection through bones by using SESORS was also demonstrated. A device that could measure glucose continuously as well as noninvasively would be of great use to patients with diabetes. The inherent limitation of the SESORS approach may prevent this technique from becoming a noninvasive method. Therefore, the prospect of using normal Raman spectroscopy for glucose detection was re-examined. Quantitative detection of glucose and lactate in the clinically relevant range was demonstrated by using normal Raman spectroscopy with low power and short acquisition time. Finally, a nonlinear calibration method called least-squares support vector machine regression (LS-SVR) was investigated for analyzing spectroscopic

  19. Photosensitizer quantitation in vivo by flourescence microsampling

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Burke, Gregory C.; Lee, Claudia C.; Hoopes, P. Jack

    2000-06-01

    Photodynamic therapy can provide a reliable method of tumor destruction when the appropriate dosimetry is applied. Current dosimetry practice involves quantification of the drug and light doses applied to the tumor, but it would be desirable to monitor in vivo light and drug levels to provide the most accurate determination of dosimetry. In vivo measurements can be used to minimize variations in treatment response due to inter-animal variability, by providing animal-specific or patient-specific treatment planning. This study reports on the development of a micro-sampling method to measure fluorescence from tissue, which is not significantly affected by the tissue optical properties. The system measures fluorescence from the surface of a tissue, using a fiber bundle composed of individual 100 micron fibers which ar all spaced apart by 700 microns from one another at the tissue contact end. This design provides sampling of the fluorescence at multiple sites to increase the signal intensity, while maintaining a micro- sampling of the tissue volume just below the surface. The calibration studies here indicate that the 1/e sampling depth is near 60 microns when measured in optical phantoms, which are similar to typical tissue properties. The probe fluorescence signal is independent of blood concentration up to a maximum of 10% blood by volume, which is similar to most tumor tissue. Animal tests indicate that the sensitivity to drug concentration is essentially the same in when measured in murine liver and muscle tissues, both in vivo and ex vivo. These preliminary calibration results suggest that the probe can be used to measure photosensitizer uptake in vivo non- invasively and rapidly via conversion of fluorescence intensity to photosensitizer concentration.

  20. A fluorogenic near-infrared imaging agent for quantifying plasma and local tissue renin activity in vivo and ex vivo

    PubMed Central

    Zhang, Jun; Preda, Dorin V.; Vasquez, Kristine O.; Morin, Jeff; Delaney, Jeannine; Bao, Bagna; Percival, M. David; Xu, Daigen; McKay, Dan; Klimas, Michael; Bednar, Bohumil; Sur, Cyrille; Gao, David Z.; Madden, Karen; Yared, Wael; Rajopadhye, Milind

    2012-01-01

    The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments. PMID:22674025

  1. Comparative In vivo, Ex vivo, and In vitro Toxicity Studies of Engineered Nanomaterials

    EPA Science Inventory

    Efforts to reduce the number of animals in engineered nanomaterials (ENM) toxicity testing have resulted in the development of numerous alternative toxicity testing methods, but in vivo and in vitro results are still evolving and variable. This inconsistency could be due to the f...

  2. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.

    PubMed

    Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin

    2016-07-26

    Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.

  3. In vivo veritas, in vitro artificia.

    PubMed

    Matarese, Giuseppe; La Cava, Antonio; Horvath, Tamas L

    2012-08-01

    Recently, the understanding of dynamic cellular changes that occur in vivo has advanced significantly, both at the extracellular and intracellular levels. These changes might fluctuate with daily, circadian, weekly, or monthly intervals, and the approaches used to understand these changing conditions in vitro should parallel in vivo studies. In addition, the in vitro milieu should be optimized and better defined, so that artifacts due to in vitro culture systems would not pose dangers for the proper interpretation of results. In this article, we discuss some of these issues and propose solutions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Tailored nanostructured platforms for boosting transcorneal permeation: Box–Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization

    PubMed Central

    Elsayed, Ibrahim; Sayed, Sinar

    2017-01-01

    Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box–Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness. PMID:29133980

  5. In-vivo and ex-vivo spectrofluorometric and imaging study of liposome uptake by the liver using a pH-sensitive probe

    NASA Astrophysics Data System (ADS)

    Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.

    1995-04-01

    Liposomes are known to be uptaken by the liver cells after intraveinous injection. Only few techniques are available to follow this process in vivo like nuclear magnetic resonance spectroscopy or scintigraphy. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cells separation and electronic microscopy, then little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH sensitive probe 5,6-carboxyfluorescein and two different composition of liposomes: phospholipids DSPC/Chol and DMPC in order to evaluate the influence of the formulation on the release characteristics of liposomes in the lysosomes. We have already demonstrated the ability of the fluorescence spectroscopy and imaging using a pH dependent probe to monitor pH in living tissues. As pH of lysosomes is very low, the kinetic liposomes uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the penil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a clear relationship between formulation of liposomes and stability in the acidic compartments of hepatic cells. After sacrifice and flush with cold saline solution, pH of the liver ex vivo is found to be 5.0-5.5. Data show a rapid clearance of release dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of the pH.

  6. Regulation of Cl(-) secretion by AMPK in vivo.

    PubMed

    Kongsuphol, Patthara; Hieke, Bernhard; Ousingsawat, Jiraporn; Almaca, Joana; Viollet, Benoit; Schreiber, Rainer; Kunzelmann, Karl

    2009-03-01

    Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.

  7. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models

    PubMed Central

    Williams, Jonathan M.

    2017-01-01

    ABSTRACT Gastric colonization with Helicobacter pylori induces diverse human pathological conditions, including superficial gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma and its precursors. The treatment of these conditions often relies on the eradication of H. pylori, an intervention that is increasingly difficult to achieve and that does not prevent disease progression in some contexts. There is, therefore, a pressing need to develop new experimental models of H. pylori-associated gastric pathology to support novel drug development in this field. Here, we review the current status of in vivo and ex vivo models of gastric H. pylori colonization, and of Helicobacter-induced gastric pathology, focusing on models of gastric pathology induced by H. pylori, Helicobacter felis and Helicobacter suis in rodents and large animals. We also discuss the more recent development of gastric organoid cultures from murine and human gastric tissue, as well as from human pluripotent stem cells, and the outcomes of H. pylori infection in these systems. PMID:28151409

  8. Large-Animal Biventricular Working Heart Perfusion System with Low Priming Volume-Comparison between in vivo and ex vivo Cardiac Function.

    PubMed

    Abicht, Jan-Michael; Mayr, Tanja Axinja Jelena; Jauch, Judith; Guethoff, Sonja; Buchholz, Stefan; Reichart, Bruno; Bauer, Andreas

    2018-01-01

    Existing large-animal, ex vivo, cardiac perfusion models are restricted in their ability to establish an ischemia/reperfusion condition as seen in cardiac surgery or transplantation. Other working heart systems only challenge one ventricle or require a substantially larger priming volume. We describe a novel biventricular cardiac perfusion system with reduced priming volume. Juvenile pig hearts were cardiopleged, explanted, and reperfused ex vivo after 150 minutes of cold ischemia. Autologous whole blood was used as perfusate (minimal priming volume 350 mL). After 15 minutes of Langendorff perfusion (LM), the system was switched into a biventricular working mode (WM) and studied for 3 hours. During reperfusion, complete unloading of both ventricles and constant-pressure coronary perfusion was achieved. During working mode perfusion, the preload and afterload pressure of both ventricles was controlled within the targeted physiologic range. Functional parameters such as left ventricular work index were reduced in ex vivo working mode (in vivo: 787 ± 186 vs. 1 h WM 498 ± 66 mm Hg·mL/g·min; p  < 0.01), but remained stable throughout the following study period (3 h WM 517 ± 103 mm Hg·mL/g·min; p  = 0.63). Along with the elevated workload during WM, myocardial metabolism and oxygen consumption increased compared with LM (0.021 ± 0.08 vs. 0.06 ± 0.01 mL/min/g; 1 h after reperfusion). Histologic examination of the myocardium revealed no structural damage. In the ex vivo perfusion system, stable hemodynamic and metabolic conditions can be established for a period of 3 hours while functional and blood parameters are easily accessible. Moreover, because of the minimal priming volume, the novel ex vivo cardiac perfusion circuit allows for autologous perfusion, using the limited amount of blood available from the organ donating animal. Georg Thieme Verlag KG Stuttgart · New York.

  9. Identification of HIV-1 determinants for replication in vivo.

    PubMed

    Su, L; Kaneshima, H; Bonyhadi, M L; Lee, R; Auten, J; Wolf, A; Du, B; Rabin, L; Hahn, B H; Terwilliger, E; Mccune, J M

    1997-01-06

    Pathogenic organisms are frequently attenuated after long-term culture in vitro. The mechanisms of the attenuation process are not clear, but probably involve mutations of functions required for replication and pathogenicity in vivo. To identify these functions, a direct comparison must be made between attenuated genomes and those that remain pathogenic in vivo. In this study, we used the heterochimeric SCID-hu Thy/Liv mouse as an in vivo model to define human immunodeficiency virus type 1 (HIV-1) determinants which are uniquely required for replication in vivo. The Lai/IIIB isolate and its associated infectious molecular clones (e.g., HXB2) were found to infect T cell lines but failed to replicate in the SCID-hu Thy/Liv model. When a lab worker was accidentally infected by Lai/IIIB, however, HIV-1 was isolated only from infection of primary PBMC, and not from infection of T cell lines. We hypothesized that the lab worker was exposed to a heterogeneous viral stock which had been attenuated by passage in immortalized T cell lines. Either a rare family member from this stock was selected for in vivo replication or, alternatively, an attenuated genotype dominant in vitro may have reverted to become more infectious in vivo. To address this hypothesis, we have used the SCID-hu Thy/Liv model to study the replication of HXB2 and of HXB2 recombinant viruses with HIV-1 fragments isolated from the infected lab worker. HXB2 showed no or very low levels of replication in the Thy/Liv organ. Replacement of its subgenomic fragment encoding the envelope gene with a corresponding fragment from the lab worker isolate generated a recombinant virus (HXB2/LW) which replicated actively in SCID-hu mice. The NEF mutation in the HXB2 genome is still present in HXB2/LW. Thus, the LW sequences encode HIV-1 determinants which enhance HIV replication in vivo in a NEF-independent mechanism. The specific determinants have been mapped to the V1-V3 regions of the HIV-1 genome. Six unique mutations

  10. In vitro-in vivo correlation for nevirapine extended release tablets.

    PubMed

    Macha, Sreeraj; Yong, Chan-Loi; Darrington, Todd; Davis, Mark S; MacGregor, Thomas R; Castles, Mark; Krill, Steven L

    2009-12-01

    An in vitro-in vivo correlation (IVIVC) for four nevirapine extended release tablets with varying polymer contents was developed. The pharmacokinetics of extended release formulations were assessed in a parallel group study with healthy volunteers and compared with corresponding in vitro dissolution data obtained using a USP apparatus type 1. In vitro samples were analysed using HPLC with UV detection and in vivo samples were analysed using a HPLC-MS/MS assay; the IVIVC analyses comparing the two results were performed using WinNonlin. A Double Weibull model optimally fits the in vitro data. A unit impulse response (UIR) was assessed using the fastest ER formulation as a reference. The deconvolution of the in vivo concentration time data was performed using the UIR to estimate an in vivo drug release profile. A linear model with a time-scaling factor clarified the relationship between in vitro and in vivo data. The predictability of the final model was consistent based on internal validation. Average percent prediction errors for pharmacokinetic parameters were <10% and individual values for all formulations were <15%. Therefore, a Level A IVIVC was developed and validated for nevirapine extended release formulations providing robust predictions of in vivo profiles based on in vitro dissolution profiles. Copyright 2009 John Wiley & Sons, Ltd.

  11. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  12. Imaging denatured collagen strands in vivo and ex vivo via photo-triggered hybridization of caged collagen mimetic peptides.

    PubMed

    Li, Yang; Foss, Catherine A; Pomper, Martin G; Yu, S Michael

    2014-01-31

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity.

  13. Questions about the behaviour of bacterial pathogens in vivo.

    PubMed Central

    Smith, H

    2000-01-01

    Bacterial pathogens cause disease in man and animals. They have unique biological properties, which enable them to colonize mucous surfaces, penetrate them, grow in the environment of the host, inhibit or avoid host defences and damage the host. The bacterial products responsible for these five biological requirements are the determinants of pathogenicity (virulence determinants). Current knowledge comes from studies in vitro, but now interest is increasing in how bacteria behave and produce virulence determinants within the infected host. There are three aspects to elucidate: bacterial activities, the host factors that affect them and the metabolic interactions between the two. The first is relatively easy to accomplish and, recently, new methods for doing this have been devised. The second is not easy because of the complexity of the environment in vivo and its ever-changing face. Nevertheless, some information can be gained from the literature and by new methodology. The third aspect is very difficult to study effectively unless some events in vivo can be simulated in vitro. The objectives of the Discussion Meeting were to describe the new methods and to show how they, and conventional studies, are revealing the activities of bacterial pathogens in vivo. This paper sets the scene by raising some questions and suggesting, with examples, how they might be answered. Bacterial growth in vivo is the primary requirement for pathogenicity. Without growth, determinants of the other four requirements are not formed. Results from the new methods are underlining this point. The important questions are as follows. What is the pattern of a developing infection and the growth rates and population sizes of the bacteria at different stages? What nutrients are present in vivo and how do they change as infection progresses and relate to growth rates and population sizes? How are these nutrients metabolized and by what bacterial mechanisms? Which bacterial processes handle

  14. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma

    PubMed Central

    Miller, Tyler E.; Liau, Brian B.; Wallace, Lisa C.; Morton, Andrew R.; Xie, Qi; Dixit, Deobrat; Factor, Daniel C.; Kim, Leo J. Y.; Morrow, James J.; Wu, Qiulian; Mack, Stephen C.; Hubert, Christopher G.; Gillespie, Shawn M.; Flavahan, William A.; Hoffmann, Thomas; Thummalapalli, Rohit; Hemann, Michael T.; Paddison, Patrick J.; Horbinski, Craig M.; Zuber, Johannes; Scacheri, Peter C.; Bernstein, Bradley E.; Tesar, Paul J.; Rich, Jeremy N.

    2017-01-01

    Glioblastoma is a universally lethal cancer with a median survival of approximately 15 months1. Despite substantial efforts to define druggable targets, there are no therapeutic options that meaningfully extend glioblastoma patient lifespan. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology2–4 for use in orthotopic patient-derived xenograft (PDX) models, creating a high-throughput negative selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators necessary for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, supporting targeting the transcription elongation machinery as a therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of ‘cancer dependencies’ not identified by previous in vitro approaches, which could supply untapped opportunities for therapeutic intervention. PMID:28678782

  15. In vivo bubble nucleation probability in sheep brain tissue.

    PubMed

    Gateau, J; Aubry, J-F; Chauvet, D; Boch, A-L; Fink, M; Tanter, M

    2011-11-21

    Gas nuclei exist naturally in living bodies. Their activation initiates cavitation activity, and is possible using short ultrasonic excitations of high amplitude. However, little is known about the nuclei population in vivo, and therefore about the rarefaction pressure required to form bubbles in tissue. A novel method dedicated to in vivo investigations was used here that combines passive and active cavitation detection with a multi-element linear ultrasound probe (4-7 MHz). Experiments were performed in vivo on the brain of trepanated sheep. Bubble nucleation was induced using a focused single-element transducer (central frequency 660 kHz, f-number = 1) driven by a high power (up to 5 kW) electric burst of two cycles. Successive passive recording and ultrafast active imaging were shown to allow detection of a single nucleation event in brain tissue in vivo. Experiments carried out on eight sheep allowed statistical studies of the bubble nucleation process. The nucleation probability was evaluated as a function of the peak negative pressure. No nucleation event could be detected with a peak negative pressure weaker than -12.7 MPa, i.e. one order of magnitude higher than the recommendations based on the mechanical index. Below this threshold, bubble nucleation in vivo in brain tissues is a random phenomenon.

  16. In vivo plant flow cytometry: A first proof-of-concept

    PubMed Central

    Nedosekin, Dmitry A.; Khodakovskaya, Mariya V.; Biris, Alexandru S.; Wang, Daoyuan; Xu, Yang; Villagarcia, Hector; Galanzha, Ekaterina I.; Zharov, Vladimir P.

    2011-01-01

    In vivo flow cytometry has facilitated advances in the ultrasensitive detection of tumor cells, bacteria, nanoparticles, dyes, and other normal and abnormal objects directly in blood and lymph circulatory systems. Here, we propose in vivo plant flow cytometry for the real-time noninvasive study of nanomaterial transport in xylem and phloem plant vascular systems. As a proof of this concept, we demonstrate in vivo real-time photoacoustic monitoring of quantum dot-carbon nanotube conjugate uptake and uptake by roots and spreading through stem to leaves in a tomato plant. In addition, in vivo scanning cytometry using multimodal photoacoustic, photothermal, and fluorescent detection schematics provided multiplex detection and identification of nanoparticles accumulated in plant leaves in the presence of intensive absorption, scattering, and autofluorescent backgrounds. The use of a portable fiber-based photoacoustic flow cytometer for studies of plant vasculature was demonstrated. These integrated cytometry modalities using both endogenous and exogenous contrast agents have a potential to open new avenues of in vivo study of the nutrients, products of photosynthesis and metabolism, nanoparticles, infectious agents, and other objects transported through plant vasculature. PMID:21905208

  17. OCT-based in vivo tissue injury mapping

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2016-03-01

    Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.

  18. Experience with the first 50 ex vivo lung perfusions in clinical transplantation.

    PubMed

    Cypel, Marcelo; Yeung, Jonathan C; Machuca, Tiago; Chen, Manyin; Singer, Lianne G; Yasufuku, Kazuhiro; de Perrot, Marc; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf

    2012-11-01

    Normothermic ex vivo lung perfusion is a novel method to evaluate and improve the function of injured donor lungs. We reviewed our experience with 50 consecutive transplants after ex vivo lung perfusion. A retrospective study using prospectively collected data was performed. High-risk brain death donor lungs (defined as Pao(2)/Fio(2) <300 mm Hg or lungs with radiographic or clinical findings of pulmonary edema) and lungs from cardiac death donors were subjected to 4 to 6 hours of ex vivo lung perfusion. Lungs that achieved stable airway and vascular pressures and Pao(2)/Fio(2) greater than 400 mm Hg during ex vivo lung perfusion were transplanted. The primary end point was the incidence of primary graft dysfunction grade 3 at 72 hours after transplantation. End points were compared with lung transplants not treated with ex vivo lung perfusion (controls). A total of 317 lung transplants were performed during the study period (39 months). Fifty-eight ex vivo lung perfusion procedures were performed, resulting in 50 transplants (86% use). Of these, 22 were from cardiac death donors and 28 were from brain death donors. The mean donor Pao(2)/Fio(2) was 334 mm Hg in the ex vivo lung perfusion group and 452 mm Hg in the control group (P = .0001). The incidence of primary graft dysfunction grade 3 at 72 hours was 2% in the ex vivo lung perfusion group and 8.5% in the control group (P = .14). One patient (2%) in the ex vivo lung perfusion group and 7 patients (2.7%) in the control group required extracorporeal lung support for primary graft dysfunction (P = 1.00). The median time to extubation, intensive care unit stay, and hospital length of stay were 2, 4, and 20 days, respectively, in the ex vivo lung perfusion group and 2, 4, and 23 days, respectively, in the control group (P > .05). Thirty-day mortality (4% in the ex vivo lung perfusion group and 3.5% in the control group, P = 1.00) and 1-year survival (87% in the ex vivo lung perfusion group and 86% in the control

  19. Clinical indices of in vivo biocompatibility: the role of ex vivo cell function studies and effluent markers in peritoneal dialysis patients.

    PubMed

    Mackenzie, Ruth; Holmes, Clifford J; Jones, Suzanne; Williams, John D; Topley, Nicholas

    2003-12-01

    Clinical indices of in vivo biocompatibility: The role of ex vivo cell function studies and effluent markers in peritoneal dialysis patients. Over the past 20 years, studies of the biocompatibility profile of peritoneal dialysis solutions (PDF) have evolved from initial in vitro studies assessing the impact of solutions on leukocyte function to evaluations of mesothelial cell behavior. More recent biocompatibility evaluations have involved assessments of the impact of PDF on membrane integrity and cell function in peritoneal dialysis (PD) patients. The development of ex vivo systems for the evaluation of in vivo cell function, and effluent markers of membrane integrity and inflammation in patients exposed both acutely and chronically to conventional and new PDF will be interpreted in the context of our current understanding of the biology of the dialyzed peritoneum. The available data indicate that exposure of the peritoneal environment to more biocompatible PDF is associated with improvements in peritoneal cell function, alterations in markers of membrane integrity, and reduced local inflammation. These data suggest that more biocompatible PDF will have a positive impact on host defense, peritoneal homeostasis, and the long-term preservation of peritoneal membrane function in PD patients.

  20. In vivo imaging of microscopic structures in the rat retina

    PubMed Central

    Geng, Ying; Greenberg, Kenneth P.; Wolfe, Robert; Gray, Daniel C.; Hunter, Jennifer J.; Dubra, Alfredo; Flannery, John G.; Williams, David R.; Porter, Jason

    2010-01-01

    Purpose The ability to resolve single retinal cells in rodents in vivo has applications in rodent models of the visual system and retinal disease. We have characterized the performance of a fluorescence adaptive optics scanning laser ophthalmoscope (fAOSLO) that provides cellular and subcellular imaging of rat retina in vivo. Methods Green fluorescent protein (eGFP) was expressed in retinal ganglion cells of normal Sprague Dawley rats via intravitreal injections of adeno-associated viral vectors. Simultaneous reflectance and fluorescence retinal images were acquired using the fAOSLO. fAOSLO resolution was characterized by comparing in vivo images with subsequent imaging of retinal sections from the same eyes using confocal microscopy. Results Retinal capillaries and eGFP-labeled ganglion cell bodies, dendrites, and axons were clearly resolved in vivo with adaptive optics (AO). AO correction reduced the total root mean square wavefront error, on average, from 0.30 μm to 0.05 μm (1.7-mm pupil). The full width at half maximum (FWHM) of the average in vivo line-spread function (LSF) was ∼1.84 μm, approximately 82% greater than the FWHM of the diffraction-limited LSF. Conclusions With perfect aberration compensation, the in vivo resolution in the rat eye could be ∼2× greater than that in the human eye due to its large numerical aperture (∼0.43). While the fAOSLO corrects a substantial fraction of the rat eye's aberrations, direct measurements of retinal image quality reveal some blur beyond that expected from diffraction. Nonetheless, subcellular features can be resolved, offering promise for using AO to investigate the rodent eye in vivo with high resolution. PMID:19578019

  1. VIVO Open Source Software: Connecting Facilities to Promote Discovery and Further Research.

    NASA Astrophysics Data System (ADS)

    Gross, M. B.; Rowan, L. R.; Mayernik, M. S.; Daniels, M. D.; Stott, D.; Allison, J.; Maull, K. E.; Krafft, D. B.; Khan, H.

    2016-12-01

    EarthCollab (http://earthcube.org/group/earthcollab), a National Science Foundation (NSF) EarthCube Building Block project, has adapted an open source semantic web application, VIVO, for use within the earth science domain. EarthCollab is a partnership between UNAVCO, an NSF facility supporting research through geodetic services, the Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR), and Cornell University, where VIVO was created to highlight the scholarly output of researchers at universities. Two public sites have been released: Connect UNAVCO (connect.unavco.org) and Arctic Data Connects (vivo.eol.ucar.edu). The core VIVO software and ontology have been extended to work better with concepts necessary for capturing work within UNAVCO's and EOL's province such as principal investigators for continuous GPS/GNSS stations at UNAVCO and keywords describing cruise datasets at EOL. The sites increase discoverability of large and diverse data archives by linking data with people, research, and field projects. Disambiguation is a major challenge when using VIVO and open data when "anyone can say anything about anything." Concepts and controlled vocabularies help to build consistent and easily searchable connections within VIVO. We use aspects of subject heading services such as FAST and LOC, as well as AGU and GSA fields of research and subject areas to reveal connections, especially with VIVO instances at other institutions. VIVO works effectively with persistent IDs and the projects strive to utilize publication and data DOIs, ORCIDs for people, and ISNI and GRID for organizations. ORCID, an open source project, is very useful for disambiguation and unlike other identifier systems for people developed by publishers, makes public data available via an API. VIVO utilizes Solr and Freemarker, which are open source search engine and templating technologies, respectively. Additionally, a handful of popular open source libraries and

  2. In-vivo fetal ultrasound exposimetry.

    PubMed

    Daft, C W; Siddiqi, T A; Fitting, D W; Meyer, R A; O'Brien, W R

    1990-01-01

    An instrument has been developed to measure the acoustic pressure field in vivo during an obstetric ultrasound examination. This provides for improved intensity values for exposure calculations, to assist in assessment of bioeffects. The ultrasonic field is sampled using a calibrated seven-element linear array hydrophone of poly(vinylidene difluoride) transducers, which is placed as close as possible to the ovary, embryo, or fetus using a vaginal approach. The RF signals from the hydrophone are digitized at 50 MHz, and the maximum amplitude waveform received in the examination is recorded. The output of the clinical B-scanner is calibrated by a measurement with the hydrophone in a water bath. From the hydrophone measurements, the in vivo I(SPTA), I(SPTP), and I(SPPA) are computed. Further analysis allows the frequency-dependent tissue attenuation to be assessed.

  3. In vivo potency revisited - Keep the target in sight.

    PubMed

    Gabrielsson, Johan; Peletier, Lambertus A; Hjorth, Stephan

    2018-04-01

    Potency is a central parameter in pharmacological and biochemical sciences, as well as in drug discovery and development endeavors. It is however typically defined in terms only of ligand to target binding affinity also in in vivo experimentation, thus in a manner analogous to in in vitro studies. As in vivo potency is in fact a conglomerate of events involving ligand, target, and target-ligand complex processes, overlooking some of the fundamental differences between in vivo and in vitro may result in serious mispredictions of in vivo efficacious dose and exposure. The analysis presented in this paper compares potency measures derived from three model situations. Model A represents the closed in vitro system, defining target binding of a ligand when total target and ligand concentrations remain static and constant. Model B describes an open in vivo system with ligand input and clearance (Cl (L) ), adding in parallel to the turnover (k syn , k deg ) of the target. Model C further adds to the open in vivo system in Model B also the elimination of the target-ligand complex (k e(RL) ) via a first-order process. We formulate corresponding equations of the equilibrium (steady-state) relationships between target and ligand, and complex and ligand for each of the three model systems and graphically illustrate the resulting simulations. These equilibrium relationships demonstrate the relative impact of target and target-ligand complex turnover, and are easier to interpret than the more commonly used ligand-, target- and complex concentration-time courses. A new potency expression, labeled L 50 , is then derived. L 50 is the ligand concentration at half-maximal target and complex concentrations and is an amalgamation of target turnover, target-ligand binding and complex elimination parameters estimated from concentration-time data. L 50 is then compared to the dissociation constant K d (target-ligand binding affinity), the conventional Black & Leff potency estimate EC 50

  4. Intra-patient variability of thromboelastographic parameters following in vivo and ex vivo administration of recombinant activated factor VII in haemophilia patients. A multi-centre, randomised trial.

    PubMed

    Kenet, G; Stenmo, C B; Blemings, A; Wegert, W; Goudemand, J; Krause, M; Schramm, W; Kirchmaier, C; Martinowitz, U

    2010-02-01

    Thromboelastography methods have been used to predict or monitor treatment of haemophilia patients with recombinant activated factor VII (rFVIIa). However, neither of the two thromboelastographic methods (ROTEM and TEG) has as yet been validated. This multi-centre, randomised trial compared both methods in terms of intra- and inter- patient variability following in vivo and ex vivo rFVIIa administration to haemophilia A and B patients with and without inhibitors. Patients ((3)16 years old) received the same intravenous rFVIIa dose (45, 90 or 180 microg/kg) twice, 1-12 weeks apart. Blood samples were collected pre-dose and 15, 60, 120 and 240 minutes post-dose for ROTEM and TEG analysis. Pre-dose samples were also spiked ex vivo with rFVIIa (0.6, 1.2 or 2.4 microg/ml), to correspond to the three in vivo doses. Twenty-six haemophilia A and four haemophilia B patients were enrolled. A significant treatment effect was observed with in vivo rFVIIa (p<0.05) with more pronounced effects in inhibitor (n=14) versus non-inhibitor (n=16) patients. There was a strong positive correlation between ROTEM and TEG parameters. Intra- and inter-patient variation was large for all thromboelastography parameters at all time points and rFVIIa doses. Intra-patient variation was generally lower for non-inhibitor than inhibitor patients, and lower following ex vivo spiking versus in vivo rFVIIa administration. In conclusion, there was a clear effect of rFVIIa on all thromboelastography parameters, but the large intra- and inter-patient variability following in vivo rFVIIa administration renders the use of our method unsuitable for dose-response prediction for haemophilia patients in the clinical setting.

  5. Towards in vivo TLD dosimetry in mammography.

    PubMed

    Warren-Forward, H M; Duggan, L

    2004-05-01

    While phantoms are used for quality control assessment of the mammography unit, in vivo dose measurements are necessary to account for the variation in size and composition of the female breast. The use of thermoluminescent dosimeters (TLDs) in mammography has been limited due to TLD visibility. The aim of this current investigation was to access the suitability of a paper-thin LiF:Mg,Cu,P TLD (GR-200F) for in vivo dosimetric mammography measurements. The visibility of GR-200F has been directly compared with LiF:Mg,Cu,P TLDs (GR-200A) using a number of commercially available phantoms. The phantoms of thickness 2-5 cm were imaged over the range of tube potentials (24-28 kVp) used clinically. Both types of TLD were placed on the surface of the phantoms allowing assessment of visibility, entrance surface dose (ESD) and field homogeneity. In vivo assessment of ESD and visibility was also carried out on a volunteer undergoing a routine mammography examination. The positions of the GR-200F TLDs were not identified either on the image of the Leeds TOR(MAM) phantom or the patient mammograms. The average ESD for the Leeds phantom was 8.8 mGy, while the patient ESD was 13 mGy. It is now possible to perform in vivo measurements with the potential of increasing the accuracy of the doses measured for women that do not conform to a standard breast thickness or density.

  6. Experimental analysis of insertion torques and forces of threaded and press-fit acetabular cups by means of ex vivo and in vivo measurements.

    PubMed

    Vogel, Danny; Rathay, Andreas; Teufel, Stephanie; Ellenrieder, Martin; Zietz, Carmen; Sander, Manuela; Bader, Rainer

    2017-01-01

    In THA a sufficient primary implant stability is the precondition for successful secondary stability. Industrial foams of different densities have been used for primary stability investigations. The aim of this study was to analyse and compare the insertion behaviour of threaded and press-fit cups in vivo and ex vivo using bone substitutes with various densities. Two threaded (Bicon Plus®, Trident® TC) and one press-fit cup (Trident PSL®) were inserted by orthopaedic surgeons (S1, S2) into 10, 20 and 31 pcf blocks, using modified surgical instruments allowing measurements of the insertion forces and torques. Furthermore, the insertion behaviour of two cups were analysed intraoperatively. Torques for the threaded cups increased while bone substitute density increased. Maximum insertion torques were observed for S2 with 102 Nm for the Bicon Plus® in 20 pcf blocks and 77 Nm for the Trident® TC in 31 pcf blocks, which compares to the in vivo measurement (85 Nm). The average insertion forces for the press-fit cup varied from 5.2 to 6.8 kN (S1) and 7.2-11.5 kN (S2) ex vivo. Intraoperatively an average insertion force of 8.0 kN was determined. Implantation behaviour was influenced by acetabular cup design, bone substitute and experience of the surgeon. No specific density of bone substitute could be favoured for ex vivo investigations on the implantation behaviour of acetabular cups. The use synthetic bone blocks of high density (31 pcf) led to problems regarding cup orientation and seating. Therefore, bone substitutes used should be critically scrutinized in terms of the comparability to the in vivo situation.

  7. LANTCET: laser nanotechnology for screening and treating tumors ex vivo and in vivo

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri O.; Lukianova-Hleb, Ekaterina Y.; Zhdanok, Sergei A.; Hafner, Jason H.; Rostro, Betty C.; Scully, Peter; Konopleva, Marina; Andreeff, Michael; Li, Chun; Hanna, Ehab Y.; Myers, Jeffrey N.; Oraevsky, Alexander A.

    2007-06-01

    LANTCET (laser-activated nano-thermolysis as cell elimination technology) was developed for selective detection and destruction of individual tumor cells through generation of photothermal bubbles around clusters of light absorbing gold nanoparticles (nanorods and nanoshells) that are selectively formed in target tumor cells. We have applied bare nanoparticles and their conjugates with cell-specific vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia) and C225 (specific for carcinoma cells that express epidermal growth factor -EGF). Clusters were formed by using vector-receptor interactions with further clusterization of nanoparticles due to endocytosis. Formation of clusters was verified directly with optical resonance scattering microscopy and microspectroscopy. LANTCET method was tested in vitro for living cell samples with: (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients with the diagnosis of acute myeloid leukemia, (3) monolayers of living EGF-positive carcinoma cells (Hep-2C), (4) human lymphocytes and red blood cells as normal cells. The LANTCET method was also tested in vivo using rats with experimental polymorphic sarcoma. Photothermal bubbles were generated and detected in vitro with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. We have found that cluster formation caused an almost 100-fold decrease in the bubble generation threshold of laser pulse fluence in tumor cells compared to the bubble generation threshold for normal cells. The animal tumor that was treated with a single laser pulse showed a necrotic area of diameter close to the pump laser beam diameter and a depth of 1-2 mm. Cell level selectivity of tumor damage with single laser pulse was demonstrated. Combining lightscattering imaging with bubble imaging, we introduced a new image-guided mode of the LANTCET operation for screening and treatment of tumors ex vivo and in vivo.

  8. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models.

    PubMed

    Burkitt, Michael D; Duckworth, Carrie A; Williams, Jonathan M; Pritchard, D Mark

    2017-02-01

    Gastric colonization with Helicobacter pylori induces diverse human pathological conditions, including superficial gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma and its precursors. The treatment of these conditions often relies on the eradication of H. pylori, an intervention that is increasingly difficult to achieve and that does not prevent disease progression in some contexts. There is, therefore, a pressing need to develop new experimental models of H. pylori-associated gastric pathology to support novel drug development in this field. Here, we review the current status of in vivo and ex vivo models of gastric H. pylori colonization, and of Helicobacter-induced gastric pathology, focusing on models of gastric pathology induced by H. pylori, Helicobacter felis and Helicobacter suis in rodents and large animals. We also discuss the more recent development of gastric organoid cultures from murine and human gastric tissue, as well as from human pluripotent stem cells, and the outcomes of H. pylori infection in these systems. © 2017. Published by The Company of Biologists Ltd.

  9. Sunscreen sun protection factor claim based on in vivo interlaboratory variability.

    PubMed

    Miksa, S; Lutz, D; Guy, C; Delamour, E

    2016-12-01

    The SPF (sun protection factor) is the best known reference in the world for expressing UVB protection. The SPF is used for labelling purposes for consumer guidance. The determination of the SPF is often accomplished using an in vivo method that has been standardized. Only one in vivo SPF value from one laboratory is required for claiming an SPF value. The aim of this study was to determine the relevance of the in vivo SPF value in terms of interlaboratory variability for claiming purposes and to determine whether some minimum number of different in vivo SPF values from different laboratories would improve the reliability of the final SPF claimed. A large population of 44 different commercially available sunscreen formulations from the European market has been investigated, covering various product types. The majority of the SPF values claimed ranged from 15 to 50+. For each product, at least three different in vivo SPF values tested in different laboratories have been gathered, and a variety of statistical analyses have been performed. For each SPF category from the average of all samples, the minimum and maximum in vivo-measured SPF values from the different laboratories would lead to labels claiming different levels of SPF for the same product. Indeed, with coefficients of variation for in vivo SPF determinations that exceed 50% in some cases, as an example, the same product could in reality be claimed to be SPF 30, SPF 50 or SPF 50+. In this study, the authors demonstrated that using only one in vivo SPF value from one laboratory may actually challenge the reliability of the final SPF claim significantly. To reduce the consumer health risk by ensuring the reliability of the SPF claim, an average from at least 3 (ideally 4) different in vivo SPF values should be compulsory. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics

    PubMed Central

    MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S

    2018-01-01

    Abstract Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks. PMID:29385628

  11. Tracking colliding cells in vivo microscopy.

    PubMed

    Nguyen, Nhat H; Keller, Steven; Norris, Eric; Huynh, Toan T; Clemens, Mark G; Shin, Min C

    2011-08-01

    Leukocyte motion represents an important component in the innate immune response to infection. Intravital microscopy is a powerful tool as it enables in vivo imaging of leukocyte motion. Under inflammatory conditions, leukocytes may exhibit various motion behaviors, such as flowing, rolling, and adhering. With many leukocytes moving at a wide range of speeds, collisions occur. These collisions result in abrupt changes in the motion and appearance of leukocytes. Manual analysis is tedious, error prone,time consuming, and could introduce technician-related bias. Automatic tracking is also challenging due to the noise inherent in in vivo images and abrupt changes in motion and appearance due to collision. This paper presents a method to automatically track multiple cells undergoing collisions by modeling the appearance and motion for each collision state and testing collision hypotheses of possible transitions between states. The tracking results are demonstrated using in vivo intravital microscopy image sequences.We demonstrate that 1)71% of colliding cells are correctly tracked; (2) the improvement of the proposed method is enhanced when the duration of collision increases; and (3) given good detection results, the proposed method can correctly track 88% of colliding cells. The method minimizes the tracking failures under collisions and, therefore, allows more robust analysis in the study of leukocyte behaviors responding to inflammatory conditions.

