Bladed-shrouded-disc aeroelastic analyses: Computer program updates in NASTRAN level 17.7
NASA Technical Reports Server (NTRS)
Gallo, A. M.; Elchuri, V.; Skalski, S. C.
1981-01-01
In October 1979, a computer program based on the state-of-the-art compressor and structural technologies applied to bladed-shrouded-disc was developed. The program was more operational in NASTRAN Level 16. The bladed disc computer program was updated for operation in NASTRAN Level 17.7. The supersonic cascade unsteady aerodynamics routine UCAS, delivered as part of the NASTRAN Level 16 program was recorded to improve its execution time. These improvements are presented.
The NASTRAN theoretical manual (level 16.0)
NASA Technical Reports Server (NTRS)
1976-01-01
The manual is a commentary on the NASTRAN computer program, introducing the program to all interested persons. The manual's most important function is to present the developments of the analytical and numerical procedures that underlie the program. This manual is one of the four manuals which document the NASTRAN computer program.
NASTRAN user's guide (Level 17.5)
NASA Technical Reports Server (NTRS)
Field, E. I.; Herting, D. N.; Morgan, M. J.
1979-01-01
The user's guide is a handbook for engineers and analysts who use the NASTRAN finite element computer program supplements the NASTRAN Theoretical Manual (NASA SP-221), the NASTRAN User's Manual (NASA SP-222), the NASTRAN Programmer's Manual (NASA SP-223), and the NASTRAN Demonstration Program Manual (NASA SP-224). It provides modeling hints, attributes of the program, and references to the four manuals listed.
The NASA NASTRAN structural analysis computer program - New content
NASA Technical Reports Server (NTRS)
Weidman, D. J.
1978-01-01
Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.
Aeroelastic Considerations in the Preliminary Design Aircraft
1983-09-01
system for aeroelastic analysis FINDEX- Lockheed’s DMS for matrices and NASTRAN tables FSD- fully stressed design algorithm Lockheed- Lockheed-California...Company MLC- maneuver load control NASA- National Aeronautics and Space Adminstration NASTRAN - structural finite element program developed by NASA...Computer Program Validation All major computing programs (FAMAS, NASTRAN , etc.), except the weight distribution program, the panel sizing and allowable
Addition of higher order plate and shell elements into NASTRAN computer program
NASA Technical Reports Server (NTRS)
Narayanaswami, R.; Goglia, G. L.
1976-01-01
Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.
NASA Technical Reports Server (NTRS)
Smith, W. W.
1973-01-01
A Langley Research Center version of NASTRAN Level 15.1.0 designed to provide the analyst with an added tool for debugging massive NASTRAN input data is described. The program checks all NASTRAN input data cards and displays on a CRT the graphic representation of the undeformed structure. In addition, the program permits the display and alteration of input data and allows reexecution without physically resubmitting the job. Core requirements on the CDC 6000 computer are approximately 77,000 octal words of central memory.
NASTRAN users' experience of Avco Aerostructures Division
NASA Technical Reports Server (NTRS)
Blackburn, C. L.; Wilhelm, C. A.
1973-01-01
The NASTRAN experiences of a major structural design and fabrication subcontractor that has less engineering personnel and computer facilities than those available to large prime contractors are discussed. Efforts to obtain sufficient computer capacity and the development and implementation of auxiliary programs to reduce manpower requirements are described. Applications of the NASTRAN program for training users, checking out auxiliary programs, performing in-house research and development, and structurally analyzing an Avco designed and manufactured missile case are presented.
Implementation of NASTRAN on the IBM/370 CMS operating system
NASA Technical Reports Server (NTRS)
Britten, S. S.; Schumacker, B.
1980-01-01
The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
AutoCAD-To-NASTRAN Translator Program
NASA Technical Reports Server (NTRS)
Jones, A.
1989-01-01
Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).
NASA Technical Reports Server (NTRS)
Chan, Gordon C.; Turner, Horace Q.
1990-01-01
COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASTRAN on other computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available commercially from a number of third party organizations. All these computers, with their own one-of-a-kind operating systems, make NASTRAN machine dependent. The job control language (JCL), the file management, and the program execution procedure of these computers are vastly different, although 95 percent of NASTRAN source code was written in standard ANSI FORTRAN 77. The advantage of the UNIX operating system is that it has no machine boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's, and even some main-frame computers. NASTRAN for the UNIX operating system is definitely the way to go in the future, and makes NASTRAN available to a host of computers, big and small. Since 1985, many NASTRAN improvements and enhancements were made to conform to the ANSI FORTRAN 77 standards. A major UNIX migration effort was incorporated into COSMIC NASTRAN 1990 release. As a pioneer work for the UNIX environment, a version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC ULTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 NASTRAN version for DEC ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an 88 NASTRAN version was tested successfully on a SiliconGraphics workstation.
NASA Technical Reports Server (NTRS)
1979-01-01
The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.
NASTRAN thermal analyzer: A general purpose finite element heat transfer computer program
NASA Technical Reports Server (NTRS)
Lee, H.; Mason, J. B.
1972-01-01
The program not only can render temperature distributions in solids subjected to various thermal boundary conditions, including effects of diffuse-gray thermal radiation, but is fully compatible in capacity and in the finite-element model representation with that of its structural counterpart in the NASTRAN system. The development history of the finite-element approach for determining temperatures is summarized. The scope of analysis capability, program structure, features, and limitations are given with the objective of providing NASTRAN users with an overall veiw of the NASTRAN thermal analyzer.
Application of NASTRAN to propeller-induced ship vibration
NASA Technical Reports Server (NTRS)
Liepins, A. A.; Conaway, J. H.
1975-01-01
An application of the NASTRAN program to the analysis of propeller-induced ship vibration is presented. The essentials of the model, the computational procedure, and experience are described. Desirable program enhancements are suggested.
The NASTRAN User's Manual Level 16.0 and Supplement
NASA Technical Reports Server (NTRS)
1976-01-01
The user's manual is restricted to those items related to the use of NASTRAN that are independent of the computing system being used. The features of NASTRAN described include: (1) procedures for defining and loading a structural model and a functional reference for every card that is used for structural modeling; (2) the NASTRAN data deck, including the details for each of the data cards; (3) the NASTRAN control cards that are associated with the use of the program; (4) rigid format procedures, along with specific instructions for the use of each rigid format: (5) procedures for using instructions for the use of each rigid format; (5) procedures for using the NASTRAN plotting capability; (6) procedures governing the creation of DMAP programs; and (7) the NASTRAN diagnostic messages. The NASTRAN dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included along with a limited number of sample problems.
Stress analyses of B-52 pylon hooks
NASA Technical Reports Server (NTRS)
Ko, W. L.; Schuster, L. S.
1985-01-01
The NASTRAN finite element computer program was used in the two dimensional stress analysis of B-52 carrier aircraft pylon hooks: (1) old rear hook (which failed), (2) new rear hook (improved geometry), (3) new DAST rear hook (derated geometry), and (4) front hook. NASTRAN model meshes were generated by the aid of PATRAN-G computer program. Brittle limit loads for all the four hooks were established. The critical stress level calculated from NASTRAN agrees reasonably well with the values predicted from the fracture mechanics for the failed old rear hook.
Fifteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1987-01-01
Numerous applications of the NASA Structural Analysis (NASTRAN) computer program, a general purpose finite element code, are discussed. Additional features that can be added to NASTRAN, interactive plotting of NASTRAN data on microcomputers, mass modeling for bars, the design of wind tunnel models, the analysis of ship structures subjected to underwater explosions, and buckling analysis of radio antennas are among the topics discussed.
NASA Technical Reports Server (NTRS)
Hirt, E. F.; Fox, G. L.
1982-01-01
Two specific NASTRAN preprocessors and postprocessors are examined. A postprocessor for dynamic analysis and a graphical interactive package for model generation and review of resuls are presented. A computer program that provides response spectrum analysis capability based on data from NASTRAN finite element model is described and the GIFTS system, a graphic processor to augment NASTRAN is introduced.
Twelfth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1984-01-01
NASTRAN is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis. The Twelfth Users' Colloquim provides some comprehensive papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre and post processing or auxiliary programs, and new methods of analysis with NASTRAN.
Pre- and post-processing for Cosmic/NASTRAN on personal computers and mainframes
NASA Technical Reports Server (NTRS)
Kamel, H. A.; Mobley, A. V.; Nagaraj, B.; Watkins, K. W.
1986-01-01
An interface between Cosmic/NASTRAN and GIFTS has recently been released, combining the powerful pre- and post-processing capabilities of GIFTS with Cosmic/NASTRAN's analysis capabilities. The interface operates on a wide range of computers, even linking Cosmic/NASTRAN and GIFTS when the two are on different computers. GIFTS offers a wide range of elements for use in model construction, each translated by the interface into the nearest Cosmic/NASTRAN equivalent; and the options of automatic or interactive modelling and loading in GIFTS make pre-processing easy and effective. The interface itself includes the programs GFTCOS, which creates the Cosmic/NASTRAN input deck (and, if desired, control deck) from the GIFTS Unified Data Base, COSGFT, which translates the displacements from the Cosmic/NASTRAN analysis back into GIFTS; and HOSTR, which handles stress computations for a few higher-order elements available in the interface, but not supported by the GIFTS processor STRESS. Finally, the versatile display options in GIFTS post-processing allow the user to examine the analysis results through an especially wide range of capabilities, including such possibilities as creating composite loading cases, plotting in color and animating the analysis.
NASTRAN/FLEXSTAB procedure for static aeroelastic analysis
NASA Technical Reports Server (NTRS)
Schuster, L. S.
1984-01-01
Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique.
NASTRAN internal improvements for 1992 release
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1992-01-01
The 1992 NASTRAN release incorporates a number of improvements transparent to users. The NASTRAN executable was made smaller by 70 pct. for the RISC base Unix machines by linking NASTRAN into a single program, freeing some 33 megabytes of system disc space that can be used by NASTRAN for solving larger problems. Some basic matrix operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by including new methods, new logic, new I/O techniques, and, in some cases, new subroutines. Some of the improvements provide ground work ready for system vectorization. These are finite element basic operations, and are used repeatedly in a finite element program such as NASTRAN. Any improvements on these basic operations can be translated into substantial cost and cpu time savings. NASTRAN is also discussed in various computer platforms.
NASTRAN applications to aircraft propulsion systems
NASA Technical Reports Server (NTRS)
White, J. L.; Beste, D. L.
1975-01-01
The use of NASTRAN in propulsion system structural integration analysis is described. Computer support programs for modeling, substructuring, and plotting analysis results are discussed. Requirements on interface information and data exchange by participants in a NASTRAN substructure analysis are given. Static and normal modes vibration analysis results are given with comparison to test and other analytical results.
NASA Technical Reports Server (NTRS)
1988-01-01
The 1987 Honda Acura Legend Coupe was designed with aid of the NASA-developed NASTRAN computer program. NASTRAN takes an electronic look at a computerized design and predicts how the structure will react under a great many different conditions. Quick and inexpensive, it minimizes trial and error in the design process and makes possible better, lighter, safer structures while affording significant savings in development time. All Honda auto products designed in the 1980's have been analyzed by the NASTRAN program.
Calculating far-field radiated sound pressure levels from NASTRAN output
NASA Technical Reports Server (NTRS)
Lipman, R. R.
1986-01-01
FAFRAP is a computer program which calculates far field radiated sound pressure levels from quantities computed by a NASTRAN direct frequency response analysis of an arbitrarily shaped structure. Fluid loading on the structure can be computed directly by NASTRAN or an added-mass approximation to fluid loading on the structure can be used. Output from FAFRAP includes tables of radiated sound pressure levels and several types of graphic output. FAFRAP results for monopole and dipole sources compare closely with an explicit calculation of the radiated sound pressure level for those sources.
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.
NASA Technical Reports Server (NTRS)
1977-01-01
NASTRAN is an offshoot of the computer-design technique used in construction of airplanes and spacecraft. [n this technique engineers create a mathematical model of the aeronautical or space vehicle and "fly" it on the ground by means of computer simulation. The technique enables them to study performance and structural behavior of a number of different designs before settling on the final configuration and proceeding with construction. From this base of aerospace experience, NASA-Goddard developed the NASTRAN general purpose computer program, which offers an exceptionally wide range of analytic capability with regard to structures. NASTRAN has been applied to autos, trucks, railroad cars, ships, nuclear power reactors, steam turbines, bridges, and office buildings. NASA-Langley provides program maintenance services regarded as vital by many NASTRAN users. NASTRAN is essentially a predictive tool. It takes an electronic look at a computerire$.dedgn and reports how the structure will react under a great many different conditions. It can, for example, note areas where high stress levels will occur-potential failure points that need strengthening. Conversely, it can identify over-designed areas where weight and material might be saved safely. NASTRAN can tell how pipes stand up under strong fluid flow, how metals are affected by high temperatures, how a building will fare in an earthquake or how powerful winds will cause a bridge to oscillate. NASTRAN analysis is quick and inexpensive. It minimizes trial-and-error in the design process and makes possible better, safe, lighter structures affording large-scale savings in development time and materials. Some examples of the broad utility NASTRAN is finding among industrial firms are shown on these pages.
Eleventh NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1983-01-01
NASTRAN (NASA STRUCTURAL ANALYSIS) is a large, comprehensive, nonproprietary, general purpose finite element computer code for structural analysis which was developed under NASA sponsorship. The Eleventh Colloquium provides some comprehensive general papers on the application of finite element methods in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.
NPLOT: an Interactive Plotting Program for NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Jones, G. K.; Mcentire, K. J.
1985-01-01
The NPLOT (NASTRAN Plot) is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models. Developed at NASA's Goddard Space Flight Center, the program provides flexible element selection and grid point, ASET and SPC degree of freedom labelling. It is easy to use and provides a combination menu and command driven user interface. NPLOT also provides very fast hidden line and haloed line algorithms. The hidden line algorithm in NPLOT proved to be both very accurate and several times faster than other existing hidden line algorithms. A fast spatial bucket sort and horizon edge computation are used to achieve this high level of performance. The hidden line and the haloed line algorithms are the primary features that make NPLOT different from other plotting programs.
NASA Technical Reports Server (NTRS)
Newman, M. B.; Pipano, A.
1973-01-01
A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1973-01-01
The NASTRAN computer program is capable of executing on three different types of computers: (1) the CDC 6000 series, (2) the IBM 360-370 series, and (3) the Univac 1100 series. A typical activity requiring transfer of data between dissimilar computers is the analysis of a large structure such as the space shuttle by substructuring. Models of portions of the vehicle which have been analyzed by subcontractors using their computers must be integrated into a model of the complete structure by the prime contractor on his computer. Presently the transfer of NASTRAN matrices or tables between two different types of computers is accomplished by punched cards or a magnetic tape containing card images. These methods of data transfer do not satisfy the requirements for intercomputer data transfer associated with a substructuring activity. To provide a more satisfactory transfer of data, two new programs, RDUSER and WRTUSER, were created.
Modal strain energies in COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Snyder, B. D.; Venkayya, V. B.
1989-01-01
A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.
NASA Technical Reports Server (NTRS)
Lee, C. H.
1978-01-01
The CELFE computer program and user's manual, together with the execution of the CELFE/NASTRAN system, are described. The execution procedure and the transfer of data between the CELFE and NASTRAN programs are controlled through the use of DATA files in the Univac 1100 system. Five data files are used to control the runstream and data transfer, and three files are used to hold the programs. These files are contained on a single tape. Changes in NASTRAN routines required by the present analysis are also discussed in this report. All the program listings, except the last two files (where the absolute and relocatable elements are stored), are included in the appendixes.
NASA Technical Reports Server (NTRS)
Sainsbury-Carter, J. B.; Conaway, J. H.
1973-01-01
The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.
Feasibility study for the implementation of NASTRAN on the ILLIAC 4 parallel processor
NASA Technical Reports Server (NTRS)
Field, E. I.
1975-01-01
The ILLIAC IV, a fourth generation multiprocessor using parallel processing hardware concepts, is operational at Moffett Field, California. Its capability to excel at matrix manipulation, makes the ILLIAC well suited for performing structural analyses using the finite element displacement method. The feasibility of modifying the NASTRAN (NASA structural analysis) computer program to make effective use of the ILLIAC IV was investigated. The characteristics are summarized of the ILLIAC and the ARPANET, a telecommunications network which spans the continent making the ILLIAC accessible to nearly all major industrial centers in the United States. Two distinct approaches are studied: retaining NASTRAN as it now operates on many of the host computers of the ARPANET to process the input and output while using the ILLIAC only for the major computational tasks, and installing NASTRAN to operate entirely in the ILLIAC environment. Though both alternatives offer similar and significant increases in computational speed over modern third generation processors, the full installation of NASTRAN on the ILLIAC is recommended. Specifications are presented for performing that task with manpower estimates and schedules to correspond.
Nastran level 16 theoretical manual updates for aeroelastic analysis of bladed discs
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.
1980-01-01
A computer program based on state of the art compressor and structural technologies applied to bladed shrouded disc was developed and made operational in NASTRAN Level 16. Aeroelastic analyses, modes and flutter. Theoretical manual updates are included.
NASA Technical Reports Server (NTRS)
Koopmans, G.
1973-01-01
Very divergent problems arising with different calculations indicate that NASTRAN is not always accessible for common use. Problems with engineering, modelling, and use of the program system are analysed and a way of solution is outlined. Related to this, some supplementary modifications are made at Sperry Univac Holland to facilitate the program for the less skilled user. The implementation of a new element also gives an insight into the use of NASTRAN at Sperry Univac Holland. As the users of Univac computers are from very different kinds of industries like shipbuilders, petrochemical industries, and building industries, the variety of problems coming from these users is very large. This variety results in experience not with one special kind of calculation nor one special kind of construction, but with a wide area of problems arising in the use of NASTRAN. These problems can roughly be divided into three different groups: (1) recognition of what is to be calculated and how, (2) construction of a model, and (3) handling the NASTRAN program. These are the basic problems for every less skilled user of NASTRAN and the Application/Research Department of Sperry Univac has to give reasonable answers to these questions.
A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines
NASA Technical Reports Server (NTRS)
Lobitz, Don W.
1995-01-01
This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.
The NASTRAN theoretical manual
NASA Technical Reports Server (NTRS)
1981-01-01
Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.
NASA Technical Reports Server (NTRS)
Wingate, R. T.; Jones, T. C.; Stephens, M. V.
1973-01-01
The description of a transient analysis program for computing structural responses to input base accelerations is presented. A hybrid modal formulation is used and a procedure is demonstrated for generating and writing all modal input data on user tapes via NASTRAN. Use of several new Level 15 modules is illustrated along with a problem associated with reading the postprocessor program input from a user tape. An example application of the program is presented for the analysis of a spacecraft subjected to accelerations initiated by thrust transients. Experience with the program has indicated it to be very efficient and economical because of its simplicity and small central memory storage requirements.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the wing structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The wing substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.; Tisher, E. D.
1982-01-01
The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the fuselage structure was expanded in detail to generate the NASTRAN model for this substructure. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. The fuselage substructure model was thoroughly checked out for continuity, connectivity, and constraints. This substructure was processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
JPL-ANTOPT antenna structure optimization program
NASA Technical Reports Server (NTRS)
Strain, D. M.
1994-01-01
New antenna path-length error and pointing-error structure optimization codes were recently added to the MSC/NASTRAN structural analysis computer program. Path-length and pointing errors are important measured of structure-related antenna performance. The path-length and pointing errors are treated as scalar displacements for statics loading cases. These scalar displacements can be subject to constraint during the optimization process. Path-length and pointing-error calculations supplement the other optimization and sensitivity capabilities of NASTRAN. The analysis and design functions were implemented as 'DMAP ALTERs' to the Design Optimization (SOL 200) Solution Sequence of MSC-NASTRAN, Version 67.5.
Tenth NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the NASTRAN computer program, a general purpose finite element computer code for structural analysis, was discussed. The application and development of NASTRAN is presented in the following topics: improvements and enhancements; developments of pre and postprocessors; interactive review system; the use of harmonic expansions in magnetic field problems; improving a dynamic model with test data using Linwood; solution of axisymmetric fluid structure interaction problems; large displacements and stability analysis of nonlinear propeller structures; prediction of bead area contact load at the tire wheel interface; elastic plastic analysis of an overloaded breech ring; finite element solution of torsion and other 2-D Poisson equations; new capability for elastic aircraft airloads; usage of substructuring analysis in the get away special program; solving symmetric structures with nonsymmetric loads; evaluation and reduction of errors induced by Guyan transformation.
Correlation of AH-1G airframe test data with a NASTRAN mathematical model
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1976-01-01
Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.
Bird impact analysis package for turbine engine fan blades
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.
1982-01-01
A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2001-01-01
This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.
NASA Technical Reports Server (NTRS)
Fales, Janine L.
1991-01-01
The capabilities of the postprocessing program CANDI (Color Animation of Nastran DIsplacements) were expanded to accept results from axisymmetric analysis. An auxiliary program, ANIMATE, was developed to allow color display of CANDI output on the IRIS 4D-series workstations. The user can interactively manipulate the graphics display by three-dimensional rotations, translations, and scaling through the use of the keyboard and/or dials box. The user can also specify what portion of the model is displayed. These developments are limited to the display of complex displacements calculated with the NASHUA/NASTRAN procedure for structural acoustics analysis.
NASA Technical Reports Server (NTRS)
Millwater, Harry; Riha, David
1996-01-01
The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.
NASA Technical Reports Server (NTRS)
1979-01-01
The accompanying photos show two types of offshore oil platforms used by Exxon Corporation. In the upper photo is a leg-supported gravity platform; the other structure is a "jackettype" platform, built in sections, towed to sea and assembled on-site. In construction of platforms like these, Exxon Production Research Company, Houston, Texas, conducts extensive structural investigations of decks, supporting members and other platform components, making use of the NASTRAN @ (NASA Structural Analysis) computer program. NASTRAN is a predictive tool which analyzes a computerized design and reports how the structure will react to a great many conditions it will encounter in its operational environment; in this case, NASTRAN studies the effects of waves, winds, ocean storms and other stress-inducing factors. NASTRAN allows Exxon Production Research to perform more complex and more detailed analysis than was possible with previous programs. The same program has also been used by Exxon Research and Engineering Company, Florham Park, New Jersey, in analysis of pressure vessels, turbine components and composite building boards.
Adaptation of MSC/NASTRAN to a supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloudeman, J.F.; Hodge, J.C.
1982-01-01
MSC/NASTRAN is a large-scale general purpose digital computer program which solves a wider variety of engineering analysis problems by the finite element method. The program capabilities include static and dynamic structural analysis (linear and nonlinear), heat transfer, acoustics, electromagnetism and other types of field problems. It is used worldwide by large and small companies in such diverse fields as automotive, aerospace, civil engineering, shipbuilding, offshore oil, industrial equipment, chemical engineering, biomedical research, optics and government research. The paper presents the significant aspects of the adaptation of MSC/NASTRAN to the Cray-1. First, the general architecture and predominant functional use of MSC/NASTRANmore » are discussed to help explain the imperatives and the challenges of this undertaking. The key characteristics of the Cray-1 which influenced the decision to undertake this effort are then reviewed to help identify performance targets. An overview of the MSC/NASTRAN adaptation effort is then given to help define the scope of the project. Finally, some measures of MSC/NASTRAN's operational performance on the Cray-1 are given, along with a few guidelines to help avoid improper interpretation. 17 references.« less
NASTRAN application for the prediction of aircraft interior noise
NASA Technical Reports Server (NTRS)
Marulo, Francesco; Beyer, Todd B.
1987-01-01
The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.
Application of NASTRAN for stress analysis of left ventricle of the heart
NASA Technical Reports Server (NTRS)
Pao, Y. C.; Ritman, E. L.; Wang, H. C.
1975-01-01
Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance.
NASA Technical Reports Server (NTRS)
1986-01-01
The University of Georgia used NASTRAN, a COSMIC program that predicts how a design will stand up under stress, to develop a model for monitoring the transient cooling of vegetables. The winter use of passive solar heating for poultry houses is also under investigation by the Agricultural Engineering Dept. Another study involved thermal analysis of black and green nursery containers. The use of NASTRAN has encouraged student appreciation of sophisticated computer analysis.
NASTRAN computer system level 12.1
NASA Technical Reports Server (NTRS)
Butler, T. G.
1971-01-01
Program uses finite element displacement method for solving linear response of large, three-dimensional structures subject to static, dynamic, thermal, and random loadings. Program adapts to computers of different manufacture, permits up-dating and extention, allows interchange of output and input information between users, and is extensively documented.
Monolithic ceramic analysis using the SCARE program
NASA Technical Reports Server (NTRS)
Manderscheid, Jane M.