  12. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1996-01-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  13. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies.

    PubMed

    Cogoli, A

    1996-04-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  14. ACE2-Independent Action Of Presumed ACE2 Activators: Studies In Vivo, Ex Vivo and In Vitro

    PubMed Central

    Haber, Philipp K.; Ye, Minghao; Wysocki, Jan; Maier, Christoph; Haque, Syed K.; Batlle, Daniel

    2014-01-01

    Angiotensin converting enzyme 2, (ACE2), is a key enzyme in the metabolism of angiotensin II. 1-[[2-(dimetilamino)ethyl]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT)and Diminazene (DIZE)have been reported to exert various organ-protective effects that have been attributed to activation of ACE2. To test the effect of these compounds we studied Ang II degradation in vivo and in vitro as well as their effect on ACE2 activity in vivo and in vitro. In a model of Ang II induced acute hypertension, blood pressure recovery was markedly enhanced by XNT (slope with XNT -3.26±0.2 vs.-1.6±0.2 mmHg/min without XNT, p<0.01). After Ang II infusion, neither plasma nor kidney ACE2 activity was affected by XNT. Plasma Ang II and Ang (1-7) levels also were not significantly affected by XNT. The blood pressure lowering effect of XNT seen in WT animals was also observed in ACE2 KO mice (slope with XNT -3.09±0.30 mmHg/min vs. -1.28±0.22 mmHg/min without XNT, p<0.001). These findings show that the blood pressure lowering effect of XNT in Ang II induced hypertension cannot be due to activation of ACE2. In vitro and ex vivo experiments in both mice and rat kidney confirmed a lack of enhancement of ACE2 enzymatic activity by XNT and DIZE. Moreover, Ang II degradation in vitro and ex vivo was unaffected by XNT and DIZE. We conclude that the biologic effects of these compounds are ACE2 independent and should not be attributed to activation of this enzyme. PMID:24446061

  15. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  16. Imaging free zinc levels in vivo - what can be learned?

    PubMed

    De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean

    2012-12-01

    Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.

  17. An in vivo multiplexed small molecule screening platform

    PubMed Central

    Yang, Dian; Ogasawara, Daisuke; Dix, Melissa M.; Rogers, Zoë N.; Chuang, Chen-Hua; McFarland, Christopher D.; Chiou, Shin-Heng; Brown, J. Mark; Cravatt, Benjamin F.; Bogyo, Matthew; Winslow, Monte M.

    2016-01-01

    Phenotype-based small molecule screening is a powerful method to identify regulators of cellular function. However, such screens are generally performed in vitro using conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of libraries of small molecules. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed towards hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo. PMID:27617390

  18. Ex Vivo Lung Perfusion: Establishment and Operationalization in Iran.

    PubMed

    Shafaghi, Shadi; Abbasi Dezfuli, Azizollah; Ansari Aval, Zahra; Sheikhy, Kambiz; Farzanegan, Behrooz; Mortaz, Esmaeil; Emami, Habib; Aigner, Clemens; Hosseini-Baharanchi, Fatemeh Sadat; Najafizadeh, Katayoun

    2017-02-01

    Although the number of lung transplants is limited because of general shortage of organ donors, ex vivo lung perfusion is a novel method with 2 main benefits, including better evaluation of lung potential and recovery of injured lungs. The main aim of this study was to establish and operationalize ex vivo lung perfusion as the first experience in Iran. This was a prospective operational research study on 5 cases, including 1 pig from Vienna Medical University and 4 patients from Masih Daneshvari Hospital. All organ donations from brain dead donors were evaluated according to lung transplant or ex vivo lung perfusion criteria from May 2013 to July 2015 in Tehran, Iran. If a donor did not have any sign of severe chest trauma or pneumonia but had poor oxygenation due to possible atelectasis or neurogenic pulmonary edema, their lungs were included for ex vivo lung perfusion. A successful trend in the difference between the pulmonary arterial Po2 and the left atrial Po2 was observed, as well as an increasing pattern in other functional parameters, including dynamic lung compliance and a decreasing trend in pulmonary vascular resistance. These initial trials indicate that ex vivo lung perfusion can lead to remarkable progress in lung transplant in Iran. They also provide several important pieces of guidance for successful ex vivo lung perfusion, including the necessity of following standard lung retrieval procedures and monitoring temperature and pressure precisely. The development of novel methods can provide opportunities for further research studies on lungs of deceased donors and lead to undiscovered findings. By keeping this science up to date in Iran and developing such new and creative methods, we can reveal effective strategies to promote the quality of donor lungs to support patients on transplant wait lists.

  19. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutson, M. Shane; Ma Xiaoyan

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  20. Real-Time Amperometric Recording of Extracellular H₂O₂ in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study.

    PubMed

    Reid, Caroline H; Finnerty, Niall J

    2017-07-08

    We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.

  1. Ex vivo validation of photo-magnetic imaging.

    PubMed

    Luk, Alex; Nouizi, Farouk; Erkol, Hakan; Unlu, Mehmet B; Gulsen, Gultekin

    2017-10-15

    We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.

  2. Critical considerations when planning experimental in vivo studies in dental traumatology.

    PubMed

    Andreasen, Jens O; Andersson, Lars

    2011-08-01

    In vivo studies are sometimes needed to understand healing processes after trauma. For several reasons, not the least ethical, such studies have to be carefully planned and important considerations have to be taken into account about suitability of the experimental model, sample size and optimizing the accuracy of the analysis. Several manuscripts of in vivo studies are submitted for publication to Dental Traumatology and rejected because of inadequate design, methodology or insufficient documentation of the results. The authors have substantial experience in experimental in vivo studies of tissue healing in dental traumatology and share their knowledge regarding critical considerations when planning experimental in vivo studies. © 2011 John Wiley & Sons A/S.

  3. Liver volume measurement: reason of the difference between in vivo CT-volumetry and intraoperative ex vivo determination and how to cope it.

    PubMed

    Niehues, Stefan M; Unger, J K; Malinowski, M; Neymeyer, J; Hamm, B; Stockmann, M

    2010-08-20

    Volumetric assessment of the liver regularly yields discrepant results between pre- and intraoperatively determined volumes. Nevertheless, the main factor responsible for this discrepancy remains still unclear. The aim of this study was to systematically determine the difference between in vivo CT-volumetry and ex vivo volumetry in a pig animal model. Eleven pigs were studied. Liver density assessment, CT-volumetry and water displacement volumetry was performed after surgical removal of the complete liver. Known possible errors of volume determination like resection or segmentation borders were eliminated in this model. Regression analysis was performed and differences between CT-volumetry and water displacement determined. Median liver density was 1.07g/ml. Regression analysis showed a high correlation of r(2) = 0.985 between CT-volumetry and water displacement. CT-volumetry was found to be 13% higher than water displacement volumetry (p<0.0001). In this study the only relevant factor leading to the difference between in vivo CT-volumetry and ex vivo water displacement volumetry seems to be blood perfusion of the liver. The systematic difference of 13 percent has to be taken in account when dealing with those measures.

  4. Progress connecting multi-disciplinary geoscience communities through the VIVO semantic web application

    NASA Astrophysics Data System (ADS)

    Gross, M. B.; Mayernik, M. S.; Rowan, L. R.; Khan, H.; Boler, F. M.; Maull, K. E.; Stott, D.; Williams, S.; Corson-Rikert, J.; Johns, E. M.; Daniels, M. D.; Krafft, D. B.

    2015-12-01

    UNAVCO, UCAR, and Cornell University are working together to leverage semantic web technologies to enable discovery of people, datasets, publications and other research products, as well as the connections between them. The EarthCollab project, an EarthCube Building Block, is enhancing an existing open-source semantic web application, VIVO, to address connectivity gaps across distributed networks of researchers and resources related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy. People, publications, datasets and grant information have been mapped to an extended version of the VIVO-ISF ontology and ingested into VIVO's database. Data is ingested using a custom set of scripts that include the ability to perform basic automated and curated disambiguation. VIVO can display a page for every object ingested, including connections to other objects in the VIVO database. A dataset page, for example, includes the dataset type, time interval, DOI, related publications, and authors. The dataset type field provides a connection to all other datasets of the same type. The author's page will show, among other information, related datasets and co-authors. Information previously spread across several unconnected databases is now stored in a single location. In addition to VIVO's default display, the new database can also be queried using SPARQL, a query language for semantic data. EarthCollab will also extend the VIVO web application. One such extension is the ability to cross-link separate VIVO instances across institutions, allowing local display of externally curated information. For example, Cornell's VIVO faculty pages will display UNAVCO's dataset information and UNAVCO's VIVO will display Cornell faculty member contact and

  5. In vivo fluorescence lifetime optical projection tomography

    PubMed Central

    McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.

    2011-01-01

    We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145

  6. Photothermal optical lock-in optical coherence tomography for in vivo imaging

    PubMed Central

    Tucker-Schwartz, Jason M.; Lapierre-Landry, Maryse; Patil, Chetan A.; Skala, Melissa C.

    2015-01-01

    Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT. PMID:26114045

  7. In vivo microsampling to capture the elusive exposome

    NASA Astrophysics Data System (ADS)

    Bessonneau, Vincent; Ings, Jennifer; McMaster, Mark; Smith, Richard; Bragg, Leslie; Servos, Mark; Pawliszyn, Janusz

    2017-03-01

    Loss and/or degradation of small molecules during sampling, sample transportation and storage can adversely impact biological interpretation of metabolomics data. In this study, we performed in vivo sampling using solid-phase microextraction (SPME) in combination with non-targeted liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) to capture the fish tissue exposome using molecular networking analysis, and the results were contrasted with molecular differences obtained with ex vivo SPME sampling. Based on 494 MS/MS spectra comparisons, we demonstrated that in vivo SPME sampling provided better extraction and stabilization of highly reactive molecules, such as 1-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoleoyl-glycero-3-phosphocholine, from fish tissue samples. This sampling approach, that minimizes sample handling and preparation, offers the opportunity to perform longitudinal monitoring of the exposome in biological systems and improve the reliability of exposure-measurement in exposome-wide association studies.

  8. RNA circularization strategies in vivo and in vitro

    PubMed Central

    Petkovic, Sonja; Müller, Sabine

    2015-01-01

    In the plenitude of naturally occurring RNAs, circular RNAs (circRNAs) and their biological role were underestimated for years. However, circRNAs are ubiquitous in all domains of life, including eukaryotes, archaea, bacteria and viruses, where they can fulfill diverse biological functions. Some of those functions, as for example playing a role in the life cycle of viral and viroid genomes or in the maturation of tRNA genes, have been elucidated; other putative functions still remain elusive. Due to the resistance to exonucleases, circRNAs are promising tools for in vivo application as aptamers, trans-cleaving ribozymes or siRNAs. How are circRNAs generated in vivo and what approaches do exist to produce ring-shaped RNAs in vitro? In this review we illustrate the occurrence and mechanisms of RNA circularization in vivo, survey methods for the generation of circRNA in vitro and provide appropriate protocols. PMID:25662225

  9. In vivo microsampling to capture the elusive exposome

    PubMed Central

    Bessonneau, Vincent; Ings, Jennifer; McMaster, Mark; Smith, Richard; Bragg, Leslie; Servos, Mark; Pawliszyn, Janusz

    2017-01-01

    Loss and/or degradation of small molecules during sampling, sample transportation and storage can adversely impact biological interpretation of metabolomics data. In this study, we performed in vivo sampling using solid-phase microextraction (SPME) in combination with non-targeted liquid chromatography and high-resolution tandem mass spectrometry (LC-MS/MS) to capture the fish tissue exposome using molecular networking analysis, and the results were contrasted with molecular differences obtained with ex vivo SPME sampling. Based on 494 MS/MS spectra comparisons, we demonstrated that in vivo SPME sampling provided better extraction and stabilization of highly reactive molecules, such as 1-oleoyl-sn-glycero-3-phosphocholine and 1-palmitoleoyl-glycero-3-phosphocholine, from fish tissue samples. This sampling approach, that minimizes sample handling and preparation, offers the opportunity to perform longitudinal monitoring of the exposome in biological systems and improve the reliability of exposure-measurement in exposome-wide association studies. PMID:28266605

  10. Immunosuppression induced in vivo by 15 hydroxyeicosatetraenoic acid (15 HETE).

    PubMed

    Aldigier, J C; Gualde, N; Mexmain, S; Chable-Rabinovitch, H; Ratinaud, M H; Rigaud, M

    1984-01-01

    We have investigated the in vivo effects of 15 HETE on C57Bl/6 (H-2b) mice injected IP daily with this product. After that the 15 HETE treated animals and the controls were challenged in vivo by DBA/2 (H-2d) cells. Splenocytes from 15 HETE injected animals were either stimulated in vitro by lectins or cocultivated with DBA/2 irradiated splenocytes. It was observed that the response of splenocytes from in vivo treated animals is weaker than the control's response. The data suggest that 15 HETE induce the generation of suppressor cells.

  11. Modeling Fetal Alcohol Spectrum Disorder: validating an ex vivo primary hippocampal cell culture system

    PubMed Central

    Tunc-Ozcan, Elif; Ferreira, Adriana B.; Redei, Eva E.

    2016-01-01

    Background Fetal Alcohol Spectrum Disorder (FASD) is the leading non-genetic cause of mental retardation. There are no treatments for FASD to date. Preclinical in vivo and in vitro studies could help in identifying novel drug targets as for other diseases. Here, we describe an ex vivo model that combines the physiological advantages of prenatal ethanol (E) exposure in vivo with the uniformity of primary fetal hippocampal culture to characterize the effects of prenatal E. The insulin signaling pathways are known to be involved in hippocampal functions. Therefore, we compared the expression of insulin signaling pathway genes between fetal hippocampi (in vivo) and primary hippocampal culture (ex vivo). The similarity of prenatal E effects in these two paradigms would deem the ex vivo culture acceptable to screen possible treatments for FASD. Methods Pregnant Sprague-Dawley rats received one of three diets: ad libitum standard lab chow (control-C), isocaloric pair-fed (PF, nutritional control), and E containing liquid diets from gestational day (GD) 8. Fetal male and female hippocampi were collected either on GD21 (in vivo) or on GD18 for primary culture (ex vivo). Transcript levels of Igf2, Igf2r, Insr, Grb10, Rasgrf1 and Zac1 were measured by RT-qPCR. Results Hippocampal transcript levels differed by prenatal treatment in both males and females with sex differences observed in the expression of Igf2 and Insr. The effect of prenatal E on the hippocampal expression of the insulin pathway genes was parallel in the in vivo and the ex vivo conditions. Conclusions The similarity of gene expression changes in response to prenatal E between the in vivo and the ex vivo conditions ascertain that these effects are already set in the fetal hippocampus at GD18. This strengthens the feasibility of the ex vivo primary hippocampal culture as a tool to test and screen candidate drug targets for FASD. PMID:27162054

  12. In vivo human crystalline lens topography.

    PubMed

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-10-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).

  13. In vivo human crystalline lens topography

    PubMed Central

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-01-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z22 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism (Z22 ranging from 6 to 10 µm). PMID:23082289

  14. Variability within Systemic In Vivo Toxicity Points-of-Departure (SOT)

    EPA Science Inventory

    In vivo studies have long been considered the gold standard for toxicology screening and deriving points of departure (POD). With the push to decrease the use of animal studies, predictive models using in vivo data are being developed to estimate POD. However, recent work has il...

  15. FANCA safeguards interphase and mitosis during hematopoiesis in vivo

    PubMed Central

    Abdul-Sater, Zahi; Cerabona, Donna; Sierra Potchanant, Elizabeth; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz

    2015-01-01

    Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in non-hematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material (PCM) to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA cross-linking and antimitotic chemotherapeutics in primary FANCA−/− cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that the FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers. PMID:26366677

  16. Targeting Promoter-Associated Noncoding RNA In Vivo.

    PubMed

    Civenni, Gianluca

    2017-01-01

    There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.

  17. Assessment of FUS-Tissue Interactions In Vivo

    NASA Astrophysics Data System (ADS)

    Haritonova, Alyona V.

    Focused ultrasound (FUS) has been proposed for a variety of minimally invasive therapeutic applications, including tumor ablation, neuromodulation, targeted drug delivery and blood brain barrier opening. To date, FUS beams have been primarily monitored through MR and ultrasound diagnostic imaging modalities. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm for the guidance of therapeutic focused ultrasound. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems. In this thesis we investigated the use of ultrasound-based thermography to assess FUS-tissue interactions. Specifically, we focused on two aspects of image-guided therapy: 1) monitoring and localization of FUS-tissue interactions, and 2) tissue damage assessment. Towards this end, we presented first experimental results of ultrasound-guided transcranial FUS in a rat brain, both ex vivo and in vivo. DMUA imaging was used to monitor and localize FUS-tissue thermal interactions in real-time. The transcranial echo data allowed for a reliable estimation of temperature change in brain tissue, which had never been done before using ultrasound image guidance. Despite some measurable distortion and loss in focusing gain, transcranial FUS beams at 3.2 MHz were localized axially and laterally. This confirms the results obtained using DMUA-based transcranial ultrasound thermography. A high degree of focusing with the DMUA was then successfully leveraged to perform localized tissue damage assessment in both ex vivo and in vivo. The experimental results presented in this thesis demonstrate some of the unique aspects of image guidance using DMUAs, especially when FUS is subject to significant distortions as in transcranial applications.

  18. Quality management in in vivo proton MRS.

    PubMed

    Pedrosa de Barros, Nuno; Slotboom, Johannes

    2017-07-15

    The quality of MR-Spectroscopy data can easily be affected in in vivo applications. Several factors may produce signal artefacts, and often these are not easily detected, not even by experienced spectroscopists. Reliable and reproducible in vivo MRS-data requires the definition of quality requirements and goals, implementation of measures to guarantee quality standards, regular control of data quality, and a continuous search for quality improvement. The first part of this review includes a general introduction to different aspects of quality management in MRS. It is followed by the description of a series of tests and phantoms that can be used to assure the quality of the MR system. In the third part, several methods and strategies used for quality control of the spectroscopy data are presented. This review concludes with a reference to a few interesting techniques and aspects that may help to further improve the quality of in vivo MR-spectra. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Contracting in vivo research: what are the issues?

    PubMed

    Underwood, Wendy J

    2007-07-01

    As a result of increasing internal and external pressures, research institutions are using contract research organizations for the conduct of in vivo research. Many issues arise when contracting animal research, including concern regarding animal health and welfare. Each sponsor institution should develop a program for outsourced in vivo research that evaluates and ensures appropriate care and use of research animals. Each sponsoring institution should consider establishing a policy and procedure for how outsourced in vivo studies will be approved, conducted, and monitored. An approved list of contract facilities can be established on the basis of accepted standards for animal care and use. Written contracts should include confidentiality agreements, the delineation of animal ownership, and the expectation to comply with all applicable regulations and guidelines for research animal care and use. Finally, a process for communication of adverse study or animal welfare events should be established. Thorough evaluation of contract organizations will help ensure appropriate research animal care and use.

  20. A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic cameras on ex vivo and in vivo NOTES surgical performance.

    PubMed

    Chang, Victoria C; Tang, Shou-Jiang; Swain, C Paul; Bergs, Richard; Paramo, Juan; Hogg, Deborah C; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2013-08-01

    The influence of endoscopic video camera (VC) image quality on surgical performance has not been studied. Flexible endoscopes are used as substitutes for laparoscopes in natural orifice translumenal endoscopic surgery (NOTES), but their optics are originally designed for intralumenal use. Manipulable wired or wireless independent VCs might offer advantages for NOTES but are still under development. To measure the optical characteristics of 4 VC systems and to compare their impact on the performance of surgical suturing tasks. VC systems included a laparoscope (Storz 10 mm), a flexible endoscope (Olympus GIF 160), and 2 prototype deployable cameras (magnetic anchoring and guidance system [MAGS] Camera and PillCam). In a randomized fashion, the 4 systems were evaluated regarding standardized optical characteristics and surgical manipulations of previously validated ex vivo (fundamentals of laparoscopic surgery model) and in vivo (live porcine Nissen model) tasks; objective metrics (time and errors/precision) and combined surgeon (n = 2) performance were recorded. Subtle differences were detected for color tests, and field of view was variable (65°-115°). Suitable resolution was detected up to 10 cm for the laparoscope and MAGS camera but only at closer distances for the endoscope and PillCam. Compared with the laparoscope, surgical suturing performances were modestly lower for the MAGS camera and significantly lower for the endoscope (ex vivo) and PillCam (ex vivo and in vivo). This study documented distinct differences in VC systems that may be used for NOTES in terms of both optical characteristics and surgical performance. Additional work is warranted to optimize cameras for NOTES. Deployable systems may be especially well suited for this purpose.

  1. Free-radical probes for functional in vivo EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  2. An in vivo model of functional and vascularized human brain organoids.

    PubMed

    Mansour, Abed AlFatah; Gonçalves, J Tiago; Bloyd, Cooper W; Li, Hao; Fernandes, Sarah; Quang, Daphne; Johnston, Stephen; Parylak, Sarah L; Jin, Xin; Gage, Fred H

    2018-06-01

    Differentiation of human pluripotent stem cells to small brain-like structures known as brain organoids offers an unprecedented opportunity to model human brain development and disease. To provide a vascularized and functional in vivo model of brain organoids, we established a method for transplanting human brain organoids into the adult mouse brain. Organoid grafts showed progressive neuronal differentiation and maturation, gliogenesis, integration of microglia, and growth of axons to multiple regions of the host brain. In vivo two-photon imaging demonstrated functional neuronal networks and blood vessels in the grafts. Finally, in vivo extracellular recording combined with optogenetics revealed intragraft neuronal activity and suggested graft-to-host functional synaptic connectivity. This combination of human neural organoids and an in vivo physiological environment in the animal brain may facilitate disease modeling under physiological conditions.

  3. Linear and Nonlinear Viscoelastic Modeling of Aorta and Carotid Pressure-Area Dynamics under in vivo and ex vivo Conditions

    PubMed Central

    Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.

    2013-01-01

    A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results

  4. Solid state TL detectors for in vivo dosimetry in brachytherapy.

    PubMed

    Gambarini, G; Borroni, M; Grisotto, S; Maucione, A; Cerrotta, A; Fallai, C; Carrara, M

    2012-12-01

    In vivo dosimetry provides information about the actual dose delivered to the patient treated with radiotherapy and can be adopted within a routinary treatment quality assurance protocol. Aim of this study was to evaluate the feasibility of performing in vivo rectal dosimetry by placing thermoluminescence detectors directly on the transrectal ultrasound probe adopted for on-line treatment planning of high dose rate brachytherapy boosts of prostate cancer patients. A suitable protocol for TLD calibration has been set up. In vivo measurements resulted to be in good agreement with the calculated doses, showing that the proposed method is feasible and returns accurate results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. In vivo and in vitro mixture modeling of endocrine disruptors

    EPA Science Inventory

    Humans, fish and wildlife are exposed to more than one chemical at a time. There is concern over the potential effects of exposure to mixtures of EDs. We have conducted invitro and in vivo studies to determine how EDs in mixtures interact. Our in vivo studies have examined the ef...

  6. Enzyme-Directed Assembly of Nanoparticles in Tumors Monitored by In Vivo Whole Animal and Ex Vivo Super-Resolution Fluorescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Miao-Ping; Carlini, Andrea S.; Hu, Dehong

    Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block, and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo, and in ex vivo organ analysis following intratumoral injectionmore » into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micron-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls.« less

  7. Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo.

    PubMed

    McCracken, Melissa N

    2018-01-01

    Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.

  8. Histological Methods for ex vivo Axon Tracing: A Systematic Review

    PubMed Central

    Heilingoetter, Cassandra L.; Jensen, Matthew B.

    2016-01-01

    Objectives Axon tracers provide crucial insight into the development, connectivity, and function of neural pathways. A tracer can be characterized as a substance that allows for the visualization of a neuronal pathway. Axon tracers have previously been used exclusively with in vivo studies; however, newer methods of axon tracing can be applied to ex vivo studies. Ex vivo studies involve the examination of cells or tissues retrieved from an organism. These post mortem methods of axon tracing offer several advantages, such as reaching inaccessible tissues and avoiding survival surgeries. Methods In order to evaluate the quality of the ex vivo tracing methods, we performed a systematic review of various experimental and comparison studies to discern the optimal method of axon tracing. Results The most prominent methods for ex vivo tracing involve enzymatic techniques or various dyes. It appears that there are a variety of techniques and conditions that tend to give better fluorescent character, clarity, and distance traveled in the neuronal pathway. We found direct comparison studies that looked at variables such as the type of tracer, time required, effect of temperature, and presence of calcium, however, there are other variables that have not been compared directly. Discussion We conclude there are a variety of promising tracing methods available depending on the experimental goals of the researcher, however, more direct comparison studies are needed to affirm the optimal method. PMID:27098542

  9. Histological methods for ex vivo axon tracing: A systematic review.

    PubMed

    Heilingoetter, Cassandra L; Jensen, Matthew B

    2016-07-01

    Axon tracers provide crucial insight into the development, connectivity, and function of neural pathways. A tracer can be characterized as a substance that allows for the visualization of a neuronal pathway. Axon tracers have previously been used exclusively with in vivo studies; however, newer methods of axon tracing can be applied to ex vivo studies. Ex vivo studies involve the examination of cells or tissues retrieved from an organism. These post mortem methods of axon tracing offer several advantages, such as reaching inaccessible tissues and avoiding survival surgeries. In order to evaluate the quality of the ex vivo tracing methods, we performed a systematic review of various experimental and comparison studies to discern the optimal method of axon tracing. The most prominent methods for ex vivo tracing involve enzymatic techniques or various dyes. It appears that there are a variety of techniques and conditions that tend to give better fluorescent character, clarity, and distance traveled in the neuronal pathway. We found direct comparison studies that looked at variables such as the type of tracer, time required, effect of temperature, and presence of calcium, however, there are other variables that have not been compared directly. We conclude there are a variety of promising tracing methods available depending on the experimental goals of the researcher, however, more direct comparison studies are needed to affirm the optimal method.

  10. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  11. In vivo neuronal calcium imaging in C. elegans.

    PubMed

    Chung, Samuel H; Sun, Lin; Gabel, Christopher V

    2013-04-10

    The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.

  12. Determinants of infant mortality in the Jequitinhonha Valley and in the North and Northeast regions of Brazil.

    PubMed

    Leal, Maria do Carmo; Bittencourt, Sonia Duarte de Azevedo; Torres, Raquel Maria Cardoso; Niquini, Roberta Pereira; Souza, Paulo Roberto Borges de

    2017-03-02

    This study aims to identify the social and demographic determinants, in addition to the determinants of reproductive health and use of health services, associated with infant mortality in small and medium-sized cities of the North, Northeast and Southeast regions of Brazil. This is a case-control study with 803 cases of death of children under one year and 1,969 live births (controls), whose mothers lived in the selected cities in 2008. The lists of the names of cases and controls were extracted from the Sistema de Informação sobre Mortalidade (SIM - Mortality Information System) and the Sistema de Informação sobre Nascidos Vivos (SINASC - Live Birth Information System) and supplemented by data obtained by the research of "active search of death and birth". Data was collected in the household using a semi-structured questionnaire, and the analysis was carried out using multiple logistic regression. The final model indicates that the following items are positively and significantly associated with infant mortality: family working in agriculture, mother having a history of fetal and infant losses, no prenatal or inadequate prenatal, and not being associated to the maternity hospital during the prenatal period. We have observed significant interactions to explain the occurrence of infant mortality between race and socioeconomic score and between high-risk pregnancy and pilgrimage for childbirth. The excessive number of home deliveries and pilgrimage for childbirth indicates flaws in the line of maternity care and a lack of collaboration between the levels of outpatient and hospital care. The study reinforces the need for an integrated management of the health care networks, leveraging the capabilities of cities in meeting the needs of pregnancy, delivery and birth with quality. Identificar os determinantes sociais, demográficos, da saúde reprodutiva e de utilização dos serviços de saúde associados ao óbito infantil em municípios de pequeno e médio porte

  13. A biomimetic approach for enhancing the in vivo half-life of peptides

    PubMed Central

    Penchala, Sravan C; Miller, Mark R; Pal, Arindom; Dong, Jin; Madadi, Nikhil R.; Xie, Jinghang; Joo, Hyun; Tsai, Jerry; Batoon, Patrick; Samoshin, Vyacheslav; Franz, Andreas; Cox, Trever; Miles, Jesse; Chan, William K; Park, Miki S; Alhamadsheh, Mamoun M

    2015-01-01

    The tremendous therapeutic potential of peptides has not yet been realized, mainly due to their short in vivo half-life. While conjugation to macromolecules has been a mainstay approach for enhancing the half-life of proteins, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of peptides without compromising their potency. Our approach involves endowing peptides with a small-molecule that binds reversibly to the serum protein, transthyretin. Although there are few reversible albumin-binding molecules, we are unaware of designed small molecules that bind reversibly to other serum proteins and are used for half-life extension in vivo. We show here that our strategy was indeed effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy. PMID:26344696

  14. High-yield in vitro recordings from neurons functionally characterized in vivo.

    PubMed

    Weiler, Simon; Bauer, Joel; Hübener, Mark; Bonhoeffer, Tobias; Rose, Tobias; Scheuss, Volker

    2018-06-01

    In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.

  15. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging.

    PubMed

    Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie

    2017-02-01

    Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas

  16. Low-dose radiation attenuates chemical mutagenesis in vivo.

    PubMed

    Kakinuma, Shizuko; Yamauchi, Kazumi; Amasaki, Yoshiko; Nishimura, Mayumi; Shimada, Yoshiya

    2009-09-01

    The biological effects of low-dose radiation are not only of social concern but also of scientific interest. The radioadaptive response, which is defined as an increased radioresistance by prior exposure to low-dose radiation, has been extensively studied both in vitro and in vivo. Here we briefly review the radioadaptive response with respect to mutagenesis, survival rate, and carcinogenesis in vivo, and introduce our recent findings of cross adaptation in mouse thymic cells, that is, the suppressive effect of repeated low-dose radiation on mutation induction by the alkylating agent N-ethyl-N-nitrosourea.

  17. In vivo staging of regional amyloid deposition.

    PubMed

    Grothe, Michel J; Barthel, Henryk; Sepulcre, Jorge; Dyrba, Martin; Sabri, Osama; Teipel, Stefan J

    2017-11-14

    To estimate a regional progression pattern of amyloid deposition from cross-sectional amyloid-sensitive PET data and evaluate its potential for in vivo staging of an individual's amyloid pathology. Multiregional analysis of florbetapir ( 18 F-AV45)-PET data was used to determine individual amyloid distribution profiles in a sample of 667 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, including cognitively normal older individuals (CN) as well as patients with mild cognitive impairment and Alzheimer disease (AD) dementia. The frequency of regional amyloid positivity across CN individuals was used to construct a 4-stage model of progressing amyloid pathology, and individual distribution profiles were used to evaluate the consistency of this hierarchical stage model across the full cohort. According to a 4-stage model, amyloid deposition begins in temporobasal and frontomedial areas, and successively affects the remaining associative neocortex, primary sensory-motor areas and the medial temporal lobe, and finally the striatum. Amyloid deposition in these brain regions showed a highly consistent hierarchical nesting across participants, where only 2% exhibited distribution profiles that deviated from the staging scheme. The earliest in vivo amyloid stages were mostly missed by conventional dichotomous classification approaches based on global florbetapir-PET signal, but were associated with significantly reduced CSF Aβ42 levels. Advanced in vivo amyloid stages were most frequent in patients with AD and correlated with cognitive impairment in individuals without dementia. The highly consistent regional hierarchy of PET-evidenced amyloid deposition across participants resembles neuropathologic observations and suggests a predictable regional sequence that may be used to stage an individual's progress of amyloid pathology in vivo. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of

  18. Simulation of in vivo dynamics during robot assisted joint movement.

    PubMed

    Bobrowitsch, Evgenij; Lorenz, Andrea; Wülker, Nikolaus; Walter, Christian

    2014-12-16

    Robots are very useful tools in orthopedic research. They can provide force/torque controlled specimen motion with high repeatability and precision. A method to analyze dissipative energy outcome in an entire joint was developed in our group. In a previous study, a sheep knee was flexed while axial load remained constant during the measurement of dissipated energy. We intend to apply this method for the investigation of osteoarthritis. Additionally, the method should be improved by simulation of in vivo knee dynamics. Thus, a new biomechanical testing tool will be developed for analyzing in vitro joint properties after different treatments. Discretization of passive knee flexion was used to construct a complex flexion movement by a robot and simulate altering axial load similar to in vivo sheep knee dynamics described in a previous experimental study. The robot applied an in vivo like axial force profile with high reproducibility during the corresponding knee flexion (total standard deviation of 0.025 body weight (BW)). A total residual error between the in vivo and simulated axial force was 0.16 BW. Posterior-anterior and medio-lateral forces were detected by the robot as a backlash of joint structures. Their curve forms were similar to curve forms of corresponding in vivo measured forces, but in contrast to the axial force, they showed higher total standard deviation of 0.118 and 0.203 BW and higher total residual error of 0.79 and 0.21 BW for posterior-anterior and medio-lateral forces respectively. We developed and evaluated an algorithm for the robotic simulation of complex in vivo joint dynamics using a joint specimen. This should be a new biomechanical testing tool for analyzing joint properties after different treatments.

  19. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    PubMed Central

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  20. Coagulation Management in Jersey Calves: An ex vivo Study.

    PubMed

    Gröning, Sabine; Maas, Judith; van Geul, Svenja; Rossaint, Rolf; Steinseifer, Ulrich; Grottke, Oliver

    2017-01-01

    Jersey calves are frequently used as an experimental animal model for in vivo testing of cardiac assist devices or orthopedic implants. In this ex vivo study, we analyzed the coagulation system of the Jersey calves and the potential of human-based coagulation management to circumvent perioperative bleeding complications during surgery. Experimental Procedure: Blood from 7 Jersey calves was subjected to standard laboratory tests and thromboelastometry analysis. An ex vivo model of dilutional coagulopathy was used to study the effects of fibrinogen or prothrombin complex concentrate supplementation. Fibrinolysis was induced with tissue plasminogen activator to identify potential therapeutic strategies involving tranexamic acid or aprotinin. Furthermore, anticoagulation strategies were evaluated by incubating the blood samples with dabigatran or rivaroxaban. Baseline values for thromboelastometry and standard laboratory parameters, including prothrombin time, activated partial thromboplastin time, fibrinogen, antithrombin III, and D-dimers, were established. Fifty percent diluted blood showed a statistically significant impairment of hemostasis. The parameters significantly improved after the administration of fibrinogen or prothrombin complex concentrate. Tranexamic acid and aprotinin ameliorated tissue plasminogen activator-induced fibrinolysis. Both dabigatran and rivaroxaban significantly prolonged the coagulation parameters. In this ex vivo study, coagulation factors, factor concentrate, antifibrinolytic reagents, and anticoagulants regularly used in the clinic positively impacted coagulation parameters in Jersey calf blood. © 2017 S. Karger AG, Basel.

  1. On-chip immobilization of planarians for in vivo imaging.

    PubMed

    Dexter, Joseph P; Tamme, Mary B; Lind, Christine H; Collins, Eva-Maria S

    2014-09-17

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra.