1988-01-01
The Structural Ceramics Analysis and Reliability Evaluation (SCARE) computer program calculates the fast fracture reliability of monolithic ceramic components. The code is a post-processor to the MSC/NASTRAN general purpose finite element program. The SCARE program automatically accepts the MSC/NASTRAN output necessary to compute reliability. This includes element stresses, temperatures, volumes, and areas. The SCARE program computes two-parameter Weibull strength distributions from input fracture data for both volume and surface flaws. The distributions can then be used to calculate the reliability of geometrically complex components subjected to multiaxial stress states. Several fracture criteria and flaw types are available for selection by the user, including out-of-plane crack extension theories. The theoretical basis for the reliability calculations was proposed by Batdorf. These models combine linear elastic fracture mechanics (LEFM) with Weibull statistics to provide a mechanistic failure criterion. Other fracture theories included in SCARE are the normal stress averaging technique and the principle of independent action. The objective of this presentation is to summarize these theories, including their limitations and advantages, and to provide a general description of the SCARE program, along with example problems.
Design optimization studies using COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Pitrof, Stephen M.; Bharatram, G.; Venkayya, Vipperla B.
1993-01-01
The purpose of this study is to create, test and document a procedure to integrate mathematical optimization algorithms with COSMIC NASTRAN. This procedure is very important to structural design engineers who wish to capitalize on optimization methods to ensure that their design is optimized for its intended application. The OPTNAST computer program was created to link NASTRAN and design optimization codes into one package. This implementation was tested using two truss structure models and optimizing their designs for minimum weight, subject to multiple loading conditions and displacement and stress constraints. However, the process is generalized so that an engineer could design other types of elements by adding to or modifying some parts of the code.
NASA Technical Reports Server (NTRS)
Millwater, Harry; Riha, David
1996-01-01
The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.
Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method
NASA Technical Reports Server (NTRS)
Tischler, V. A.; Venkayya, Vipperla B.
1993-01-01
The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.
Program Calculates Forces in Bolted Structural Joints
NASA Technical Reports Server (NTRS)
Buder, Daniel A.
2005-01-01
FORTRAN 77 computer program calculates forces in bolts in the joints of structures. This program is used in conjunction with the NASTRAN finite-element structural-analysis program. A mathematical model of a structure is first created by approximating its load-bearing members with representative finite elements, then NASTRAN calculates the forces and moments that each finite element contributes to grid points located throughout the structure. The user selects the finite elements that correspond to structural members that contribute loads to the joints of interest, and identifies the grid point nearest to each such joint. This program reads the pertinent NASTRAN output, combines the forces and moments from the contributing elements to determine the resultant force and moment acting at each proximate grid point, then transforms the forces and moments from these grid points to the centroids of the affected joints. Then the program uses these joint loads to obtain the axial and shear forces in the individual bolts. The program identifies which bolts bear the greatest axial and/or shear loads. The program also performs a fail-safe analysis in which the foregoing calculations are repeated for a sequence of cases in which each fastener, in turn, is assumed not to transmit an axial force.
NASTRAN: User's Experiences. [conference
NASA Technical Reports Server (NTRS)
1975-01-01
Papers given at the colloquium are presented. Topics discussed include NASTRAN status and plans, computer operations, thermal analysis, NASTRAN applications, vibrations, dynamics, and finite element analysis.
NASTRAN as a resource in code development
NASA Technical Reports Server (NTRS)
Stanton, E. L.; Crain, L. M.; Neu, T. F.
1975-01-01
A case history is presented in which the NASTRAN system provided both guidelines and working software for use in the development of a discrete element program, PATCHES-111. To avoid duplication and to take advantage of the wide spread user familiarity with NASTRAN, the PATCHES-111 system uses NASTRAN bulk data syntax, NASTRAN matrix utilities, and the NASTRAN linkage editor. Problems in developing the program are discussed along with details on the architecture of the PATCHES-111 parametric cubic modeling system. The system includes model construction procedures, checkpoint/restart strategies, and other features.
Sixth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1977-01-01
Papers are presented on NASTRAN programming, and substructuring methods, as well as on fluids and thermal applications. Specific applications and capabilities of NASTRAN were also delineated along with general auxiliary programs.
NASA Technical Reports Server (NTRS)
Lameris, J.
1984-01-01
The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.
Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP
NASA Technical Reports Server (NTRS)
Gupta, V. K.; Zillmer, S. D.; Allison, R. E.
1986-01-01
The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix.
ACTON - AUTOCAD TO NASTRAN TRANSLATOR
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
The AutoCAD to NASTRAN translator, ACTON, was developed to facilitate quick generation of small finite element models for use with the NASTRAN finite element modeling program. (NASTRAN is available from COSMIC.) ACTON reads the geometric data of a drawing from the Data Exchange File (DXF) used in AutoCAD and other PC based drafting programs. The geometric entities recognized by ACTON include POINTs, LINEs, SOLIDs, 3DLINEs and 3DFACEs. From this information ACTON creates a NASTRAN bulk data deck which can be used to create a finite element model. The NASTRAN elements created include CBARs, CTRIAs, CQUAD4s, CPENTAs, and CHEXAs. The bulk data deck can be used to create a full NASTRAN deck. It is assumed that the user has at least a working knowledge of AutoCAD and NASTRAN. ACTON was written in Microsoft QuickBasic (Version 2.0). The program was developed for the IBM PC and has been implemented on an IBM PC compatible under DOS 3.21. ACTON was developed in 1988.
NASTRAN analysis for the Airmass Sunburst model 'C' Ultralight Aircraft
NASA Technical Reports Server (NTRS)
Verbestel, John; Smith, Howard W.
1993-01-01
The purpose of this project was to create a three dimensional NASTRAN model of the Airmass Sunburst Ultralight comparable to one made for finite element analysis. A two dimensional sample problem will be calculated by hand and by NASTRAN to make sure that NASTRAN finds similar results. A three dimensional model, similar to the one analyzed by the finite element program, will be run on NASTRAN. A comparison will be done between the NASTRAN results and the finite element program results. This study will deal mainly with the aerodynamic loads on the wing and surrounding support structure at an attack angle of 10 degrees.
Subsonic flutter analysis addition to NASTRAN. [for use with CDC 6000 series digital computers
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Harder, R. L.
1973-01-01
A subsonic flutter analysis capability has been developed for NASTRAN, and a developmental version of the program has been installed on the CDC 6000 series digital computers at the Langley Research Center. The flutter analysis is of the modal type, uses doublet lattice unsteady aerodynamic forces, and solves the flutter equations by using the k-method. Surface and one-dimensional spline functions are used to transform from the aerodynamic degrees of freedom to the structural degrees of freedom. Some preliminary applications of the method to a beamlike wing, a platelike wing, and a platelike wing with a folded tip are compared with existing experimental and analytical results.
Seventh NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1978-01-01
The general application of finite element methodology and the specific application of NASTRAN to a wide variety of static and dynamic structural problems are described. Topics include: fluids and thermal applications, NASTRAN programming, substructuring methods, unique new applications, general auxiliary programs, specific applications, and new capabilities.
NASA Technical Reports Server (NTRS)
1998-01-01
In 1966, MacNeal-Schwendler Corporation (MSC) was awarded a contract by NASA to develop a general purpose structural analysis program dubbed NASTRAN (NASA structural analysis). The first operational version was delivered in 1969. In 1982, MSC procured the rights to market their subsequent version of NASTRAN to industry as a problem solver for applications ranging from acoustics to heat transfer. Known today as MSC/NASTRAN, the program has thousands of users worldwide. NASTRAN is also distributed through COSMIC.
Development of a curved pipe capability for the NASTRAN finite element program
NASA Technical Reports Server (NTRS)
Jeter, J. W., Jr.
1977-01-01
A curved pipe element capability for the NASTRAN structural analysis program is developed using the NASTRAN dummy element feature. A description is given of the theory involved in the subroutines which describe stiffness, mass, thermal and enforced deformation loads, and force and stress recovery for the curved pipe element. Incorporation of these subroutines into NASTRAN is discussed. Test problems are proposed. Instructions on use of the new element capability are provided.
Thirteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1985-01-01
The application of finite element methods in engineering is discussed and the use of NASTRAN is compared with other approaches. Specific applications, pre- and post-processing or auxiliary programs, and additional methods of analysis with NASTRAN are covered.
Use of NASTRAN as a teaching aid
NASA Technical Reports Server (NTRS)
Wilkinson, M. T.
1972-01-01
Recent experiences with incorporating NASTRAN as a teaching tool in undergraduate courses was found pedagogically sound. Students with no previous computerized structures background are able to readily grasp the program's logic and begin solving realistic problems rapidly. The educational benefit is significantly enhanced by NASTRAN's plotting feature. However, the cost of operating the level 12 version makes the program difficult to justify.
Improved performance in NASTRAN (R)
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1989-01-01
Three areas of improvement in COSMIC/NASTRAN, 1989 release, were incorporated recently that make the analysis program run faster on large problems. Actual log files and actual timings on a few test samples that were run on IBM, CDC, VAX, and CRAY computers were compiled. The speed improvement is proportional to the problem size and number of continuation cards. Vectorizing certain operations in BANDIT, makes BANDIT run twice as fast in some large problems using structural elements with many node points. BANDIT is a built-in NASTRAN processor that optimizes the structural matrix bandwidth. The VAX matrix packing routine BLDPK was modified so that it is now packing a column of a matrix 3 to 9 times faster. The denser and bigger the matrix, the greater is the speed improvement. This improvement makes a host of routines and modules that involve matrix operation run significantly faster, and saves disc space for dense matrices. A UNIX version, converted from 1988 COSMIC/NASTRAN, was tested successfully on a Silicon Graphics computer using the UNIX V Operating System, with Berkeley 4.3 Extensions. The Utility Modules INPUTT5 and OUTPUT5 were expanded to handle table data, as well as matrices. Both INPUTT5 and OUTPUT5 are general input/output modules that read and write FORTRAN files with or without format. More user informative messages are echoed from PARAMR, PARAMD, and SCALAR modules to ensure proper data values and data types being handled. Two new Utility Modules, GINOFILE and DATABASE, were written for the 1989 release. Seven rigid elements are added to COSMIC/NASTRAN. They are: CRROD, CRBAR, CRTRPLT, CRBE1, CRBE2, CRBE3, and CRSPLINE.
Multiscale Reduced Order Modeling of Complex Multi-Bay Structures
2013-07-01
overall sound pressure level (OASPL) was 144dB and a series of 200 “snapshots” were obtained from the stationary part of the MSC /Nastran SOL 400... MSC /Nastran SOL 400, the power spectral densities computed, and their mean used for validation of the 85-mode ROM. The ROM results were obtained using...middle point of bay 5 as a function of frequency, MSC /Nastran SOL 400 and NX/Nastran SOL601. ...................... 68 4.44. Transverse displacement
NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures
NASA Technical Reports Server (NTRS)
Wheless, T. K.
1985-01-01
This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.
NASA Technical Reports Server (NTRS)
1983-01-01
All information directly associated with problem solving using the NASTRAN program is presented. This structural analysis program uses the finite element approach to structural modeling wherein the distributed finite properties of a structure are represented by a finite element of structural elements which are interconnected at a finite number of grid points, to which loads are applied and for which displacements are calculated. Procedures are described for defining and loading a structural model. Functional references for every card used for structural modeling, the NASTRAN data deck and control cards, problem solution sequences (rigid formats), using the plotting capability, writing a direct matrix abstraction program, and diagnostic messages are explained. A dictionary of mnemonics, acronyms, phrases, and other commonly used NASTRAN terms is included.
NASA Technical Reports Server (NTRS)
Chian, C. T.
1986-01-01
Investigations were conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies used a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections formed the input for a computer program to determine the hydrostratic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, the program predicted safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad). The effects of varying moduli of elasticity for different sections of the pedestal and the film height under stressed runner conditions were also studied.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Some studies on the use of NASTRAN for nuclear power plant structural analysis and design
NASA Technical Reports Server (NTRS)
Setlur, A. V.; Valathur, M.
1973-01-01
Studies made on the use of NASTRAN for nuclear power plant analysis and design are presented. These studies indicate that NASTRAN could be effectively used for static, dynamic and special purpose problems encountered in the design of such plants. Normal mode capability of NASTRAN is extended through a post-processor program to handle seismic analysis. Static and dynamic substructuring is discussed. Extension of NASTRAN to include the needs in the civil engineering industry is discussed.
Manual for Program PSTRESS: Peel stress computation
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.
1987-01-01
Described is the use of the interactive FORTRAN computer program PSTRESS, which computes a closed form solution for two bonded plates subjected to applied moments, vertical shears, and in-plane forces. The program calculates in-plane stresses in the plates, deflections of the plates, and peel and shear stresses in the adhesive. The document briefly outlines the analytical method used by PSTRESS, describes the input and output of the program, and presents a sample analysis. The results of the latter are shown to be within a few percent of results obtained using a NASTRAN finite element analysis. An appendix containing a listing of PSTRESS is included.