  2. On-chip immobilization of planarians for in vivo imaging

    PubMed Central

    Dexter, Joseph P.; Tamme, Mary B.; Lind, Christine H.; Collins, Eva-Maria S.

    2014-01-01

    Planarians are an important model organism for regeneration and stem cell research. A complete understanding of stem cell and regeneration dynamics in these animals requires time-lapse imaging in vivo, which has been difficult to achieve due to a lack of tissue-specific markers and the strong negative phototaxis of planarians. We have developed the Planarian Immobilization Chip (PIC) for rapid, stable immobilization of planarians for in vivo imaging without injury or biochemical alteration. The chip is easy and inexpensive to fabricate, and worms can be mounted for and removed after imaging within minutes. We show that the PIC enables significantly higher-stability immobilization than can be achieved with standard techniques, allowing for imaging of planarians at sub-cellular resolution in vivo using brightfield and fluorescence microscopy. We validate the performance of the PIC by performing time-lapse imaging of planarian wound closure and sequential imaging over days of head regeneration. We further show that the device can be used to immobilize Hydra, another photophobic regenerative model organism. The simple fabrication, low cost, ease of use, and enhanced specimen stability of the PIC should enable its broad application to in vivo studies of stem cell and regeneration dynamics in planarians and Hydra. PMID:25227263

  3. In vivo RNAi: Today and Tomorrow

    PubMed Central

    Perrimon, Norbert; Ni, Jian-Quan; Perkins, Lizabeth

    2010-01-01

    SUMMARY RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine. PMID:20534712

  4. [Research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering].

    PubMed

    Zhang, Haifeng; Han, Dong

    2014-09-01

    To review the application and research progress of in vivo bioreactor as vascularization strategies in bone tissue engineering. The original articles about in vivo bioreactor that can enhance vascularization of tissue engineered bone were extensively reviewed and analyzed. The in vivo bioreactor can be created by periosteum, muscle, muscularis membrane, and fascia flap as well as biomaterials. Using in vivo bioreactor can effectively promote the establishment of a microcirculation in the tissue engineered bones, especially for large bone defects. However, main correlative researches, currently, are focused on animal experiments, more clinical trials will be carried out in the future. With the rapid development of related technologies of bone tissue engineering, the use of in vivo bioreactor will to a large extent solve the bottleneck limitations and has the potential values for clinical application.

  5. Use of GFP for in vivo imaging: concepts and misconceptions

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.

    2008-02-01

    Although GFP and fluorescent proteins are used extensively for in vivo imaging, there are many misconceptions about GFP imaging especially compared to luciferase. GFP is not toxic, indeed, transgenic animals with GFP expressed in every cell (1) live as long as non-transgenic animals. Cancer cells with GFP are as aggressive and malignant as the cells without GFP (2-4). Cell lines can be made very bright with fluorescent proteins with no toxicity. The in vivo signal from fluorescent proteins is at least 1,000 times greater than luciferase (5). GFP is so bright that a single molecule of GFP can be seen in a bacterium (6). GFP can be observed through the skin on deep organs (7). Skin autofluorescence presents no problem for in vivo GFP imaging with proper filters (8). Fur can be rapidly clipped removing this autofluorescence (9). GFP is readily quantified by the image area which correlates to tumor volume (10). There are now numerous clones of GFP, RFP, YFP and proteins that change color (11) that can be used in vivo.

  6. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo

    NASA Astrophysics Data System (ADS)

    McVeigh, Patrick Z.; Mallia, Rupananda J.; Veilleux, Israel; Wilson, Brian C.

    2013-04-01

    In recent years numerous studies have shown the potential advantages of molecular imaging in vitro and in vivo using contrast agents based on surface enhanced Raman scattering (SERS), however the low throughput of traditional point-scanned imaging methodologies have limited their use in biological imaging. In this work we demonstrate that direct widefield Raman imaging based on a tunable filter is capable of quantitative multiplex SERS imaging in vivo, and that this imaging is possible with acquisition times which are orders of magnitude lower than achievable with comparable point-scanned methodologies. The system, designed for small animal imaging, has a linear response from (0.01 to 100 pM), acquires typical in vivo images in <10 s, and with suitable SERS reporter molecules is capable of multiplex imaging without compensation for spectral overlap. To demonstrate the utility of widefield Raman imaging in biological applications, we show quantitative imaging of four simultaneous SERS reporter molecules in vivo with resulting probe quantification that is in excellent agreement with known quantities (R2>0.98).

  7. Voluntary chronic exercise augments in vivo natural immunity in rats.

    PubMed

    Jonsdottir, I H; Asea, A; Hoffmann, P; Dahlgren, U I; Andersson, B; Hellstrand, K; Thorén, P

    1996-05-01

    The effect of chronic voluntary exercise on the immune response was studied in spontaneously hypertensive rats. Exercise consisted of voluntary running in wheels for 5 wk, and the mean running distance was 4.2 km/24 h. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners compared with sedentary controls (P < 0.001). The total number of mononuclear cells in the spleen was significantly decreased in runners compared with controls. Analysis of splenic lymphocyte phenotypes revealed a significantly increased fraction of OX52+/CD5- natural killer cells in runners compared with sedentary controls. In contrast to changes in natural immunity, immunoglobulins G and M levels in serum, the antibody response to antigen in vivo, and the proliferation of splenic T cells in vitro were unchanged. Our data suggest that chronic voluntary exercise augments natural cytotoxicity mechanisms in vivo, whereas splenic T-cell proliferation and the antibody-mediated immune response remain unchanged.

  8. In Vivo Monitoring Program Manual, PNL-MA-574, Rev 5.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Timothy P.

    2011-09-12

    The following sections provide an overview of the administration for the In Vivo Monitoring Program (IVMP) for Hanford. This includes the organizational structure and program responsibilities; coordination of in vivo measurements; scheduling measurements; performing measurements; reporting results; and quality assurance.

  9. Development of novel formulations to enhance in vivo transdermal permeation of tocopherol.

    PubMed

    Nada, Aly H; Zaghloul, Abdelazim A; Hedaya, Mohsen M; Khattab, Ibrahim S

    2014-09-01

    Tocopherol represents a big challenge for transdermal permeation owing to its extreme hydrophobicity and large molecular mass. The aim of the present study was to develop alpha-tocopherol (T) topical formulations and evaluate their ex vivo and in vivo permeation. Franz diffusion cells were used for ex vivo permeation, and neonatal rats were used for in vivo permeation. Seven gel formulations and 21 liquid formulations were investigated for physical stability, viscosity and permeation of T. Analysis of T was performed by a validated HPLC method using a UV detector. The ex vivo permeation from gel and emulsion formulations was very poor (0.001-0.015%). Highest permeation was observed from monophasic liquid formulations containing dimethyl sulfoxide (DMSO), tocopheryl polyethylene glycols (TPGs), propylene glycol, ethanol and 9.5% T. The in vivo results demonstrated higher retention in the epidermis compared to subcutaneous tissues, 1377 and 1.13 μg g⁻¹, respectively. Increasing T concentration from 4.8 to 9.5% did not increase the amount permeated or % of T retained. It was concluded that simple solutions of T in the presence of DMSO and TPGs were more promising systems for effective transdermal permeation compared to gel, emulsion or oleaginous systems.

  10. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium.

    PubMed

    Bowen, Patrick K; Drelich, Adam; Drelich, Jaroslaw; Goldman, Jeremy

    2015-01-01

    The development of magnesium-based materials for bioabsorbable stents relies heavily on corrosion testing by immersion in pseudophysiological solutions, where magnesium degrades faster than it does in vivo. The quantitative difference in corrosion kinetics in vitro and in vivo is largely unknown, but, if determined, would help reduce dependence on animal models. In order to create a quantitative in vitro-in vivo correlation based on an accepted measure of corrosion (penetration rate), commercially pure magnesium wires were corroded in vivo in the abdominal aortas of rats for 5-32 days, and in vitro for up to 14 days using Dulbecco's modified eagle medium. Cross-sectioning, scanning electron microscopy, image analysis, a modified penetration rate tailored to degraded wires, and empirical modeling were used to analyze the corroded specimens. In vitro penetration rates were consistently higher than comparable in vivo rates by a factor of 1.2-1.9× (±0.2×). For a sample <20% corroded, an approximate in vitro-in vivo multiplier of 1.3 ± 0.2× was applied, whereas a multiplier of 1.8 ± 0.2× became appropriate when the magnesium specimen was 25-35% degraded. © 2014 Wiley Periodicals, Inc.

  11. Supporting Information Linking and Discovery Across Organizations Using the VIVO Semantic Web Software Suite

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Daniels, M. D.; Maull, K. E.; Khan, H.; Krafft, D. B.; Gross, M. B.; Rowan, L. R.

    2016-12-01

    Geosciences research is often conducted using distributed networks of researchers and resources. To better enable the discovery of the research output from the scientists and resources used within these organizations, UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab (http://earthcube.org/group/earthcollab) project which seeks to leverage semantic technologies to manage and link scientific data. As part of this effort, we have been exploring how to leverage information distributed across multiple research organizations. EarthCollab is using the VIVO semantic software suite to lookup and display Semantic Web information across our project partners.Our presentation will include a demonstration of linking between VIVO instances, discussing how to create linkages between entities in different VIVO instances where both entities describe the same person or resource. This discussion will explore how we designate the equivalence of these entities using "same as" assertions between identifiers representing these entities including URIs and ORCID IDs and how we have extended the base VIVO architecture to support the lookup of which entities in separate VIVO instances may be equivalent and to then display information from external linked entities. We will also discuss how these extensions can support other linked data lookups and sources of information.This VIVO cross-linking mechanism helps bring information from multiple VIVO instances together and helps users in navigating information spread-out between multiple VIVO instances. Challenges and open questions for this approach relate to how to display the information obtained from an external VIVO instance, both in order to preserve the brands of the internal and external systems and to handle discrepancies between ontologies, content, and/or VIVO versions.

  12. In vivo near-infrared imaging of fibrin deposition in thromboembolic stroke in mice.

    PubMed

    Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun

    2012-01-01

    Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa-targeted near-infrared fluorescence (NIRF) imaging. The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of fibrin in stroke.

  13. In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice

    PubMed Central

    Zhang, Yi; Fan, Shufeng; Yao, Yuyu; Ding, Jie; Wang, Yu; Zhao, Zhen; Liao, Lei; Li, Peicheng; Zang, Fengchao; Teng, Gao-Jun

    2012-01-01

    Objectives Thrombus and secondary thrombosis plays a key role in stroke. Recent molecular imaging provides in vivo imaging of activated factor XIII (FXIIIa), an important mediator of thrombosis or fibrinolytic resistance. The present study was to investigate the fibrin deposition in a thromboembolic stroke mice model by FXIIIa–targeted near-infrared fluorescence (NIRF) imaging. Materials and Methods The experimental protocol was approved by our institutional animal use committee. Seventy-six C57B/6J mice were subjected to thromboembolic middle cerebral artery occlusion or sham operation. Mice were either intravenously injected with the FXIIIa-targeted probe or control probe. In vivo and ex vivo NIRF imaging were performed thereafter. Probe distribution was assessed with fluorescence microscopy by spectral imaging and quantification system. MR scans were performed to measure lesion volumes in vivo, which were correlated with histology after animal euthanasia. Results In vivo significant higher fluorescence intensity over the ischemia-affected hemisphere, compared to the contralateral side, was detected in mice that received FXIIIa-targeted probe, but not in the controlled mice. Significantly NIRF signals showed time-dependent processes from 8 to 96 hours after injection of FXIIIa-targeted probes. Ex vivo NIRF image showed an intense fluorescence within the ischemic territory only in mice injected with FXIIIa-targeted probe. The fluorescence microscopy demonstrated distribution of FXIIIa-targeted probe in the ischemic region and nearby micro-vessels, and FXIIIa-targeted probe signals showed good overlap with immune-fluorescent fibrin staining images. There was a significant correlation between total targeted signal from in vivo or ex vivo NIRF images and lesion volume. Conclusion Non-invasive detection of fibrin deposition in ischemic mouse brain using NIRF imaging is feasible and this technique may provide an in vivo experimental tool in studying the role of

  14. Near-infrared light excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy.

    PubMed

    Zheng, Bin; Bai, Yang; Chen, Hongbin; Pan, Huizhuo; Ji, Wanying; Gong, Xiaoqun; Wu, Xiaoli; Wang, Hanjie; Chang, Jin

    2018-05-14

    Optical imaging for biological applications is in need of more sensitive tool. Persistent luminescent nanophosphors enable highly sensitive in vivo optical detection and almost completely avoids tissue autofluorescence. Nevertheless, the actual persistent luminescent nanophosphors necessitates ex vivo activation before systemic operation, which severely restricted the use of long-term imaging in vivo. Hence, we introduced a novel generation of optical nanophosphors, based on (Zn2SiO4: Mn): Y3+, Yb3+, Tm3+ upconverting persistent luminescent nanophosphors, these nanophosphors can be excited in vivo through living tissues by highly penetrating near-infrared light. We can trace labeled tumor therapeutic macrophages in vivo after endocytosing these nanophosphors in vitro and follow macrophages biodistribution by a simple whole animal optical detection. These nanophosphors will open novel potentials for cell therapy research and for a variety of diagnosis applications in vivo.

  15. Iris ultrastructure in patients with synechiae as revealed by in vivo laser scanning confocal microscopy : In vivo iris ultrastructure in patients with Synechiae by Laser Scanning Confocal Microscopy.

    PubMed

    Li, Ming; Cheng, Hongbo; Guo, Ping; Zhang, Chun; Tang, Song; Wang, Shusheng

    2016-04-26

    Iris plays important roles in ocular physiology and disease pathogenesis. Currently it is technically challenging to noninvasively examine the human iris ultrastructure in vivo. The purpose of the current study is to reveal human iris ultrastructure in patients with synechiae by using noninvasive in vivo laser scanning confocal microscopy (LSCM). The ultrastructure of iris in thirty one patients, each with synechiae but transparent cornea, was examined by in vivo LSCM. Five characteristic iris ultrastructures was revealed in patients with synechiae by in vivo LSCM, which include: 1. tree trunk-like structure; 2. tree branch/bush-like structure; 3. Fruit-like structure; 4. Epithelioid-like structure; 5. deep structure. Pigment granules can be observed as a loose structure on the top of the arborization structure. In iris-associated diseases with Tyndall's Phenomenon and keratic precipitates, the pigment particles are more likely to fall off from the arborization structure. The ultrastructure of iris in patients with synechiae has been visualized using in vivo LSCM. Five iris ultrastructures can be clearly observed, with some of the structures maybe disease-associated. The fall-off of the pigment particles may cause the Tyndall's Phenomenon positive. In vivo LSCM provides a non-invasive approach to observe the human iris ultrastructure under certain eye disease conditions, which sets up a foundation to visualize certain iris-associated diseases in the future.

  16. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  17. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo

    PubMed Central

    Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L.

    2015-01-01

    Background: Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. Method: BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post–sensor implantation with standard histological techniques. Results: The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Conclusion: Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. PMID:26306494

  18. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.

    PubMed

    Klueh, Ulrike; Qiao, Yi; Czajkowski, Caroline; Ludzinska, Izabela; Antar, Omar; Kreutzer, Donald L

    2015-08-25

    Implantable glucose sensors demonstrate a rapid decline in function that is likely due to biofouling of the sensor. Previous efforts directed at overcoming this issue has generally focused on the use of synthetic polymer coatings, with little apparent effect in vivo, clearly a novel approach is required. We believe that the key to extending sensor life span in vivo is the development of biocompatible basement membrane (BM) based bio-hydrogels as coatings for glucose sensors. BM based bio-hydrogel sensor coatings were developed using purified BM preparations (ie, Cultrex from Trevigen Inc). Modified Abbott sensors were coated with Cultrex BM extracts. Sensor performance was evaluated for the impact of these coatings in vitro and in vivo in a continuous glucose monitoring (CGM) mouse model. In vivo sensor function was assessed over a 28-day time period expressed as mean absolute relative difference (MARD) values. Tissue reactivity of both Cultrex coated and uncoated glucose sensors was evaluated at 7, 14, 21 and 28 days post-sensor implantation with standard histological techniques. The data demonstrate that Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo glucose sensor performance was enhanced following BM coating as determined by MARD analysis, particularly in weeks 2 and 3. In vivo studies also demonstrated that Cultrex coatings significantly decreased sensor-induced tissue reactions at the sensor implantation sites. Basement-membrane-based sensor coatings enhance glucose sensor function in vivo, by minimizing or preventing sensor-induced tissues reactions. © 2015 Diabetes Technology Society.

  19. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-07

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  20. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  1. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  2. In-vivo singlet oxygen threshold doses for PDT

    PubMed Central

    Zhu, Timothy C.; Kim, Michele M.; Liang, Xing; Finlay, Jarod C.; Busch, Theresa M.

    2015-01-01

    Objective Dosimetry of singlet oxygen (1O2) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [1O2]rx,sh, for PDT was developed. Material and methods An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [1O2]rx,sh. Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. Results The mean values (standard deviation) of the in-vivo [1O2]rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×107 and 4.6×107 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g, β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. Discussion In comparison, the [1O2]rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×108 per cell per 1/e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/e to

  3. In-vivo singlet oxygen threshold doses for PDT.

    PubMed

    Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M

    2015-02-01

    Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet

  4. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  5. Elastic Cherenkov effects in transversely isotropic soft materials-II: Ex vivo and in vivo experiments

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; He, Qiong; Qian, Lin-Xue; Geng, Huiying; Liu, Yanlin; Yang, Xue-Yi; Luo, Jianwen; Cao, Yanping

    2016-09-01

    In part I of this study, we investigated the elastic Cherenkov effect (ECE) in an incompressible transversely isotropic (TI) soft solid using a combined theoretical and computational approach, based on which an inverse method has been proposed to measure both the anisotropic and hyperelastic parameters of TI soft tissues. In this part, experiments were carried out to validate the inverse method and demonstrate its usefulness in practical measurements. We first performed ex vivo experiments on bovine skeletal muscles. Not only the shear moduli along and perpendicular to the direction of muscle fibers but also the elastic modulus EL and hyperelastic parameter c2 were determined. We next carried out tensile tests to determine EL, which was compared with the value obtained using the shear wave elastography method. Furthermore, we conducted in vivo experiments on the biceps brachii and gastrocnemius muscles of ten healthy volunteers. To the best of our knowledge, this study represents the first attempt to determine EL of human muscles using the dynamic elastography method and inverse analysis. The significance of our method and its potential for clinical use are discussed.

  6. In vivo oxidation in remelted highly cross-linked retrievals.

    PubMed

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight

  7. In vivo bioresponses to silk proteins.

    PubMed

    Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L

    2015-12-01

    Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials

  8. Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas ex vivo and normal human arteries in vivo

    PubMed Central

    Li, Ronny X.; Qaqish, William; Konofagou, Elisa. E.

    2015-01-01

    The propagation behavior of the arterial pulse wave may provide valuable diagnostic information for cardiovascular pathology. Pulse Wave Imaging (PWI) is a noninvasive, ultrasound imaging-based technique capable of mapping multiple wall motion waveforms along a short arterial segment over a single cardiac cycle, allowing for the regional pulse wave velocity (PWV) and propagation uniformity to be evaluated. The purpose of this study was to improve the clinical utility of PWI using a conventional ultrasound system. The tradeoff between PWI spatial and temporal resolution was evaluated using an ex vivo canine aorta (n = 2) setup to assess the effects of varying image acquisition and signal processing parameters on the measurement of the PWV and the pulse wave propagation uniformity r2. PWI was also performed on the carotid arteries and abdominal aortas of 10 healthy volunteers (24.8 ± 3.3 y.o.) to determine the waveform tracking feature that would yield the most precise PWV measurements and highest r2 values in vivo. The ex vivo results indicated that the highest precision for measuring PWVs ~ 2.5 – 3.5 m/s was achieved using 24–48 scan lines within a 38 mm image plane width (i.e. 0.63 – 1.26 lines/mm). The in vivo results indicated that tracking the 50% upstroke of the waveform would consistently yield the most precise PWV measurements and minimize the error in the propagation uniformity measurement. Such findings may help establish the optimal image acquisition and signal processing parameters that may improve the reliability of PWI as a clinical measurement tool. PMID:26640603

  9. Confocal imaging of benign and malignant proliferative skin lesions in vivo

    NASA Astrophysics Data System (ADS)

    Gonzalez, Salvador; Rajadhyaksha, Milind M.; Anderson, R. Rox

    1999-06-01

    Near-infrared confocal reflectance microscopy (CM) provides non- invasive real-time images of thin en-face tissue sections with high resolution and contrast. Imaging of cells, nuclei, other organelles, microvessels, and hair follicles has been possible at resolution comparable to standard histology, to a maximum depth of 250-300 μm in human skin in vivo. We have characterized psoriasis as a prototype of benign proliferative skin conditions, and non-pigmented skin malignancies in vivo based on their unstained, native histologic features using CM. Our data shows that reflectance CM may potentially diagnose and morphometrically evaluate proliferative skin lesions in vivo.

  10. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging.

    PubMed

    Chien, Miao-Ping; Carlini, Andrea S; Hu, Dehong; Barback, Christopher V; Rush, Anthony M; Hall, David J; Orr, Galya; Gianneschi, Nathan C

    2013-12-18

    Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO/DMF to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo and in ex vivo organ analysis following intratumoral injection into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micrometer-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super-resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls.

  11. Real-Time Amperometric Recording of Extracellular H2O2 in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study

    PubMed Central

    Reid, Caroline H.; Finnerty, Niall J.

    2017-01-01

    We detail an extensive characterisation study on a previously described dual amperometric H2O2 biosensor consisting of H2O2 detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H2O2 sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H2O2 biosensor to detect increases in amperometric current following locally perfused/infused H2O2 and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H2O2 current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H2O2 and tentatively supports measurement of H2O2 dynamics in freely moving NOD SCID mice. PMID:28698470

  12. A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts

    PubMed Central

    Shatil, Anwar S.; Matsuda, Kant M.; Figley, Chase R.

    2016-01-01

    Magnetic resonance imaging (MRI) is a non-destructive technique that is capable of localizing pathologies and assessing other anatomical features (e.g., tissue volume, microstructure, and white matter connectivity) in postmortem, ex vivo human brains. However, when brains are removed from the skull and cerebrospinal fluid (i.e., their normal in vivo magnetic environment), air bubbles and air–tissue interfaces typically cause magnetic susceptibility artifacts that severely degrade the quality of ex vivo MRI data. In this report, we describe a relatively simple and cost-effective experimental setup for acquiring artifact-free ex vivo brain images using a clinical MRI system with standard hardware. In particular, we outline the necessary steps, from collecting an ex vivo human brain to the MRI scanner setup, and have also described changing the formalin (as might be necessary in longitudinal postmortem studies). Finally, we share some representative ex vivo MRI images that have been acquired using the proposed setup in order to demonstrate the efficacy of this approach. We hope that this protocol will provide both clinicians and researchers with a straight-forward and cost-effective solution for acquiring ex vivo MRI data from whole postmortem human brains. PMID:27965620

  13. In vivo estimation of target registration errors during augmented reality laparoscopic surgery.

    PubMed

    Thompson, Stephen; Schneider, Crispin; Bosi, Michele; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J

    2018-06-01

    Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery.

  14. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography

    PubMed Central

    Lenton, Pat; Rudney, Joel; Chen, Ruoqiong; Fok, Alex; Aparicio, Conrado; Jones, Robert S.

    2012-01-01

    Objectives Conventional diagnostic methods frequently detect only late stage enamel demineralization under composite resin restorations. The objective of this study is to examine the subsurface tooth-composite interface and to assess for the presence of secondary caries in pediatric patients using a novel Optical Coherence Tomography System with an intraoral probe. Methods A newly designed intraoral cross polarization swept source optical coherence tomography (CP-OCT) imaging system was used to examine the integrity of the enamel-composite interfaces in vivo. Twenty two pediatric subjects were recruited with either recently placed or long standing composite restorations in their primary teeth. To better understand how bacterial biofilms cause demineralization at the interface, we also used the intraoral CP-OCT system to assess ex vivo bacterial biofilm growth on dental composites. Results As a positive control, cavitated secondary carious interfaces showed a 18.2 dB increase (p<0.001), or over 1-2 orders of magnitude higher, scattering than interfaces associated with recently placed composite restorations. Several long standing composite restorations, which appeared clinically sound, had a marked increase in scattering than recently placed restorations. This suggests the ability of CP-OCT to assess interfacial degradation such as early secondary caries prior to cavitation. CP-OCT was also able to image ex vivo biofilms on dental composites and assess their thickness. Significance This paper shows that CP-OCT imaging using a beam splitter based design can examine the subsurface interface of dental composites in human subjects. Furthermore, the probe dimensions and acquisition speed of the CP-OCT system allowed for analysis of caries development in children. PMID:22578989

  15. Screening phage display libraries for organ-specific vascular immunotargeting in vivo

    PubMed Central

    Valadon, Philippe; Garnett, Jeff D.; Testa, Jacqueline E.; Bauerle, Marc; Oh, Phil; Schnitzer, Jan E.

    2006-01-01

    The molecular diversity of the luminal endothelial cell surface arising in vivo from local variations in genetic expression and tissue microenvironment may create opportunities for achieving targeted molecular imaging and therapies. Here, we describe a strategy to identify probes and their cognate antigens for targeting vascular endothelia of specific organs in vivo. We differentially screen phage libraries to select organ-targeting antibodies by using luminal endothelial cell plasma membranes isolated directly from tissue and highly enriched in natively expressed proteins exposed to the bloodstream. To obviate liver uptake of intravenously injected phage, we convert the phage-displayed antibodies into scFv-Fc fusion proteins, which then are able to rapidly target select organ(s) in vivo as visualized directly by γ-scintigraphic whole-body imaging. Mass spectrometry helps identify the antigen targets. This comprehensive strategy provides new promise for harnessing the power of phage display for mapping vascular endothelia natively in tissue and for achieving vascular targeting of specific tissues in vivo. PMID:16384919

  16. Experiences with the in vivo and in vitro comet assay in regulatory testing.

    PubMed

    Frötschl, Roland

    2015-01-01

    The in vivo comet assay has recently been implemented into regulatory genotoxicity testing of pharmaceuticals with inclusion into the ICH S2R1 guidance. Regulatory genotoxicity testing aims to detect DNA alterations in form of gene mutations, larger scale chromosomal damage and recombination and aneuploidy. The ICH S2R1 guideline offers two options of standard batteries of tests for the detection of these endpoints. Both options start with an AMES assay and option 1 includes an in vitro mammalian cell assay and an in vivo micronucleus assay in rodent, whereas option 2 includes an in vivo micronucleus assay in bone marrow in rodent and a second in vivo assay in a second tissue with a second endpoint. The test recommended as second in vivo test is the comet assay in rat liver. The in vivo comet assay is considered as mature enough to ensure reliable detection of relevant in vivo genotoxicants in combination with the micronucleus test in bone marrow and the AMES assay. Although lots of research papers have been published using the in vitro comet assay, the in vitro version has not been implemented into official regulatory testing guidelines. A survey of the years 1999-2014 revealed 27 in vivo comet assays submitted to BfArM with market authorisation procedures, European and national advice procedures and clinical trial applications. In three procedures, in vitro comet assays had been submitted within the genetic toxicology packages. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    PubMed

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  18. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming

    PubMed Central

    Mitani, Yasuyuki; Vagnozzi, Ronald J.; Millay, Douglas P.

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non–muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle–specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.—Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. PMID:27825107

  19. Estimating Likelihood of Fetal In Vivo Interactions Using In ...

    EPA Pesticide Factsheets

    Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug interaction studies, Cmax/AC50 (i.e., maximal in vivo blood concentration over the half-maximal in in vitro activity concentration), will give a useful approximation for concentrations where in vivo interactions are likely. Further, for doses where maternal blood concentrations are likely to elicit an interaction (Cmax/AC50>0.1), where do the compounds accumulate in fetal tissues? In order to estimate these doses based on Tox21 data, in silico parameters of chemical fraction unbound in plasma and intrinsic hepatic clearance were estimated from ADMET predictor (Simulations-Plus Inc.) and used in the HTTK R-package to obtain Cmax values from a physiologically-based toxicokinetics model. In silico estimated Cmax values predicted in vivo human Cmax with median absolute error of 0.81 for 93 chemicals, giving confidence in the R-package and in silico estimates. A case example evaluating Cmax/AC50 values for peroxisome proliferator-activated receptor gamma (PPARγ) and glucocorticoid receptor revealed known compounds (glitazones and corticosteroids, respectively) highest on the list at pharmacological doses. Doses required to elicit likely interactions across all Tox21/ToxCast assays were compared to

  20. The use of ex vivo human skin tissue for genotoxicity testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positivemore » or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The

  1. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    NASA Astrophysics Data System (ADS)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  2. In vivo imaging of protease activity by Probody therapeutic activation

    PubMed Central

    Wong, Kenneth R.; Menendez, Elizabeth; Craik, Charles S.; Kavanaugh, W. Michael; Vasiljeva, Olga

    2017-01-01

    Probody™ therapeutics are recombinant, proteolytically-activated antibody prodrugs, engineered to remain inert until activated locally by tumor-associated proteases. Probody therapeutics exploit the fundamental dysregulation of extracellular protease activity that exists in tumors relative to healthy tissue. Leveraging the ability of a Probody therapeutic to bind its target at the site of disease after proteolytic cleavage, we developed a novel method for profiling protease activity in living animals. Using NIR optical imaging, we demonstrated that a non-labeled anti-EGFR Probody therapeutic can become activated and compete for binding to tumor cells in vivo with a labeled anti-EGFR monoclonal antibody. Furthermore, by inhibiting matriptase activity in vivo with a blocking-matriptase antibody, we show that the ability of the Probody therapeutic to bind EGFR in vivo was dependent on protease activity. These results demonstrate that in vivo imaging of Probody therapeutic activation can be used for screening and characterization of protease activity in living animals, and provide a method that avoids some of the limitations of prior methods. This approach can improve our understanding of the activity of proteases in disease models and help to develop efficient strategies for cancer diagnosis and treatment. PMID:26546838

  3. In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum.

    PubMed

    Lee, H-R; Rhyu, I-C; Kim, H-D; Jun, H-K; Min, B-M; Lee, S-H; Choi, B-K

    2011-04-01

    Fusobacterium nucleatum plays a pivotal role in dental plaque biofilm formation and is known to be involved in chronic inflammatory systemic disease. However, limited knowledge of F. nucleatum genes expressed in vivo interferes with our understanding of pathogenesis. In this study, we identified F. nucleatum genes induced in vivo using in-vivo-induced antigen technology (IVIAT). Among 30,000 recombinant clones screened, 87 reacted reproducibly with pooled sera from 10 patients with periodontitis. The clones encoded for 32 different proteins, of which 28 could be assigned to their functions, which were categorized in translation, transcription, transport, energy metabolism, cell envelope, cellular process, fatty acid and phospholipid metabolism, transposition, cofactor biosynthesis, amino acid biosynthesis, and DNA replication. Putative virulence factors detected were ABC transporter, butyrate-acetoacetate CoA-transferase, hemin receptor, hemolysin, hemolysin-related protein, LysR family transcriptional regulator, serine protease, and transposase. Analysis of immune responses to the in-vivo-induced (ivi) antigens in five patients demonstrated that most were reactive to these proteins, confirming results with pooled sera. IVIAT-identified F. nucleatum genes in this study may accelerate the elucidation of F. nucleatum-mediated molecular pathogenesis. © 2011 John Wiley & Sons A/S.

  4. Performance testing of radiobioassay laboratories: In vivo measurements, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLellan, J.A.; Traub, R.J.; Olsen, P.C.

    1990-04-01

    A study of two rounds of in vivo laboratory performance testing was undertaken by Pacific Northwest Laboratory (PNL) to determine the appropriateness of the in vivo performance criteria of draft American National Standards Institute (ANSI) standard ANSI N13.3, Performance Criteria for Bioassay.'' The draft standard provides guidance to in vivo counting facilities regarding the sensitivity, precision, and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. This report concludes the testing program by presenting the results of the Round Two testing. Testing involved two types of measurements: chest counting for radionuclide detection inmore » the lung, and whole body counting for detection of uniformly distributed material. Each type of measurement was further divided into radionuclide categories as defined in the draft standard. The appropriateness of the draft standard criteria by measuring a laboratory's ability to attain them were judged by the results of both round One and Round Two testing. The testing determined that performance criteria are set at attainable levels, and the majority of in vivo monitoring facilities passed the criteria when complete results were submitted. 18 refs., 18 figs., 15 tabs.« less

  5. In Vivo Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine.

    PubMed

    Chen, Feng; Hong, Hao; Goel, Shreya; Graves, Stephen A; Orbay, Hakan; Ehlerding, Emily B; Shi, Sixiang; Theuer, Charles P; Nickles, Robert J; Cai, Weibo

    2015-01-01

    Actively targeted theranostic nanomedicine may be the key for future personalized cancer management. Although numerous types of theranostic nanoparticles have been developed in the past decade for cancer treatment, challenges still exist in the engineering of biocompatible theranostic nanoparticles with highly specific in vivo tumor targeting capabilities. Here, we report the design, synthesis, surface engineering, and in vivo active vasculature targeting of a new category of theranostic nanoparticle for future cancer management. Water-soluble photothermally sensitive copper sulfide nanoparticles were encapsulated in biocompatible mesoporous silica shells, followed by multistep surface engineering to form the final theranostic nanoparticles. Systematic in vitro targeting, an in vivo long-term toxicity study, photothermal ablation evaluation, in vivo vasculature targeted imaging, biodistribution and histology studies were performed to fully explore the potential of as-developed new theranostic nanoparticles.

  6. Adaptive Strategies and Pathogenesis of Clostridium difficile from In Vivo Transcriptomics

    PubMed Central

    Janoir, Claire; Denève, Cécile; Bouttier, Sylvie; Barbut, Frédéric; Hoys, Sandra; Caleechum, Laxmee; Chapetón-Montes, Diana; Pereira, Fátima C.; Henriques, Adriano O.; Collignon, Anne; Monot, Marc

    2013-01-01

    Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes. PMID:23897605

  7. Circumferentially aligned fibers guided functional neoartery regeneration in vivo.

    PubMed

    Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong

    2015-08-01

    An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Monitoring Retroviral RNA Dimerization In Vivo via Hammerhead Ribozyme Cleavage

    PubMed Central

    Pal, Bijay K.; Scherer, Lisa; Zelby, Laurie; Bertrand, Edouard; Rossi, John J.

    1998-01-01

    We have used a strategy for colocalization of Psi (Ψ)-tethered ribozymes and targets to demonstrate that Ψ sequences are capable of specific interaction in the cytoplasm of both packaging and nonpackaging cells. These results indicate that current in vitro dimerization models may have in vivo counterparts. The methodology used may be applied to further genetic analyses on Ψ domain interactions in vivo. PMID:9733882

  9. Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    PubMed Central

    Zheng, Baixue; Tan, Looling; Mo, Xuejun; Yu, Weimiao; Wang, Yan; Tucker-Kellogg, Lisa; Welsch, Roy E.; So, Peter T. C.; Yu, Hanry

    2011-01-01

    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ∼0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered. PMID:22073152

  10. In vivo acoustic and photoacoustic focusing of circulating cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  11. Progress Toward In Vivo Use of siRNAs-II

    PubMed Central

    Rettig, Garrett R; Behlke, Mark A

    2012-01-01

    RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006. PMID:22186795

  12. In vivo acoustic and photoacoustic focusing of circulating cells

    PubMed Central

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-01-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811

  13. Imaging tumor microscopic viscosity in vivo using molecular rotors

    PubMed Central

    Shimolina, Lyubov’ E.; Izquierdo, Maria Angeles; López-Duarte, Ismael; Bull, James A.; Shirmanova, Marina V.; Klapshina, Larisa G.; Zagaynova, Elena V.; Kuimova, Marina K.

    2017-01-01

    The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity. PMID:28134273

  14. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    PubMed

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  15. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-02-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.

  16. Vector delivery technique affects gene transfer in the cornea in vivo.

    PubMed

    Mohan, Rajiv R; Sharma, Ajay; Cebulko, Tyler C; Tandon, Ashish

    2010-11-27

    This study tested whether controlled drying of the cornea increases vector absorption in mouse and rabbit corneas in vivo and human cornea ex vivo, and studied the effects of corneal drying on gene transfer, structure and inflammatory reaction in the mouse cornea in vivo. Female C57 black mice and New Zealand White rabbits were used for in vivo studies. Donor human corneas were used for ex vivo experiments. A hair dryer was used for drying the corneas after removing corneal epithelium by gentle scraping. The corneas received no, once, twice, thrice, or five times warm air for 10 s with a 5 s interval after each 10 s hair dryer application. Thereafter, balanced salt solution (BSS) was topically applied immediately on the cornea for 2 min using a custom-cloning cylinder. The absorbed BSS was quantified using Hamilton microsyringes. The adeno-associated virus 8 (AAV8) vector (1.1×10(8) genomic copies/µl) expressing marker gene was used to study the effect of corneal drying on gene transfer. Animals were sacrificed on day 14 and gene expression was analyzed using commercial staining kit. Morphological changes and infiltration of inflammatory cells were examined with H & E staining and immunocytochemistry. Mice, rabbit or human corneas subjected to no or 10 s drying showed 6%-8% BSS absorption whereas 20, 30, or 50 s corneal drying showed significantly high 14%-19% (p<0.001), 21%-22% (p<0.001), and 25%-27% (p<0.001) BSS absorption, respectively. The AAV8 application on mouse cornea after 50 s drying showed significantly higher transgene delivery (p<0.05) in vivo with mild-to-moderate changes in corneal morphology. The 30 s of drying also showed significantly (p<0.05) high transgene delivery in mouse stroma in vivo without jeopardizing corneal morphology whereas 10 or 20 s drying showed moderate degree of gene transfer with no altered corneal morphology. Corneas that underwent 50 s drying showed high CD11b-positive cells (p<0.01) compared to control corneas whereas 20

  17. Luminescent probes for optical in vivo imaging

    NASA Astrophysics Data System (ADS)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  18. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.

    PubMed

    Mahjub, Reza; Radmehr, Moojan; Dorkoosh, Farid Abedin; Ostad, Seyed Naser; Rafiee-Tehrani, Morteza

    2014-12-01

    The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared

  19. Fiber-optic multiphoton flow cytometry in whole blood and in vivo

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.

    2010-07-01

    Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.

  20. Metabolizer in vivo of fullerenes and metallofullerenes by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Li, Juan; Yang, Wenjiang; Cui, Rongli; Wang, Dongliang; Chang, Yanan; Gu, Weihong; Yin, Wenyan; Bai, Xue; Chen, Kui; Xia, Lin; Geng, Huan; Xing, Gengmei

    2016-04-01

    Fullerenes (C60) and metallofullerenes (Gd@C82) have similar chemical structure, but the bio-effects of both fullerene-based materials are distinct in vivo. Tracking organic carbon-based materials such as C60 and Gd@C82 is difficult in vivo due to the high content of carbon element in the living tissues themselves. In this study, the biodistribution and metabolism of fullerenes (C60 and Gd@C82) radiolabeled with 64Cu were observed by positron emission tomography (PET). 64Cu-C60 and 64Cu-Gd@C82 were prepared using 1, 4, 7, 10-tetrakis (carbamoylmethyl)-1, 4, 7, 10-tetra-azacyclodo-decanes grafted on carbon cages as a chelator for 64Cu, and were obtained rapidly with high radiochemical yield (≥90%). The new radio-conjugates were evaluated in vivo in the normal mouse model and tissue distribution by small animal PET/CT imaging and histology was carried out. The PET imaging, the biodistribution and the excretion of C60 and Gd@C82 indicated that C60 samples have higher blood retention and lower renal clearance than the Gd@C82 samples in vivo and suggested that the differences in metabolism and distribution in vivo were caused by the structural differences of the groups on the fullerene cages though there is chemical similarity between C60 and Gd@C82.

  1. In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison

    PubMed Central

    Scoles, Drew; Gray, Daniel C; Hunter, Jennifer J; Wolfe, Robert; Gee, Bernard P; Geng, Ying; Masella, Benjamin D; Libby, Richard T; Russell, Stephen; Williams, David R; Merigan, William H

    2009-01-01

    Background Although it has been suggested that alterations of nerve fiber layer vasculature may be involved in the etiology of eye diseases, including glaucoma, it has not been possible to examine this vasculature in-vivo. This report describes a novel imaging method, fluorescence adaptive optics (FAO) scanning laser ophthalmoscopy (SLO), that makes possible for the first time in-vivo imaging of this vasculature in the living macaque, comparing in-vivo and ex-vivo imaging of this vascular bed. Methods We injected sodium fluorescein intravenously in two macaque monkeys while imaging the retina with an FAO-SLO. An argon laser provided the 488 nm excitation source for fluorescence imaging. Reflectance images, obtained simultaneously with near infrared light, permitted precise surface registration of individual frames of the fluorescence imaging. In-vivo imaging was then compared to ex-vivo confocal microscopy of the same tissue. Results Superficial focus (innermost retina) at all depths within the NFL revealed a vasculature with extremely long capillaries, thin walls, little variation in caliber and parallel-linked structure oriented parallel to the NFL axons, typical of the radial peripapillary capillaries (RPCs). However, at a deeper focus beneath the NFL, (toward outer retina) the polygonal pattern typical of the ganglion cell layer (inner) and outer retinal vasculature was seen. These distinguishing patterns were also seen on histological examination of the same retinas. Furthermore, the thickness of the RPC beds and the caliber of individual RPCs determined by imaging closely matched that measured in histological sections. Conclusion This robust method demonstrates in-vivo, high-resolution, confocal imaging of the vasculature through the full thickness of the NFL in the living macaque, in precise agreement with histology. FAO provides a new tool to examine possible primary or secondary role of the nerve fiber layer vasculature in retinal vascular disorders and

  2. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, David J., E-mail: davideaton@nhs.net; Warry, Alison J.; Trimble, Rachel E.

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013,more » with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.« less

  3. In Vitro-In Vivo Relationship of Amorphous Insoluble API (Progesterone) in PLGA Microspheres.

    PubMed

    Pu, Chenguang; Wang, Qiao; Zhang, Hongjuan; Gou, Jingxin; Guo, Yuting; Tan, Xinyi; Xie, Bin; Yin, Na; He, Haibing; Zhang, Yu; Wang, Yanjiao; Yin, Tian; Tang, Xing

    2017-12-01

    The mechanism of PRG release from PLGA microspheres was studied and the correlation of in vitro and in vivo analyses was assessed. PRG-loaded microspheres were prepared by the emulsion-evaporate method. The physical state of PRG and microstructure changings during the drug release period were evaluated by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) respectively. Pharmacokinetic studies were performed in male Sprague-Dawley rats, and the in vivo-in vitro correlation (IVIVC) was established by linear fitting of the cumulative release (%) in vitro and fraction of absorption (%) in vivo. PXRD results indicated recrystallization of PRG during release. The changes of microstructure of PRG-loaded microspheres during the release period could be observed in SEM micrographs. Pharmacokinetics results performed low burst-release followed a steady-released manner. The IVIVC assessment exhibited a good correlation between vitro and in vivo. The burst release phase was caused by diffusion of amorphous PRG near the surface, while the second release stage was impacted by PRG-dissolution from crystal depots formed in microspheres. The IVIVC assessment suggests that the in vitro test method used in this study could predict the real situation in vivo and is helpful to study the release mechanism in vivo.

  4. Comprehensive Antiretroviral Restriction Factor Profiling Reveals the Evolutionary Imprint of the ex Vivo and in Vivo IFN-β Response in HTLV-1-Associated Neuroinflammation.

    PubMed

    Leal, Fabio E; Menezes, Soraya Maria; Costa, Emanuela A S; Brailey, Phillip M; Gama, Lucio; Segurado, Aluisio C; Kallas, Esper G; Nixon, Douglas F; Dierckx, Tim; Khouri, Ricardo; Vercauteren, Jurgen; Galvão-Castro, Bernardo; Saraiva Raposo, Rui Andre; Van Weyenbergh, Johan

    2018-01-01

    HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/β) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-β therapy decreases tax mRNA and lymphoproliferation. We hypothesize this "IFN paradox" in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4 + T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4 + T cells. This revealed two major clusters ("antiviral/protective" vs. "proviral/deleterious"), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-β. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up-regulated by IFN

  5. In vivo spectral micro-imaging of tissue

    DOEpatents

    Demos, Stavros G; Urayama, Shiro; Lin, Bevin; Saroufeem, Ramez; Ghobrial, Moussa

    2012-11-27

    In vivo endoscopic methods an apparatuses for implementation of fluorescence and autofluorescence microscopy, with and without the use of exogenous agents, effectively (with resolution sufficient to image nuclei) visualize and categorize various abnormal tissue forms.

  6. In vivo degradation of polyethylene liners after gamma sterilization in air.

    PubMed

    Kurtz, Steven M; Rimnac, Clare M; Hozack, William J; Turner, Joseph; Marcolongo, Michele; Goldberg, Victor M; Kraay, Matthew J; Edidin, Avram A

    2005-04-01

    Ultra-high molecular weight polyethylene degrades during storage in air following gamma sterilization, but the extent of in vivo degradation remains unclear. The purpose of this study was to quantify the extent to which the mechanical properties and oxidation of conventional polyethylene acetabular liners treated with gamma sterilization in air change in vivo. Fourteen modular cementless acetabular liners were revised at an average of 10.3 years (range, 5.9 to 13.5 years) after implantation. All liners, which had been machined from GUR 415 resin, had been gamma-sterilized in air; the average shelf life was 0.3 year (range, 0.0 to 0.8 year). After removal, the components were expeditiously frozen to minimize ex vivo changes to the polyethylene prior to characterization. The average duration between freezing and testing was 0.6 year. Mechanical properties and oxidation were measured with use of the small-punch test and Fourier transform infrared spectroscopy, respectively, in the loaded and unloaded regions of the liners. There was substantial regional variation in the mechanical properties and oxidation of the retrieved liners. The ultimate load was observed to vary by >90% near the surface. On the average, the rim and the unloaded bearing showed evidence of severe oxidation near the surface after long-term in vivo aging, but these trends were not typically observed on the loaded bearing surface or near the backside of the liners. The mechanical properties of polyethylene that has been gamma-sterilized in air may decrease substantially in vivo, depending on the location in the liner. The most severe oxidation was observed at the rim, suggesting that the femoral head inhibits access of oxygen-containing body fluids to the bearing surface. This is perhaps why in vivo oxidation has not been associated with clinical performance to date.

  7. In vitro and in vivo evaluations of three computer-aided shade matching instruments.

    PubMed

    Yuan, Kun; Sun, Xiang; Wang, Fu; Wang, Hui; Chen, Ji-hua

    2012-01-01

    This study evaluated the accuracy and reliability of three computer-aided shade matching instruments (Shadepilot, VITA Easyshade, and ShadeEye NCC) using both in vitro and in vivo models. The in vitro model included the measurement of five VITA Classical shade guides. The in vivo model utilized three instruments to measure the central region of the labial surface of maxillary right central incisors of 85 people. The accuracy and reliability of the three instruments in these two evaluating models were calculated. Significant differences were observed in the accuracy of instruments both in vitro and in vivo. No significant differences were found in the reliability of instruments between and within the in vitro and the in vivo groups. VITA Easyshade was significantly different in accuracy between in vitro and in vivo models, while no significant difference was found for the other two instruments. Shadepilot was the only instrument tested in the present study that showed high accuracy and reliability both in vitro and in vivo. Significant differences were observed in the L*a*b* values of the 85 natural teeth measured using three instruments in the in vivo assessment. The pair-agreement rates of shade matching among the three instruments ranged from 37.7% to 48.2%, and the incidence of identical shade results shared by all three instruments was 25.9%. As different L*a*b* values and shade matching results were reported for the same tooth, a combination of the evaluated shade matching instruments and visual shade confirmation is recommended for clinical use.

  8. In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses

    PubMed Central

    Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu

    2003-01-01

    Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888

  9. Hollow Fiber Bioreactors for In Vivo-like Mammalian Tissue Culture.

    PubMed

    Storm, Michael P; Sorrell, Ian; Shipley, Rebecca; Regan, Sophie; Luetchford, Kim A; Sathish, Jean; Webb, Steven; Ellis, Marianne J

    2016-05-26

    Tissue culture has been used for over 100 years to study cells and responses ex vivo. The convention of this technique is the growth of anchorage dependent cells on the 2-dimensional surface of tissue culture plastic. More recently, there is a growing body of data demonstrating more in vivo-like behaviors of cells grown in 3-dimensional culture systems. This manuscript describes in detail the set-up and operation of a hollow fiber bioreactor system for the in vivo-like culture of mammalian cells. The hollow fiber bioreactor system delivers media to the cells in a manner akin to the delivery of blood through the capillary networks in vivo. The system is designed to fit onto the shelf of a standard CO2 incubator and is simple enough to be set-up by any competent cell biologist with a good understanding of aseptic technique. The systems utility is demonstrated by culturing the hepatocarcinoma cell line HepG2/C3A for 7 days. Further to this and in line with other published reports on the functionality of cells grown in 3-dimensional culture systems the cells are shown to possess increased albumin production (an important hepatic function) when compared to standard 2-dimensional tissue culture.

  10. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  11. Monitoring tumor metastasis by in vivo imaging and flow cytometer

    NASA Astrophysics Data System (ADS)

    Gu, Zhenqin; Guo, Jin; Liu, Guangda; Li, Yan; Chen, Yun; Chen, Tong; Wang, Chen; Wei, Xunbin

    2009-08-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal nearinfrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  12. Extending VIVO, a semantic web app, to share semantic data across institutions

    NASA Astrophysics Data System (ADS)

    Rowan, Linda R.; Gross, M. Benjamin; Mayernik, Matthew; Khan, Huda; Boler, Frances; Maull, Keith; Stott, Don; Johns, Erica; Daniels, Michael; Krafft, Dean; Meertens, Charles

    2017-04-01

    The EarthCollab project, a U.S. National Science Foundation EarthCube Building Block, is extending an existing open-source semantic web application, VIVO, to enable the exchange of information about scientific researchers and resources across institutions. VIVO has been implemented by more than 100 universities and research institutions to highlight research and institutional achievements. Most implementations of VIVO, however, gather information about a single organization. The EarthCollab project VIVO extensions enable cross-linking of VIVO instances to reduce duplication of information about the same people and scientific resources, and enable dynamic linking of related information across VIVO installations. EarthCollab is a collaboration between UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy, The Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory, and Cornell University. Test cross-linking implementations have been deployed by UNAVCO and Cornell to demonstrate the following core features: 1. Look up people and things at an external VIVO instance, 2. Assert equivalence between URIs at the two institutions (i.e., a person) using the 'owl:sameAs' property, 3. Provide a subset of data as RDF and JSON as a service from one institution, 4. Display the data requested from the service at the other institution's site, and 5. Allow a user to distinguish between data sources when displayed on one page. Currently, a curator makes the 'sameAs' assertions manually, but persistent and unique identifiers such as ORCIDs for people and DOIs for datasets could be used to automate the process. As development of the cross-linking extension continues, we must address a number of open questions. For example, if cross-linking institutions have duplicate or conflicting information, should one institution be considered the canonical source, or should the

  13. In vitro and ex vivo strategies for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Stewart, Martin P.; Sharei, Armon; Ding, Xiaoyun; Sahay, Gaurav; Langer, Robert; Jensen, Klavs F.

    2016-10-01

    Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

  14. In Vivo Generation of Neural Stem Cells Through Teratoma Formation.

    PubMed

    Hong, Yean Ju; Kim, Jong Soo; Choi, Hyun Woo; Song, Hyuk; Park, Chankyu; Do, Jeong Tae

    2016-09-01

    Pluripotent stem cells have the potential to differentiate into all cell types of the body in vitro through embryoid body formation or in vivo through teratoma formation. In this study, we attempted to generate in vivo neural stem cells (NSCs) differentiated through teratoma formation using Olig2-GFP transgenic embryonic stem cells (ESCs). After 4 to 6 weeks of injection with Olig2-GFP transgenic ESCs, Olig2-GFP(+) NSCs were identified in teratomas formed in immunodeficient mice. Interestingly, 4-week-old teratomas contained higher percentage of Olig2-GFP(+) cells (∼11%) than 6-week-old teratomas (∼3%). These in vivo-derived NSCs expressed common NSC markers (Nestin and Sox2) and differentiated into terminal neuronal and glial lineages. These results suggest that pure NSC populations exhibiting properties similar to those of brain-derived NSCs can be established through teratoma formation.

  15. Nano-palladium is a cellular catalyst for in vivo chemistry

    NASA Astrophysics Data System (ADS)

    Miller, Miles A.; Askevold, Bjorn; Mikula, Hannes; Kohler, Rainer H.; Pirovich, David; Weissleder, Ralph

    2017-07-01

    Palladium catalysts have been widely adopted for organic synthesis and diverse industrial applications given their efficacy and safety, yet their biological in vivo use has been limited to date. Here we show that nanoencapsulated palladium is an effective means to target and treat disease through in vivo catalysis. Palladium nanoparticles (Pd-NPs) were created by screening different Pd compounds and then encapsulating bis[tri(2-furyl)phosphine]palladium(II) dichloride in a biocompatible poly(lactic-co-glycolic acid)-b-polyethyleneglycol platform. Using mouse models of cancer, the NPs efficiently accumulated in tumours, where the Pd-NP activated different model prodrugs. Longitudinal studies confirmed that prodrug activation by Pd-NP inhibits tumour growth, extends survival in tumour-bearing mice and mitigates toxicity compared to standard doxorubicin formulations. Thus, here we demonstrate safe and efficacious in vivo catalytic activity of a Pd compound in mammals.

  16. In vivo demonstration of surgical task assistance using miniature robots.

    PubMed

    Hawks, Jeff A; Kunowski, Jacob; Platt, Stephen R

    2012-10-01

    Laparoscopy is beneficial to patients as measured by less painful recovery and an earlier return to functional health compared to conventional open surgery. However, laparoscopy requires the manipulation of long, slender tools from outside the patient's body. As a result, laparoscopy generally benefits only patients undergoing relatively simple procedures. An innovative approach to laparoscopy uses miniature in vivo robots that fit entirely inside the abdominal cavity. Our previous work demonstrated that a mobile, wireless robot platform can be successfully operated inside the abdominal cavity with different payloads (biopsy, camera, and physiological sensors). We hope that these robots are a step toward reducing the invasiveness of laparoscopy. The current study presents design details and results of laboratory and in vivo demonstrations of several new payload designs (clamping, cautery, and liquid delivery). Laboratory and in vivo cooperation demonstrations between multiple robots are also presented.

  17. Translating in vitro ligand bias into in vivo efficacy.

    PubMed

    Luttrell, Louis M; Maudsley, Stuart; Gesty-Palmer, Diane

    2018-01-01

    It is increasingly apparent that ligand structure influences both the efficiency with which G protein-coupled receptors (GPCRs) engage their downstream effectors and the manner in which they are activated. Thus, 'biased' agonists, synthetic ligands whose intrinsic efficacy differs from the native ligand, afford a strategy for manipulating GPCR signaling in ways that promote beneficial signals while blocking potentially deleterious ones. Still, there are significant challenges in relating in vitro ligand efficacy, which is typically measured in heterologous expression systems, to the biological response in vivo, where the ligand is acting on natively expressed receptors and in the presence of the endogenous ligand. This is particularly true of arrestin pathway-selective 'biased' agonists. The type 1 parathyroid hormone receptor (PTH 1 R) is a case in point. Parathyroid hormone (PTH) is the principal physiological regulator of calcium homeostasis, and PTH 1 R expressed on cells of the osteoblast lineage are an established therapeutic target in osteoporosis. In vitro, PTH 1 R signaling is highly sensitive to ligand structure, and PTH analogs that affect the selectivity/kinetics of G protein coupling or that engage arrestin-dependent signaling mechanisms without activating heterotrimeric G proteins have been identified. In vivo, intermittent administration of conventional PTH analogs accelerates the rate of osteoblastic bone formation, largely through known cAMP-dependent mechanisms. Paradoxically, both intermittent and continuous administration of an arrestin pathway-selective PTH analog, which in vivo would be expected to antagonize endogenous PTH 1 R-cAMP signaling, also increases bone mass. Transcriptomic analysis of tissue from treated animals suggests that conventional and arrestin pathway-selective PTH1R ligands act in largely different ways, with the latter principally affecting pathways involved in the regulation of cell cycle, survival, and migration

  18. High-powered microwave ablation with a small-gauge, gas-cooled antenna: initial ex vivo and in vivo results.

    PubMed

    Lubner, Meghan G; Hinshaw, J Louis; Andreano, Anita; Sampson, Lisa; Lee, Fred T; Brace, Christopher L

    2012-03-01

    To evaluate the performance of a gas-cooled, high-powered microwave system. Investigators performed 54 ablations in ex vivo bovine livers using three devices-a single 17-gauge cooled radiofrequency(RF) electrode; a cluster RF electrode; and a single 17-gauge, gas-cooled microwave (MW) antenna-at three time points (n = 6 at 4 minutes, 12 minutes, and 16 minutes). RF power was applied using impedance-based pulsing with maximum 200 W generator output. MW power of 135 W at 2.45 GHz was delivered continuously. An approved in vivo study was performed using 13 domestic pigs. Hepatic ablations were performed using single applicators and the above-mentioned MW and RF generator systems at treatment times of 2 minutes (n = 7 MW, n = 6 RF), 5 minutes (n = 23 MW, n = 8 RF), 7 minutes (n = 11 MW, n = 6 RF), and 10 minutes (n = 7 MW, n = 9 RF). Mean transverse diameter and length of the ablation zones were compared using analysis of variance (ANOVA) with post-hoc t tests and Wilcoxon rank-sum tests. Single ex vivo MW ablations were larger than single RF ablations at all time points (MW mean diameter range 3.5-4.8 cm 4-16 minutes; RF mean diameter range 2.6-3.1 cm 4-16 minutes) (P < .05). There was no difference in mean diameter between cluster RF and MW ablations (RF 3.3-4.4 cm 4-16 minutes; P = .4-.9). In vivo lesion diameters for MW (and RF) were as follows: 2.6 cm ± 0.72 (RF 1.5 cm ± 0.14), 3.6 cm ± 0.89 (RF 2.0 cm ± 0.4), 3.4 cm ± 0.87 (RF 1.8 cm ± 0.23), and 3.8 cm ± 0.74 (RF 2.1 cm ± 0.3) at 2 minutes, 5 minutes, 7 minutes, and 10 minutes (P < .05 all time points). Gas-cooled, high-powered MW ablation allows the generation of large ablation zones in short times. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  19. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests.

    PubMed

    Lafon, Yoann; Lafage, Virginie; Steib, Jean-Paul; Dubousset, Jean; Skalli, Wafa

    2010-01-15

    A numerical study was conducted to identify the intervertebral stiffness of scoliotic spines from spinal flexibility tests. To study the intervertebral 3-dimensional (3D) stiffness distribution along scoliotic spine. Few methods have been reported in literature to quantify the in vivo 3D intervertebral stiffness of the scoliotic spine. Based on the simulation of flexibility tests, these methods were operator-dependent and could yield to clinically irrelevant stiffnesses. This study included 30 patients surgically treated for severe idiopathic scoliosis. A previously validated trunk model, with patient-specific geometry, was used to simulate bending tests according to the in vivo displacements of T1 and L5 measured from bending test radiographs. Differences between in vivo and virtual spinal behaviors during bending tests (left and right) were computed in terms of vertebral rotations and translation. An automated method, driven by a priori knowledge, identified intervertebral stiffnesses in order to reproduce the in vivo spinal behavior. Because of the identification of intervertebral stiffnesses, differences between in vivo and virtual spinal displacements were drastically reduced (95% of the differences less than +/-3 mm for vertebral translation). Intervertebral stiffness distribution after identification was analyzed. On convex side test, the intervertebral stiffness of the compensatory curves increased in most cases, whereas the major curve became more flexible. Stiffness singularities were found in junctional zones: these specific levels were predominantly flexible, both in torsion and in lateral bending. The identification of in vivo intervertebral stiffness may improve our understanding of scoliotic spine and the relevance of patient-specific methods for surgical planning.

  20. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation.

    PubMed

    Goindi, Shishu; Kaur, Ramanpreet; Kaur, Randeep

    2015-11-30

    In this paper, we report an ionic liquid-in-water (IL/w) microemulsion (ME) formulation which is able to solubilize etodolac (ETO), a poorly water soluble drug for topical delivery using BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) as IL, Tween 80 as surfactant and ethanol as co-surfactant. The prepared ME was characterized for physicochemical parameters, subjected to ex-vivo permeation studies as well as in-vivo pharmacodynamic evaluation. The ex-vivo drug permeation studies through rat skin was performed using Franz-diffusion cell and the IL/w based ME showed maximum mean cumulative percent permeation of 99.030±0.921% in comparison to oil-in-water (o/w) ME (61.548±1.875%) and oily solution (48.830±2.488%) of ETO. In-vivo anti-arthritic and anti-inflammatory activities of the prepared formulations were evaluated using different rodent models and the results revealed that ETO loaded IL/w based ME was found to be more effective in controlling inflammation than oily solution, o/w ME and marketed formulation of ETO. Histopathological studies also demonstrated that IL/w based ME caused no anatomical and pathological changes in the skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ex vivo culture platform for assessment of cartilage repair treatment strategies.

    PubMed

    Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda

    2017-01-01

    There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.

  2. Unveiling the in Vivo Protein Corona of Circulating Leukocyte-like Carriers.

    PubMed

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Hartman, Kelly A; Sherman, Michael B; De Rosa, Enrica; Kirui, Dickson K; Salvatore, Francesco; Tasciotti, Ennio

    2017-03-28

    Understanding interactions occurring at the interface between nanoparticles and biological components is an urgent challenge in nanomedicine due to their effect on the biological fate of nanoparticles. After the systemic injection of nanoparticles, a protein corona constructed by blood components surrounds the carrier's surface and modulates its pharmacokinetics and biodistribution. Biomimicry-based approaches in nanotechnology attempt to imitate what happens in nature in order to transfer specific natural functionalities to synthetic nanoparticles. Several biomimetic formulations have been developed, showing superior in vivo features as a result of their cell-like identity. We have recently designed biomimetic liposomes, called leukosomes, which recapitulate the ability of leukocytes to target inflamed endothelium and escape clearance by the immune system. To gain insight into the properties of leukosomes, we decided to investigate their protein corona in vivo. So far, most information about the protein corona has been obtained using in vitro experiments, which have been shown to minimally reproduce in vivo phenomena. Here we directly show a time-dependent quantitative and qualitative analysis of the protein corona adsorbed in vivo on leukosomes and control liposomes. We observed that leukosomes absorb fewer proteins than liposomes, and we identified a group of proteins specifically adsorbed on leukosomes. Moreover, we hypothesize that the presence of macrophage receptors on leukosomes' surface neutralizes their protein corona-meditated uptake by immune cells. This work unveils the protein corona of a biomimetic carrier and is one of the few studies on the corona performed in vivo.

  3. Evaluation of Nanolipoprotein Particles (NLPs) as an In Vivo Delivery Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Nicholas O.; Weilhammer, Dina R.; Dunkle, Alexis

    Nanoparticles hold great promise for the delivery of therapeutics, yet limitations remain with regards to the use of these nanosystems for efficient long-lasting targeted delivery of therapeutics, including imparting functionality to the platform, in vivo stability, drug entrapment efficiency and toxicity. In order to begin to address these limitations, we evaluated the functionality, stability, cytotoxicity, toxicity, immunogenicity and in vivo biodistribution of nanolipoprotein particles (NLPs), which are mimetics of naturally occurring high-density lipoproteins (HDLs). We also found that a wide range of molecules could be reliably conjugated to the NLP, including proteins, single-stranded DNA, and small molecules. The NLP wasmore » also found to be relatively stable in complex biological fluids and displayed no cytotoxicity in vitro at doses as high as 320 µg/ml. In addition, we observed that in vivo administration of the NLP daily for 14 consecutive days did not induce significant weight loss or result in lesions on excised organs. Furthermore, the NLPs did not display overt immunogenicity with respect to antibody generation. Finally, the biodistribution of the NLP in vivo was found to be highly dependent on the route of administration, where intranasal administration resulted in prolonged retention in the lung tissue. Though only a select number of NLP compositions were evaluated, the findings of this study suggest that the NLP platform holds promise for use as both a targeted and non-targeted in vivo delivery vehicle for a range of therapeutics.« less

  4. Evaluation of Nanolipoprotein Particles (NLPs) as an In Vivo Delivery Platform

    PubMed Central

    Fischer, Nicholas O.; Weilhammer, Dina R.; Dunkle, Alexis; Thomas, Cynthia; Hwang, Mona; Corzett, Michele; Lychak, Cheri; Mayer, Wasima; Urbin, Salustra; Collette, Nicole; Chiun Chang, Jiun; Loots, Gabriela G.; Rasley, Amy; Blanchette, Craig D.

    2014-01-01

    Nanoparticles hold great promise for the delivery of therapeutics, yet limitations remain with regards to the use of these nanosystems for efficient long-lasting targeted delivery of therapeutics, including imparting functionality to the platform, in vivo stability, drug entrapment efficiency and toxicity. To begin to address these limitations, we evaluated the functionality, stability, cytotoxicity, toxicity, immunogenicity and in vivo biodistribution of nanolipoprotein particles (NLPs), which are mimetics of naturally occurring high-density lipoproteins (HDLs). We found that a wide range of molecules could be reliably conjugated to the NLP, including proteins, single-stranded DNA, and small molecules. The NLP was also found to be relatively stable in complex biological fluids and displayed no cytotoxicity in vitro at doses as high as 320 µg/ml. In addition, we observed that in vivo administration of the NLP daily for 14 consecutive days did not induce significant weight loss or result in lesions on excised organs. Furthermore, the NLPs did not display overt immunogenicity with respect to antibody generation. Finally, the biodistribution of the NLP in vivo was found to be highly dependent on the route of administration, where intranasal administration resulted in prolonged retention in the lung tissue. Although only a select number of NLP compositions were evaluated, the findings of this study suggest that the NLP platform holds promise for use as both a targeted and non-targeted in vivo delivery vehicle for a range of therapeutics. PMID:24675794

  5. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications and clinical development by startups.

    PubMed

    Song, Minjung

    2017-07-01

    The CRISPR/Cas9 gene editing system was originally derived from the prokaryotic adaptive immune system mediated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas). The system has been successfully applied to genome editing in eukaryotes and has contributed to remarkable advances in the life sciences, in areas ranging from agriculture to genetic disease therapies. For efficient editing and extending the influence of this system, proper delivery of its components is crucial. Both viral and nonviral delivery methods are reviewed here, along with the advantages and disadvantages of each. In addition, we review ex vivo and in vivo CRISPR/Cas9 applications for disease therapies. Related remarkable studies are highlighted and relevant startup companies and their drug development pipelines are described. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1035-1045, 2017. © 2017 American Institute of Chemical Engineers.

  6. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    PubMed

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  7. Anti-CEA-functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Wen; Chieh, Jen-Jie; Lin, In-Tsang; Horng, Herng-Er; Yang, Hong-Chang; Hong, Chin-Yih

    2013-10-01

    Although the biomarker carcinoembryonic antigen (CEA) is expressed in colorectal tumors, the utility of an anti-CEA-functionalized image medium is powerful for in vivo positioning of colorectal tumors. With a risk of superparamagnetic iron oxide nanoparticles (SPIONPs) that is lower for animals than other material carriers, anti-CEA-functionalized SPIONPs were synthesized in this study for labeling colorectal tumors by conducting different preoperatively and intraoperatively in vivo examinations. In magnetic resonance imaging (MRI), the image variation of colorectal tumors reached the maximum at approximately 24 h. However, because MRI requires a nonmetal environment, it was limited to preoperative imaging. With the potentiality of in vivo screening and intraoperative positioning during surgery, the scanning superconducting-quantum-interference-device biosusceptometry (SSB) was adopted, showing the favorable agreement of time-varied intensity with MRI. Furthermore, biological methodologies of different tissue staining methods and inductively coupled plasma (ICP) yielded consistent results, proving that the obtained in vivo results occurred because of targeted anti-CEA SPIONPs. This indicates that developed anti-CEA SPIONPs owe the utilities as an image medium of these in vivo methodologies.

  8. A three-dimensional skin equivalent reflecting some aspects of in vivo aged skin.

    PubMed

    Diekmann, Johanna; Alili, Lirija; Scholz, Okka; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2016-01-01

    Human skin undergoes morphological, biochemical and functional modifications during the ageing process. This study was designed to produce a 3-dimensional (3D) skin equivalent in vitro reflecting some aspects of in vivo aged skin. Reconstructed skin was generated by co-culturing skin fibroblasts and keratinocytes on a collagen-glycosaminoglycan-chitosan scaffold, and ageing was induced by the exposition of fibroblasts to Mitomycin-C (MMC). Recently published data showed that MMC treatment resulted in a drug-induced accelerated senescence (DIAS) in human dermal fibroblast cultures. Next to established ageing markers, histological changes were analysed in comparison with in vivo aged skin. In aged epidermis, the filaggrin expression is reduced in vivo and in vitro. Furthermore, in dermal tissue, the amount of elastin and collagen is lowered in aged skin in vivo as well as after the treatment of 3D skin equivalents with MMC in vitro. Our results show histological signs and some aspects of ageing in a 3D skin equivalent in vitro, which mimics aged skin in vivo. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo

    PubMed Central

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M.; Weissman, Jonathan S.; Rouskin, Silvi

    2017-01-01

    Coupling structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structural studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduces biases and necessitates population-average assessments of RNA structure. Here we present dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase (TGIRT). DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in non-canonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs to their mature isoforms. These applications illustrate DMS-MaPseq’s capacity to dramatically expand in vivo analysis of RNA structure. PMID:27819661

  10. In vivo imaging of sulfotransferases

    DOEpatents

    Barrio, Jorge R; Kepe, Vladimir; Small, Gary W; Satyamurthy, Nagichettiar

    2013-02-12

    Radiolabeled tracers for sulfotransferases (SULTs), their synthesis, and their use are provided. Included are substituted phenols, naphthols, coumarins, and flavones radiolabeled with .sup.18F, .sup.123I, .sup.124I, .sup.125I, or .sup.11C. Also provided are in vivo techniques for using these and other tracers as analytical and diagnostic tools to study sulfotransferase distribution and activity, in health and disease, and to evaluate therapeutic interventions.

  11. Applying Simulated In Vivo Motions to Measure Human Knee and ACL Kinetics

    PubMed Central

    Herfat, Safa T.; Boguszewski, Daniel V.; Shearn, Jason T.

    2013-01-01

    Patients frequently experience anterior cruciate ligament (ACL) injuries but current ACL reconstruction strategies do not restore the native biomechanics of the knee, which can contribute to the early onset of osteoarthritis in the long term. To design more effective treatments, investigators must first understand normal in vivo knee function for multiple activities of daily living (ADLs). While the 3D kinematics of the human knee have been measured for various ADLs, the 3D kinetics cannot be directly measured in vivo. Alternatively, the 3D kinetics of the knee and its structures can be measured in an animal model by simulating and applying subject-specific in vivo joint motions to a joint using robotics. However, a suitable biomechanical surrogate should first be established. This study was designed to apply a simulated human in vivo motion to human knees to measure the kinetics of the human knee and ACL. In pursuit of establishing a viable biomechanical surrogate, a simulated in vivo ovine motion was also applied to human knees to compare the loads produced by the human and ovine motions. The motions from the two species produced similar kinetics in the human knee and ACL. The only significant difference was the intact knee compression force produced by the two input motions. PMID:22227973

  12. Construction of In Vivo Fluorescent Imaging of Echinococcus granulosus in a Mouse Model.

    PubMed

    Wang, Sibo; Yang, Tao; Zhang, Xuyong; Xia, Jie; Guo, Jun; Wang, Xiaoyi; Hou, Jixue; Zhang, Hongwei; Chen, Xueling; Wu, Xiangwei

    2016-06-01

    Human hydatid disease (cystic echinococcosis, CE) is a chronic parasitic infection caused by the larval stage of the cestode Echinococcus granulosus. As the disease mainly affects the liver, approximately 70% of all identified CE cases are detected in this organ. Optical molecular imaging (OMI), a noninvasive imaging technique, has never been used in vivo with the specific molecular markers of CE. Thus, we aimed to construct an in vivo fluorescent imaging mouse model of CE to locate and quantify the presence of the parasites within the liver noninvasively. Drug-treated protoscolices were monitored after marking by JC-1 dye in in vitro and in vivo studies. This work describes for the first time the successful construction of an in vivo model of E. granulosus in a small living experimental animal to achieve dynamic monitoring and observation of multiple time points of the infection course. Using this model, we quantified and analyzed labeled protoscolices based on the intensities of their red and green fluorescence. Interestingly, the ratio of red to green fluorescence intensity not only revealed the location of protoscolices but also determined the viability of the parasites in vivo and in vivo tests. The noninvasive imaging model proposed in this work will be further studied for long-term detection and observation and may potentially be widely utilized in susceptibility testing and therapeutic effect evaluation.