Study of the modifications needed for effective operation NASTRAN on IBM virtual storage computers
NASA Technical Reports Server (NTRS)
Mccormick, C. W.; Render, K. H.
1975-01-01
The necessary modifications were determined to make NASTRAN operational under virtual storage operating systems (VS1 and VS2). Suggested changes are presented which will make NASTRAN operate more efficiently under these systems. Estimates of the cost and time involved in design, coding, and implementation of all suggested modifications are included.
COSMIC monthly progress report
NASA Technical Reports Server (NTRS)
1994-01-01
Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.
NASA Technical Reports Server (NTRS)
1978-01-01
The antenna shown is the new, multiple-beam, Unattended Earth Terminal, located at COMSAT Laboratories in Clarksburg, Maryland. Seemingly simple, it is actually a complex structure capable of maintaining contact with several satellites simultaneously (conventional Earth station antennas communicate with only one satellite at a time). In developing the antenna, COMSAT Laboratories used NASTRAN, NASA's structural analysis computer program, together with BANDIT, a companion program. The computer programs were used to model several structural configurations and determine the most suitable, The speed and accuracy of the computerized design analysis afforded appreciable savings in time and money.
Nineteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the the Nineteenth NASTRAN Users' Colloquium held April 22 to 26, 1991 are presented. Topics covered include the application of finite elements in engineering, comparisons with other approaches, unique applications, pre- and postprocessing or auxiliary programs, and new methods of analysis with NASTRAN.
Computer aided design environment for the analysis and design of multi-body flexible structures
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant V.; Singh, Ramen P.
1989-01-01
A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.
NASTRAN level 16 programmer's manual updates for aeroelastic analysis of bladed discs
NASA Technical Reports Server (NTRS)
Gallo, A. M.; Dale, B.
1980-01-01
The programming routines for the NASTRAN Level 16program are presented. Particular emphasis is placed on its application to aeroelastic analyses, mode development, and flutter analysis for turbomachine blades.
NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino R.; Seible, Frieder
1993-01-01
Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.
The NASTRAN demonstration program manual (level 16.0)
NASA Technical Reports Server (NTRS)
1976-01-01
The types of problems that can be solved with NASTRAN are presented. The nature of the problem, the underlying theory, the specific geometric and physical input quanties, and the comparison of theoretical and NASTRAN results are discussed. At least one problem for each of the rigid formats and nearly all of the elements or provided. The features of NASTRAN demonstrated by specific problems are described. The results obtained are valid.
Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package
NASA Technical Reports Server (NTRS)
Lee, H.-P.; Jackson, C. E., Jr.
1974-01-01
The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.
Picture Wall (Glass Structures)
NASA Technical Reports Server (NTRS)
1978-01-01
Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.
An all-FORTRAN version of NASTRAN for the VAX
NASA Technical Reports Server (NTRS)
Purves, L.
1981-01-01
All FORTRAN version of NASA structural analysis program NASATRAN is implemented on DEC VAX-series computer. Applications of NASATRAN extend to almost every type of linear structure and construction. Two special features are available in VAX version; program is executed from terminal in manner permitting use of VAX interactive debugger, and links are interactively restarted when desired by first making copy of all NASATRAN work files.
Nastran's Application in Agricultural Engineering
NASA Technical Reports Server (NTRS)
Vanwicklen, G. L.
1985-01-01
Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.
Eighteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1990-01-01
This publication is the proceedings of the Eighteenth NASTRAN Users' Colloquium held in Portland, Oregon, April 23-27, 1990. It provides some comprehensive general papers on the application of finite elements in engineering, comparisons with other approaches, unique applications, pre- and post-processing or auxiliary programs, and new methods of analysis with NASTRAN.
Guide to a condensed form of NASTRAN
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1978-01-01
A limited capability form of NASTRAN level 16 is presented to meet the needs of universities and small consulting firms. The input cards, the programming language of the direct matrix abstraction program, the plotting, the problem definition, and the modules' diagnostic messages are described. Sample problems relating to the analysis of linear static, vibration, and buckling are included. This guide can serve as a handbook for instructional courses in the use of NASTRAN or for users who need only the capability provided by the condensed form.
The Twenty-First NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1993-01-01
This publication contains the proceedings of the Twenty-First NASTRAN Users' Colloquium held in Tampa, FL, April 26 through April 30, 1993. It provides some comprehensive general papers on the application of finite elements in engineering, comparisons with other approaches, unique applications, pre-and postprocessing with other auxiliary programs and new methods of analysis with NASTRAN.
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
Heliogyro Preliminary Design, Phase 2
NASA Technical Reports Server (NTRS)
1978-01-01
There are 12 blades in the Heliogyro design, and each blade is envisioned to be 8 meters in width and 7,500 meters in length. The blades are expected to be composed primarily of a thin membrane constructed of material such as Kapton film with an aluminum reflective coating on one side and an infrared emissive coating on the other. The present Phase 2 Final Report covers work done on the following six topics: (1) Design and analysis of a stowable circular lattice batten for the Heliogyro blade. (2) Design and analysis of a biaxially tensioned blade panel. (3) Definition of a research program for micrometeoroid damage to tendons. (4) A conceptual design for a flight test model of the Heliogyro. (5) Definition of modifications to the NASTRAN computer program required to provide improved analysis of the Heliogyro. (6) A User's Manual covering applications of NASTRAN to the Heliogyro.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.
1982-01-01
The NASTRAN model plan for the fairing structure was expanded in detail to generate the NASTRAN model of this substructure. The grid point coordinates, element definitions, material properties, and sizing data for each element were specified. The fairing model was thoroughly checked out for continuity, connectivity, and constraints. The substructure was processed for structural influence coefficients (SIC) point loadings to determine the deflection characteristics of the fairing model. Finally, a demonstration and validation processing of this substructure was accomplished using the NASTRAN finite element program. The bulk data deck, stiffness matrices, and SIC output data were delivered.
Normal mode analysis of the IUS/TDRS payload in a payload canister/transporter environment
NASA Technical Reports Server (NTRS)
Meyer, K. A.
1980-01-01
Special modeling techniques were developed to simulate an accurate mathematical model of the transporter/canister/payload system during ground transport of the Inertial Upper Stage/Tracking and Data Relay Satellite (IUS/TDRS) payload. The three finite element models - the transporter, the canister, and the IUS/TDRS payload - were merged into one model and used along with the NASTRAN normal mode analysis. Deficiencies were found in the NASTRAN program that make a total analysis using modal transient response impractical. It was also discovered that inaccuracies may exist for NASTRAN rigid body modes on large models when Given's method for eigenvalue extraction is employed. The deficiencies as well as recommendations for improving the NASTRAN program are discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
The proceedings of a conference on NASA Structural Analysis (NASTRAN) to analyze the experiences of users of the program are presented. The subjects discussed include the following: (1) statics and buckling, (2) vibrations and dynamics, (3) substructing, (4) new capability, (5) user's experience, and (6) system experience. Specific applications of NASTRAN to spacecraft, aircraft, nuclear power plants, and materials tests are reported.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1996-01-01
Solving for dynamic responses of free-free launch vehicle/spacecraft systems acted upon by buffeting winds is commonly performed throughout the aerospace industry. Due to the unpredictable nature of this wind loading event, these problems are typically solved using frequency response random analysis techniques. To generate dynamic responses for spacecraft with statically-indeterminate interfaces, spacecraft contractors prefer to develop models which have response transformation matrices developed for mode acceleration data recovery. This method transforms spacecraft boundary accelerations and displacements into internal responses. Unfortunately, standard MSC/NASTRAN modal frequency response solution sequences cannot be used to combine acceleration- and displacement-dependent responses required for spacecraft mode acceleration data recovery. External user-written computer codes can be used with MSC/NASTRAN output to perform such combinations, but these methods can be labor and computer resource intensive. Taking advantage of the analytical and computer resource efficiencies inherent within MS C/NASTRAN, a DMAP Alter has been developed to combine acceleration- and displacement-dependent modal frequency responses for performing spacecraft mode acceleration data recovery. The Alter has been used successfully to efficiently solve a common aerospace buffeting wind analysis.
PCI: A PATRAN-NASTRAN model translator
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1990-01-01
The amount of programming required to develop a PATRAN-NASTRAN translator was surprisingly small. The approach taken produced a highly flexible translator comparable with the PATNAS translator and superior to the PATCOS translator. The coding required varied from around ten lines for a shell element to around thirty for a bar element, and the time required to add a feature to the program is typically less than an hour. The use of a lookup table for element names makes the translator also applicable to other versions of NASTRAN. The saving in time as a result of using PDA's Gateway utilities was considerable. During the writing of the program it became apparent that, with a somewhat more complex structure, it would be possible to extend the element data file to contain all data required to define the translation from PATRAN to NASTRAN by mapping of data between formats. Similar data files on property, material and grid formats would produce a completely universal translator from PATRAN to any FEA program, or indeed any CAE system.
NASA Technical Reports Server (NTRS)
1991-01-01
Analytical Design Service Corporation, Ann Arbor, MI, used NASTRAN (a NASA Structural Analysis program that analyzes a design and predicts how parts will perform) in tests of transmissions, engine cooling systems, internal engine parts, and body components. They also use it to design future automobiles. Analytical software can save millions by allowing computer simulated analysis of performance even before prototypes are built.
Aerospace technology as a source of new ideas.
NASA Technical Reports Server (NTRS)
Hamilton, J. T.
1972-01-01
It is shown that technological products and processes resulting from aeronautical and space research and development can be a significant source of new product or product improvement ideas. The problems associated with technology transfer are discussed. As an example, the commercialization of NASTRAN, NASA's structural analysis computer program, is discussed. Some other current application projects are also outlined.
The NASTRAN User's Manual (Level 15)
NASA Technical Reports Server (NTRS)
Mccormick, C. W. (Editor)
1972-01-01
The User's manual for the NASA Structural Analysis (NASTRAN) program is presented. The manual contains all information needed to solve problems with NASTRAN. The volume is instructional and encyclopedic. The manual includes instruction in structural modeling techniques, instruction in input preparation, and information to assist the interpretation of the output. Descriptions of all input data cards, restart procedures, and diagnostic messages are developed.
An interactive review system for NASTRAN
NASA Technical Reports Server (NTRS)
Durocher, L. L.; Gasper, A. F.
1982-01-01
An interactive review system that addresses the problems of model display, model error checking, and postprocessing is described. The menu driven system consists of four programs whose advantages and limitations are detailed. The interface between NASTRAN and MOVIE-BYU, the modifications required to make MOVIE usable in a finite element context, and the resulting capabilities of MOVIE as a graphics postprocessor for NASTRAN are illustrated.
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.
1985-01-01
A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
Seismic Analysis Capability in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.
1984-01-01
Seismic analysis is a technique which pertains to loading described in terms of boundary accelerations. Earthquake shocks to buildings is the type of excitation which usually comes to mind when one hears the word seismic, but this technique also applied to a broad class of acceleration excitations which are applied at the base of a structure such as vibration shaker testing or shocks to machinery foundations. Four different solution paths are available in NASTRAN for seismic analysis. They are: Direct Seismic Frequency Response, Direct Seismic Transient Response, Modal Seismic Frequency Response, and Modal Seismic Transient Response. This capability, at present, is invoked not as separate rigid formats, but as pre-packaged ALTER packets to existing RIGID Formats 8, 9, 11, and 12. These ALTER packets are included with the delivery of the NASTRAN program and are stored on the computer as a library of callable utilities. The user calls one of these utilities and merges it into the Executive Control Section of the data deck to perform any of the four options are invoked by setting parameter values in the bulk data.
New Enhancements in April 85 NASTRAN Release
NASA Technical Reports Server (NTRS)
Chan, G. C.
1985-01-01
Several features were added to COSMIC NASTRAN, along with some enhancements to improve or update existing capabilities. Most of these additions and enhancements were provided by industry users to be incorporated into NASTRAN for wider use. DIAG 48 provides a synopsis of significant developments in past NASTRAN releases (1983-1985) and indexes all diagnostic output messages and operation requests (DOMOR). Other features include: volume and surface computation of the 2-D and 3-D elements, NOLIN5 input and; NASTRAN PLOTOPT-N (where N = 2, 3, 4, or 5); shrink element plots; and output scan. A nonprint option on stress and force output request cards was added. Automated find and nofind options on the plot card, fully stressed design, high level plate elements, eigenvalue messages, and upgrading of all FORTRAN source code to the ANSI standard are enhancements made.
NASA Structural Analysis System (NASTRAN)
NASA Technical Reports Server (NTRS)
Purves, L.