  13. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications

    PubMed Central

    Lange, Sara E.S.; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J.; Lapi, Suzanne E.; Van Tine, Brian A.

    2016-01-01

    Purpose The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Results Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Experimental Design Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. Conclusion 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy. PMID:26909615

  14. In vivo degeneration and the fate of inorganic nanoparticles.

    PubMed

    Feliu, Neus; Docter, Dominic; Heine, Markus; Del Pino, Pablo; Ashraf, Sumaira; Kolosnjaj-Tabi, Jelena; Macchiarini, Paolo; Nielsen, Peter; Alloyeau, Damien; Gazeau, Florence; Stauber, Roland H; Parak, Wolfgang J

    2016-05-03

    What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure. Thus, the NPs may be decomposed into different parts, whose biodistribution and fate would need to be analyzed individually. Multiple labeling and quantification strategies for such a purpose will be discussed. All reviewed data indicate that NPs in vivo should no longer be considered as homogeneous entities, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked distribution and degradation pathways.

  15. Prototype to measure bracket debonding force in vivo

    PubMed Central

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-01-01

    ABSTRACT Introduction: Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. Objective: To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. Methods: A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. Results: According to Student’s t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. Conclusion: The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets. PMID:28444011

  16. Prototype to measure bracket debonding force in vivo.

    PubMed

    Tonus, Jéssika Lagni; Manfroi, Fernanda Borguetti; Borges, Gilberto Antonio; Grigolo, Eduardo Correa; Helegda, Sérgio; Spohr, Ana Maria

    2017-02-01

    Material biodegradation that occurs in the mouth may interfere in the bonding strength between the bracket and the enamel, causing lower bond strength values in vivo, in comparison with in vitro studies. To develop a prototype to measure bracket debonding force in vivo and to evaluate, in vitro, the bond strength obtained with the prototype. A original plier (3M Unitek) was modified by adding one strain gauge directly connected to its claw. An electronic circuit performed the reading of the strain gauge, and the software installed in a computer recorded the values of the bracket debonding force, in kgf. Orthodontic brackets were bonded to the facial surface of 30 bovine incisors with adhesive materials. In Group 1 (n = 15), debonding was carried out with the prototype, while tensile bond strength testing was performed in Group 2 (n = 15). A universal testing machine was used for the second group. The adhesive remnant index (ARI) was recorded. According to Student's t test (α = 0.05), Group 1 (2.96 MPa) and Group 2 (3.08 MPa) were not significantly different. ARI score of 3 was predominant in the two groups. The prototype proved to be reliable for obtaining in vivo bond strength values for orthodontic brackets.

  17. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle

    2011-09-01

    The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.

  18. Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures.

    PubMed

    De Valck, D; Luyten, F P

    2001-10-01

    We standardized conditions for ex vivo mouse limb culture to study cartilage maturation and joint formation. We compared 12.5 d.p.c. mouse forelimbs that were cultured either mounted or freely rotating for up to 72 h. Limb outgrowth progressed ex vivo at a variable rate as compared to its development in vivo, spanning approximately 48 h. Although cartilage maturation and joint formation developed grossly normal, aberrant expression of skeletal marker genes was seen. Interestingly, no regression of the interdigital webs took place in mounted cultures, in contrast to limited webbing under freely rotating conditions. Caspase inhibition, by addition of zVAD-fmk to the culture medium of freely rotating limbs, supported proper gene expression associated with skeletal development, and prevented interdigital web regression. Taken together, a freely rotating ex vivo culture for mouse limb outgrowth that is combined with caspase inhibition provides a good model to study cartilage maturation and joint formation.

  19. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  20. Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study

    PubMed Central

    Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn

    2009-01-01

    SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523

  1. Measuring In Vivo Free Radical Production by the Outer Retina

    PubMed Central

    Berkowitz, Bruce A.; Bredell, Bryce X.; Davis, Christopher; Samardzija, Marijana; Grimm, Christian; Roberts, Robin

    2015-01-01

    Purpose Excessive and continuously produced free radicals in the outer retina are implicated in retinal aging and the pathogenesis of sight-threatening retinopathies, yet measuring outer retinal oxidative stress in vivo remains a challenge. Here, we test the hypothesis that continuously produced paramagnetic free radicals from the outer retina can be measured in vivo using high-resolution (22-μm axial resolution) 1/T1magnetic resonance imaging (MRI) without and with a confirmatory quench (quench-assisted MRI). Methods Low-dose sodium iodate–treated and diabetic C57Bl6/J mice (and their controls), and rod-dominated (129S6) or cone-only R91W;Nrl−/− mice were studied. In dark-adapted groups, 1/T1 was mapped transretinally in vivo without or with (1) the antioxidant combination of methylene blue (MB) and α-lipoic acid (LPA), or (2) light exposure; in subgroups, retinal superoxide production was measured ex vivo (lucigenin). Results In the sodium iodate model, retinal superoxide production and outer retina-specific 1/T1 values were both significantly greater than normal and corrected to baseline with MB+LPA therapy. Nondiabetic mice at two ages and 1.2-month diabetic mice (before the appearance of oxidative stress) had similar transretinal 1/T1 profiles. By 2.3 months of diabetes, only outer retinal 1/T1 values were significantly greater than normal and were corrected to baseline with MB+LPA therapy. In mice with healthy photoreceptors, a light quench caused 1/T1 of rods, but not cones, to significantly decrease from their values in the dark. Conclusions Quench-assisted MRI is a feasible method for noninvasively measuring normal and pathologic production of free radicals in photoreceptors/RPE in vivo. PMID:26670830

  2. Nanomaterials for In Vivo Imaging.

    PubMed

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  3. Comprehensive Antiretroviral Restriction Factor Profiling Reveals the Evolutionary Imprint of the ex Vivo and in Vivo IFN-β Response in HTLV-1-Associated Neuroinflammation

    PubMed Central

    Leal, Fabio E.; Menezes, Soraya Maria; Costa, Emanuela A. S.; Brailey, Phillip M.; Gama, Lucio; Segurado, Aluisio C.; Kallas, Esper G.; Nixon, Douglas F.; Dierckx, Tim; Khouri, Ricardo; Vercauteren, Jurgen; Galvão-Castro, Bernardo; Saraiva Raposo, Rui Andre; Van Weyenbergh, Johan

    2018-01-01

    HTLV-1-Associated Myelopathy (HAM/TSP) is a progressive neuroinflammatory disorder for which no disease-modifying treatment exists. Modest clinical benefit from type I interferons (IFN-α/β) in HAM/TSP contrasts with its recently identified IFN-inducible gene signature. In addition, IFN-α treatment in vivo decreases proviral load and immune activation in HAM/TSP, whereas IFN-β therapy decreases tax mRNA and lymphoproliferation. We hypothesize this “IFN paradox” in HAM/TSP might be explained by both cell type- and gene-specific effects of type I IFN in HTLV-1-associated pathogenesis. Therefore, we analyzed ex vivo transcriptomes of CD4+ T cells, PBMCs and whole blood in healthy controls, HTLV-1-infected individuals, and HAM/TSP patients. First, we used a targeted approach, simultaneously quantifying HTLV-1 mRNA (HBZ, Tax), proviral load and 42 host genes with known antiretroviral (anti-HIV) activity in purified CD4+ T cells. This revealed two major clusters (“antiviral/protective” vs. “proviral/deleterious”), as evidenced by significant negative (TRIM5/TRIM22/BST2) vs. positive correlation (ISG15/PAF1/CDKN1A) with HTLV-1 viral markers and clinical status. Surprisingly, we found a significant inversion of antiretroviral activity of host restriction factors, as evidenced by opposite correlation to in vivo HIV-1 vs. HTLV-1 RNA levels. The anti-HTLV-1 effect of antiviral cluster genes was significantly correlated to their adaptive chimp/human evolution score, for both Tax mRNA and PVL. Six genes of the proposed antiviral cluster underwent lentivirus-driven purifying selection during primate evolution (TRIM5/TRIM22/BST2/APOBEC3F-G-H), underscoring the cross-retroviral evolutionary imprint. Secondly, we examined the genome-wide type I IFN response in HAM/TSP patients, following short-term ex vivo culture of PBMCs with either IFN-α or IFN-β. Microarray analysis evidenced 12 antiretroviral genes (including TRIM5α/TRIM22/BST2) were significantly up

  4. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1.

    PubMed

    Zhang, Hui; Patel, Atish; Ma, Shao-Lin; Li, Xiao Jie; Zhang, Yun-Kai; Yang, Pei-Qi; Kathawala, Rishil J; Wang, Yi-Jun; Anreddy, Nagaraju; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-12-01

    The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1. © 2014 The British Pharmacological Society.

  5. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1

    PubMed Central

    Zhang, Hui; Patel, Atish; Ma, Shao-Lin; Li, Xiao Jie; Zhang, Yun-Kai; Yang, Pei-Qi; Kathawala, Rishil J; Wang, Yi-Jun; Anreddy, Nagaraju; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-01-01

    Background and Purpose The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. Experimental Approach Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. Key Results Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. Conclusions and Implications Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1. PMID:25164592

  6. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  7. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.

    PubMed

    Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2015-02-01

    The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  8. Smoothness of In vivo Spectral Baseline Determined by Mean Squared Error

    PubMed Central

    Zhang, Yan; Shen, Jun

    2013-01-01

    Purpose A nonparametric smooth line is usually added to spectral model to account for background signals in vivo magnetic resonance spectroscopy (MRS). The assumed smoothness of the baseline significantly influences quantitative spectral fitting. In this paper, a method is proposed to minimize baseline influences on estimated spectral parameters. Methods In this paper, the non-parametric baseline function with a given smoothness was treated as a function of spectral parameters. Its uncertainty was measured by root-mean-squared error (RMSE). The proposed method was demonstrated with a simulated spectrum and in vivo spectra of both short echo time (TE) and averaged echo times. The estimated in vivo baselines were compared with the metabolite-nulled spectra, and the LCModel-estimated baselines. The accuracies of estimated baseline and metabolite concentrations were further verified by cross-validation. Results An optimal smoothness condition was found that led to the minimal baseline RMSE. In this condition, the best fit was balanced against minimal baseline influences on metabolite concentration estimates. Conclusion Baseline RMSE can be used to indicate estimated baseline uncertainties and serve as the criterion for determining the baseline smoothness of in vivo MRS. PMID:24259436

  9. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    PubMed Central

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  10. Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots

    PubMed Central

    Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.

    2009-01-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337

  11. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles.

    PubMed

    Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri

    2017-01-01

    Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65-85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream.

  12. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles

    PubMed Central

    Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri

    2017-01-01

    Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65–85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream. PMID:28249037

  13. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    PubMed

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  14. Nanowire-Based Electrode for Acute In Vivo Neural Recordings in the Brain

    PubMed Central

    Suyatin, Dmitry B.; Wallman, Lars; Thelin, Jonas; Prinz, Christelle N.; Jörntell, Henrik; Samuelson, Lars; Montelius, Lars; Schouenborg, Jens

    2013-01-01

    We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo. PMID:23431387

  15. Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.

    PubMed

    Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y

    2016-08-01

    Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.

  16. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe

    PubMed Central

    Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui

    2018-01-01

    Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (P<0.001, r=0.968). The fluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (P<0.001) and ex vivo (P=0.022). In the mice with bilateral subcutaneous tumors injected with AF750 labeled AP613-1, Huh-7 tumors showed significantly higher fluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356

  17. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications

    PubMed Central

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G.; Koronyo, Yosef; Medina-Kauwe, Lali K.; Gross, Zeev; Gray, Harry B.; Farkas, Daniel L.

    2011-01-01

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications. PMID:21339880

  18. Immunomodulatory effect of Moringa peregrina leaves, ex vivo and in vivo study

    PubMed Central

    Al-Oran, Sawsan Atallah; Hassuneh, Mona Rushdie; Al-Qaralleh, Haitham Naief; Rayyan, Walid Abu; Al-Thunibat, Osama Yosef; Mallah, Eyad; Abu-Rayyan, Ahmed; Salem, Shadi

    2017-01-01

    This study was conducted to assess the in vivo and ex vivo immunomodulatory effect of the ethanol leaves extract of Moringa peregrina in Balb/c mice. For this study, five groups of 5 Balb/c mice were given a single acute subtoxic oral dose of the ethanolic extract at 1.13, 11.30, 23.40 and 113.4 mg/kg and the immunomodulatory effect was assessed on the 6th day following the ingestion. In the (non-functional) assessment, the effect of the extract on the body weight, relative lymphoid organ weight, splenic cellularity and peripheral blood hematologic parameters were evaluated. While in the immunomodulation assessment (functional), we investigated the effect of the extract on the proliferative capacity of splenic lymphocytes and peripheral T and B lymphocytes using mitogen blastogenesis, mixed allogeneic MLR and IgM-Plaque forming cells assays. The ingestion of M. peregrina extract caused a significant increase in the body weight, weight and number of cells of spleen and lymph nodes of the treated mice. Furthermore, the count of RBCs, WBCs, platelets, hemoglobin concentration and PCV % were increased by the extract treatment in a dose-dependent manner. M. peregrina enhanced the proliferative responses of splenic lymphocytes for both T cell and B-cell mitogens. Likewise, the mixed lymphocyte reaction MLR assay has revealed a T-cell dependent proliferation enhancement in the extract treated mice. Moreover, the oral administration of M. peregrina leaves extracts significantly increased PFCs/106 splenocytes in a dose-dependent manner. In conclusion, subtoxic acute doses of M. peregrina extract demonstrated significant potential as an immunomodulatory agent even at the lowest dose of 1.13 mg/kg. PMID:29204086

  19. Rat aorta as a pharmacological tool for in vitro and in vivo studies.

    PubMed

    Rameshrad, Maryam; Babaei, Hossein; Azarmi, Yadollah; Fouladi, Daniel Fadaei

    2016-01-15

    Rat aorta assay provides a low cost and rapid platform, especially for preclinical in vivo models. The signaling pathways of the analog on the vessels could be evaluated separately on the endothelium or smooth muscle cells by rings of the rat aorta in vitro. The rat aorta is used for angiogenesis modeling to integrate the benefits of the both in vivo and in vitro models. These explain the importance and usage of rat aorta in researches. Furthermore, about 4503 articles have been published with the key word "rat aorta" in title or abstract from 1955 until the end of 2013 in Medline. In this review, these articles were organized into two main categories: in vivo and in vitro studies. The in vitro section focused on the rat aorta model, as a tool for evaluate the mechanism of vasodilation, vasoconstriction and angiogenesis. In the in vivo section, the most important usage of this tissue was evaluated. Also, the vasotonic signaling pathways in the vessel are explained briefly and some rat aorta applications in vitro and in vivo have been discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. In vivo correlation between axon diameter and conduction velocity in the human brain.

    PubMed

    Horowitz, Assaf; Barazany, Daniel; Tavor, Ido; Bernstein, Moran; Yovel, Galit; Assaf, Yaniv

    2015-01-01

    The understanding of the relationship between structure and function has always characterized biology in general and neurobiology in particular. One such fundamental relationship is that between axon diameter and the axon's conduction velocity (ACV). Measurement of these neuronal properties, however, requires invasive procedures that preclude direct elucidation of this relationship in vivo. Here we demonstrate that diffusion-based MRI is sensitive to the fine microstructural elements of brain wiring and can be used to quantify axon diameter in vivo. Moreover, we demonstrate the in vivo correlation between the diameter of an axon and its conduction velocity in the human brain. Using AxCaliber, a novel magnetic resonance imaging technique that enables us to estimate in vivo axon diameter distribution (ADD) and by measuring the interhemispheric transfer time (IHTT) by electroencephalography, we found significant linear correlation, across a cohort of subjects, between brain microstructure morphology (ADD) and its physiology (ACV) in the tactile and visual sensory domains. The ability to make a quantitative assessment of a fundamental physiological property in the human brain from in vivo measurements of ADD may shed new light on neurological processes occurring in neuroplasticity as well as in neurological disorders and neurodegenerative diseases.

  1. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia

    PubMed Central

    2014-01-01

    Background TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. Results We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. Conclusions Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage. PMID:24666995

  2. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. THz Medical Imaging: in vivo Hydration Sensing

    PubMed Central

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  4. In Vivo Cancer Biomarkers of Esophageal Neoplasia

    PubMed Central

    Lu, Shaoying; Wang, Thomas D

    2011-01-01

    Summary The emergence of in vivo cancer biomarkers is promising tool for early detection, risk stratification, and therapeutic intervention in the esophagus, where adenocarcinoma is increasing at a rate that is faster than any other in industrialized nations. Exciting advances in target identification, probe development, and optical instrumentation are creating tremendous new opportunities for advancing techniques of molecular imaging. Progress in these areas is being made with small animal models of esophageal cancer using surgical approaches to induce reflux of acid and bile, and these findings are beginning to be evaluated in the clinic. Further identification of relevant targets, characterization of specific probes, and development of endoscopic imaging technologies are needed to further this direction in the field of molecular medicine. In the future, new methods that use in vivo cancer biomarkers for the early detection of neoplastic changes in the setting of Barrett's esophagus will become available. PMID:19126962

  5. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro

    PubMed Central

    Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth

    2004-01-01

    In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047

  6. DCO-VIVO: A Collaborative Data Platform for the Deep Carbon Science Communities

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.; West, P.; Erickson, J. S.; Ma, X.; Fox, P. A.

    2014-12-01

    Deep Carbon Observatory (DCO) is a decade-long scientific endeavor to understand carbon in the complex deep Earth system. Thousands of DCO scientists from institutions across the globe are organized into communities representing four domains of exploration: Extreme Physics and Chemistry, Reservoirs and Fluxes, Deep Energy, and Deep Life. Cross-community and cross-disciplinary collaboration is one of the most distinctive features in DCO's flexible research framework. VIVO is an open-source Semantic Web platform that facilitates cross-institutional researcher and research discovery. it includes a number of standard ontologies that interconnect people, organizations, publications, activities, locations, and other entities of research interest to enable browsing, searching, visualizing, and generating Linked Open (research) Data. The DCO-VIVO solution expedites research collaboration between DCO scientists and communities. Based on DCO's specific requirements, the DCO Data Science team developed a series of extensions to the VIVO platform including extending the VIVO information model, extended query over the semantic information within VIVO, integration with other open source collaborative environments and data management systems, using single sign-on, assigning of unique Handles to DCO objects, and publication and dataset ingesting extensions using existing publication systems. We present here the iterative development of these requirements that are now in daily use by the DCO community of scientists for research reporting, information sharing, and resource discovery in support of research activities and program management.

  7. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  8. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  9. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Wang, Cheng; Hu, Cheng; Wang, Xueding; Wei, Xunbin

    2014-02-01

    Melanoma, a malignant tumor of melanocytes, is the most serious type of skin cancer in the world. It accounts for about 80% of deaths of all skin cancer. For cancer detection, circulating tumor cells (CTCs) serve as a marker for metastasis development, cancer recurrence, and therapeutic efficacy. Melanoma tumor cells have high content of melanin, which has high light absorption and can serve as endogenous biomarker for CTC detection without labeling. Here, we have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of melanoma cancer by counting CTCs of melanoma tumor bearing mice in vivo. To test in vivo PAFC's capability of detecting melanoma cancer, we have constructed a melanoma tumor model by subcutaneous inoculation of highly metastatic murine melanoma cancer cells, B16F10. In order to effectively distinguish the targeting PA signals from background noise, we have used the algorithm of Wavelet denoising method to reduce the background noise. The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the blood stream. Compared with fluorescence-based in vivo flow cytometry (IVFC), PAFC technique can be used for in vivo, label-free, and noninvasive detection of circulating tumor cells (CTCs).

  10. High molecular weight DNA assembly in vivo for synthetic biology applications.

    PubMed

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  11. Cylindromatosis mediates neuronal cell death in vitro and in vivo.

    PubMed

    Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten

    2018-01-19

    The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.

  12. In vivo Real-Time Mass Spectrometry for Guided Surgery Application

    NASA Astrophysics Data System (ADS)

    Fatou, Benoit; Saudemont, Philippe; Leblanc, Eric; Vinatier, Denis; Mesdag, Violette; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2016-05-01

    Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions.

  13. Transgenic mouse models enabling photolabeling of individual neurons in vivo.

    PubMed

    Peter, Manuel; Bathellier, Brice; Fontinha, Bruno; Pliota, Pinelopi; Haubensak, Wulf; Rumpel, Simon

    2013-01-01

    One of the biggest tasks in neuroscience is to explain activity patterns of individual neurons during behavior by their cellular characteristics and their connectivity within the neuronal network. To greatly facilitate linking in vivo experiments with a more detailed molecular or physiological analysis in vitro, we have generated and characterized genetically modified mice expressing photoactivatable GFP (PA-GFP) that allow conditional photolabeling of individual neurons. Repeated photolabeling at the soma reveals basic morphological features due to diffusion of activated PA-GFP into the dendrites. Neurons photolabeled in vivo can be re-identified in acute brain slices and targeted for electrophysiological recordings. We demonstrate the advantages of PA-GFP expressing mice by the correlation of in vivo firing rates of individual neurons with their expression levels of the immediate early gene c-fos. Generally, the mouse models described in this study enable the combination of various analytical approaches to characterize living cells, also beyond the neurosciences.

  14. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.

    PubMed

    Diao, Shuo; Blackburn, Jeffrey L; Hong, Guosong; Antaris, Alexander L; Chang, Junlei; Wu, Justin Z; Zhang, Bo; Cheng, Kai; Kuo, Calvin J; Dai, Hongjie

    2015-12-01

    Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Detecting both melanoma depth and volume in vivo with a handheld photoacoustic probe

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Li, Guo; Zhu, Liren; Li, Chiye; Cornelius, Lynn A.; Wang, Lihong V.

    2016-03-01

    We applied a linear-array-based photoacoustic probe to detect the tumor depth and volume of melanin-containing melanoma in nude mice in vivo. We demonstrated the ability of this linear-array-based system to measure both the depth and volume of melanoma through phantom, ex vivo, and in vivo experiments. The volume detection ability also enables us to accurately calculate the rate of growth of the tumor, which is important in quantifying tumor activity. Our results show that this system can be used for clinical melanoma diagnosis and treatment at the bedside.

  16. Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery.

    PubMed

    Smoljkić, Marija; Verbrugghe, Peter; Larsson, Matilda; Widman, Erik; Fehervary, Heleen; D'hooge, Jan; Vander Sloten, Jos; Famaey, Nele

    2018-05-01

    Patient-specific biomechanical modelling can improve preoperative surgical planning. This requires patient-specific geometry as well as patient-specific material properties as input. The latter are, however, still quite challenging to estimate in vivo. This study focuses on the estimation of the mechanical properties of the arterial wall. Firstly, in vivo pressure, diameter and thickness of the arterial wall were acquired for sheep common carotid arteries. Next, the animals were sacrificed and the tissue was stored for mechanical testing. Planar biaxial tests were performed to obtain experimental stress-stretch curves. Finally, parameters for the hyperelastic Mooney-Rivlin and Gasser-Ogden-Holzapfel (GOH) material model were estimated based on the in vivo obtained pressure-diameter data as well as on the ex situ experimental stress-stretch curves. Both material models were able to capture the in vivo behaviour of the tissue. However, in the ex situ case only the GOH model provided satisfactory results. When comparing different fitting approaches, in vivo vs. ex situ, each of them showed its own advantages and disadvantages. The in vivo approach estimates the properties of the tissue in its physiological state while the ex situ approach allows to apply different loadings to properly capture the anisotropy of the tissue. Both of them could be further enhanced by improving the estimation of the stress-free state, i.e. by adding residual circumferential stresses in vivo and by accounting for the flattening effect of the tested samples ex vivo. • Competing interests: none declared • Word count: 4716. Copyright © 2018. Published by Elsevier Ltd.

  17. Human tendon behaviour and adaptation, in vivo

    PubMed Central

    Magnusson, S Peter; Narici, Marco V; Maganaris, Constantinos N; Kjaer, Michael

    2008-01-01

    Tendon properties contribute to the complex interaction of the central nervous system, muscle–tendon unit and bony structures to produce joint movement. Until recently limited information on human tendon behaviour in vivo was available; however, novel methodological advancements have enabled new insights to be gained in this area. The present review summarizes the progress made with respect to human tendon and aponeurosis function in vivo, and how tendons adapt to ageing, loading and unloading conditions. During low tensile loading or with passive lengthening not only the muscle is elongated, but also the tendon undergoes significant length changes, which may have implications for reflex responses. During active loading, the length change of the tendon far exceeds that of the aponeurosis, indicating that the aponeurosis may more effectively transfer force onto the tendon, which lengthens and stores elastic energy subsequently released during unloading, in a spring-like manner. In fact, data recently obtained in vivo confirm that, during walking, the human Achilles tendon provides elastic strain energy that can decrease the energy cost of locomotion. Also, new experimental evidence shows that, contrary to earlier beliefs, the metabolic activity in human tendon is remarkably high and this affords the tendon the ability to adapt to changing demands. With ageing and disuse there is a reduction in tendon stiffness, which can be mitigated with resistance exercises. Such adaptations seem advantageous for maintaining movement rapidity, reducing tendon stress and risk of injury, and possibly, for enabling muscles to operate closer to the optimum region of the length–tension relationship. PMID:17855761

  18. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  19. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    EPA Science Inventory

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  20. In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens.

    PubMed

    Carlson, Kristen; Chidley, Matthew; Sung, Kung-Bin; Descour, Michael; Gillenwater, Ann; Follen, Michele; Richards-Kortum, Rebecca

    2005-04-01

    For in vivo optical diagnostic technologies to be distributed to the developed and developing worlds, optical imaging systems must be constructed of inexpensive components. We present a fiber-optic confocal reflectance microscope with a cost-effective injection-molded plastic miniature objective lens for in vivo imaging of human tissues in near real time. The measured lateral resolution is less than 2.2 microm, and the measured axial resolution is 10 microm. Confocal images of ex vivo cervical tissue biopsies and in vivo human lip taken at 15 frames/s demonstrate the microscope's capability of imaging cell morphology and tissue architecture.

  1. TmDOTA -: A Sensitive Probe for MR Thermometry in Vivo

    NASA Astrophysics Data System (ADS)

    Zuo, Chun S.; Mahmood, Ashfaq; Sherry, A. Dean

    2001-07-01

    The lanthanide complex, thulium 1,4,7,10-tetraazacyclodo- decane-1,4,7,10-tetraacetic acid (TmDOTA-), has been investigated as an agent for MR thermometry in vivo. The chemical shifts of the TmDOTA- protons were highly sensitive to temperature at a clinically relevant field strength, yet insensitive to pH and the presence of Ca2+. Given the excellent stability of lanthanide-DOTA complexes and high thermal sensitivity, TmDOTA- is expected to be a good candidate for MR thermometry in vivo.

  2. In Vivo Release of Vancomycin from Calcium Phosphate Cement.

    PubMed

    Uchida, Kentaro; Sugo, Ken; Nakajima, Takehiko; Nakawaki, Mitsufumi; Takano, Shotaro; Nagura, Naoshige; Takaso, Masashi; Urabe, Ken

    2018-01-01

    Calcium phosphate cement (CPC) has good release efficiency and has therefore been used as a drug delivery system for postoperative infection. The release profile of CPC has mainly been evaluated by in vitro studies, which are carried out by immersing test specimens in a relatively large amount of solvent. However, it remains unclear whether antibiotic-impregnated CPC has sufficient clinical effects and release in vivo . We examined the in vivo release profile of CPC impregnated with vancomycin (VCM) and compared this with that of polymethylmethacrylate (PMMA) cement. To evaluate the release profile in vitro , the test specimens were immersed in 10 mL sterile phosphate-buffered saline per gram of test specimen and incubated at 37°C for 56 days in triplicate. For in vivo experiments, the test specimens were implanted between the fascia and muscle of the femur of rats. Residual VCM was extracted from the removed test specimens to determine the amount of VCM released into rat tissues. CPC released more VCM over a longer duration than PMMA in vitro . Released levels of VCM from CPC/VCM in vivo were 3.4-fold, 5.0-fold, and 8.6-fold greater on days 1, 7, and 28, respectively, than those released on the corresponding days from PMMA/VCM and were drastically greater on day 56 due to inefficient release from PMMA/VCM. The amount of VCM released from CPC and PMMA was much higher than the minimum inhibitory concentration (1.56  μ g) and lower than the detection limit, respectively. Our findings suggest that CPC is a suitable material for releasing antibiotics for local action against established postoperative infection.

  3. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga

    2005-07-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injectionmore » of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.« less

  4. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  5. In vivo serial sampling of epididymal sperm in mice.

    PubMed

    Del Val, Gonzalo Moreno; Robledano, Patricia Muñoz

    2013-07-01

    This study was undertaken to refine the techniques of in vivo collection of sperm in the mouse. The principal objective was to offer a viable, safe and reliable method for serial collection of in vivo epididimary sperm through the direct puncture of the epididymis. Six C57Bl/6J males were subjected to the whole experiment. First we obtain a sperm sample of the right epididymis, and perform a vasectomy on the left side. This sample was used in an in vitro fertilization (IVF) experiment while the males were individually housed for 10 days to let them recover from the surgery, and then their fertility was tested with natural matings until we obtained a litter of each one. After that, the animals were subjected another time to the same process (sampling, recover and natural mating). The results of these experiments were a fertilization average value of 56.7%, and that all the males had a litter in the first month after the natural matings. This study documented the feasibility of the epididimary puncture technique to in vivo serial sampling of sperm in the mouse.

  6. In vivo detection of fluctuating brain steroid levels SHORT

    PubMed Central

    Ikeda, Maaya; Rensel, Michelle A.; Schlinger, Barney A.; Remage-Healey, Luke

    2015-01-01

    This protocol describes a method for in vivo measurement of steroid hormones in brain circuits of the zebra finch. In vivo microdialysis has been used successfully to detect fluctuating neurosteroids in the auditory forebrain (Remage-Healey et al., 2008; 2012; Ikeda et al., 2012) and in the hippocampus (Rensel et al., 2012; 2013) of behaving adult zebra finches. In some cases, the steroids measured are derived locally (e.g., ‘neurosteroids’ like estrogens in males) whereas in other cases the steroids measured reflect systemic circulating levels and/or central conversion (e.g., the primary androgen testosterone and the primary glucocorticoid corticosterone). We also describe the method of reverse-microdialysis (‘retrodialysis’) of compounds that can influence local steroid neurochemistry as well as behavior. In vivo microdialysis can now be used to study steroid signaling in the brain for a variety of experimental purposes. Furthermore, similar methods have been developed to examine changing levels of catecholamines in behaving zebra finches (e.g., Sasaki et al., 2006). Thus, the combined study of neurochemistry and behavior in a vocal learning species now has a new set of powerful tools. PMID:25342066

  7. Studying Neutrophil Migration In Vivo Using Adoptive Cell Transfer.

    PubMed

    Miyabe, Yoshishige; Kim, Nancy D; Miyabe, Chie; Luster, Andrew D

    2016-01-01

    Adoptive cell transfer experiments can be used to study the roles of cell trafficking molecules on the migratory behavior of specific immune cell populations in vivo. Chemoattractants and their G protein-coupled seven-transmembrane-spanning receptors regulate migration of cells in vivo, and dysregulated expression of chemoattractants and their receptors is implicated in autoimmune and inflammatory diseases. Inflammatory arthritides, such as rheumatoid arthritis (RA), are characterized by the recruitment of inflammatory cells into joints. The K/BxN serum transfer mouse model of inflammatory arthritis shares many similar features with RA. In this autoantibody-induced model of arthritis, neutrophils are the critical immune cells necessary for the development of joint inflammation and damage. We have used adoptive neutrophil transfer to define the contributions of chemoattractant receptors, cytokines, and activation receptors expressed on neutrophils that critically regulate their entry into the inflamed joint. In this review, we describe the procedure of neutrophil adoptive transfer to study the influence of neutrophil-specific receptors or mediators upon the their recruitment into the joint using the K/BxN model of inflammatory arthritis as a model of how adoptive cell transfer studies can be used to study immune cell migration in vivo.

  8. Aspartame induces angiogenesis in vitro and in vivo models.

    PubMed

    Yesildal, F; Aydin, F N; Deveci, S; Tekin, S; Aydin, I; Mammadov, R; Fermanli, O; Avcu, F; Acikel, C H; Ozgurtas, T

    2015-03-01

    Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation (p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases. © The Author(s) 2015.

  9. Mutant IDH1 Promotes Glioma Formation In Vivo.

    PubMed

    Philip, Beatrice; Yu, Diana X; Silvis, Mark R; Shin, Clifford H; Robinson, James P; Robinson, Gemma L; Welker, Adam E; Angel, Stephanie N; Tripp, Sheryl R; Sonnen, Joshua A; VanBrocklin, Matthew W; Gibbons, Richard J; Looper, Ryan E; Colman, Howard; Holmen, Sheri L

    2018-05-01

    Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated gene in grade II-III glioma and secondary glioblastoma (GBM). A causal role for IDH1 R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1 R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1 R132H exhibited elevated (R)-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1 R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1 R132H promotes glioma development. This model enhances our understanding of the biology of IDH1 R132H -driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration

    PubMed Central

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F.; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-01-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH)2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. PMID:28013101

  11. Structural imprints in vivo decode RNA regulatory mechanisms

    PubMed Central

    Spitale, Robert C.; Flynn, Ryan A.; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y.; Batista, Pedro J.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2015-01-01

    Visualizing the physical basis for molecular behavior inside living cells is a grand challenge in biology. RNAs are central to biological regulation, and RNA’s ability to adopt specific structures intimately controls every step of the gene expression program1. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles view only two of four nucleotides that make up RNA2,3. Here we present a novel biochemical approach, In Vivo Click SHAPE (icSHAPE), that enables the first global view of RNA secondary structures of all four bases in living cells. icSHAPE of mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguishes different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA binding proteins or RNA modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N6-methyladenosine (m6A) modification genome-wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression. PMID:25799993

  12. Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model.

    PubMed

    Bhasker, Sriramoju; Kislay, Roy; Rupinder, Kanwar K; Jagat, Kanwar R

    2015-08-01

    To determine the internalization and protective effects of potential ophthalmic formulations and nanoformulated natural proteins in ex-vivo bovine corneal alkali burn model. The bovine cornea obtained were subjected to the 0.5N NaOH insult that induced alkali burn and inflammation as observed in the in vivo situation. The toxic effects of the nanoformulation were evaluated in the normal and insult induced cornea using histological analysis. Internalization studies were carried out using in vivo imaging and analysis (IVIS, PerkinElmer, USA). The nanoformulations employed in this study showed no obvious changes in the integrity of the cornea. Further, improvements in the light transmittance and reduced inflammation were observed. The IVIS showed a dose dependant increase in the uptake of the nanoformulations with time. The nanoformulated bovine lactoferrin and SurR9-C84A (SR9) proteins evaluated in the ex vivo bovine corneal irritation model is the first of its kind, and we report here the non-toxic and therapeutic potential of these formulations for topical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cherenkov radiation imaging of beta emitters: in vitro and in vivo results

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Fenzi, Alberto; Menegazzi, Marta; Sbarbati, Andrea; Del Vecchio, Antonella; Calandrino, Riccardo

    2011-08-01

    The main purpose of this work was to investigate both in vitro and in vivo Cherenkov radiation (CR) emission coming from 18F and 32P. The main difference between 18F and 32P is mainly the number of the emitted light photons, more precisely the same activity of 32P emits more CR photons with respect to 18F. In vitro results obtained by comparing beta counter measurements with photons average radiance showed that Cherenkov luminescence imaging (CLI) allows quantitative tracer activity measurements. In order to investigate in vivo the CLI approach, we studied an experimental xenograft tumor model of mammary carcinoma (BB1 tumor cells). Cherenkov in vivo dynamic whole body images of tumor bearing mice were acquired and the tumor tissue time activity curves reflected the well-known physiological accumulation of 18F-FDG in malignant tissues with respect to normal tissues. The results presented here show that it is possible to use conventional optical imaging devices for in vitro or in vivo study of beta emitters.

  14. In vivo laser confocal microscopic analysis of murine cornea and lens microstructures.

    PubMed

    Yuasa, Masashi; Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa

    2008-01-01

    The purpose of the current study is to investigate in vivo microstructures of anterior segments of normal murine eyes by new-generation in vivo laser confocal microscopy. Twenty-six corneas and lenses from 13 mice were analyzed by in vivo laser confocal microscopy. Murine corneal superficial cells formed a polygonal cell pattern, with a mean cell density of 577 +/- 115 cells/mm2 (mean +/- standard deviation). Corneal basal epithelial cells had dark cytoplasm and were closely organized (9,312 +/- 1,777 cells/mm2). Sub-basal nerve fiber bundles were arranged in a whorl pattern, with both clockwise and counter-clockwise patterns. In the stroma, keratocytes were observed as numerous reflective stellate structures. The endothelial cells were organized in a honeycomb pattern (2,463 +/- 292 cells/mm2). Deeper inside the eye, murine lens epithelial cells were organized in a regular pattern (4,168 +/- 636 cells/mm2) and numerous lens fibers were observed. In vivo laser confocal microscopy can provide high-resolution images of all corneal layers and lens structures of mice without sacrificing animals or tissue preparation.

  15. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    NASA Astrophysics Data System (ADS)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  16. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration.

    PubMed

    Cañadas, Cristina; Alvarado, Helen; Calpena, Ana C; Silva, Amélia M; Souto, Eliana B; García, Maria L; Abrego, Guadalupe

    2016-09-25

    Pranoprofen (PF) is a NSAID considered as a safe anti-inflammatory treatment for strabismus and/or cataract surgery. The drug has been formulated in poly (lactic/glycolic) acid (PLGA) nanoparticles (PF-F1NPs with cPF 1.5mg/mL, PF-F2NPs with cPF 1mg/mL) produced by solvent displacement technique and tested the in vitro cytotoxicity, ex vivo corneal permeation, in vivo ocular tolerance and in vivo anti-inflammatory efficacy of PF-F1NPs, PF-F2NPs, in comparison to eye drops conventional dosage form (Oftalar(®), PF 1mg/mL) and free drug solution (PF dissolved in PBS, 1.5mg/mL). The mean particle size of both formulations was around 350nm, with polydispersity index below 0.1, and a net negative charge of -7.41mV and -8.5mV for PF-F1NPs and PF-F2NPs, respectively. Y-79 human retinoblastoma cell line was used to evaluate the cytotoxicity of PF-F1NPs and PF-F2NPs, which were compared to blank NPs and free drug solution (PF dissolved in PBS, 1.5mg/mL). Concentrations up to 75μg/mL exhibited no toxicity to Y-79 cells, whereas at 150μg/mL a decrease of about 80% on the cell viability was observed after exposing the cells to PF-F1NPs. When treating the Y-79 cells with concentrations of PF-F2NPs between 1μg/mL to 100μg/mL, the cell viability was similar to control values after 24h and 48h of exposure. An ex vivo corneal permeation study was carried out in New Zealand rabbits. A very similar profile has been observed for the permeation of PF through the cornea when administered as eye drops and as free drug solution, which was kept much lower in comparison to PF-NPs formulations. The permeated amount of PF from the PF-F1NPs was slightly smaller than from PF-F2NPs, attributed to the increase of viscosity of the formulations with the increase of cPVA concentration. New Zealand white rabbits were also used to evaluate the irritancy of PF-F1NPs and PF-F2NPs, which demonstrated to be well-tolerated to the eye (i.e. the mean total score (MTS) was 0). PF-F2NPs exhibited the

  17. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo

    PubMed Central

    Freeman, Esther E.; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N.; Anderson, R. Rox; Tearney, Guillermo J.; Kang, Dongkyun

    2018-01-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging. PMID:29675328

  18. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    PubMed

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  19. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance

    PubMed Central

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-01-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics. PMID:22990416

  20. Implementation of an intraoperative electron radiotherapy in vivo dosimetry program.

    PubMed

    López-Tarjuelo, Juan; Morillo-Macías, Virginia; Bouché-Babiloni, Ana; Boldó-Roda, Enrique; Lozoya-Albacar, Rafael; Ferrer-Albiach, Carlos

    2016-03-15

    Intraoperative electron radiotherapy (IOERT) is a highly selective radiotherapy technique which aims to treat restricted anatomic volumes during oncological surgery and is now the subject of intense re-evaluation. In vivo dosimetry has been recommended for IOERT and has been identified as a risk-reduction intervention in the context of an IOERT risk analysis. Despite reports of fruitful experiences, information about in vivo dosimetry in intraoperative radiotherapy is somewhat scarce. Therefore, the aim of this paper is to report our experience in developing a program of in vivo dosimetry for IOERT, from both multidisciplinary and practical approaches, in a consistent patient series. We also report several current weaknesses. Reinforced TN-502RDM-H mobile metal oxide semiconductor field effect transistors (MOSFETs) and Gafchromic MD-55-2 films were used as a redundant in vivo treatment verification system with an Elekta Precise fixed linear accelerator for calibrations and treatments. In vivo dosimetry was performed in 45 patients in cases involving primary tumors or relapses. The most frequent primary tumors were breast (37 %) and colorectal (29 %), and local recurrences among relapses was 83 %. We made 50 attempts to measure with MOSFETs and 48 attempts to measure with films in the treatment zones. The surgical team placed both detectors with supervision from the radiation oncologist and following their instructions. The program was considered an overall success by the different professionals involved. The absorbed doses measured with MOSFETs and films were 93.8 ± 6.7 % and 97.9 ± 9.0 % (mean ± SD) respectively using a scale in which 90 % is the prescribed dose and 100 % is the maximum absorbed dose delivered by the beam. However, in 10 % of cases we experienced dosimetric problems due to detector misalignment, a situation which might be avoided with additional checks. The useful MOSFET lifetime length and the film sterilization procedure should also be

  1. In vivo and in vitro assessment of an intraoral dental colorimeter.

    PubMed

    Karaagaclioglu, Lale; Terzioglu, Hakan; Yilmaz, Burak; Yurdukoru, Bengul

    2010-06-01

    The purpose of this study was to assess the performance of an intraoral dental colorimeter. In vivo repeatability of an intraoral colorimeter was assessed by performing color measurements of 30 individuals' right maxillary central incisor. Three consecutive measurements from each individual were made. In the in vitro part of the study, 25 metal-ceramic and 25 all-ceramic specimens were prepared. Five shades of metal-ceramic and all-ceramic specimens were selected for color determination. A widely recognized in vitro colorimeter was used as the control group for the in vitro performance assessment of the in vivo colorimeter. The color differentiation capability of two colorimeters was compared with the readings obtained from ceramic specimens. DeltaE values between shade groups of ceramic specimens were calculated and statistically analyzed with Student's t-test. The repeatability of the intraoral instrument was evaluated statistically with Intraclass correlation coefficient. The in vivo evaluation results showed that the overall repeatability coefficient values of L*, a*, and b* notations of the intraoral colorimeter were "excellent." The color differences (DeltaE) calculated between the colorimeters were significant only between shades A(1)-B(1) for metal-ceramic specimens (p= 0.002); however, from 5 of 10 shade couples of all-ceramic specimens, the color differences obtained from the readings of the in vivo colorimeter were significantly different from that of the in vitro colorimeter (p < 0.001). For all specimens, the differences between DeltaE values were within clinically acceptable limits (<3.5). Within the limitations of this study, the intraoral colorimeter exhibited successful in vivo repeatability; however, the color difference detection performance of the device varied depending on the translucency of the specimens.

  2. In vitro and in vivo evaluation of diamond-coated strips.

    PubMed

    Lione, Roberta; Gazzani, Francesca; Pavoni, Chiara; Guarino, Stefano; Tagliaferri, Vincenzo; Cozza, Paola

    2017-05-01

    To test in vitro and in vivo the wear performance of diamond-coated strips by means of tribological testing and scanning electronic microscope (SEM). To evaluate the in vitro wear performance, a tribological test was performed by a standard tribometer. The abrasive strips slid against stationary, freshly extracted premolars fixed in resin blocks, at a 2-newton load. At the end of the tribological test, the residual surface of the strip was observed by means of SEM analysis, which was performed every 50 meters until reaching 300 meters. For the in vivo analysis, the strip was used for 300 seconds, corresponding to 250 meters. The strips presented a fenestrated structure characterized by diamond granules alternating with voids. After the first 50 meters, it was possible to observe tooth material deposited on the surface of the strips and a certain number of abrasive grains detached. The surface of the strip after 250 meters appeared smoother and therefore less effective in its abrasive power. After 300 seconds of in vivo utilization of the strip, it was possible to observe the detachment of diamond abrasive grains, the near absence of the grains and, therefore, loss of abrasive power. Under ideal conditions, after 5 minutes (30 meters) of use, the strip loses its abrasive capacity by about 60%. In vivo, a more rapid loss of abrasive power was observed due to the greater load applied by the clinician in forcing the strip into the contact point.

  3. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo.

    PubMed

    Shazeeb, Mohammed S; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A

    2012-01-01

    Bis-phenylamides and bis-hydroxyindolamides of diethylenetriaminepentaacetic acid-gadolinium (DTPA(Gd)) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, gadolinium chelates of bis-5-hydroxytryptamide-DTPA (bis-5HT-DTPA(Gd)) have been used to image localized inflammation in animal models by detecting neutrophil-derived myeloperoxidase (MPO) activity at the inflammation site. However, in other preclinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here we report a novel MPO-sensing probe obtained by replacing the reducing substrate serotonin (5-HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using nuclear magnetic resonance spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd) (1) improves solubility in water; (2) acts as a substrate for both horseradish peroxidase and MPO enzymes; (3) induces cross-linking of proteins in the presence of MPO; (4) produces oxidation products, which bind to plasma proteins; and (5) unlike bis-5HT-DTPA(Gd), does not follow first-order reaction kinetics. In vivo magnetic resonance imaging (MRI) in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to 5 days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. Bis-HTrp-DTPA(Gd) should offer improvements for MRI of MPO-mediated inflammation in vivo, especially in high-field MRI, which requires a higher dose of contrast agent.

  4. A novel paramagnetic substrate for detecting myeloperoxidase activity in vivo

    PubMed Central

    Shazeeb, Mohammed S.; Xie, Yang; Gupta, Suresh; Bogdanov, Alexei A.

    2013-01-01

    Bis-phenylamides and bis-hydroxyindolamides of DTPA(Gd) are paramagnetic reducing substrates of peroxidases that enable molecular imaging of peroxidase activity in vivo. Specifically, bis-5HT-DTPA(Gd) has been used to image localized inflammation in animal models by detecting neutrophil derived myeloperoxidase (MPO) activity at the inflammation site. However, in other pre-clinical disease models, bis-5HT-DTPA(Gd) presents technical challenges due to its limited solubility in vivo. Here, we report a novel MPO sensing probe obtained by replacing the reducing substrate serotonin (5HT) with 5-hydroxytryptophan (HTrp). Characterization of the resulting probe (bis-HTrp-DTPA(Gd)) in vitro using NMR spectroscopy and enzyme kinetic analysis showed that bis-HTrp-DTPA(Gd): 1) improves solubility in water; 2) acts as a substrate for both HRP and MPO enzymes; 3) induces cross linking of proteins in the presence of MPO; 4) produces oxidation products which bind to plasma proteins and; 5) unlike bis-5HT-DTPA(Gd), does not follow first order reaction kinetics. In vivo MR imaging in mice demonstrated that bis-HTrp-DTPA(Gd) was retained for up to five days in MPO-containing sites and cleared faster than bis-5HT-DTPA(Gd) from MPO-negative sites. In conclusion, bis-HTrp-DTPA(Gd) should offer improvements for MR imaging of MPO-mediated inflammation in vivo especially in high-field MRI, which requires higher dose of contrast agent. PMID:22954188

  5. Black pepper constituent piperine: genotoxicity studies in vitro and in vivo.

    PubMed

    Thiel, Anette; Buskens, Carin; Woehrle, Tina; Etheve, Stéphane; Schoenmakers, Ankie; Fehr, Markus; Beilstein, Paul

    2014-04-01

    Piperine is responsible for the hot taste of black pepper. Publications on genotoxicity of piperine are reported: negative Ames Tests and one in vitro micronucleus test (MNT). In vivo tests were mainly negative. In the majority of the data the administered dose levels did not follow the dose selection requirements of regulatory guidelines of having dose levels up to the maximum tolerated dose (MTD). The only oral high dose studies were a positive in vivo MNT in mice in contrast to a negative in vivo chromosome aberration test in rats. Thus, conflicting results in genotoxicity testing are published. To investigate this further, we administered piperine to mice up to the MTD and determined micronuclei-frequency. Piperine reduces core body temperature and interferes with blood cells both being known to result in irrelevant positive in vivo MNTs. Therefore we added mechanistic endpoints: core body temperature, haematology, erythropoietin level, and organ weights. Additionally an in vitro MNT in Chinese hamster ovary cells was performed. Piperine was negative in the in vitro MNT. It caused significant reduction of core body temperature, decrease of white blood cells and spleen weights but no increase in the micronucleus-frequency. Thus, in our studies piperine was not genotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.

    PubMed

    Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P Worth

    2015-10-01

    CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.

  7. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data

    PubMed Central

    Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P. Worth

    2015-01-01

    Purpose CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. Methods The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. Results For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. Conclusions CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods. PMID:25944585

  8. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less

  9. In vivo cation exchange in quantum dots for tumor-specific imaging.

    PubMed

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  10. Tracking of Engineered Bacteria In Vivo Using Nonstandard Amino Acid Incorporation.

    PubMed

    Praveschotinunt, Pichet; Dorval Courchesne, Noémie-Manuelle; den Hartog, Ilona; Lu, Chaochen; Kim, Jessica J; Nguyen, Peter Q; Joshi, Neel S

    2018-06-15

    The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.

  11. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo

    PubMed Central

    Zhang, Kuan; Chen, Chunhai; Yang, Zhiqi; He, Wenjing; Liao, Xiang; Ma, Qinlong; Deng, Ping; Lu, Jian; Li, Jingcheng; Wang, Meng; Li, Mingli; Zheng, Lianghong; Zhou, Zhuan; Sun, Wei; Wang, Liting; Jia, Hongbo; Yu, Zhengping; Zhou, Zhou; Chen, Xiaowei

    2016-01-01

    Glial precursor transplantation provides a potential therapy for brain disorders. Before its clinical application, experimental evidence needs to indicate that engrafted glial cells are functionally incorporated into the existing circuits and become essential partners of neurons for executing fundamental brain functions. While previous experiments supporting for their functional integration have been obtained under in vitro conditions using slice preparations, in vivo evidence for such integration is still lacking. Here, we utilized in vivo two-photon Ca2+ imaging along with immunohistochemistry, fluorescent indicator labeling-based axon tracing and correlated light/electron microscopy to analyze the profiles and the functional status of glial precursor cell-derived astrocytes in adult mouse neocortex. We show that after being transplanted into somatosensory cortex, precursor-derived astrocytes are able to survive for more than a year and respond with Ca2+ signals to sensory stimulation. These sensory-evoked responses are mediated by functionally-expressed nicotinic receptors and newly-established synaptic contacts with the host cholinergic afferents. Our results provide in vivo evidence for a functional integration of transplanted astrocytes into adult mammalian neocortex, representing a proof-of-principle for sensory cortex remodeling through addition of essential neural elements. Moreover, we provide strong support for the use of glial precursor transplantation to understand glia-related neural development in vivo. PMID:27405333

  12. Chorioallantoic membrane for in vivo investigation of tissue-engineered construct biocompatibility.

    PubMed

    Baiguera, Silvia; Macchiarini, Paolo; Ribatti, Domenico

    2012-07-01

    In tissue engineering approach, the scaffold plays a key role for a suitable outcome of cell-scaffold interactions and for the success of tissue healing and regeneration. As a consequence, the characterization of scaffold properties and the in vivo evaluation of tissue responses and effects result to be essential in the development of suitable implantable device. Among the in vivo methods, the chick embryo chorioallantoic membrane (CAM) assay represents a rather simple and cost-effective procedure to study the biocompatibility responses of graft materials. CAM is indeed characterized by low experiment costs, simplicity, relative speed in obtaining the expected results, limited ethical concern, no need of high-level technical skill, and the absence of a mature immune system, resulting in an inexpensive, simple, and practical method to evaluate and characterize tissue-engineered constructs. The results till now obtained suggest that CAM assay can be used as a pre-screening assay, before in vivo animal studies, to determine whether the scaffold is liable to cause an adverse reaction and to evaluate its future enhancement of existing materials for tissue engineering. A review of the more recent results related to the use of CAM for in vivo biomaterial property evaluation is herein reported. Copyright © 2012 Wiley Periodicals, Inc.

  13. Imaging molecular dynamics in vivo--from cell biology to animal models.

    PubMed

    Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I

    2011-09-01

    Advances in fluorescence microscopy have enabled the study of membrane diffusion, cell adhesion and signal transduction at the molecular level in living cells grown in culture. By contrast, imaging in living organisms has primarily been restricted to the localization and dynamics of cells in tissues. Now, imaging of molecular dynamics is on the cusp of progressing from cell culture to living tissue. This transition has been driven by the understanding that the microenvironment critically determines many developmental and pathological processes. Here, we review recent progress in fluorescent protein imaging in vivo by drawing primarily on cancer-related studies in mice. We emphasize the need for techniques that can be easily combined with genetic models and complement fluorescent protein imaging by providing contextual information about the cellular environment. In this Commentary we will consider differences between in vitro and in vivo experimental design and argue for an approach to in vivo imaging that is built upon the use of intermediate systems, such as 3-D and explant culture models, which offer flexibility and control that is not always available in vivo. Collectively, these methods present a paradigm shift towards the molecular-level investigation of disease and therapy in animal models of disease.

  14. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Law, Wing-Cheung; Cai, Hongxing; Zhang, Xihe; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-04-01

    In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe1 - xSex/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the αvβ3 integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

  15. MOSFET dosimetry in-vivo at superficial and orthovoltage x-ray energies.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2003-06-01

    This note investigates in-vivo dosimetry using a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) for radiotherapy treatment at superficial and orthovoltage x-ray energies. This was performed within one fraction of the patients treatment. Standard measurements along with energy response of the detector are given. Results showed that the MOSFET measurements in-vivo agreed with calculated results on average within +/- 5.6% over all superficial and orthovoltage energies. These variations were slightly larger than TLD results with variations between measured and calculated results being +/- 5.0% for the same patient measurements. The MOSFET device provides adequate in-vivo dosimetry for superficial and orthovoltage energy treatments with the accuracy of the measurements seeming to be relatively on par with TLD in our case. The MOSFET does have the advantage of returning a relatively immediate dosimetric result after irradiation.

  16. In vivo photoacoustic imaging of mouse embryos

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  17. In vivo proton range verification: a review

    NASA Astrophysics Data System (ADS)

    Knopf, Antje-Christin; Lomax, Antony

    2013-08-01

    Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.

  18. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  19. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  20. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  1. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  2. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  3. Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis.

    PubMed

    Stoletov, Konstantin; Willetts, Lian; Paproski, Robert J; Bond, David J; Raha, Srijan; Jovel, Juan; Adam, Benjamin; Robertson, Amy E; Wong, Francis; Woolner, Emma; Sosnowski, Deborah L; Bismar, Tarek A; Wong, Gane Ka-Shu; Zijlstra, Andries; Lewis, John D

    2018-06-14

    Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractive therapeutic target. To systemically identify genes required for tumor cell motility in an in vivo tumor microenvironment, we established a novel quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos. Utilizing this platform to screen a genome-wide shRNA library, we identified a panel of novel genes whose function is required for productive cancer cell motility in vivo, and whose expression is closely associated with metastatic risk in human cancers. The RNAi-mediated inhibition of these gene targets resulted in a nearly total (>99.5%) block of spontaneous cancer metastasis in vivo.

  4. Correlation of histological and ex-vivo confocal tumor thickness in malignant melanoma.

    PubMed

    Hartmann, Daniela; Krammer, Sebastian; Ruini, Cristel; Ruzicka, Thomas; von Braunmühl, Tanja

    2016-07-01

    The ex-vivo confocal laser scanning microscopy (ex-vivo CLSM) is a novel diagnostic method for fresh tissue examination, which has already shown promising results in the evaluation of healthy skin and different skin tumors. In malignant melanoma, the histological tumor thickness plays an essential role for further treatment strategies. The immediate perioperative measurement of tumor thickness by means of ex-vivo CLSM might accelerate the decision for further operating procedures in malignant melanoma. Ten histologically confirmed malignant melanomas from various donor sites were blindly examined by two investigators via ex-vivo CLSM and conventional light microscopy. The histopathological tumor thickness (HTT) and confocal tumor thickness (CTT) were measured independently and evaluated using correlation curves, Spearman's correlation coefficient, and Bland-Altman plots. Bland-Altman plots for HTT and reflectance-mode CTT, as well as for fluorescence-mode CTT, showed high correlations. Spearman's correlation coefficient of HTT and CTT was 1.00 in FM and RM. The mean difference of RM-CTT and FM-CTT versus HTT was 0.09 ± 0.30 mm and 0.19 ± 0.35 mm. In one case, the HTT was identical to the CTT in both modes. This pilot study shows high conformity of CTT and HTT measured in malignant melanoma underlining the potential of ex-vivo CLSM for perioperative decisions on safety margin excisions of malignant melanoma in the future.

  5. The principles of quantification applied to in vivo proton MR spectroscopy.

    PubMed

    Helms, Gunther

    2008-08-01

    Following the identification of metabolite signals in the in vivo MR spectrum, quantification is the procedure to estimate numerical values of their concentrations. The two essential steps are discussed in detail: analysis by fitting a model of prior knowledge, that is, the decomposition of the spectrum into the signals of singular metabolites; then, normalization of these signals to yield concentration estimates. Special attention is given to using the in vivo water signal as internal reference.

  6. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury.

    PubMed

    Mehaffey, J Hunter; Charles, Eric J; Sharma, Ashish K; Money, Dustin T; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G; Laubach, Victor E; Roeser, Mark E; Kron, Irving L

    2017-01-01

    Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H 2 O vs 15.0 ± 4.6 mL/cm H 2 O) and 4 hours (30.6 ± 1.3 mL/cm H 2 O vs 17.7 ± 5.9 mL/cm H 2 O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate

  7. Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bager, C.L., E-mail: cba@nordicbioscience.com; Technical University of Denmark; Gudmann, N.

    Altered architecture, composition and quality of the extracellular matrix (ECM) are pathological hallmarks of several inflammatory and fibro-proliferative pathological processes such as osteoarthritis (OA), rheumatoid arthritis (RA), fibrosis and cancer. One of the most important components of the ECM is fibronectin. Fibronectin serves as an adhesion molecule anchoring cells to the underlying basement membrane through direct interaction with integrin receptors. Fibronectin hereby modulates the properties of the ECM and affects cellular processes. Quantification of fibronectin remodeling could therefore be used to assess the changes in the ECM that occur during progression of fibro-proliferative pathologies. Ex vivo models are becoming state-of-the-art toolsmore » to study ECM remodeling as the cellular composition and the organization of the ECM are preserved. Ex vivo models may therefore be a valuable tool to study the ECM remodeling that occurs during progression of fibro-proliferative pathologies. The aim of this study was to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. A competitive The enzyme-linked immunosorbent assay (ELISA) against the C-terminus of fibronectin was developed (FBN-C). The assay was evaluated in relation to specificity, technical performance and as a marker for quantification of fibronectin in cartilage and cancer ex vivo models. The ELISA was specific and technically stable. Cleavage of tumor tissue with MMP-2 released significantly higher levels of FBN-C compared to tissue with buffer only and western blot analysis revealed that FBN-C recognizes both full length and degraded fibronectin. When ex vivo cartilage cultures were stimulated with the anabolic factor TGFβ and catabolic factors TNF-α and OSM, significantly higher levels of FBN-C were found in the conditioned media. Lastly, FBN-C was released from a cancer ex vivo model. In conclusion, we were able to quantify fibronectin remodeling in ex vivo

  8. In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.

    PubMed

    Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S

    2003-09-04

    A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant

  9. Descemet Membrane Thickening as a Sign for the Diagnosis of Corneal Graft Rejection: An Ex Vivo Study.

    PubMed

    VanDenBerg, Ryan; Diakonis, Vasilios F; Bozung, Alison; Gameiro, Gustavo Rosa; Fischer, Oliver; El Dakkak, Ahmed; Ulloa-Padilla, Jan Paul; Anagnostopoulos, Apostolos; Dubovy, Sander; Abou Shousha, Mohamed

    2017-12-01

    To disclose, using an ex vivo study, the histopathological mechanism behind in vivo thickening of the endothelium/Descemet membrane complex (En/DM) observed in rejected corneal grafts (RCGs). Descemet membrane (DM), endothelium, and retrocorneal membranes make up the total En/DM thickness. These layers are not differentiable by high-definition optical coherence tomography; therefore, the source of thickening is unclear from an in vivo perspective. A retrospective ex vivo study (from September 2015 to December 2015) was conducted to measure the thicknesses of DM, endothelium, and retrocorneal membrane in 54 corneal specimens (31 RCGs and 23 controls) using light microscopy. Controls were globes with posterior melanoma without corneal involvement. There were 54 corneas examined ex vivo with mean age 58.1 ± 12.2 in controls and 51.7 ± 27.9 years in RCGs. The ex vivo study uncovered the histopathological mechanism of En/DM thickening to be secondary to significant thickening (P < 0.001) of DM (6.5 ± 2.4 μm) in RCGs compared with controls (3.9 ± 1.5 μm). Our ex vivo study shows that DM is responsible for thickening of the En/DM in RCGs observed in vivo by high-definition optical coherence tomography and not the endothelium or retrocorneal membrane.

  10. Research Using In Vivo Simulation of Meta-Organizational Shared Decision Making (SDM). Task 2: Development of an Experimental Plan for In Vivo Exercise and Simulation

    DTIC Science & Technology

    2011-12-01

    la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2011 DRDC CSS CR 2011-31 ii...participants. Résumé …..... Introduction : Ce rapport présente la Tâche 2 du projet « Recherche par la simulation in-vivo sur la prise de décision partagée...environnement sur la prise de décision partagée in-vivo des opérations de gestion des urgences et pour colliger des données

  11. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene.

    PubMed

    Hong, Hao; Yang, Kai; Zhang, Yin; Engle, Jonathan W; Feng, Liangzhu; Yang, Yunan; Nayak, Tapas R; Goel, Shreya; Bean, Jero; Theuer, Charles P; Barnhart, Todd E; Liu, Zhuang; Cai, Weibo

    2012-03-27

    Herein we demonstrate that nanographene can be specifically directed to the tumor neovasculature in vivo through targeting of CD105 (i.e., endoglin), a vascular marker for tumor angiogenesis. The covalently functionalized nanographene oxide (GO) exhibited excellent stability and target specificity. Pharmacokinetics and tumor targeting efficacy of the GO conjugates were investigated with serial noninvasive positron emission tomography imaging and biodistribution studies, which were validated by in vitro, in vivo, and ex vivo experiments. The incorporation of an active targeting ligand (TRC105, a monoclonal antibody that binds to CD105) led to significantly improved tumor uptake of functionalized GO, which was specific for the neovasculature with little extravasation, warranting future investigation of these GO conjugates for cancer-targeted drug delivery and/or photothermal therapy to enhance therapeutic efficacy. Since poor extravasation is a major hurdle for nanomaterial-based tumor targeting in vivo, this study also establishes CD105 as a promising vascular target for future cancer nanomedicine. © 2012 American Chemical Society

  12. An Update on in Vivo Imaging of Extracellular Vesicles as Drug Delivery Vehicles

    PubMed Central

    Gangadaran, Prakash; Hong, Chae Moon; Ahn, Byeong-Cheol

    2018-01-01

    Extracellular vesicles (EVs) are currently being considered as promising drug delivery vehicles. EVs are naturally occurring vesicles that exhibit many characteristics favorable to serve as drug delivery vehicles. In addition, EVs have inherent properties for treatment of cancers and other diseases. For research and clinical translation of use of EVs as drug delivery vehicles, in vivo tracking of EVs is essential. The latest molecular imaging techniques enable the tracking of EVs in living animals. However, each molecular imaging technique has its certain advantages and limitations for the in vivo imaging of EVs; therefore, understanding the molecular imaging techniques is essential to select the most appropriate imaging technology to achieve the desired imaging goal. In this review, we summarize the characteristics of EVs as drug delivery vehicles and the molecular imaging techniques used in visualizing and monitoring EVs in in vivo environments. Furthermore, we provide a perceptual vision of EVs as drug delivery vehicles and in vivo monitoring of EVs using molecular imaging technologies. PMID:29541030

  13. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo.

    PubMed

    Thurber, Greg M; Yang, Katy S; Reiner, Thomas; Kohler, Rainer H; Sorger, Peter; Mitchison, Tim; Weissleder, Ralph

    2013-01-01

    Pharmacokinetic analysis at the organ level provides insight into how drugs distribute throughout the body, but cannot explain how drugs work at the cellular level. Here we demonstrate in vivo single-cell pharmacokinetic imaging of PARP-1 inhibitors and model drug behaviour under varying conditions. We visualize intracellular kinetics of the PARP-1 inhibitor distribution in real time, showing that PARP-1 inhibitors reach their cellular target compartment, the nucleus, within minutes in vivo both in cancer and normal cells in various cancer models. We also use these data to validate predictive finite element modelling. Our theoretical and experimental data indicate that tumour cells are exposed to sufficiently high PARP-1 inhibitor concentrations in vivo and suggest that drug inefficiency is likely related to proteomic heterogeneity or insensitivity of cancer cells to DNA-repair inhibition. This suggests that single-cell pharmacokinetic imaging and derived modelling improve our understanding of drug action at single-cell resolution in vivo.

  14. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.

    PubMed

    Li, Mo; Zheng, Mengxi; Wu, Siyu; Tian, Cheng; Liu, Di; Weizmann, Yossi; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2018-06-06

    Programmed self-assembly of nucleic acids is a powerful approach for nano-constructions. The assembled nanostructures have been explored for various applications. However, nucleic acid assembly often requires chemical or in vitro enzymatical synthesis of DNA or RNA, which is not a cost-effective production method on a large scale. In addition, the difficulty of cellular delivery limits the in vivo applications. Herein we report a strategy that mimics protein production. Gene-encoded DNA duplexes are transcribed into single-stranded RNAs, which self-fold into well-defined RNA nanostructures in the same way as polypeptide chains fold into proteins. The resulting nanostructure contains only one component RNA molecule. This approach allows both in vitro and in vivo production of RNA nanostructures. In vivo synthesized RNA strands can fold into designed nanostructures inside cells. This work not only suggests a way to synthesize RNA nanostructures on a large scale and at a low cost but also facilitates the in vivo applications.

  15. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances.

    PubMed

    Roebroeck, Alard; Miller, Karla L; Aggarwal, Manisha

    2018-06-04

    This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  16. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles.

    PubMed

    Hadjidemetriou, Marilena; Al-Ahmady, Zahraa; Mazza, Mariarosa; Collins, Richard F; Dawson, Kenneth; Kostarelos, Kostas

    2015-08-25

    The adsorption of proteins and their layering onto nanoparticle surfaces has been called the "protein corona". This dynamic process of protein adsorption has been extensively studied following in vitro incubation of many different nanoparticles with plasma proteins. However, the formation of protein corona under dynamic, in vivo conditions remains largely unexplored. Extrapolation of in vitro formed protein coronas to predict the fate and possible toxicological burden from nanoparticles in vivo is of great interest. However, complete lack of such direct comparisons for clinically used nanoparticles makes the study of in vitro and in vivo formed protein coronas of great importance. Our aim was to study the in vivo protein corona formed onto intravenously injected, clinically used liposomes, based on the composition of the PEGylated liposomal formulation that constitutes the anticancer agent Doxil. The formation of in vivo protein corona was determined after the recovery of the liposomes from the blood circulation of CD-1 mice 10 min postinjection. In comparison, in vitro protein corona was formed by the incubation of liposomes in CD-1 mouse plasma. In vivo and in vitro formed protein coronas were compared in terms of morphology, composition and cellular internalization. The protein coronas on bare (non-PEGylated) and monoclonal antibody (IgG) targeted liposomes of the same lipid composition were also comparatively investigated. A network of linear fibrillary structures constituted the in vitro formed protein corona, whereas the in vivo corona had a different morphology but did not appear to coat the liposome surface entirely. Even though the total amount of protein attached on circulating liposomes correlated with that observed from in vitro incubations, the variety of molecular species in the in vivo corona were considerably wider. Both in vitro and in vivo formed protein coronas were found to significantly reduce receptor binding and cellular internalization of

  17. Identifying Breast Tumor Suppressors Using in Vitro and in Vivo RNAi Screens

    DTIC Science & Technology

    2011-10-01

    vivo RNA interference screen, breast cancer , tumor suppressor, leukemia inhibitory factor receptor (LIFR) 16. SECURITY CLASSIFICATION OF: 17...The identification of these genes will improve the understanding of the causes of breast cancer , which may lead to therapeutic advancements for... breast cancer prevention and treatment. BODY Objective 1: Identification of breast tumor suppressors using in vitro and in vivo RNAi screens

  18. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  19. RNA nanotechnology for computer design and in vivo computation

    PubMed Central

    Qiu, Meikang; Khisamutdinov, Emil; Zhao, Zhengyi; Pan, Cheryl; Choi, Jeong-Woo; Leontis, Neocles B.; Guo, Peixuan

    2013-01-01

    Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658–667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 490 nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer

  20. Directed evolution of artificial metalloenzymes for in vivo metathesis

    NASA Astrophysics Data System (ADS)

    Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.

    2016-09-01

    The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in

  1. Immunochemical detection of advanced glycosylation end products in vivo.

    PubMed

    Makita, Z; Vlassara, H; Cerami, A; Bucala, R

    1992-03-15

    Reducing sugars react with protein amino groups to form a diverse group of protein-bound moieties with fluorescent and cross-linking properties. These compounds, called advanced glycosylation end products (AGEs), have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. Although several AGEs have been identified on the basis of de novo synthesis and tissue isolation procedures, the measurement of AGE compounds in vivo has remained difficult. As an approach to the study of AGE formation in vivo, we prepared polyclonal antiserum to an AGE epitope(s) which forms in vitro after incubation of glucose with ribonuclease (RNase). This antiserum proved suitable for the detection of AGEs which form in vivo. Both diabetic tissue and serum known to contain elevated levels of AGEs readily competed for antibody binding. Cross-reactivity studies revealed the presence of a common AGE epitope(s) which forms after the incubation of diverse proteins with glucose. Cross-reactive epitopes also formed with glucose 6-phosphate or fructose. These data suggest that tissue AGEs which form in vivo appear to contain a common immunological epitope which cross-reacts with AGEs prepared in vitro, supporting the concept that immunologically similar AGE structures form from the incubation of sugars with different proteins (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332). None of the known AGEs, such as 4-furanyl-2-furoyl-1H-imidazole, 1-alkyl-2-formyl-3,4-diglycosylpyrrole, pyrraline, carboxymethyllysine, or pentosidine, were found to compete for binding to anti-AGE antibody. These data further suggest that the dominant AGE epitope which forms from the reaction of glucose with proteins under native conditions is immunologically distinct from the structurally defined AGEs described to date.