1991-01-01
Program aids in structural design of wide range of objects, from high-impact printer parts to turbine engine blades, and fully validated. Since source code included, NASTRAN modified or enhanced for new applications.
NASA Technical Reports Server (NTRS)
Monaghan, R. C.
1981-01-01
The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.
Planning, creating and documenting a NASTRAN finite element model of a modern helicopter
NASA Technical Reports Server (NTRS)
Gabal, R.; Reed, D.; Ricks, R.; Kesack, W.
1985-01-01
Mathematical models based on the finite element method of structural analysis as embodied in the NASTRAN computer code are widely used by the helicopter industry to calculate static internal loads and vibration of airframe structure. The internal loads are routinely used for sizing structural members. The vibration predictions are not yet relied on during design. NASA's Langley Research Center sponsored a program to conduct an application of the finite element method with emphasis on predicting structural vibration. The Army/Boeing CH-47D helicopter was used as the modeling subject. The objective was to engender the needed trust in vibration predictions using these models and establish a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process.
NASA Technical Reports Server (NTRS)
Chian, C. T.; Schonfeld, D.
1984-01-01
Investigations are conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies use a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections form the input for a computer program to determine the hydrostatic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad) are predicted. The effects of varying moduli of elasticity for different sections of the pedestal and the film height under distressed runner conditions are also studied.
Correlation of predicted and measured thermal stresses on a truss-type aircraft structure
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Schuster, L. S.; Carter, A. L.
1978-01-01
A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.
Study of the NASTRAN input/output systems
NASA Technical Reports Server (NTRS)
Brown, W. K.; Schoellmann, W. F.
1977-01-01
The basic characteristics of the NASTRAN level 16 I/O subsystem are presented with particular reference to blocking/deblocking aspects, I/O methods used on the IBM, CDC, and UNIVAC machines, definition of basic NASTRAN I/O control tables, and portability of parts of the I/O subsystem to other programs outside the NASTRAN environment are included. An explanation of the IBM primary, secondary, and tertiary files defined by the data definition (DD) cards in the NASTRAN JCL procedure. The explanation is intended to enlighten users as to the purpose of these DD cards, how they relate to one another, and why there are no similar type definition cards required on the CDC and UNIVAC versions. Enhancements designed to increase overall efficiency and decrease core requirements are also recommended.
NASA Technical Reports Server (NTRS)
Benavente, Javier E.; Luce, Norris R.
1989-01-01
Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.
NASTRAN hydroelastic modal studies. Volume 2: Programmer documentation
NASA Technical Reports Server (NTRS)
1977-01-01
The operational steps, data descriptions, and program code for the new NASTRAN hydroelastic analysis system are described. The overall flow of the system is described, followed by the descriptions of the individual modules and their subroutines.
Deformations of thick two-material cylinder under axially varying radial pressure
NASA Technical Reports Server (NTRS)
Patel, Y. A.
1976-01-01
Stresses and deformations in thick, short, composite cylinder subjected to axially varying radial pressure are studied. Effect of slippage at the interface is examined. In the NASTRAN finite element model, multipoint constraint feature is utilized. Results are compared with theoretical analysis and SAP-IV computer code. Results from NASTRAN computer code are in good agreement with the analytical solutions. Results suggest a considerable influence of interfacial slippage on the axial bending stresses in the cylinder.
Twentieth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1992-01-01
The proceedings of the conference are presented. Some comprehensive general papers are presented on applications of finite elements in engineering, comparisons with other approaches, unique applications, pre and post processing with other auxiliary programs, and new methods of analysis with NASTRAN.
Solving magnetostatic field problems with NASTRAN
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.; Schroeder, E. A.
1978-01-01
Determining the three-dimensional magnetostatic field in current-induced situations has usually involved vector potentials, which can lead to excessive computational times. How such magnetic fields may be determined using scalar potentials is reviewed. It is shown how the heat transfer capability of NASTRAN level 17 was modified to take advantage of the new method.
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
NASA Technical Reports Server (NTRS)
Turner, Horace Q.; Harper, David F.
1991-01-01
The distribution of NASTRAN User Manual information has been difficult because of the delay in printing and difficulty in identification of all the users. This has caused many users not to have the current information for the release of NASTRAN that could be available to them. The User Manual updates have been supplied with the NASTRAN Releases, but distribution within organizations was not coordinated with access to releases. The Executive Control, Case Control, and Bulk Data sections are supplied in machine readable format with the 91 Release of NASTRAN. This information is supplied on the release tapes in ASCII format, and a FORTRAN program to access this information is supplied on the release tapes. This will allow each user to have immediate access to User Manual level documentation with the release. The sections on utilities, plotting, and substructures are expected to be prepared for the 92 Release.
A DMAP Program for the Selection of Accelerometer Locations in MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Peck, Jeff; Torres, Isaias
2004-01-01
A new program for selecting sensor locations has been written in the DMAP (Direct Matrix Abstraction Program) language of MSC/NASTRAN. The program implements the method of Effective Independence for selecting sensor locations, and is executed within a single NASTRAN analysis as a "rigid format alter" to the normal modes solution sequence (SOL 103). The user of the program is able to choose among various analysis options using Case Control and Bulk Data entries. Algorithms tailored for the placement of both uni-axial and tri- axial accelerometers are available, as well as several options for including the model s mass distribution into the calculations. Target modes for the Effective Independence analysis are selected from the MSC/NASTRAN ASET modes calculated by the "SOL 103" solution sequence. The initial candidate sensor set is also under user control, and is selected from the ASET degrees of freedom. Analysis results are printed to the MSCINASTRAN output file (*.f06), and may include the current candidate sensors set, and their associated Effective Independence distribution, at user specified iteration intervals. At the conclusion of the analysis, the model is reduced to the final sensor set, and frequencies and orthogonality checks are printed. Example results are given for a pre-test analysis of NASA s five-segment solid rocket booster modal test.
Nonlinear Analysis of a Bolted Marine Riser Connector Using NASTRAN Substructuring
NASA Technical Reports Server (NTRS)
Fox, G. L.
1984-01-01
Results of an investigation of the behavior of a bolted, flange type marine riser connector is reported. The method used to account for the nonlinear effect of connector separation due to bolt preload and axial tension load is described. The automated multilevel substructing capability of COSMIC/NASTRAN was employed at considerable savings in computer run time. Simplified formulas for computer resources, i.e., computer run times for modules SDCOMP, FBS, and MPYAD, as well as disk storage space, are presented. Actual run time data on a VAX-11/780 is compared with the formulas presented.
Using PAFEC as a preprocessor for COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Gray, W. H.; Baudry, T. V.
1983-01-01
Programs for Automatic Finite Element Calculations (PAFEC) is a general purpose, three dimensional linear and nonlinear finite element program (ref. 1). PAFEC's features include free format input utilizing engineering keywords, powerful mesh generating facilities, sophisticated data base management procedures, and extensive data validation checks. Presented here is a description of a software interface that permits PAFEC to be used as a preprocessor for COSMIC/NASTRAN. This user friendly software, called PAFCOS, frees the stress analyst from the laborious and error prone procedure of creating and debugging a rigid format COSMIC/NASTRAN bulk data deck. By interactively creating and debugging a finite element model with PAFEC, thus taking full advantage of the free format engineering keyword oriented data structure of PAFEC, the amount of time spent during model generation can be drastically reduced. The PAFCOS software will automatically convert a PAFEC data structure into a COSMIC/NASTRAN bulk data deck. The capabilities and limitations of the PAFCOS software are fully discussed in the following report.
NASA Technical Reports Server (NTRS)
Caruso, J. J.
1984-01-01
Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.
NASA Technical Reports Server (NTRS)
Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.
1983-01-01
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.
Survey of computer programs for heat transfer analysis
NASA Astrophysics Data System (ADS)
Noor, A. K.
An overview is presented of the current capabilities of thirty-eight computer programs that can be used for solution of heat transfer problems. These programs range from the large, general-purpose codes with a broad spectrum of capabilities, large user community and comprehensive user support (e.g., ANSYS, MARC, MITAS 2 MSC/NASTRAN, SESAM-69/NV-615) to the small, special purpose codes with limited user community such as ANDES, NNTB, SAHARA, SSPTA, TACO, TEPSA AND TRUMP. The capabilities of the programs surveyed are listed in tabular form followed by a summary of the major features of each program. As with any survey of computer programs, the present one has the following limitations: (1) It is useful only in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program; (2) Since computer software continually changes, often at a rapid rate, some means must be found for updating this survey and maintaining some degree of currency.
Survey of computer programs for heat transfer analysis
NASA Technical Reports Server (NTRS)
Noor, A. K.
1982-01-01
An overview is presented of the current capabilities of thirty-eight computer programs that can be used for solution of heat transfer problems. These programs range from the large, general-purpose codes with a broad spectrum of capabilities, large user community and comprehensive user support (e.g., ANSYS, MARC, MITAS 2 MSC/NASTRAN, SESAM-69/NV-615) to the small, special purpose codes with limited user community such as ANDES, NNTB, SAHARA, SSPTA, TACO, TEPSA AND TRUMP. The capabilities of the programs surveyed are listed in tabular form followed by a summary of the major features of each program. As with any survey of computer programs, the present one has the following limitations: (1) It is useful only in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program; (2) Since computer software continually changes, often at a rapid rate, some means must be found for updating this survey and maintaining some degree of currency.
NASA Technical Reports Server (NTRS)
1976-01-01
The application of NASTRAN to a wide variety of static and dynamic structural problems is discussed. The following topics are focused upon: (1) methods of analysis; (2) hydroelastic methods; (3) complete analysis of structures; (4) elements and material studies; (5) critical comparisons with other programs; and (6) pre- and post-processor operations.
NASTRAN data deck generation on the PC
NASA Technical Reports Server (NTRS)
Guyan, R. J.
1986-01-01
Using two commercial programs an application was developed to aid in generating a run-ready NASTRAN data deck on the PC. Macros are used to access relevant reference material and card files while editing the deck. The application can be easily customized to suit individual or group needs.
Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer
NASA Technical Reports Server (NTRS)
Gross, R. Steven
1994-01-01
There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.
Finite element solution of torsion and other 2-D Poisson equations
NASA Technical Reports Server (NTRS)
Everstine, G. C.
1982-01-01
The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.
Rotating Shake Test and Modal Analysis of a Model Helicopter Rotor Blade
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Mirick, Paul H.; Langston, Chester W.
1997-01-01
Rotating blade frequencies for a model generic helicopter rotor blade mounted on an articulated hub were experimentally determined. Testing was conducted using the Aeroelastic Rotor Experimental System (ARES) testbed in the Helicopter Hover Facility (HBF) at Langley Research Center. The measured data were compared to pretest analytical predictions of the rotating blade frequencies made using the MSC/NASTRAN finite-element computer code. The MSC/NASTRAN solution sequences used to analyze the model were modified to account for differential stiffening effects caused by the centrifugal force acting on the blade and rotating system dynamic effects. The correlation of the MSC/NASTRAN-derived frequencies with the experimental data is, in general, very good although discrepancies in the blade torsional frequency trends and magnitudes were observed. The procedures necessary to perform a rotating system modal analysis of a helicopter rotor blade with MSC/NASTRAN are outlined, and complete sample data deck listings are provided.
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Original data preprocessor for Femap/Nastran
NASA Astrophysics Data System (ADS)
Oanta, Emil M.; Panait, Cornel; Raicu, Alexandra
2016-12-01
Automatic data processing and visualization in the finite elements analysis of the structural problems is a long run concern in mechanical engineering. The paper presents the `common database' concept according to which the same information may be accessed from an analytical model, as well as from a numerical one. In this way, input data expressed as comma-separated-value (CSV) files are loaded into the Femap/Nastran environment using original API codes, being automatically generated: the geometry of the model, the loads and the constraints. The original API computer codes are general, being possible to generate the input data of any model. In the next stages, the user may create the discretization of the model, set the boundary conditions and perform a given analysis. If additional accuracy is needed, the analyst may delete the previous discretizations and using the same information automatically loaded, other discretizations and analyses may be done. Moreover, if new more accurate information regarding the loads or constraints is acquired, they may be modelled and then implemented in the data generating program which creates the `common database'. This means that new more accurate models may be easily generated. Other facility consists of the opportunity to control the CSV input files, several loading scenarios being possible to be generated in Femap/Nastran. In this way, using original intelligent API instruments the analyst is focused to accurately model the phenomena and on creative aspects, the repetitive and time-consuming activities being performed by the original computer-based instruments. Using this data processing technique we apply to the best Asimov's principle `minimum change required / maximum desired response'.
The Design and Usage of the New Data Management Features in NASTRAN
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Brown, W. K.