  2. RNA nanotechnology for computer design and in vivo computation.

    PubMed

    Qiu, Meikang; Khisamutdinov, Emil; Zhao, Zhengyi; Pan, Cheryl; Choi, Jeong-Woo; Leontis, Neocles B; Guo, Peixuan

    2013-10-13

    Molecular-scale computing has been explored since 1989 owing to the foreseeable limitation of Moore's law for silicon-based computation devices. With the potential of massive parallelism, low energy consumption and capability of working in vivo, molecular-scale computing promises a new computational paradigm. Inspired by the concepts from the electronic computer, DNA computing has realized basic Boolean functions and has progressed into multi-layered circuits. Recently, RNA nanotechnology has emerged as an alternative approach. Owing to the newly discovered thermodynamic stability of a special RNA motif (Shu et al. 2011 Nat. Nanotechnol. 6, 658-667 (doi:10.1038/nnano.2011.105)), RNA nanoparticles are emerging as another promising medium for nanodevice and nanomedicine as well as molecular-scale computing. Like DNA, RNA sequences can be designed to form desired secondary structures in a straightforward manner, but RNA is structurally more versatile and more thermodynamically stable owing to its non-canonical base-pairing, tertiary interactions and base-stacking property. A 90-nucleotide RNA can exhibit 4⁹⁰ nanostructures, and its loops and tertiary architecture can serve as a mounting dovetail that eliminates the need for external linking dowels. Its enzymatic and fluorogenic activity creates diversity in computational design. Varieties of small RNA can work cooperatively, synergistically or antagonistically to carry out computational logic circuits. The riboswitch and enzymatic ribozyme activities and its special in vivo attributes offer a great potential for in vivo computation. Unique features in transcription, termination, self-assembly, self-processing and acid resistance enable in vivo production of RNA nanoparticles that harbour various regulators for intracellular manipulation. With all these advantages, RNA computation is promising, but it is still in its infancy. Many challenges still exist. Collaborations between RNA nanotechnologists and computer

  3. THE REMOVAL OF CARTILAGE MATRIX, IN VIVO, BY PAPAIN

    PubMed Central

    McCluskey, Robert T.; Thomas, Lewis

    1958-01-01

    The intravenous injection of crystalline papain into young rabbits results in depletion of cartilage matrix throughout the body, with loss of rigidity and collapse of the ears, provided the enzyme is inactivated by oxidation or sulfhydryl blocking agents prior to administration. Cysteine-activated crystalline papain, when injected intravenously, produces little or no change in cartilage. The changes which occur in cartilage following an injection of inactivated crystalline papain are indistinguishable from those produced by crude papain. Activation of crude papain by cysteine prior to injection results in loss of its capacity to produce in vivo changes in cartilage. The progressive changes which take place in cartilage in vivo also occur in vitro in isolated rabbit ears removed shortly after an injection of crude papain or inactivated crystalline papain. In vitro ear collapse occurs rapidly at 37°C. and does not occur at 4°C. Collapse is enhanced by exposing the cartilage to cysteine and prevented by exposure to iodoacetamide or p-chloromercuribenzoate. The direct action of crystalline papain on plates of normal cartilage, in vitro, results in the same gross and histological changes which were observed in vivo. The direct action is accelerated by cysteine and inhibited by iodoacetamide or p-chloromercuribenzoate. The intravenous injection of iodoacetamide-treated bromelin produces the same in vivo changes in cartilage as papain. Untreated bromelin has no demonstrable effect on cartilage. It is suggested that the reason for the failure of activated papain to enter cartilage, after being injected intravenously, is that it probably reacts with a substrate or substrates in the blood. Oxidized or otherwise inactivated papain, in contrast, is readily taken up by cartilage and there converted to its active form. PMID:13575673

  4. A. cantoniensis inhibits the proliferation of murine leukemia WEHI-3 cells in vivo and promotes immunoresponses in vivo.

    PubMed

    Tan, Tzu-Wei; Lin, Yuh-Tzy; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Wu, Chang-Lin; Lin, Jing-Pin; Tang, Nou-Ying; Yeh, Chin-Chung; Fan, Ming-Jen; Chung, Jing-Gung

    2009-01-01

    Ampelopsis cantoniensis (AC) has been used as a folk medicine for reducing pain in the Taiwanese population. Our previous studies have shown that the crude extract of AC induced apoptosis in human promyelocytic leukemia HL-60 cells. In this study, the in vivo effects of AC on leukemia WEHI-3 cells and immune responses such as phagocytosis and natural killer (NK) cell activity were investigated. The weights of the livers and spleens were decreased in the AC-treated groups compared to the control groups. The AC treatment increased the percentage of CD3 and CD19 marker cells in WEHI-3-injected mice, indicating that the precursors of T and B cells were inhibited. The AC treatment promoted the activity of macrophage phagocytosis in the peripheral blood mononuclear cells (PBMC) and peritoneal cells. It was found that the NK cells from mice after treatment with AC can kill the YAC-1 target cells. Therefore, the AC treatment increased NK cell activity. In conclusion, AC can affect WEHI-3 cells in vivo and promote macrophage and NK cell activities.

  5. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  6. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  7. A method to improve the effectiveness of diode in vivo dosimetry.

    PubMed

    Alecu, R; Alecu, M; Ochran, T G

    1998-05-01

    A routine diode in vivo dosimetry program based on a combination of entrance and exit dose measurements was clinically implemented in the radiation oncology department of Grace Hospital, Detroit, in January 1995. The delivered dose has been monitored by taking weekly measurements. The calibration of the diodes and the in vivo dosimetry protocol for this new, more effective type of dose verification is presented. The problems encountered within the program are discussed along with our solutions.

  8. Microworm optode sensors limit particle diffusion to enable in vivo measurements.

    PubMed

    Ozaydin-Ince, Gozde; Dubach, J Matthew; Gleason, Karen K; Clark, Heather A

    2011-02-15

    There have been a variety of nanoparticles created for in vivo uses ranging from gene and drug delivery to tumor imaging and physiological monitoring. The use of nanoparticles to measure physiological conditions while being fluorescently addressed through the skin provides an ideal method toward minimally invasive health monitoring. Here we create unique particles that have all the necessary physical characteristics to serve as in vivo reporters, but with minimized diffusion from the point of injection. These particles, called microworms, have a cylindrical shape coated with a biocompatible porous membrane that possesses a large surface-area-to-volume ratio while maintaining a large hydrodynamic radius. We use these microworms to create fluorescent sodium sensors for use as in vivo sodium concentration detectors after subcutaneous injection. However, the microworm concept has the potential to extend to the immobilization of other types of polymers for continuous physiological detection or delivery of molecules.

  9. Ebola Virus Persistence in Semen Ex Vivo.

    PubMed

    Fischer, Robert J; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent; Munster, Vincent J

    2016-02-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions.

  10. Mobile Genetic Elements: In Silico, In Vitro, In Vivo

    PubMed Central

    Arkhipova, Irina R.; Rice, Phoebe A.

    2016-01-01

    Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117

  11. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo

    PubMed Central

    Hsiao, Huey-Wen; Hsu, Tzu-Sheng; Liu, Wen-Hsien; Hsieh, Wan-Chen; Chou, Ting-Fang; Wu, Yu-Jung; Jiang, Si-Tse; Lai, Ming-Zong

    2015-01-01

    Application of regulatory T cells (Tregs) in transplantation, autoimmunity and allergy has been extensively explored, but how Foxp3 and Treg stability is regulated in vivo is incompletely understood. Here, we identify a requirement for Deltex1 (DTX1), a contributor to T-cell anergy and Foxp3 protein level maintenance in vivo. Dtx1−/− Tregs are as effective as WT Tregs in the inhibition of CD4+CD25− T-cell activation in vitro. However, the suppressive ability of Dtx1−/− Tregs is greatly impaired in vivo. We find that Foxp3 expression is diminished when Dtx1−/− Tregs are co-transferred with effector T cells in vivo. DTX1 promotes the degradation of HIF-1α. Knockout of HIF-1α restores the Foxp3 stability and rescues the defective suppressive activity in Dtx1−/− Treg cells in vivo. Our results suggest that DTX1 exerts another level of control on Treg stability in vivo by sustaining the expression of Foxp3 protein in Tregs. PMID:25695215

  12. In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models.

    PubMed

    Register, Janna K; Fales, Andrew M; Wang, Hsin-Neng; Norton, Stephen J; Cho, Eugenia H; Boico, Alina; Pradhan, Sulolit; Kim, Jason; Schroeder, Thies; Wisniewski, Natalie A; Klitzman, Bruce; Vo-Dinh, Tuan

    2015-11-01

    Surface-enhanced Raman scattering (SERS)-active plasmonic nanomaterials have become a promising agent for molecular imaging and multiplex detection. Among the wide variety of plasmonics-active nanoparticles, gold nanostars offer unique plasmon properties that efficiently induce strong SERS signals. Furthermore, nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross sections that are tunable in the near-infrared region of the tissue optical window, rendering them efficient for in vivo spectroscopic detection. This study investigated the use of SERS-encoded gold nanostars for in vivo detection. Ex vivo measurements were performed using human skin grafts to investigate the detection of SERS-encoded nanostars through tissue. We also integrated gold nanostars into a biocompatible scaffold to aid in performing in vivo spectroscopic analyses. In this study, for the first time, we demonstrate in vivo SERS detection of gold nanostars using small animal (rat) as well as large animal (pig) models. The results of this study establish the usefulness and potential of SERS-encoded gold nanostars for future use in long-term in vivo analyte sensing.

  13. Ex vivo tracheomalacia model with 3D-printed external tracheal splint.

    PubMed

    Kaye, Rachel; Goldstein, Todd; Aronowitz, Danielle; Grande, Daniel A; Zeltsman, David; Smith, Lee P

    2017-04-01

    To design and evaluate an ex vivo model of tracheomalacia with and without a three-dimensional (3D)-printed external tracheal splint. Prospective, ex vivo animal trial. Three groups of ex vivo porcine tracheas were used: 1) control (unmanipulated trachea), 2) tracheomalacia (tracheal rings partially incised and crushed), and 3) splinted tracheomalacia (external custom tracheal splint fitted onto group 2 trachea). Each end of an ex vivo trachea was sealed with a custom-designed and 3D-printed cap; a transducer was placed through one end to measure the pressure inside the trachea. Although the negative pressure was applied to the tracheal lumen, the tracheal wall collapse was measured externally and internally using a bronchoscope. Each group had at least three recorded trials. Tracheal diameter was evaluated using ImageJ software (National Institutes of Health, Bethesda, MD) and was averaged between two raters. Average tracheal occlusion percentage was compared using Student t test. The average occlusion was 31% for group 1, 87.4% for group 2, and 20% for group 3. Significant differences were found between the control and tracheomalacia groups (P < 0.01) and the tracheomalacia and splinted tracheomalacia groups (P < 0.01). There was no significant difference between the control and splinted tracheomalacia groups (P = 0.13). Applied pressure was plotted against occlusion and regression line slope differed between the tracheomalacia (0.91) and control (0.12) or splinted tracheomalacia (0.39) groups. We demonstrate the potential for an ex vivo tracheomalacia model to reproduce airway collapse and show that this collapse can be treated successfully with a 3D-printed external splint. These results are promising and justify further studies. N/A. Laryngoscope, 127:950-955, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  14. A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery

    PubMed Central

    Jiménez-Díaz, María Belén; Viera, Sara; Ibáñez, Javier; Mulet, Teresa; Magán-Marchal, Noemí; Garuti, Helen; Gómez, Vanessa; Cortés-Gil, Lorena; Martínez, Antonio; Ferrer, Santiago; Fraile, María Teresa; Calderón, Félix; Fernández, Esther; Shultz, Leonard D.; Leroy, Didier; Wilson, David M.; García-Bustos, José Francisco; Gamo, Francisco Javier; Angulo-Barturen, Iñigo

    2013-01-01

    The emergence of resistance to available antimalarials requires the urgent development of new medicines. The recent disclosure of several thousand compounds active in vitro against the erythrocyte stage of Plasmodium falciparum has been a major breakthrough, though converting these hits into new medicines challenges current strategies. A new in vivo screening concept was evaluated as a strategy to increase the speed and efficiency of drug discovery projects in malaria. The new in vivo screening concept was developed based on human disease parameters, i.e. parasitemia in the peripheral blood of patients on hospital admission and parasite reduction ratio (PRR), which were allometrically down-scaled into P. berghei-infected mice. Mice with an initial parasitemia (P0) of 1.5% were treated orally for two consecutive days and parasitemia measured 24 h after the second dose. The assay was optimized for detection of compounds able to stop parasite replication (PRR = 1) or induce parasite clearance (PRR >1) with statistical power >99% using only two mice per experimental group. In the P. berghei in vivo screening assay, the PRR of a set of eleven antimalarials with different mechanisms of action correlated with human-equivalent data. Subsequently, 590 compounds from the Tres Cantos Antimalarial Set with activity in vitro against P. falciparum were tested at 50 mg/kg (orally) in an assay format that allowed the evaluation of hundreds of compounds per month. The rate of compounds with detectable efficacy was 11.2% and about one third of active compounds showed in vivo efficacy comparable with the most potent antimalarials used clinically. High-throughput, high-content in vivo screening could rapidly select new compounds, dramatically speeding up the discovery of new antimalarial medicines. A global multilateral collaborative project aimed at screening the significant chemical diversity within the antimalarial in vitro hits described in the literature is a feasible task

  15. Morphological characterization of as-received and in vivo orthodontic stainless steel archwires.

    PubMed

    Daems, Julie; Celis, Jean-Pierre; Willems, Guy

    2009-06-01

    This study was undertaken to evaluate the material degradation of clinical bracket-archwire-contacting surfaces after in vivo orthodontic use. Twenty-four stainless steel multiloop edgewise archwires with two different cross sections (0.016 x 0.016 and 0.016 x 0.022 inches) were used for at least 6 months in the mouths of 14 patients. The surfaces of both as-received (cross-section of 0.016 x 0.016, 0.016 x 0.022, and 0.017 x 0.025 inches) and the in vivo wires were examined using scanning electron microscopy. The as-received wires exhibited an inhomogeneous surface with different surface irregularities resulting from the manufacturing process. For the in vivo archwires, an increase in the variety, type, and number of surface irregularities were observed. Crevice corrosion occurred not only at surface irregularities formed during manufacturing and orthodontic handling but also at the bracket-archwire-contacting surfaces and at the archwire surfaces coated with plaque and food remnants. This corrosion may be linked to the formation of a micro-environment at these locations. In addition, a limited number of signs of degradation induced during in vivo testing due to wear and friction were observed.

  16. In vitro, in vivo and ex vivo demonstration of the antitumoral role of hypocretin-1/orexin-A and almorexant in pancreatic ductal adenocarcinoma

    PubMed Central

    Couvelard, Anne; Bourgoin, Pierre; Gratio, Valérie; Cros, Jérôme; Rebours, Vinciane; Sauvanet, Alain; Bedossa, Pierre; Paradis, Valérie; Ruszniewski, Philippe; Couvineau, Alain; Voisin, Thierry

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is still the poorest prognostic tumor of the digestive system. We investigated the antitumoral role of orexin-A and almorexant in PDAC. We analyzed the orexin receptor type 1 (OX1R) expression by immunohistochemistry in human normal pancreas, PDAC and its precursor dysplastic intraepithelial lesions. We used PDAC-derived cell lines and fresh tissue slices to study the apoptotic role of hypocretin-1/orexin-A and almorexant in vitro and ex vivo. We analyzed in vivo the hypocretin-1/orexin-A and almorexant effect on tumor growth in mice xenografted with PDAC cell lines expressing, or not, OX1R. Ninety-six percent of PDAC expressed OX1R, while adjacent normal exocrine pancreas did not. OX1R was expressed in pre-cancerous lesions. In vitro, under hypocretin-1/orexin-A and almorexant, the OX1R-positive AsPC-1 cells underwent apoptosis, abolished by the tyrosine phosphatase SHP2 inhibitor, NSC-87877, whereas the OX1R-negative HPAF-II cell line did not. These effects were mediated by phosphorylation of OX1R and recruitment of SHP2. Ex vivo, caspase-3 positive tumor cells were significantly higher in fresh tumour slices treated 48h with hypocretin-1/orexin-A, as compared to control, whereas cellular proliferation, assessed by Ki-67 index, was not modified. In vivo, when AsPC-1 cells or patient-derived cells were xenografted in nude mice, hypocretin-1/orexin-A or almorexant, administrated both starting the day of cell line inoculation or after tumoral development, strongly slowed tumor growth. Hypocretin-1/orexin-A and almorexant induce, through OX1R, the inhibition of PDAC cellular growth by apoptosis. Hypocretins/orexins and almorexant might be powerful candidates for the treatment of PDAC. PMID:29467942

  17. Structural imprints in vivo decode RNA regulatory mechanisms.

    PubMed

    Spitale, Robert C; Flynn, Ryan A; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y; Batista, Pedro J; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2015-03-26

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  18. In Vivo Evaluation of Wearable Head Impact Sensors.

    PubMed

    Wu, Lyndia C; Nangia, Vaibhav; Bui, Kevin; Hammoor, Bradley; Kurt, Mehmet; Hernandez, Fidel; Kuo, Calvin; Camarillo, David B

    2016-04-01

    Inertial sensors are commonly used to measure human head motion. Some sensors have been tested with dummy or cadaver experiments with mixed results, and methods to evaluate sensors in vivo are lacking. Here we present an in vivo method using high speed video to test teeth-mounted (mouthguard), soft tissue-mounted (skin patch), and headgear-mounted (skull cap) sensors during 6-13 g sagittal soccer head impacts. Sensor coupling to the skull was quantified by displacement from an ear-canal reference. Mouthguard displacements were within video measurement error (<1 mm), while the skin patch and skull cap displaced up to 4 and 13 mm from the ear-canal reference, respectively. We used the mouthguard, which had the least displacement from skull, as the reference to assess 6-degree-of-freedom skin patch and skull cap measurements. Linear and rotational acceleration magnitudes were over-predicted by both the skin patch (with 120% NRMS error for a(mag), 290% for α(mag)) and the skull cap (320% NRMS error for a(mag), 500% for α(mag)). Such over-predictions were largely due to out-of-plane motion. To model sensor error, we found that in-plane skin patch linear acceleration in the anterior-posterior direction could be modeled by an underdamped viscoelastic system. In summary, the mouthguard showed tighter skull coupling than the other sensor mounting approaches. Furthermore, the in vivo methods presented are valuable for investigating skull acceleration sensor technologies.

  19. In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model.

    PubMed

    Kucharíková, Soňa; Neirinck, Bram; Sharma, Nidhi; Vleugels, Jef; Lagrou, Katrien; Van Dijck, Patrick

    2015-03-01

    Biofilm studies have been mostly dedicated to the major human fungal pathogen Candida albicans, whereas much less is known about this virulence factor in Candida glabrata, certainly under in vivo conditions. This study provides a deeper understanding of the biofilm development of C. glabrata, its architecture and susceptibility profile to fluconazole and echinocandins. In vitro and in vivo C. glabrata biofilms were developed inside serum-coated triple-lumen catheters placed in 24-well polystyrene plates or implanted subcutaneously in the back of a rat, respectively. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the biofilm architecture. Quantitative real-time PCR was used to demonstrate the expression profile of EPA1, EPA3, EPA6 and AWP1-AWP7 during in vivo biofilm formation. Mature biofilms were observed within the first 48 h and the amount of biofilm reached its maximum by 6 days. Architecturally, mature C. glabrata biofilms consisted of a thick network of yeast cells embedded in an extracellular matrix. Moreover, in vivo biofilms were susceptible to echinocandin drugs, whereas fluconazole remained ineffective. Gene expression profiling revealed that EPA3, EPA6, AWP2, AWP3 and AWP5 were up-regulated in in vivo biofilms compared with in vitro biofilms. C. glabrata is a unique microorganism, which, despite the lack of transition to the hyphal form, formed thick biofilms inside foreign bodies in vivo. To our knowledge, this is the first study that has described in vivo C. glabrata biofilm development and its architectural changes in detail and provides an insight into the susceptibility profile, as well as the gene expression machinery, of biofilm-associated infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Studying tumor metastasis by in vivo imaging and flow cytometer

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Guo, Jin; Liu, Guangda; Li, Yan; Chen, Yun; Zhang, Li; Tan, Yuan; Chen, Tong; Gu, Zhenqin; Wang, Chen

    2009-02-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. This ranges from 15,000 cases in the United States to more than a 250,000 in China. About 80% of people with primary liver cancer are male. Although two-thirds of people have advanced liver disease when they seek medical help, one third of the patients have cancer that has not progressed beyond the liver. Primary liver cancer (hepatocellular carcinoma, or HCC) is associated with liver cirrhosis 60-80% of the time. HCC may metastasize to the lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor-the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of HCC cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern liver tumor cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess liver tumor cell spreading and the circulation kinetics of liver tumor cells. A real-time quantitative monitoring of circulating liver tumor cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  1. Biodegradable luminescent porous silicon nanoparticles for in vivo applications

    PubMed Central

    Park, Ji-Ho; Gu, Luo; von Maltzahn, Geoffrey; Ruoslahti, Erkki; Bhatia, Sangeeta N.; Sailor, Michael J.

    2011-01-01

    Nanomaterials that can circulate in the body hold great potential to diagnose and treat disease1–4. For such applications, it is important that the nanomaterials be harmlessly eliminated from the body in a reasonable period of time after they carry out their diagnostic or therapeutic function. Despite efforts to improve their targeting efficiency, significant quantities of systemically administered nanomaterials are cleared by the mononuclear phagocytic system before finding their targets, increasing the likelihood of unintended acute or chronic toxicity. However, there has been little effort to engineer the self-destruction of errant nanoparticles into non-toxic, systemically eliminated products. Here, we present luminescent porous silicon nanoparticles (LPSiNPs) that can carry a drug payload and of which the intrinsic near-infrared photoluminescence enables monitoring of both accumulation and degradation in vivo. Furthermore, in contrast to most optically active nanomaterials (carbon nanotubes, gold nanoparticles and quantum dots), LPSiNPs self-destruct in a mouse model into renally cleared components in a relatively short period of time with no evidence of toxicity. As a preliminary in vivo application, we demonstrate tumour imaging using dextran-coated LPSiNPs (D-LPSiNPs). These results demonstrate a new type of multifunctional nanostructure with a low-toxicity degradation pathway for in vivo applications. PMID:19234444

  2. Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig

    PubMed Central

    Yeung, Jonathan C; Wagnetz, Dirk; Cypel, Marcelo; Rubacha, Matthew; Koike, Terumoto; Chun, Yi-Min; Hu, Jim; Waddell, Thomas K; Hwang, David M; Liu, Mingyao; Keshavjee, Shaf

    2012-01-01

    Acellular normothermic ex vivo lung perfusion (EVLP) is a novel method of donor lung preservation for transplantation. As cellular metabolism is preserved during perfusion, it represents a potential platform for effective gene transduction in donor lungs. We hypothesized that vector-associated inflammation would be reduced during ex vivo delivery due to isolation from the host immune system response. We compared ex vivo with in vivo intratracheal delivery of an E1-, E3-deleted adenoviral vector encoding either green fluorescent protein (GFP) or interleukin-10 (IL-10) to porcine lungs. Twelve hours after delivery, the lung was transplanted and the post-transplant function assessed. We identified significant transgene expression by 12 hours in both in vivo and ex vivo delivered groups. Lung function remained excellent in all ex vivo groups after viral vector delivery; however, as expected, lung function decreased in the in vivo delivered adenovirus vector encoding GFP (AdGFP) group with corresponding increases in IL-1β levels. Transplanted lung function was excellent in the ex vivo transduced lungs and inferior lung function was seen in the in vivo group after transplantation. In summary, ex vivo delivery of adenoviral gene therapy to the donor lung is superior to in vivo delivery in that it leads to less vector-associated inflammation and provides superior post-transplant lung function. PMID:22453765

  3. In Vivo Flow Cytometry: A Horizon of Opportunities

    PubMed Central

    Tuchin, Valery V.; Tárnok, Attila; Zharov, Vladimir P.

    2012-01-01

    Flow cytometry has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo flow cytometry which provides detection and imaging of circulating normal and abnormal cells directlyin blood or lymph flow. The goal of this mini-review is to provide a brief history, features and challenges of this new generation of flow cytometry methods and instruments. Spectrum of possibilities of in vivo flow cytometry in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform. PMID:21915991

  4. Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish.

    PubMed

    Qiu, Junlang; Wang, Fuxin; Zhang, Tianlang; Chen, Le; Liu, Yuan; Zhu, Fang; Ouyang, Gangfeng

    2018-01-02

    Decreasing the tedious sample preparation duration is one of the most important concerns for the environmental analytical chemistry especially for in vivo experiments. However, due to the slow mass diffusion paths for most of the conventional methods, ultrafast in vivo sampling remains challenging. Herein, for the first time, we report an ultrafast in vivo solid-phase microextraction (SPME) device based on electrosorption enhancement and a novel custom-made CNT@PPY@pNE fiber for in vivo sampling of ionized acidic pharmaceuticals in fish. This sampling device exhibited an excellent robustness, reproducibility, matrix effect-resistant capacity, and quantitative ability. Importantly, the extraction kinetics of the targeted ionized pharmaceuticals were significantly accelerated using the device, which significantly improved the sensitivity of the SPME in vivo sampling method (limits of detection ranged from 0.12 ng·g -1 to 0.25 ng·g -1 ) and shorten the sampling time (only 1 min). The proposed approach was successfully applied to monitor the concentrations of ionized pharmaceuticals in living fish, which demonstrated that the device and fiber were suitable for ultrafast in vivo sampling and continuous monitoring. In addition, the bioconcentration factor (BCF) values of the pharmaceuticals were derived in tilapia (Oreochromis mossambicus) for the first time, based on the data of ultrafast in vivo sampling. Therefore, we developed and validated an effective and ultrafast SPME sampling device for in vivo sampling of ionized analytes in living organisms and this state-of-the-art method provides an alternative technique for future in vivo studies.

  5. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging.

    PubMed

    Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-01-10

    Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken

  6. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging

    PubMed Central

    Wolak, Daniel J.; Pizzo, Michelle E.; Thorne, Robert G.

    2014-01-01

    Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken

  7. In vivo oxygen transport in the normal rabbit femoral arterial wall.

    PubMed Central

    Crawford, D W; Back, L H; Cole, M A

    1980-01-01

    In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554

  8. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo.

    PubMed

    Lewis, Karl J; Frikha-Benayed, Dorra; Louie, Joyce; Stephen, Samuel; Spray, David C; Thi, Mia M; Seref-Ferlengez, Zeynep; Majeska, Robert J; Weinbaum, Sheldon; Schaffler, Mitchell B

    2017-10-31

    Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca 2+ ) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca 2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca 2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca 2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading. Published under the PNAS license.

  9. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo.

    PubMed

    Markelc, Bostjan; Skvarca, Eva; Dolinsek, Tanja; Kloboves, Veronika Prevodnik; Coer, Andrej; Sersa, Gregor; Cemazar, Maja

    2015-06-01

    Application of electric pulses (electroporation/electropermeabilization) is an effective method for gene transfer (i.e. gene electrotransfer (GET)) in vitro and in vivo. Currently, the mechanisms by which the DNA enters the cell are not yet fully understood. Experimental evidence is building up that endocytosis is the main mechanism by which the DNA, which is later expressed, enters the cell. Therefore the aim of our study was to elucidate whether inhibitors of endocytosis, methyl-β-cyclodextrin (MβCD), Concanavalin A (ConA) and Dynasore, can impair the transfection efficacy of GET in vitro in B16F1 murine melanoma and in vivo in m. tibialis cranialis in mice. We show that MβCD--general inhibitor of endocytosis--can almost prevent GET of EGFP-N1 plasmid in vitro, that ConA--inhibitor of clathrin mediated endocytosis--also abrogates GET but to a lesser extent, and when using Dynasore--reversible inhibitor of dynamin--there is no effect on GET efficacy, if endocytosis is blocked for only 5 min after GET. Moreover, MβCD also reduced GET efficacy in vivo in m. tibialis cranialis and this effect was long lasting. The results of this study show that endocytosis is probably the main mechanism of entrance of DNA after GET in vitro and also in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. E1a is an exogenous in vivo tumour suppressor.

    PubMed

    Cimas, Francisco J; Callejas-Valera, Juan L; García-Olmo, Dolores C; Hernández-Losa, Javier; Melgar-Rojas, Pedro; Ruiz-Hidalgo, María J; Pascual-Serra, Raquel; Ortega-Muelas, Marta; Roche, Olga; Marcos, Pilar; Garcia-Gil, Elena; Fernandez-Aroca, Diego M; Ramón Y Cajal, Santiago; Gutkind, J Silvio; Sanchez-Prieto, Ricardo

    2017-07-28

    The E1a gene from adenovirus has become a major tool in cancer research. Since the discovery of E1a, it has been proposed to be an oncogene, becoming a key element in the model of cooperation between oncogenes. However, E1a's in vivo behaviour is consistent with a tumour suppressor gene, due to the block/delay observed in different xenograft models. To clarify this interesting controversy, we have evaluated the effect of the E1a 13s isoform from adenovirus 5 in vivo. Initially, a conventional xenograft approach was performed using previously unreported HCT116 and B16-F10 cells, showing a clear anti-tumour effect regardless of the mouse's immunological background (immunosuppressed/immunocompetent). Next, we engineered a transgenic mouse model in which inducible E1a 13s expression was under the control of cytokeratin 5 to avoid side effects during embryonic development. Our results show that E1a is able to block chemical skin carcinogenesis, showing an anti-tumour effect. The present report demonstrates the in vivo anti-tumour effect of E1a, showing that the in vitro oncogenic role of E1a cannot be extrapolated in vivo, supporting its future use in gene therapy approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Studying liver cancer metastasis by in vivo imaging and flow cytometer

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Gu, Zhengqin; Guo, Jin; Li, Yan; Liu, Guangda; Wei, Xunbin

    2009-11-01

    Primary liver cancer (hepatocellular carcinoma, or HCC) is associated with liver cirrhosis 60-80% of the time. Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. About 80% of people with primary liver cancer are male. Although two-thirds of people have advanced liver disease when they seek medical help, one third of the patients have cancer that has not progressed beyond the liver. HCC may metastasize to the lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of HCC cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern liver tumor cell spread through the microenvironment in vivo with real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess liver tumor cell spreading and the circulation kinetics of liver tumor cells. A real- time quantitative monitoring of circulating liver tumor cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  12. Steps for the autologous ex vivo perfused porcine liver-kidney experiment.

    PubMed

    Chung, Wen Yuan; Eltweri, Amar M; Isherwood, John; Haqq, Jonathan; Ong, Seok Ling; Gravante, Gianpiero; Lloyd, David M; Metcalfe, Matthew S; Dennison, Ashley R

    2013-12-18

    The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.

  13. In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract

    PubMed Central

    Fuhrmann, Gregor; Leroux, Jean-Christophe

    2011-01-01

    Exogenous enzymes are administered orally to treat several diseases, such as pancreatic insufficiency and lactose intolerance. Due to the proteinaceous nature of enzymes, they are subject to inactivation and/or digestion in the gastrointestinal (GI) tract. Here we describe a convenient fluorescence-based assay to monitor the activity of therapeutic enzymes in real time in vivo in the GI tract. To establish the proof of principle, the assay was applied to proline-specific endopeptidases (PEPs), a group of enzymes recently proposed as adjuvant therapy for celiac disease (a highly prevalent immunogenetic enteropathy). A short PEP-specific peptide sequence which is part of larger immunotoxic sequences of gluten was labeled with a fluorescent dye and a corresponding quencher. Upon enzymatic cleavage, the fluorescence emission was dequenched and detected with an in vivo imaging system. PEPs originating from Flavobacterium meningosepticum (FM) and Myxococcus xanthus (MX) were evaluated after oral administration in rats. While MX PEP could not cleave the peptide in the stomach, FM PEP showed significant gastric activity reaching 40–60% of the maximal in vivo signal intensity. However, both enzymes produced comparable fluorescence signals in the small intestine. Coadministration of an antacid drug significantly enhanced MX PEP’s gastric activity due to increased pH and/or inhibition of stomach proteases. With this simple procedure, differences in the in vivo performance of PEPs, which could not be identified under in vitro conditions, were detected. This imaging assay could be used to study other oral enzymes in vivo and therefore be instrumental in improving their therapeutic efficiency. PMID:21576491

  14. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice.

    PubMed

    Kupzig, Sabine; Parsons, Stephen F; Curnow, Elinor; Anstee, David J; Blair, Allison

    2017-03-01

    The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34 + cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>10 5 -fold) was achieved using CD34 + cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required. Copyright© Ferrata Storti Foundation.

  15. 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration.

    PubMed

    Mahon, Marrita M; Williams, Andreanna D; Soutter, W Patrick; Cox, I Jane; McIndoe, G Angus; Coutts, Glyn A; Dina, Roberto; deSouza, Nandita M

    2004-02-01

    The objective of this study was to establish in vivo (1)H-magnetic resonance (MR) spectroscopic appearances of cervical cancer using an endovaginal receiver coil and corroborate findings with magic angle spinning (MAS) MR spectroscopy of tissue samples. Fifty-three women (14 controls and 39 with cervical cancer) underwent endovaginal coil MR imaging at 1.5 T with T(1)- and T(2)-weighted scans sagittal and transverse to the cervix. Localized (1)H MR spectra (PRESS technique, TR 1600 ms, TE 135 ms) were accumulated in all controls and 29 cancer patients whose tumour filled > 50% of a single 3.4 cm(3) voxel. Peaks from triglyceride-CH(2) and -CH(3) were defined as present and in-phase (with the choline resonance), present but out-of-phase, or not present. Peak areas of choline-containing compounds were standardized to the area of unsuppressed tissue water resonance. Comparisons in observed resonances between groups were made using Fisher's exact test (qualitative data) and a t-test (quantitative data). Biopsies from these women analysed using MAS-MR spectroscopy and normalized to the intensity of an external standard of silicone rubber were similarly compared. Adequate water suppression permitted spectral analysis in 11 controls and 27 cancer patients. In-phase triglyceride-CH(2) resonances (1.3 ppm) were observed in 74% of tumours but in no control women (p < 0.001). No differences were observed in the presence of a 2 ppm resonance, choline-containing compounds or creatine in cancer compared with control women. However, ex vivo analysis showed significant differences not only in -CH(2), but also in -CH(3), a 2 ppm resonance, choline-containing compounds and creatine between tissues from control women and cancer tissue (p < 0.001, = 0.001, = 0.036, < 0.001 and = 0.004 respectively). On in vivo (1)H-MR spectroscopy, the presence of positive triglyceride-CH(2) resonances can be used to detect and confirm the presence of cervical cancer. However, technical improvements

  16. In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents.

    PubMed

    Liang, Sayuan; Louchami, Karim; Kolster, Hauke; Jacobsen, Anna; Zhang, Ying; Thimm, Julian; Sener, Abdullah; Thiem, Joachim; Malaisse, Willy; Dresselaers, Tom; Himmelreich, Uwe

    2016-11-01

    The assessment of the β-cell mass in experimental models of diabetes and ultimately in patients is a hallmark to understand the relationship between reduced β-cell mass/function and the onset of diabetes. It has been shown before that the GLUT-2 transporter is highly expressed in both β-cells and hepatocytes and that D-mannoheptulose (DMH) has high uptake specificity for the GLUT-2 transporter. As 19-fluorine MRI has emerged as a new alternative method for MRI cell tracking because it provides potential non-invasive localization and quantification of labeled cells, the purpose of this project is to validate β-cell and pancreatic islet imaging by using fluorinated, GLUT-2 targeting mannoheptulose derivatives ( 19 FMH) both in vivo and ex vivo. In this study, we confirmed that, similar to DMH, 19 FMHs inhibit insulin secretion and increase the blood glucose level in mice temporarily (approximately two hours). We were able to assess the distribution of 19 FMHs in vivo with a temporal resolution of about 20 minutes, which showed a quick removal of 19 FMH from the circulation (within two hours). Ex vivo MR spectroscopy confirmed a preferential uptake of 19 FMH in tissue with high expression of the GLUT-2 transporter, such as liver, endocrine pancreas and kidney. No indication of further metabolism was found. In summary, 19 FMHs are potentially suitable for visualizing and tracking of GLUT-2 expressed cells. However, current bottlenecks of this technique related to the quick clearance of the compound and relative low sensitivity of 19 F MRI need to be overcome. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Ex-vivo imaging of blood and lymphatic vessels in conjunctiva using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gong, Peijun; Karnowski, Karol; Yu, Paula; An, Dong; Yu, Dao-Yi; Sampson, David D.

    2017-04-01

    Label-free imaging of the blood and lymphatic vessel networks of the conjunctiva of the eye is important in assessing the drainage pathways affected by glaucoma. We utilize the characteristically low signal in optical coherence tomography (OCT) provided by such vessels in ex vivo tissue to characterize their morphology in two and three dimensions. We demonstrate this method on conjunctiva from six porcine eyes, showing the ready visualization of both vessel networks. Such ex vivo characterization is a necessary precursor for future in vivo studies directed towards improving glaucoma surgery.

  18. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    PubMed

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  19. In-vivo study and histological examination of laser reshaping of cartilage

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  20. Transcriptional control by G-quadruplexes: In vivo roles and perspectives for specific intervention.

    PubMed

    Armas, Pablo; David, Aldana; Calcaterra, Nora B

    2017-01-01

    G-quadruplexes are non-canonical DNA secondary structures involved in several genomic and molecular processes. Here, we summarize the main G-quadruplex features and evidences proving the in vivo role on the transcriptional regulation of genes required for zebrafish embryonic development. We also discuss alternative strategies for specifically interfering G-quadruplex in vivo.

  1. Pharmaceutical applications of in vivo EPR

    NASA Astrophysics Data System (ADS)

    Mäder, Karsten

    1998-07-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained.