1984-01-01
Two new data management features are installed in the April 1984 release of NASTRAN. These two features are the Rigid Format Data Base and the READFILE capability. The Rigid Format Data Base is stored on external files in card image format and can be easily maintained and expanded by the use of standard text editors. This data base provides the user and the NASTRAN maintenance contractor with an easy means for making changes to a Rigid Format or for generating new Rigid Formats without unnecessary compilations and link editing of NASTRAN. Each Rigid Format entry in the data base contains the Direct Matrix Abstraction Program (DMAP), along with the associated restart, DMAP sequence subset and substructure control flags. The READFILE capability allows an user to reference an external secondary file from the NASTRAN primary input file and to read data from this secondary file. There is no limit to the number of external secondary files that may be referenced and read.
Program For Evaluation Of Reliability Of Ceramic Parts
NASA Technical Reports Server (NTRS)
Nemeth, N.; Janosik, L. A.; Gyekenyesi, J. P.; Powers, Lynn M.
1996-01-01
CARES/LIFE predicts probability of failure of monolithic ceramic component as function of service time. Assesses risk that component fractures prematurely as result of subcritical crack growth (SCG). Effect of proof testing of components prior to service also considered. Coupled to such commercially available finite-element programs as ANSYS, ABAQUS, MARC, MSC/NASTRAN, and COSMOS/M. Also retains all capabilities of previous CARES code, which includes estimation of fast-fracture component reliability and Weibull parameters from inert strength (without SCG contributing to failure) specimen data. Estimates parameters that characterize SCG from specimen data as well. Written in ANSI FORTRAN 77 to be machine-independent. Program runs on any computer in which sufficient addressable memory (at least 8MB) and FORTRAN 77 compiler available. For IBM-compatible personal computer with minimum 640K memory, limited program available (CARES/PC, COSMIC number LEW-15248).
The application of NASCAD as a NASTRAN pre- and post-processor
NASA Technical Reports Server (NTRS)
Peltzman, Alan N.
1987-01-01
The NASA Computer Aided Design (NASCAD) graphics package provides an effective way to interactively create, view, and refine analytic data models. NASCAD's macro language, combined with its powerful 3-D geometric data base allows the user important flexibility and speed in constructing his model. This flexibility has the added benefit of enabling the user to keep pace with any new NASTRAN developments. NASCAD allows models to be conveniently viewed and plotted to best advantage in both pre- and post-process phases of development, providing useful visual feedback to the analysis process. NASCAD, used as a graphics compliment to NASTRAN, can play a valuable role in the process of finite element modeling.
A technique for the optical analysis of deformed telescope mirrors
NASA Technical Reports Server (NTRS)
Bolton, John F.
1986-01-01
The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.
Transient Analysis of a Magnetic Heat Pump
NASA Technical Reports Server (NTRS)
Schroeder, E. A.
1985-01-01
An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.
NASA Technical Reports Server (NTRS)
Sreekanta Murthy, T.
1992-01-01
Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.
Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft
NASA Astrophysics Data System (ADS)
McKenzie, Samuel D.
1991-12-01
The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.
Economic Evaluation of Computerized Structural Analysis
NASA Technical Reports Server (NTRS)
Fortin, P. E.
1985-01-01
This completed effort involved a technical and economic study of the capabilities of computer programs in the area of structural analysis. The applicability of the programs to NASA projects and to other users was studied. The applications in other industries was explored including both research and development and applied areas. The costs of several alternative analysis programs were compared. A literature search covered applicable technical literature including journals, trade publications and books. In addition to the literature search, several commercial companies that have developed computerized structural analysis programs were contacted and their technical brochures reviewed. These programs include SDRC I-DEAS, MSC/NASTRAN, SCADA, SUPERSAP, NISA/DISPLAY, STAAD-III, MICAS, GTSTRUDL, and STARS. These programs were briefly reviewed as applicable to NASA projects.
Experiences running NASTRAN on the Microvax 2 computer
NASA Technical Reports Server (NTRS)
Butler, Thomas G.; Mitchell, Reginald S.
1987-01-01
The MicroVAX operates NASTRAN so well that the only detectable difference in its operation compared to an 11/780 VAX is in the execution time. On the modest installation described here, the engineer has all of the tools he needs to do an excellent job of analysis. System configuration decisions, system sizing, preparation of the system disk, definition of user quotas, installation, monitoring of system errors, and operation policies are discussed.
Development of an orthotropic hole element
NASA Technical Reports Server (NTRS)
Smith, C. V.; Markham, J. W.; Kelley, J. W.; Kathiresan, K.
1981-01-01
A finite element was developed which adequately represents the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This was achieved with a complementary virtual work formulation of the stiffness and stress matrices for a square element with center circular hole. The assumed stress state provides zero shearing stress on the hole boundary, so the element is suitable for problems involving load transfer without friction. The element has been implemented in the NASTRAN computer program, and sample problem results are presented.
NASA's Role in Aeronautics: A Workshop. Volume 6: Aeronautical research
NASA Technical Reports Server (NTRS)
1981-01-01
While each aspect of its aeronautical technology program is important to the current preeminence of the United States in aeronautics, the most essential contributions of NASA derive from its research. Successes and challenges in NASA's efforts to improve civil and military aviation are discussed for the following areas: turbulence, noise, supercritical aerodynamics, computational aerodynamics, fuels, high temperature materials, composite materials, single crystal components, powder metallurgy, and flight controls. Spin offs to engineering and other sciences explored include NASTRAN, lubricants, and composites.
Analytical approach to peel stresses in bonded composite stiffened panels
NASA Technical Reports Server (NTRS)
Barkey, Derek A.; Madan, Ram C.; Sutton, Jason O.
1987-01-01
A closed-form solution was obtained for the stresses and displacements of two bonded beams. A system of two fourth-order and two second-order differential equations with the associated boundary equations was determined using a variational work approach. A FORTRAN computer program was devised to solve for the eigenvalues and eigenvectors of this system and to calculate the coefficients from the boundary conditions. The results were then compared with NASTRAN finite-element solutions and shown to agree closely.
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Hill, R. J.; Guilliams, B. P.; Drake, S. K.; Kladden, J. L.
1979-01-01
An elastic stress analysis was performed on a wedge specimen (prismatic bar with single-wedge cross section) subjected to thermal cycles in fluidized beds. Seven different combinations consisting of three alloys (NASA TAZ-8A, 316 stainless steel, and A-286) and four thermal cycling conditions were analyzed. The analyses were performed as a joint effort of two laboratories using different models and computer programs (NASTRAN and ISO3DQ). Stress, strain, and temperature results are presented.
Structural Analysis Using NX Nastran 9.0
NASA Technical Reports Server (NTRS)
Rolewicz, Benjamin M.
2014-01-01
NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.
NASA Technical Reports Server (NTRS)
Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.
1989-01-01
Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.
Comparison of NASTRAN analysis with ground vibration results of UH-60A NASA/AEFA test configuration
NASA Technical Reports Server (NTRS)
Idosor, Florentino; Seible, Frieder
1990-01-01
Preceding program flight tests, a ground vibration test and modal test analysis of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to complement the UH-60A test plan and NASA/ARMY Modern Technology Rotor Airloads Program. The 'NASA/AEFA' shake test configuration was tested for modal frequencies and shapes and compared with its NASTRAN finite element model counterpart to give correlative results. Based upon previous findings, significant differences in modal data existed and were attributed to assumptions regarding the influence of secondary structure contributions in the preliminary NASTRAN modeling. An analysis of an updated finite element model including several secondary structural additions has confirmed that the inclusion of specific secondary components produces a significant effect on modal frequency and free-response shapes and improves correlations at lower frequencies with shake test data.
NASTRAN benefits analysis. Volume 2: Final technical report
NASA Technical Reports Server (NTRS)
1972-01-01
Baseline data are considered for comparisons of the costs and benefits of the NASA structural analysis program and to determine impacts and benefits to current users. To develop this information, questionnaires were mailed to users. Personal and telephone interviews were made to solicit further information. The questions in the questionnaire and in the interview were related to benefits derived from the programs, areas of needed improvement, and applicable usage comments. The collected information was compiled and analyzed. Methodology, analyses, and results are presented. The information is applicable to issues preceding NASTRAN Level 15.
NASA Technical Reports Server (NTRS)
Coppolino, R. N.
1974-01-01
Details are presented of the implementation of the new formulation into NASTRAN including descriptions of the DMAP statements required for conversion of the program and details pertaining to problem definition and bulk data considerations. Details of the current 1/8-scale space shuttle external tank mathematical model, numerical results and analysis/test comparisons are also presented. The appendices include a description and listing of a FORTRAN program used to develop harmonic transformation bulk data (multipoint constraint statements) and sample bulk data information for a number of hydroelastic problems.
NASTRAN interfacing modules within the Integrated Analysis Capability (IAC) Program
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1986-01-01
The IAC program provides the framework required for the development of an extensive multidisciplinary analysis capability. Several NASTRAN related capabilities were developed which can all be expanded in a routine manner to meet in-house unique needs. Plans are to complete the work discussed herein and to provide it to the engineering community through COSMIC. Release is to be after the current IAC Level 2 contract work on the IAC executive system is completed and meshed with the interfacing modules and analysis capabilities under development at the GSFC.
Survey of computer programs for heat transfer analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1986-01-01
An overview is given of the current capabilities of thirty-three computer programs that are used to solve heat transfer problems. The programs considered range from large general-purpose codes with broad spectrum of capabilities, large user community, and comprehensive user support (e.g., ABAQUS, ANSYS, EAL, MARC, MITAS II, MSC/NASTRAN, and SAMCEF) to the small, special-purpose codes with limited user community such as ANDES, NTEMP, TAC2D, TAC3D, TEPSA and TRUMP. The majority of the programs use either finite elements or finite differences for the spatial discretization. The capabilities of the programs are listed in tabular form followed by a summary of the major features of each program. The information presented herein is based on a questionnaire sent to the developers of each program. This information is preceded by a brief background material needed for effective evaluation and use of computer programs for heat transfer analysis. The present survey is useful in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program.
NASTRAN level 16 user's manual updates for aeroelastic analysis of bladed discs
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.
1980-01-01
The NASTRAN aeroelastic and flutter capability was extended to solve a class of problems associated with axial flow turbomachines. The capabilities of the program are briefly discussed. The aerodynamic data pertaining to the bladed disc sector, the associated aerodynamic modeling, the steady aerothermoelastic 'design/analysis' formulations, and the modal, flutter, and subcritical roots analyses are described. Sample problems and their solutions are included.
Aircraft interior noise prediction using a structural-acoustic analogy in NASTRAN modal synthesis
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Sullivan, Brenda M.; Marulo, Francesco
1988-01-01
The noise induced inside a cylindrical fuselage model by shaker excitation is investigated theoretically and experimentally. The NASTRAN modal-synthesis program is used in the theoretical analysis, and the predictions are compared with experimental measurements in extensive graphs. Good general agreement is obtained, but the need for further refinements to account for acoustic-cavity damping and structural-acoustic interaction is indicated.
Forced vibration analysis of rotating cyclic structures in NASTRAN
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1981-01-01
A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.
Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.
1990-01-01
This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.
Using NASTRAN to model missile inertia loads
NASA Technical Reports Server (NTRS)
Marvin, R.; Porter, C.
1985-01-01
An important use of NASTRAN is in the area of structural loads analysis on weapon systems carried aboard aircraft. The program is used to predict bending moments and shears in missile bodies, when subjected to aircraft induced accelerations. The missile, launcher and aircraft wing are idealized, using rod and beam type elements for solution economy. Using the inertia relief capability of NASTRAN, the model is subjected to various acceleration combinations. It is found to be difficult to model the launcher sway braces and hooks which transmit compression only or tension only type forces respectively. A simple, iterative process was developed to overcome this modeling difficulty. A proposed code modification would help model compression or tension only contact type problems.
Prediction of bead area contact load at the tire-wheel interface using NASTRAN
NASA Technical Reports Server (NTRS)
Chen, C. H. S.
1982-01-01
The theoretical prediction of the bead area contact load at the tire wheel interface using NASTRAN is reported. The application of the linear code to a basically nonlinear problem results in excessive deformation of the structure and the tire-wheel contact conditions become impossible to achieve. A psuedo-nonlinear approach was adopted in which the moduli of the cord reinforced composite are increased so that the computed key deformations matched that of the experiment. Numerical results presented are discussed.
Design of a flexure mount for optics in dynamic and cryogenic environments
NASA Technical Reports Server (NTRS)
Pollard, Lloyd Wayne
1989-01-01
The design of a flexure mount for a mirror operating in a cryogenic environment is presented. This structure represents a design effort recently submitted to NASA Ames for the support of the primary mirror of the Space Infrared Telescope Facility (SIRTF). The support structure must passively accommodate the differential thermal contraction between the glass mirror and the aluminium structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit without exceeding the micro-yield of the material anywhere in the flexure mount. Procedures used to establish the maximum allowable radial stiffness of the flexural mount, based on the finite element program NASTRAN and the optical program FRINGE, are discussed. Early design concepts were evaluated using a parametric design program, and the development of that program is presented. Dynamic loading analyses performed with NASTRAN are discussed. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, modified root of sum of squares, is presented. Model combination schemes using MRSS, SRSS, and ABS are compared to the results of the modal frequency response analysis performed with NASTRAN.
NASA Technical Reports Server (NTRS)
Elchuri, V.; Pamidi, P. R.
1985-01-01
This report is a supplemental NASTRAN document for a new capability to determine the vibratory response of turbosystems subjected to aerodynamic excitation. Supplements of NASTRAN Theoretical, User's, Programmer's, and Demonstration Manuals are included. Turbosystems such as advanced turbopropellers with highly swept blades, and axial-flow compressors and turbines can be analyzed using this capability, which has been developed and implemented in the April 1984 release of the general purpose finite element program NASTRAN. The dynamic response problem is addressed in terms of the normal modal coordinates of these tuned rotating cyclic structures. Both rigid and flexible hubs/disks are considered. Coriolis and centripetal accelerations, as well as differential stiffness effects are included. Generally nonuniform steady inflow fields and uniform flow fields arbitrarily inclined at small angles with respect to the axis of rotation of the turbosystem are considered as the sources of aerodynamic excitation. The spatial nonuniformities are considered to be small deviations from a principally uniform inflow. Subsonic relative inflows are addressed, with provision for linearly interpolating transonic airloads.
Flutter analysis of low aspect ratio wings
NASA Technical Reports Server (NTRS)
Parnell, L. A.
1986-01-01
Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.
IAC - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutines for numerical analysis. 5) Graphics - The graphics package IPLOT is included in IAC. IPLOT generates vector displays of tabular data in the form of curves, charts, correlation tables, etc. Either DI3000 or PLOT-10 graphics software is required for full graphic capability. In addition to these analysis tools, IAC 2.5 contains an IGES interface which allows the user to read arbitrary IGES files into an IAC database and to edit and output new IGES files. IAC is available by license for a period of 10 years to approved U.S. licensees. The licensed program product includes one set of supporting documentation. Additional copies may be purchased separately. IAC is written in FORTRAN 77 and has been implemented on a DEC VAX series computer operating under VMS. IAC can be executed by multiple concurrent users in batch or interactive mode. The program is structured to allow users to easily delete those program capabilities and "how to" examples they do not want in order to reduce the size of the package. The basic central memory requirement for IAC is approximately 750KB. The following programs are also available from COSMIC as separate packages: NASTRAN, SINDA/SINFLO, TRASYS II, DISCOS, ORACLS, SAMSAN, NBOD2, and INCA. The development of level 2.5 of IAC was completed in 1989.
Dynamic characterization of solid rockets
NASA Technical Reports Server (NTRS)
1973-01-01
The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.
NASA Technical Reports Server (NTRS)
Mcentire, K.
1994-01-01
NPLOT is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models (FEMs). Although there are many commercial codes already available for plotting FEMs, these have limited use due to their cost, speed, and lack of features to view BAR elements. NPLOT was specifically developed to overcome these limitations. On a vector type graphics device the two best ways to show depth are by hidden line plotting or haloed line plotting. A hidden line algorithm generates views of models with all hidden lines removed, and a haloed line algorithm displays views with aft lines broken in order to show depth while keeping the entire model visible. A haloed line algorithm is especially useful for plotting models composed of many line elements and few surface elements. The most important feature of NPLOT is its ability to create both hidden line and haloed line views accurately and much more quickly than with any other existing hidden or haloed line algorithms. NPLOT is also capable of plotting a normal wire frame view to display all lines of a model. NPLOT is able to aid in viewing all elements, but it has special features not generally available for plotting BAR elements. These features include plotting of TRUE LENGTH and NORMALIZED offset vectors and orientation vectors. Standard display operations such as rotation and perspective are possible, but different view planes such as X-Y, Y-Z, and X-Z may also be selected. Another display option is the Z-axis cut which allows a portion of the fore part of the model to be cut away to reveal details of the inside of the model. A zoom function is available to terminals with a locator (graphics cursor, joystick, etc.). The user interface of NPLOT is designed to make the program quick and easy to use. A combination of menus and commands with help menus for detailed information about each command allows experienced users greater speed and efficiency. Once a plot is on the screen the interface becomes command driven, enabling the user to manipulate the display or execute a command without having to return to the menu. NPLOT is also able to plot deformed shapes allowing it to perform post-processing. The program can read displacements, either static displacements or eigenvectors, from a MSC/NASTRAN F06 file or a UAI/NASTRAN PRT file. The displacements are written into a unformatted scratch file where they are available for rapid access when the user wishes to display a deformed shape. All subcases or mode shapes can be read in at once. Then it is easy to enable the deformed shape, to change subcases or mode shapes and to change the scale factor for subsequent plots. NPLOT is written in VAX FORTRAN for DEC VAX series computers running VMS. As distributed, the NPLOT source code makes calls to the DI3000 graphics package from Precision Visuals; however, a set of interface routines is provided to translate the DI3000 calls into Tektronix PLOT10/TCS graphics library calls so that NPLOT can use the standard Tektronix 4010 which many PC terminal emulation software programs support. NPLOT is available in VAX BACKUP format on a 9-track 1600 BPI DEC VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. Tektronix, PLOT10, and TCS are trademarks of Tektronix, Inc. DI3000 is a registered trademark of Precision Visuals, Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. MSC/ is a trademark of MacNeal-Schwendler Corporation. UAI is a trademark of Universal Analytics, Inc.
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
Implementation on a nonlinear concrete cracking algorithm in NASTRAN
NASA Technical Reports Server (NTRS)
Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.; Chang, H.
1976-01-01
A computer code for the analysis of reinforced concrete structures was developed using NASTRAN as a basis. Nonlinear iteration procedures were developed for obtaining solutions with a wide variety of loading sequences. A direct access file system was used to save results at each load step to restart within the solution module for further analysis. A multi-nested looping capability was implemented to control the iterations and change the loads. The basis for the analysis is a set of mutli-layer plate elements which allow local definition of materials and cracking properties.
Structural dynamics of shroudless, hollow fan blades with composite in-lays
NASA Technical Reports Server (NTRS)
Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.
1982-01-01
Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.
IAC-1.5 - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Vos, R. G.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and a database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a database, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automating data transfer among analysis programs. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation modules are supplied for building and viewing models. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. 3) System dynamics - A DISCOS interface allows full use of this simulation program for either nonlinear time domain analysis or linear frequency domain analysis. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. 5) Graphics - The graphics packages PLOT and MOSAIC are included in IAC. PLOT generates vector displays of tabular data in the form of curves, charts, correlation tables, etc., while MOSAIC generates color raster displays of either tabular of array type data. Either DI3000 or PLOT-10 graphics software is required for full graphics capability. IAC is available by license for a period of 10 years to approved licensees. The licensed program product includes one complete set of supporting documentation. Additional copies of the documentation may be purchased separately. IAC is written in FORTRAN 77 and has been implemented on a DEC VAX series computer operating under VMS. IAC can be executed by multiple concurrent users in batch or interactive mode. The basic central memory requirement is approximately 750KB. IAC includes the executive system, graphics modules, a database, general utilities, and the interfaces to all analysis and controls programs described above. Source code is provided for the control programs ORACLS, SAMSAN, NBOD2, and DISCOS. The following programs are also available from COSMIC as separate packages: NASTRAN, SINDA/SINFLO, TRASYS II, DISCOS, ORACLS, SAMSAN, NBOD2, and INCA. IAC was developed in 1985.
Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN
NASA Technical Reports Server (NTRS)
Griffis, H.
1985-01-01
Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.
Accuracy of Three Dimensional Solid Finite Elements
NASA Technical Reports Server (NTRS)
Case, W. R.; Vandegrift, R. E.
1984-01-01
The results of a study to determine the accuracy of the three dimensional solid elements available in NASTRAN for predicting displacements is presented. Of particular interest in the study is determining how to effectively use solid elements in analyzing thick optical mirrors, as might exist in a large telescope. Surface deformations due to thermal and gravity loading can be significant contributors to the determination of the overall optical quality of a telescope. The study investigates most of the solid elements currently available in either COSMIC or MSC NASTRAN. Error bounds as a function of mesh refinement and element aspect ratios are addressed. It is shown that the MSC solid elements are, in general, more accurate than their COSMIC NASTRAN counterparts due to the specialized numerical integration used. In addition, the MSC elements appear to be more economical to use on the DEC VAX 11/780 computer.
NASA Technical Reports Server (NTRS)
Cronkhite, James D.
1993-01-01
Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.
NASA Technical Reports Server (NTRS)
Vonhermann, Pieter; Pintz, Adam
1994-01-01
This manual describes the use of the ANSCARES program to prepare a neutral file of FEM stress results taken from ANSYS Release 5.0, in the format needed by CARES/LIFE ceramics reliability program. It is intended for use by experienced users of ANSYS and CARES. Knowledge of compiling and linking FORTRAN programs is also required. Maximum use is made of existing routines (from other CARES interface programs and ANSYS routines) to extract the finite element results and prepare the neutral file for input to the reliability analysis. FORTRAN and machine language routines as described are used to read the ANSYS results file. Sub-element stresses are computed and written to a neutral file using FORTRAN subroutines which are nearly identical to those used in the NASCARES (MSC/NASTRAN to CARES) interface.
NASTRAN pre and postprocessors using low-cost interactive graphics
NASA Technical Reports Server (NTRS)
Herness, E. D.; Kriloff, H. Z.
1975-01-01
A design for a NASTRAN preprocessor is given to illustrate a typical preprocessor. Several displays of NASTRAN models illustrate the preprocessor's capabilities. A design of a NASTRAN postprocessor is presented along with an example of displays generated by that NASTRAN processor.
Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.
NASA Technical Reports Server (NTRS)
Ko, W. L.; Schuster, L. S.
1984-01-01
This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.
NASA Technical Reports Server (NTRS)
Ko, W. L.; Schuster, L. S.
1983-01-01
This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.
Alternatives for NASTRAN maintenance, modification and dissemination
NASA Technical Reports Server (NTRS)
Schaeffer, H. G.
1977-01-01
Various alternatives to direct NASA support of the program are considered ranging from no support at one end of the spectrum to subsidizing a non profit user's group at the other. Of all the alternatives that are developed, the user group appears to be most viable. NASA's past and future roles in the development of computerized technology are also considered. The need for an institute for computational analysis is identified and NASA's possible involvement is described. The goals of the proposed institute and research funds to support an activity that has the potential of a much larger impact on the technical community are identified.
Use of MSC/NASTRAN for the thermal analysis of the Space Shuttle Orbiter braking system
NASA Technical Reports Server (NTRS)
Shu, James; Mccann, David
1987-01-01
A description is given of the thermal modeling and analysis effort being conducted to investigate the transient temperature and thermal stress characteristics of the Space Shuttle Orbiter brake components and subsystems. Models are constructed of the brake stator as well as of the entire brake assembly to analyze the temperature distribution and thermal stress during the landing and braking process. These investigations are carried out on a UNIVAC computer system with MSC/NASTRAN Version 63. Analytical results and solution methods are presented and comparisons are made with SINDA results.
IAC - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. IAC 2.5 contains several specialized interfaces from NASTRAN in support of multidisciplinary analysis. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. FEMNET, which converts finite element structural analysis models to finite difference thermal analysis models, is also interfaced with the IAC database. 3) System dynamics - The DISCOS simulation program which allows for either nonlinear time domain analysis or linear frequency domain analysis, is fully interfaced to the IAC database management capability. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. Level 2.5 includes EIGEN, which provides tools for large order system eigenanalysis, and BOPACE, which allows for geometric capabilities and finite element analysis with nonlinear material. Also included in IAC level 2.5 is SAMSAN 3.1, an engineering analysis program which contains a general purpose library of over 600 subroutin
Modeling damaged wings: Element selection and constraint specification
NASA Technical Reports Server (NTRS)
Stronge, W. J.
1975-01-01
The NASTRAN analytical program was used for structural design, and no problems were anticipated in applying this program to a damaged structure as long as the deformations were small and the strains remained within the elastic range. In this context, NASTRAN was used to test three-dimensional analytical models of a damaged aircraft wing under static loads. A comparison was made of calculated and experimentally measured strains on primary structural components of an RF-84F wing. This comparison brought out two sensitive areas in modeling semimonocoque structures. The calculated strains were strongly affected by the type of elements used adjacent to the damaged region and by the choice of multipoint constraints sets on the damaged boundary.