  2. In vivo imaging of neural activity

    PubMed Central

    Yang, Weijian; Yuste, Rafael

    2017-01-01

    Since the introduction of calcium imaging to monitor neuronal activity with single-cell resolution, optical imaging methods have revolutionized neuroscience by enabling systematic recordings of neuronal circuits in living animals. The plethora of methods for functional neural imaging can be daunting to the nonexpert to navigate. Here we review advanced microscopy techniques for in vivo functional imaging and offer guidelines for which technologies are best suited for particular applications. PMID:28362436

  3. In vivo microscopy of the mouse brain using multiphoton laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Yoder, Elizabeth J.

    2002-06-01

    The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.

  4. ANTIOXIDANTS AMELIORATION OF ARSENICAL-INDUCED EFFECTS IN VIVO

    EPA Science Inventory

    Antioxidant amelioration of arsenical-induced effects in vivo. ES Hunter and EH Rogers. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC.

    Antioxidants have been reported to ameliorate the effects of many developmental toxicants. We tested the hypothesis that oxi...

  5. Non-Invasive in vivo Mapping and Long-Term Monitoring of Magnetic Nanoparticles in Different Organs of Animals

    NASA Astrophysics Data System (ADS)

    Nikitin, Maxim; Yuriev, Mikhail; Brusentsov, Nikolai; Vetoshko, Petr; Nikitin, Petr

    2010-12-01

    Quantitative detection of magnetic nanoparticles (MP) in vivo is very important for various biomedical applications. Our original detection method based on non-linear MP magnetization has been modified for non-invasive in vivo mapping of the MP distribution among different organs of rats. A novel highly sensitive room-temperature device equipped with an external probe has been designed and tested for quantification of MP within 20-mm depth from the animal skin. Results obtained by external in vivo scanning of rats by the probe and ex vivo MP quantification in different organs of rats well correlated. The method allows long-term in vivo study of MP evolution, clearance and redistribution among different organs of the animal. Experiments showed that dynamics in vivo strongly depend on MP characteristics (size, material, coatings, etc.), site of injection and dose. The developed detection method combined with the magnetic nanolabels can substitute the radioactive labeling in many applications.

  6. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.

  7. Patient dose analysis in total body irradiation through in vivo dosimetry

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Bhuvaneshwari, N.; Velmurugan, J.

    2012-01-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  8. In vivo quantification of spatially-varying mechanical properties in developing tissues

    PubMed Central

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David A.; Lucio, Adam A.; Hockenbery, Zachary M.; Campàs, Otger

    2017-01-01

    It is generally believed that the mechanical properties of the cellular microenvironment and their spatiotemporal variations play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has been performed yet. Here we introduce a technique that employs biocompatible ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially-varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just one minute) and displays decreasing stiffness and increasing fluidity towards its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer. PMID:27918540

  9. Drosophila hemocyte migration: an in vivo assay for directional cell migration.

    PubMed

    Moreira, Carolina G A; Regan, Jennifer C; Zaidman-Rémy, Anna; Jacinto, Antonio; Prag, Soren

    2011-01-01

    This protocol describes an in vivo assay for random and directed hemocyte migration in Drosophila. Drosophila is becoming an increasingly powerful model system for in vivo cell migration analysis, combining unique genetic tools with translucency of the embryo and pupa, which allows direct imaging and traceability of different cell types. In the assay we present here, we make use of the hemocyte response to epithelium wounding to experimentally induce a transition from random to directed migration. Time-lapse confocal microscopy of hemocyte migration in untreated conditions provides a random cell migration assay that allows identification of molecular mechanisms involved in this complex process. Upon laser-induced wounding of the thorax epithelium, a rapid chemotactic response changes hemocyte migratory behavior into a directed migration toward the wound site. This protocol provides a direct comparison of cells during both types of migration in vivo, and combined with recently developed resources such as transgenic RNAi, is ideal for forward genetic screens.

  10. [Application of numerical convolution in in vivo/in vitro correlation research].

    PubMed

    Yue, Peng

    2009-01-01

    This paper introduced the conception and principle of in vivo/in vitro correlation (IVIVC) and convolution/deconvolution methods, and elucidated in details the convolution strategy and method for calculating the in vivo absorption performance of the pharmaceutics according to the their pharmacokinetic data in Excel, then put the results forward to IVIVC research. Firstly, the pharmacokinetic data ware fitted by mathematical software to make up the lost points. Secondly, the parameters of the optimal fitted input function were defined by trail-and-error method according to the convolution principle in Excel under the hypothesis that all the input functions fit the Weibull functions. Finally, the IVIVC between in vivo input function and the in vitro dissolution was studied. In the examples, not only the application of this method was demonstrated in details but also its simplicity and effectiveness were proved by comparing with the compartment model method and deconvolution method. It showed to be a powerful tool for IVIVC research.

  11. Toward integration of in vivo molecular computing devices: successes and challenges

    PubMed Central

    Hayat, Sikander; Hinze, Thomas

    2008-01-01

    The computing power unleashed by biomolecule based massively parallel computational units has been the focus of many interdisciplinary studies that couple state of the art ideas from mathematical logic, theoretical computer science, bioengineering, and nanotechnology to fulfill some computational task. The output can influence, for instance, release of a drug at a specific target, gene expression, cell population, or be a purely mathematical entity. Analysis of the results of several studies has led to the emergence of a general set of rules concerning the implementation and optimization of in vivo computational units. Taking two recent studies on in vivo computing as examples, we discuss the impact of mathematical modeling and simulation in the field of synthetic biology and on in vivo computing. The impact of the emergence of gene regulatory networks and the potential of proteins acting as “circuit wires” on the problem of interconnecting molecular computing device subunits is also highlighted. PMID:19404433

  12. Development of potent in vivo mutagenesis plasmids with broad mutational spectra

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2015-01-01

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021

  13. Development of potent in vivo mutagenesis plasmids with broad mutational spectra.

    PubMed

    Badran, Ahmed H; Liu, David R

    2015-10-07

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.

  14. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    PubMed

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and

  15. An inverse method to determine the mechanical properties of the iris in vivo

    PubMed Central

    2014-01-01

    Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660

  16. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis.

    PubMed

    Pinnock, Abigail; Shivshetty, Nagaveni; Roy, Sanhita; Rimmer, Stephen; Douglas, Ian; MacNeil, Sheila; Garg, Prashant

    2017-02-01

    In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 10 8 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p < 0.05) in the majority of organisms from infected corneas. Histology of the scalpel-wounded and injection models indicated extensive infiltration of P. aeruginosa throughout the entire cornea, with less infiltration observed for S. aureus, C. albicans and F. solani. The models also supported dual infections. Both scalpel wounding and injection methods are suitable for inducing infection of ex vivo rabbit and human cornea models. These simple and reproducible models will be useful as an alternative to in vitro and in vivo models for investigating the detection and treatment of microbial keratitis, particularly when this might be due to two infective organisms.

  17. Optimized magnetic resonance diffusion protocol for ex-vivo whole human brain imaging with a clinical scanner

    NASA Astrophysics Data System (ADS)

    Scherrer, Benoit; Afacan, Onur; Stamm, Aymeric; Singh, Jolene; Warfield, Simon K.

    2015-03-01

    Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a novel insight into the brain to facilitate our understanding of the brain connectivity and microstructure. While in-vivo DW-MRI enables imaging of living patients and longitudinal studies of brain changes, post-mortem ex-vivo DW-MRI has numerous advantages. Ex-vivo imaging benefits from greater resolution and sensitivity due to the lack of imaging time constraints; the use of tighter fitting coils; and the lack of movement artifacts. This allows characterization of normal and abnormal tissues with unprecedented resolution and sensitivity, facilitating our ability to investigate anatomical structures that are inaccessible in-vivo. This also offers the opportunity to develop today novel imaging biomarkers that will, with tomorrow's MR technology, enable improved in-vivo assessment of the risk of disease in an individual. Post-mortem studies, however, generally rely on the fixation of specimen to inhibit tissue decay which starts as soon as tissue is deprived from its blood supply. Unfortunately, fixation of tissues substantially alters tissue diffusivity profiles. In addition, ex-vivo DW-MRI requires particular care when packaging the specimen because the presence of microscopic air bubbles gives rise to geometric and intensity image distortion. In this work, we considered the specific requirements of post-mortem imaging and designed an optimized protocol for ex-vivo whole brain DW-MRI using a human clinical 3T scanner. Human clinical 3T scanners are available to a large number of researchers and, unlike most animal scanners, have a bore diameter large enough to image a whole human brain. Our optimized protocol will facilitate widespread ex-vivo investigations of large specimen.

  18. Wide-field in vivo oral OCT imaging

    PubMed Central

    Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine; Lane, Pierre

    2015-01-01

    We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions. PMID:26203389

  19. Multidimensional In Vivo Hazard Assessment Using Zebrafish

    PubMed Central

    Tanguay, Robert L.

    2014-01-01

    There are tens of thousands of man-made chemicals in the environment; the inherent safety of most of these chemicals is not known. Relevant biological platforms and new computational tools are needed to prioritize testing of chemicals with limited human health hazard information. We describe an experimental design for high-throughput characterization of multidimensional in vivo effects with the power to evaluate trends relating to commonly cited chemical predictors. We evaluated all 1060 unique U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic zebrafish and found that 487 induced significant adverse biological responses. The utilization of 18 simultaneously measured endpoints means that the entire system serves as a robust biological sensor for chemical hazard. The experimental design enabled us to describe global patterns of variation across tested compounds, evaluate the concordance of the available in vitro and in vivo phase 1 data with this study, highlight specific mechanisms/value-added/novel biology related to notochord development, and demonstrate that the developmental zebrafish detects adverse responses that would be missed by less comprehensive testing strategies. PMID:24136191

  20. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.

    PubMed

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2017-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 vol.% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO 2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control.

  1. In vivo response of laser processed porous titanium implants for load-bearing implants

    PubMed Central

    Bandyopadhyay, Amit; Shivaram, Anish; Tarafder, Solaiman; Sahasrabudhe, Himanshu; Banerjee, Dishary; Bose, Susmita

    2016-01-01

    Applications of porous metallic implants to enhance osseointegration of load-bearing implants are increasing. In this work, porous titanium implants, with 25 volume% porosity, were manufactured using Laser Engineered Net Shaping (LENS™) to measure the influence of porosity towards bone tissue integration in vivo. Surfaces of the LENS™ processed porous Ti implants were further modified with TiO2 nanotubes to improve cytocompatibility of these implants. We hypothesized that interconnected porosity created via additive manufacturing will enhance bone tissue integration in vivo. To test our hypothesis, in vivo experiments using a distal femur model of male Sprague-Dawley rats were performed for a period of 4 and 10 weeks. In vivo samples were characterized via micro-computed tomography (CT), histological imaging, scanning electron microscopy, and mechanical push-out tests. Our results indicate that porosity played an important role to establish early stage osseointegration forming strong interfacial bonding between the porous implants and the surrounding tissue, with or without surface modification, compared to dense Ti implants used as a control. PMID:27307009

  2. Modulating Hippocampal Plasticity with In Vivo Brain Stimulation

    PubMed Central

    Carhuatanta, Kim A.; McInturf, Shawn M.; Miklasevich, Molly K.; Jankord, Ryan

    2015-01-01

    Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that

  3. Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microscopy.

    PubMed

    Zellweger, Ralph; Lopes, Massimo

    2018-01-01

    The DNA replication process can be heavily perturbed by several different conditions of genotoxic stress, particularly relevant for cancer onset and therapy. The combination of psoralen crosslinking and electron microscopy has proven instrumental to reveal the fine architecture of in vivo DNA replication intermediates and to uncover their remodeling upon specific conditions of genotoxic stress. The replication structures are stabilized in vivo (by psoralen crosslinking) prior to extraction and enrichment procedures, allowing their visualization at the transmission electron microscope. This chapter outlines the procedures required to visualize and interpret in vivo replication intermediates of eukaryotic genomic DNA, and includes an improved method for enrichment of replication intermediates, compared to previously used BND-cellulose columns.

  4. In vivo imaging: shining a light on stem cells in the living animal.

    PubMed

    Nguyen, Phong Dang; Currie, Peter David

    2018-03-28

    Stem cells are undifferentiated cells that play crucial roles during development, growth and regeneration. Traditionally, these cells have been primarily characterised by histology, cell sorting, cell culture and ex vivo methods. However, as stem cells interact in a complex environment within specific tissue niches, there has been increasing interest in examining their in vivo behaviours, particularly in response to injury. Advances in imaging technologies and genetic tools have converged to enable unprecedented access to the endogenous stem cell niche. In this Spotlight article, we highlight how in vivo imaging can probe a range of biological processes that relate to stem cell activity, behaviour and control. © 2018. Published by The Company of Biologists Ltd.

  5. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  6. Preferential Use of Central Metabolism In Vivo Reveals a Nutritional Basis for Polymicrobial Infection

    PubMed Central

    Alteri, Christopher J.; Himpsl, Stephanie D.; Mobley, Harry L. T.

    2015-01-01

    The human genitourinary tract is a common anatomical niche for polymicrobial infection and a leading site for the development of bacteremia and sepsis. Most uncomplicated, community-acquired urinary tract infections (UTI) are caused by Escherichia coli, while another bacterium, Proteus mirabilis, is more often associated with complicated UTI. Here, we report that uropathogenic E. coli and P. mirabilis have divergent requirements for specific central pathways in vivo despite colonizing and occupying the same host environment. Using mutants of specific central metabolism enzymes, we determined glycolysis mutants lacking pgi, tpiA, pfkA, or pykA all have fitness defects in vivo for P. mirabilis but do not affect colonization of E. coli during UTI. Similarly, the oxidative pentose phosphate pathway is required only for P. mirabilis in vivo. In contrast, gluconeogenesis is required only for E. coli fitness in vivo. The remarkable difference in central pathway utilization between E. coli and P. mirabilis during experimental UTI was also observed for TCA cycle mutants in sdhB, fumC, and frdA. The distinct in vivo requirements between these pathogens suggest E. coli and P. mirabilis are not direct competitors within host urinary tract nutritional niche. In support of this, we found that co-infection with E. coli and P. mirabilis wild-type strains enhanced bacterial colonization and persistence of both pathogens during UTI. Our results reveal that complementary utilization of central carbon metabolism facilitates polymicrobial disease and suggests microbial activity in vivo alters the host urinary tract nutritional niche. PMID:25568946

  7. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.

    PubMed

    Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob

    2016-11-07

    Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Non-invasive in vivo measurement of macular carotenoids

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  9. The use of rats and mice as animal models in ex vivo bone growth and development studies

    PubMed Central

    Abubakar, A. A.; Noordin, M. M.; Azmi, T. I.; Kaka, U.

    2016-01-01

    In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine. Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2. PMID:27965220

  10. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.

    PubMed

    Wang, Juan; Liu, Lumei; Wu, Yifan; Maitz, Manfred F; Wang, Zhihong; Koo, Youngmi; Zhao, Ansha; Sankar, Jagannathan; Kong, Deling; Huang, Nan; Yun, Yeoheung

    2017-03-01

    Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH) 2 and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research. Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but

  11. Transcriptional control by G-quadruplexes: In vivo roles and perspectives for specific intervention

    PubMed Central

    Armas, Pablo; David, Aldana; Calcaterra, Nora B.

    2017-01-01

    ABSTRACT G-quadruplexes are non-canonical DNA secondary structures involved in several genomic and molecular processes. Here, we summarize the main G-quadruplex features and evidences proving the in vivo role on the transcriptional regulation of genes required for zebrafish embryonic development. We also discuss alternative strategies for specifically interfering G-quadruplex in vivo. PMID:27696937

  12. Qualichem In Vivo: A Tool for Assessing the Quality of In Vivo Studies and Its Application for Bisphenol A

    PubMed Central

    Maxim, Laura; van der Sluijs, Jeroen P.

    2014-01-01

    In regulatory toxicology, quality assessment of in vivo studies is a critical step for assessing chemical risks. It is crucial for preserving public health studies that are considered suitable for regulating chemicals are robust. Current procedures for conducting quality assessments in safety agencies are not structured, clear or consistent. This leaves room for criticism about lack of transparency, subjective influence and the potential for insufficient protection provided by resulting safety standards. We propose a tool called “Qualichem in vivo” that is designed to systematically and transparently assess the quality of in vivo studies used in chemical health risk assessment. We demonstrate its use here with 12 experts, using two controversial studies on Bisphenol A (BPA) that played an important role in BPA regulation in Europe. The results obtained with Qualichem contradict the quality assessments conducted by expert committees in safety agencies for both of these studies. Furthermore, they show that reliance on standardized guidelines to ensure scientific quality is only partially justified. Qualichem allows experts with different disciplinary backgrounds and professional experiences to express their individual and sometimes divergent views—an improvement over the current way of dealing with minority opinions. It provides a transparent framework for expressing an aggregated, multi-expert level of confidence in a study, and allows a simple graphical representation of how well the study integrates the best available scientific knowledge. Qualichem can be used to compare assessments of the same study by different health agencies, increasing transparency and trust in the work of expert committees. In addition, it may be used in systematic evaluation of in vivo studies submitted by industry in the dossiers that are required for compliance with the REACH Regulation. Qualichem provides a balanced, common framework for assessing the quality of studies that may

  13. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist

    PubMed Central

    Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.

    2013-01-01

    The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354

  14. Description and Preliminary Outcomes of an In Vivo Exposure Group Treatment for Posttraumatic Stress Disorder.

    PubMed

    Porter, Eliora; Romero, Erin G; Barone, Melissa D

    2018-06-20

    Prolonged exposure (PE) therapy is traditionally delivered individually to patients. To engage more veterans in care, an in vivo exposure group treatment was developed in an urban VA medical center. This treatment represented a modification of the in vivo exposure portion of PE, with the addition of in-session, therapist-assisted in vivo exposures. Here, we describe this 12-week treatment and present preliminary outcome data. Demographics and pre- and posttreatment scores on the PTSD Checklist-Specific (PCL-S) and Beck Depression Inventory-II (BDI-II) were extracted from a program evaluation database. The sample included veterans with a diagnosis of posttraumatic stress disorder (PTSD) who participated in the in vivo exposure group between October 2010 and March 2014 and had available treatment outcome data (N = 43). The majority of participants in the sample were male (n = 41, 95.3%) and Black (n = 34, 79.1%). Participation in the in vivo group was associated with a significant decrease in PCL-S scores, with a medium-large effect size, t(42) = 5.35, p < .001, d = 0.73, and a significant decrease in BDI-II scores, with a small effect size, t(38) = 2.55, p = .015, d = 0.23. Previous participation in an evidenced-based treatment (EBT) was not associated with symptom change following the in vivo group. Findings suggest that in vivo exposure group therapy constitutes a promising intervention for individuals who decline EBTs or remain symptomatic after completing an EBT for PTSD. Further study of this treatment using a randomized controlled trial design is warranted. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  15. Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9

    PubMed Central

    Peinado Allina, Gabriel; Fortenbach, Christopher; Gross, Owen P.; Pugh, Edward N.

    2017-01-01

    The temporal resolution of scotopic vision is thought to be constrained by the signaling kinetics of retinal rods, which use a highly amplified G-protein cascade to transduce absorbed photons into changes in membrane potential. Much is known about the biochemical mechanisms that determine the kinetics of rod responses ex vivo, but the rate-limiting mechanisms in vivo are unknown. Using paired flash electroretinograms with improved signal-to-noise, we have recorded the amplitude and kinetics of rod responses to a wide range of flash strengths from living mice. Bright rod responses in vivo recovered nearly twice as fast as all previous recordings, although the kinetic consequences of genetic perturbations previously studied ex vivo were qualitatively similar. In vivo, the dominant time constant of recovery from bright flashes was dramatically reduced by overexpression of the RGS9 complex, revealing G-protein deactivation to be rate limiting for recovery. However, unlike previous ex vivo recordings, dim flash responses in vivo were relatively unaffected by RGS9 overexpression, suggesting that other mechanisms, such as calcium feedback dynamics that are strongly regulated by the restricted subretinal microenvironment, act to determine rod dim flash kinetics. To assess the consequences for scotopic vision, we used a nocturnal wheel-running assay to measure the ability of wild-type and RGS9-overexpressing mice to detect dim flickering stimuli and found no improvement when rod recovery was speeded by RGS9 overexpression. These results are important for understanding retinal circuitry, in particular as modeled in the large literature that addresses the relationship between the kinetics and sensitivity of retinal responses and visual perception. PMID:28302678

  16. Noninvasive laser coagulation of the canine vas deferens, in vivo

    NASA Astrophysics Data System (ADS)

    Cilip, Christopher M.; Ross, Ashley E.; Jarow, Jonathan P.; Fried, Nathaniel M.

    2010-02-01

    Development of a noninvasive vasectomy technique may eliminate male fear of complications (incision, bleeding, infection, and scrotal pain) and result in a more popular procedure. This study builds upon previously reported ex vivo tissue studies by exploring acute and short-term chronic in vivo canine studies. Isolation of the canine vas was achieved using a conventional vas ring clamp method. No perforation of the scrotal skin was necessary to occlude the vas. Laser radiation with a wavelength of 1075 nm, average power of 11.2 W, 500-ms pulse duration, 0.5 Hz pulse rate, and 3-mm-diameter spot was synchronized with cryogen spray cooling of the scrotal skin surface in a total of 8 dogs (n = 16 vasa) for a treatment time of 60 s. Burst pressure measurements were conducted at Days 0 and 21 (n = 8 vasa each day) to quantify the strength of vas closure. The vas was successfully thermally occluded in 15/16 (94%) procedures with 14/15 (93%) vas recording burst pressures above ejaculation pressure. One vas was not present, and another vas recorded a bursting pressure below ejaculation pressure. The coagulated vas bursting pressure averaged 283 +/- 34 mm Hg at Day 0 and 260 +/- 77 mm Hg at Day 21, significantly higher than reported vas ejaculation pressures of 136 +/- 29 mm Hg. Minor scrotal skin burns were observed during the recovery period. Noninvasive thermal occlusion of the vas is feasible in an in vivo canine model. Elimination of minor skin burns and longer term chronic in vivo canine studies are needed to confirm azospermia after vas occlusion without recanalization.

  17. In vitro and in vivo approaches to study osteocyte biology.

    PubMed

    Kalajzic, Ivo; Matthews, Brya G; Torreggiani, Elena; Harris, Marie A; Divieti Pajevic, Paola; Harris, Stephen E

    2013-06-01

    Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models. We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed. In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. In vivo super-resolution imaging of transient retinal phototropism evoked by oblique light stimulation.

    PubMed

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-05-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Octreotide exerts different effects in vivo and in vitro in Cushing's disease.

    PubMed

    Stalla, G K; Brockmeier, S J; Renner, U; Newton, C; Buchfelder, M; Stalla, J; Müller, O A

    1994-02-01

    The effect of the long-acting somatostatin analog octreotide (SMS 201-995) on adrenocorticotropin (ACTH) secretion was studied in five patients with untreated Cushing's disease in vivo and in six human corticotropic adenoma cell cultures in vitro. For the in vivo study, 100 micrograms of octreotide sc was given 30 and 180 min after cannulation of the cubital vein and 100 micrograms of corticotropin-releasing hormone (CRH) was injected iv at 210 min. Serum ACTH and cortisol levels were measured for 390 min. In vivo, octreotide had no significant effect either on basal or CRH-stimulated ACTH levels and did not influence cortisol levels. The in vitro studies were conducted with corticotropic adenoma cell cultures derived from adenoma tissue obtained from six patients with Cushing's disease. In four of six cell cultures, octreotide (1 nmol/l-1 mumol/l) inhibited basal ACTH secretion in a dose-dependent manner. The inhibition ranged from 70 to 92% for 1 nmol/l octreotide to 14-46% for 1 mumol/l octreotide as compared to controls (100%). In three of three octreotide-responsive adenoma cell cultures investigated. CRH-stimulated ACTH secretion was suppressed by octreotide. Hydrocortisone pretreatment in vitro abolished the inhibitory effect of octreotide on ACTH secretion in one octreotide-responsive corticotropic adenoma cell culture. In conclusion, we showed that octreotide in most cases could inhibit the ACTH release from human corticotropic adenoma cells in vitro but had no suppressive effect on ACTH levels of patients with Cushing's disease in vivo. This discrepancy could be due to a somatostatin receptor down-regulation by cortisol at the hypercortisolemic state in vivo.

  20. Transgene delivery to endothelial cultures derived from porcine carotid artery ex vivo.

    PubMed

    Andoh, J; Sawyer, B; Szewczyk, K; Nortley, M; Rossetti, T; Loftus, I M; Yáñez-Muñoz, R J; Hainsworth, A H

    2013-10-01

    Carotid artery disease is a widespread cause of morbidity and mortality. Porcine models of vascular disease are well established in vivo, but existing endothelial systems in vitro (e.g. human umbilical vein endothelial cells, rat aortic endothelial cultures) poorly reflect carotid endothelium. A reliable in vitro assay would improve design of in vivo experiments and allow reduction and refinement of animal use. This study aimed (1) to develop ex vivo endothelial cultures from porcine carotid and (2) to test whether these were suitable for lentivector-mediated transgene delivery. Surplus carotid arteries were harvested from young adult female Large White pigs within 10 min post-mortem. Small sectors of carotid artery wall (approximately 4 mm×4 mm squares) were immobilised in a stable gel matrix. Cultures were exposed to HIV-derived lentivector (LV) encoding a reporter transgene or the equivalent integration-deficient vector (IDLV). After 7-14 days in vitro, cultures were fixed and labelled histochemically. Thread-like multicellular outgrowths were observed that were positive for endothelial cell markers (CD31, VEGFR2, von Willebrand factor). A minority of cells co-labelled for smooth muscle markers. Sensitivity to cytotoxic agents (paclitaxel, cycloheximide, staurosporine) was comparable to that in cell cultures, indicating that the gel matrix permits diffusive access of small pharmacological molecules. Transgene-expressing cells were more abundant following exposure to LV than IDLV (4.7, 0.1% of cells, respectively). In conclusion, ex vivo adult porcine carotid artery produced endothelial cell outgrowths that were effectively transduced by LV. This system will facilitate translation of novel therapies to clinical trials, with reduction and refinement of in vivo experiments.

  1. Herpes simplex virus mutant generation and dual-detection methods for gaining insight into latent/lytic cycles in vivo.

    PubMed

    Sawtell, Nancy M; Thompson, Richard L

    2014-01-01

    Two important components to a useful strategy to examine viral gene regulation in vivo are (1) a highly efficient protocol to generate viral mutants that limits undesired mutation and retains full replication competency in vivo and (2) an efficient system to detect and quantify viral promoter activity in rare cells in vivo. Our strategy and protocols for generating, characterizing, and employing HSV viral promoter/reporter mutants in vivo are provided in this two-part chapter.

  2. In vitro, ex vivo and in vivo models: A comparative analysis of Paracoccidioides spp. proteomic studies.

    PubMed

    Parente-Rocha, Juliana Alves; Tomazett, Mariana Vieira; Pigosso, Laurine Lacerda; Bailão, Alexandre Melo; Ferreira de Souza, Aparecido; Paccez, Juliano Domiraci; Baeza, Lilian Cristiane; Pereira, Maristela; Silva Bailão, Mirelle Garcia; Borges, Clayton Luiz; Maria de Almeida Soares, Célia

    2018-06-01

    Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections

    PubMed Central

    Henry, Marine; Lavigne, Rob

    2013-01-01

    The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment. PMID:24041900

  4. Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro.

    PubMed

    Liu, Debin; Chen, Lei; Zhao, Jianye; Cui, Kang

    2018-05-01

    Astragalus polysaccharides (ASP) is extracted from Astragalus, and is the main active ingredient of Astragalus membranaceus. The purpose of this study was to investigate the protective effect of ASP on rat cardiomyocytes damage induced by myocardial ischemia and reperfusion injury (MVRI) and isoprenaline(ISO) in vivo and in vitro. The model of cardiomyocytes damage was induced using MVRI in a rat in vivo and also using ISO in cell. After ASP intervention, the protective effect of ASP on cardiomyocytes was evaluated by animal experimental and cell experimental. The results show that ASP can relieve the increase of cell volume in myocardium, reduce the apoptosis of cell in myocardial tissue caused by MVRI in vivo. At the cellular level, ASP can reverse the decrease of cell activity induced by ISO, inhibit the apoptosis, and decrease the levels of intracellular reactive oxygen species. Mechanistically at the molecular level, these effects are elicited via down-regulation of the protein levels of caspase-3 and bax and up-regulation of the protein levels of bcl-2 in both in vivo and in vitro. These results demonstrate that ASP has a protective efficacy in MVRI/ISO-treated cardiomyocytes by inhibiting the apoptosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  6. In-vivo NMR studies of deuterium-labeled photosensitizers in mice tumor model

    NASA Astrophysics Data System (ADS)

    Ramaprasad, Subbaraya; Liu, Y. H.; Pandey, R. K.; Shiau, Fuu-Yau; Smith, Kevin M.

    1993-06-01

    Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of cancer. We are using newly synthesized and chemically defined and characterized porphyrin photosensitizers that are specifically labeled with deuterium to perform in vivo NMR studies in a murine tumor model. In vivo magnetic resonance offers the potential for repetitive, safe, noninvasive evaluation of photosensitizers, tumor metabolism, and the effect of PDT on the tumor metabolism. In an effort to monitor noninvasively the photosensitizers in an in vivo tumor model, we are synthesizing several deuterium labeled photosensitizers which absorb red light at or above 630 nm. Development of methods to test these photosensitizers directly in humans is not feasible at this time, since these photosensitizers are new and we do not yet understand the side effects. In addition, we do not understand the potential benefits compared with Photofrin II, the widely used photosensitizer. To perform our in vivo deuterium NMR studies on mouse foot tumors, we have constructed a solenoid coil which operates at 30.7 MHz for the deuterium nucleus. We have been able to detect the deuterium labeled photosensitizer in the tumor after a direct intra-tumor injection. The use of 31P NMR to predict the possible outcome of PDT in these tumors is also discussed.

  7. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    PubMed Central

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-01-01

    Abstract. Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20  cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models. PMID:25822954

  8. Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.

    PubMed

    Zhu, Jiangjiang; Bean, Heather D; Wargo, Matthew J; Leclair, Laurie W; Hill, Jane E

    2013-03-01

    The identification of bacteria by their volatilomes is of interest to many scientists and clinicians as it holds the promise of diagnosing infections in situ, particularly lung infections via breath analysis. While there are many studies reporting various bacterial volatile biomarkers or fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung infections. In this study we demonstrated that SESI-MS is capable of differentiating infected versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS fingerprints. To the best of our knowledge, these are the first breath volatiles measured for P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and in vitro volatile profiles from the same strains using the murine infection model.

  9. Clinical Implications of In Vivo Lamina Cribrosa Imaging in Glaucoma.

    PubMed

    Kim, Yong Woo; Jeoung, Jin Wook; Kim, Young Kook; Park, Ki Ho

    2017-09-01

    The lamina cribrosa (LC) is a multilayered, collagenous, sieve-like structure at the deep optic nerve head, and is presumed to be the primary site of axonal injury. According to biomechanical theory, intraocular pressure-induced posterior deformation of the LC causes blockage of axonal transport and alters the ocular blood flow, so that the axons of the retinal ganglion cells lead to apoptosis, which results in glaucomatous optic disc change. Although most of the research on the LC to date has been limited to experimental animal or histologic studies, the recent advances in optical coherence tomography devices and image processing techniques have made possible the visualization of the LC structure in vivo. LC deformation in glaucoma typically has been evaluated in terms of its position from a structural reference plane (LC depth), entire curvature or shape, thickness, or localized structural change (focal LC defects or LC pore change). In this review, we highlight the methods of assessing LC deformation from in vivo optical coherence tomography scans, and we discuss the clinical implications of the recent investigations of the in vivo structure of LC in glaucoma.

  10. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  11. In vivo and in vitro measurements of cerebral aneurysm hemodynamics

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Toloui, Mostafa; van de Moortele, Pierre-Francois; Jagadeesan, Bharathi; Coletti, Filippo

    2017-11-01

    The hemodynamics of cerebral aneurysms is thought to play a critical role in their formation, growth, and potential rupture. Our understanding in this area, however, comes mostly from in vitro experiments and numerical simulations, which have limited realism. In vivo measurements of the intracranial blood flow can be obtained by Magnetic Resonance Imaging (MRI), but they typically suffer from limited accuracy and inadequate resolution. Here we present a direct comparison between in vivo and in vitro measurements of the flow inside an internal carotid artery aneurysm. For both, we use 4D (i.e. volumetric and time-resolved) MRI velocimetry performed in a 7 Tesla magnet at sub-millimeter resolution. The in vitro measurements are carried out in a 3D printed aneurysm replica scaled up by a factor three, effectively increasing the spatial resolution. The patient-specific inflow waveform and the corresponding Reynolds and Womersley numbers are matched in a flow loop that mimics the impedance of the vascular bed. Direct comparison of the velocity fields allows assessing the robustness of the in vivo measurements, while highlighting the insight achievable in vitro. The data also represents a comprehensive test case for numerical simulations.

  12. Towards in vivo bacterial detection in human lung(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar R.; Bradley, Mark; Duncan, Rory R.; Dhaliwal, Kevin

    2017-04-01

    Antibiotic resistance is a serious global concern. One way to tackle this problem is to develop new and sensitive approaches to diagnose bacterial infections and prevent unnecessary antibiotic use. With recent developments in optical molecular imaging, we are one step closer to in situ rapid detection of bacterial infections. We present here bespoke fluorescent probes for bacterial detection in ex vivo human lung tissue using fluorescence lifetime imaging microscopy (FLIM). Two in-house synthesised bespoke probes were used in this study to detect and differentiate between Gram positive and Gram negative bacterial strain using their fluorescence lifetime in the ex vivo human lung tissue. The average fluorescence lifetime of Gram positive probe (n=12) was 2.40 ± 0.25 ns and Gram negative (n=12) was 6.73 ± 0.49 ns. The human lung tissue (n=12) average fluorescence lifetime value was found to be 3.43 ± 0.19 ns. Furthermore we were also able to distinguish between dead or alive bacteria in ex vivo lung tissue based on difference in their lifetime. We have developped Fibre-FLIM methods to enable clinical translation within the Proteus Project (www.proteus.ac.uk).

  13. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the

  14. Motion compensation for in vivo subcellular optical microscopy.

    PubMed

    Lucotte, B; Balaban, R S

    2014-04-01

    In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.

  15. In vivo imaging of tumor vascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  16. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  17. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  18. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  19. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.

    PubMed

    Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M

    1998-06-01

    In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.

  20. Ex vivo vs. in vivo antibacterial activity of two antiseptics on oral biofilm

    PubMed Central

    Prada-López, Isabel; Quintas, Víctor; Casares-De-Cal, Maria A.; Suárez-Quintanilla, Juan A.; Suárez-Quintanilla, David; Tomás, Inmaculada

    2015-01-01

    Aim: To compare the immediate antibacterial effect of two application methods (passive immersion and active mouthwash) of two antiseptic solutions on the in situ oral biofilm. Material and Methods: A randomized observer-masked crossover study was conducted. Fifteen healthy volunteers wore a specific intraoral device for 48 h to form a biofilm in three glass disks. One of these disks was used as a baseline; another one was immersed in a solution of 0.2% Chlorhexidine (0.2% CHX), remaining the third in the device, placed in the oral cavity, during the 0.2% CHX mouthwash application. After a 2-weeks washout period, the protocol was repeated using a solution of Essential Oils (EO). Samples were analyzed for bacterial viability with the confocal laser scanning microscope after previous staining with LIVE/DEAD® BacLight™. Results: The EO showed a better antibacterial effect compared to the 0.2% CHX after the mouthwash application (% of bacterial viability = 1.16 ± 1.00% vs. 5.08 ± 5.79%, respectively), and was more effective in all layers (p < 0.05). In the immersion, both antiseptics were significantly less effective (% of bacterial viability = 26.93 ± 13.11%, EO vs. 15.17 ± 6.14%, 0.2% CHX); in the case of EO immersion, there were no significant changes in the bacterial viability of the deepest layer in comparison with the baseline. Conclusions: The method of application conditioned the antibacterial activity of the 0.2% CHX and EO solutions on the in situ oral biofilm. The in vivo active mouthwash was more effective than the ex vivo passive immersion in both antiseptic solutions. There was more penetration of the antiseptic inside the biofilm with an active mouthwash, especially with the EO. Trial registered in clinicaltrials.gov with the number NCT02267239. URL: https://clinicaltrials.gov/ct2/show/NCT02267239. PMID:26191050