Nonlinear random response prediction using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Robinson, J. H.; Chiang, C. K.; Rizzi, S. A.
1993-01-01
An equivalent linearization technique was incorporated into MSC/NASTRAN to predict the nonlinear random response of structures by means of Direct Matrix Abstract Programming (DMAP) modifications and inclusion of the nonlinear differential stiffness module inside the iteration loop. An iterative process was used to determine the rms displacements. Numerical results obtained for validation on simple plates and beams are in good agreement with existing solutions in both the linear and linearized regions. The versatility of the implementation will enable the analyst to determine the nonlinear random responses for complex structures under combined loads. The thermo-acoustic response of a hexagonal thermal protection system panel is used to highlight some of the features of the program.
Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.
2006-01-01
The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.
MSC/NASTRAN Stress Analysis of Complete Models Subjected to Random and Quasi-Static Loads
NASA Technical Reports Server (NTRS)
Hampton, Roy W.
2000-01-01
Space payloads, such as those which fly on the Space Shuttle in Spacelab, are designed to withstand dynamic loads which consist of combined acoustic random loads and quasi-static acceleration loads. Methods for computing the payload stresses due to these loads are well known and appear in texts and NASA documents, but typically involve approximations such as the Miles' equation, as well as possible adjustments based on "modal participation factors." Alternatively, an existing capability in MSC/NASTRAN may be used to output exact root mean square [rms] stresses due to the random loads for any specified elements in the Finite Element Model. However, it is time consuming to use this methodology to obtain the rms stresses for the complete structural model and then combine them with the quasi-static loading induced stresses. Special processing was developed as described here to perform the stress analysis of all elements in the model using existing MSC/NASTRAN and MSC/PATRAN and UNIX utilities. Fail-safe and buckling analyses applications are also described.
CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.
2003-01-01
This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.
FEM and Multiphysics Applications at NASA/GSFC
NASA Technical Reports Server (NTRS)
Loughlin, James
2004-01-01
FEM software available to the Mechanical Systems Analysis and Simulation Branch at Goddard Space Flight Center (GSFC) include: 1) MSC/Nastran; 2) Abaqus; 3) Ansys/Multiphysics; 4) COSMOS/M; 5) 'Home-grown' programs; 6) Pre/post processors such as Patran and FEMAP. This viewgraph presentation provides additional information on MSC/Nastran and Ansys/Multiphysics, and includes screen shots of analyzed equipment, including the Wilkinson Microwave Anistropy Probe, a micro-mirror, a MEMS tunable filter, and a micro-shutter array. The presentation also includes information on the verification of results.
Increasing marketability and profitability of product line thru PATRAN and NASTRAN
NASA Technical Reports Server (NTRS)
Hyatt, Art
1989-01-01
Starting with the design objective the operational cycle life of the Swaging Tool was increased. To accomplish this increase in cycle life without increasing the size or weight of the tool would be engineering achievement. However, not only was the operational cycle life increased between 2 to 10 times but simultaneously the size and weight of the Swage Tool was decreased by about 50 percent. This accomplishment now becomes an outstanding engineering achievement. This achievement was only possible because of the computerized Patran, Nastran and Medusa programs.
Design enhancement tools in MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Wallerstein, D. V.
1984-01-01
Design sensitivity is the calculation of derivatives of constraint functions with respect to design variables. While a knowledge of these derivatives is useful in its own right, the derivatives are required in many efficient optimization methods. Constraint derivatives are also required in some reanalysis methods. It is shown where the sensitivity coefficients fit into the scheme of a basic organization of an optimization procedure. The analyzer is to be taken as MSC/NASTRAN. The terminator program monitors the termination criteria and ends the optimization procedure when the criteria are satisfied. This program can reside in several plances: in the optimizer itself, in a user written code, or as part of the MSC/EOS (Engineering Operating System) MSC/EOS currently under development. Since several excellent optimization codes exist and since they require such very specialized technical knowledge, the optimizer under the new MSC/EOS is considered to be selected and supplied by the user to meet his specific needs and preferences. The one exception to this is a fully stressed design (FSD) based on simple scaling. The gradients are currently supplied by various design sensitivity options now existing in MSC/NASTRAN's design sensitivity analysis (DSA).
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Gentile, D. P.
1989-01-01
A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.
Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Fernholz, Christian M.; Robinson, Jay H.
1996-01-01
MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Structural/aerodynamic Blade Analyzer (SAB) User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Morel, M. R.
1994-01-01
The structural/aerodynamic blade (SAB) analyzer provides an automated tool for the static-deflection analysis of turbomachinery blades with aerodynamic and rotational loads. A structural code calculates a deflected blade shape using aerodynamic loads input. An aerodynamic solver computes aerodynamic loads using deflected blade shape input. The two programs are iterated automatically until deflections converge. Currently, SAB version 1.0 is interfaced with MSC/NASTRAN to perform the structural analysis and PROP3D to perform the aerodynamic analysis. This document serves as a guide for the operation of the SAB system with specific emphasis on its use at NASA Lewis Research Center (LeRC). This guide consists of six chapters: an introduction which gives a summary of SAB; SAB's methodology, component files, links, and interfaces; input/output file structure; setup and execution of the SAB files on the Cray computers; hints and tips to advise the user; and an example problem demonstrating the SAB process. In addition, four appendices are presented to define the different computer programs used within the SAB analyzer and describe the required input decks.
NASTRAN finite element analysis activity at Northrop
NASA Technical Reports Server (NTRS)
Thordarson, S.
1978-01-01
In-house evaluation of the various analytical capabilities of the MSC version of NASTRAN, prior to production release, is a continuous effort. The NASTRAN superelement and subsonic aero features are presently being tested and brought on-line for production use. Two examples of recent NASTRAN structural solutions are also presented.
Fuzzy Structures Analysis of Aircraft Panels in NASTRAN
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.; Buehrle, Ralph D.
2001-01-01
This paper concerns an application of the fuzzy structures analysis (FSA) procedures of Soize to prototypical aerospace panels in MSC/NASTRAN, a large commercial finite element program. A brief introduction to the FSA procedures is first provided. The implementation of the FSA methods is then disclosed, and the method is validated by comparison to published results for the forced vibrations of a fuzzy beam. The results of the new implementation show excellent agreement to the benchmark results. The ongoing effort at NASA Langley and Penn State to apply these fuzzy structures analysis procedures to real aircraft panels is then described.
NASA Technical Reports Server (NTRS)
Howland, G. R.; Durno, J. A.; Twomey, W. J.
1990-01-01
Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta; Kvaternik, Raymond G.
1991-01-01
A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.
NASA Technical Reports Server (NTRS)
Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.
1993-01-01
Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.
Transient loads analysis for space flight applications
NASA Technical Reports Server (NTRS)
Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.
1992-01-01
A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.
Using NASTRAN to solve symmetric structures with nonsymmetric loads
NASA Technical Reports Server (NTRS)
Butler, T. G.
1982-01-01
A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.
Computing Gravitational Fields of Finite-Sized Bodies
NASA Technical Reports Server (NTRS)
Quadrelli, Marco
2005-01-01
A computer program utilizes the classical theory of gravitation, implemented by means of the finite-element method, to calculate the near gravitational fields of bodies of arbitrary size, shape, and mass distribution. The program was developed for application to a spacecraft and to floating proof masses and associated equipment carried by the spacecraft for detecting gravitational waves. The program can calculate steady or time-dependent gravitational forces, moments, and gradients thereof. Bodies external to a proof mass can be moving around the proof mass and/or deformed under thermoelastic loads. An arbitrarily shaped proof mass is represented by a collection of parallelepiped elements. The gravitational force and moment acting on each parallelepiped element of a proof mass, including those attributable to the self-gravitational field of the proof mass, are computed exactly from the closed-form equation for the gravitational potential of a parallelepiped. The gravitational field of an arbitrary distribution of mass external to a proof mass can be calculated either by summing the fields of suitably many point masses or by higher-order Gauss-Legendre integration over all elements surrounding the proof mass that are part of a finite-element mesh. This computer program is compatible with more general finite-element codes, such as NASTRAN, because it is configured to read a generic input data file, containing the detailed description of the finiteelement mesh.
Eigenvalue computations with the QUAD4 consistent-mass matrix
NASA Technical Reports Server (NTRS)
Butler, Thomas A.
1990-01-01
The NASTRAN user has the option of using either a lumped-mass matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell finite element. At the Sixteenth NASTRAN Users' Colloquium (1988), Melvyn Marcus and associates of the David Taylor Research Center summarized a study comparing the results of the QUAD4 element with results of other NASTRAN shell elements for a cylindrical-shell modal analysis. Results of this study, in which both the lumped-and consistent-mass matrix formulations were used, implied that the consistent-mass matrix yielded poor results. In an effort to further evaluate the consistent-mass matrix, a study was performed using both a cylindrical-shell geometry and a flat-plate geometry. Modal parameters were extracted for several modes for both geometries leading to some significant conclusions. First, there do not appear to be any fundamental errors associated with the consistent-mass matrix. However, its accuracy is quite different for the two different geometries studied. The consistent-mass matrix yields better results for the flat-plate geometry and the lumped-mass matrix seems to be the better choice for cylindrical-shell geometries.
Coupled BE/FE/BE approach for scattering from fluid-filled structures
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.
1990-01-01
NASHUA is a coupled finite element/boundary element capability built around NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either internal time-harmonic mechanical loads or external time-harmonic incident loadings. Described here are the formulation and use of NASHUA for solving such structural acoustics problems when the structure is fluid-filled. NASTRAN is used to generate the structural finite element model and to perform most of the required matrix operations. Both fluid domains are modeled using the boundary element capability in NASHUA, whose matrix formulation (and the associated NASTRAN DMAP) for evacuated structures can be used with suitable interpretation of the matrix definitions. After computing surface pressures and normal velocities, far-field pressures are evaluated using an asymptotic form of the Helmholtz exterior integral equation. The proposed numerical approach is validated by comparing the acoustic field scattered from a submerged fluid-filled spherical thin shell to that obtained with a series solution, which is also derived here.
Enhanced modeling features within TREETOPS
NASA Technical Reports Server (NTRS)
Vandervoort, R. J.; Kumar, Manoj N.
1989-01-01
The original motivation for TREETOPS was to build a generic multi-body simulation and remove the burden of writing multi-body equations from the engineers. The motivation of the enhancement was twofold: (1) to extend the menu of built-in features (sensors, actuators, constraints, etc.) that did not require user code; and (2) to extend the control system design capabilities by linking with other government funded software (NASTRAN and MATLAB). These enhancements also serve to bridge the gap between structures and control groups. It is common on large space programs for the structures groups to build hi-fidelity models of the structure using NASTRAN and for the controls group to build lower order models because they lack the tools to incorporate the former into their analysis. Now the controls engineers can accept the hi-fidelity NASTRAN models into TREETOPS, add sensors and actuators, perform model reduction and couple the result directly into MATLAB to perform their design. The controller can then be imported directly into TREETOPS for non-linear, time-history simulation.
NASA Technical Reports Server (NTRS)
Newman, M. B.; Filstrup, A. W.
1973-01-01
Linear (8 node), parabolic (20 node), cubic (32 node) and mixed (some edges linear, some parabolic and some cubic) have been inserted into NASTRAN, level 15.1. First the dummy element feature was used to check out the stiffness matrix generation routines for the linear element in NASTRAN. Then, the necessary modules of NASTRAN were modified to include the new family of elements. The matrix assembly was changed so that the stiffness matrix of each isoparametric element is only generated once as the time to generate these higher order elements tends to be much longer than the other elements in NASTRAN. This paper presents some of the experiences and difficulties of inserting a new element or family of elements into NASTRAN.
Benchmarking the QUAD4/TRIA3 element
NASA Technical Reports Server (NTRS)
Pitrof, Stephen M.; Venkayya, Vipperla B.
1993-01-01
The QUAD4 and TRIA3 elements are the primary plate/shell elements in NASTRAN. These elements enable the user to analyze thin plate/shell structures for membrane, bending and shear phenomena. They are also very new elements in the NASTRAN library. These elements are extremely versatile and constitute a substantially enhanced analysis capability in NASTRAN. However, with the versatility comes the burden of understanding a myriad of modeling implications and their effect on accuracy and analysis quality. The validity of many aspects of these elements were established through a series of benchmark problem results and comparison with those available in the literature and obtained from other programs like MSC/NASTRAN and CSAR/NASTRAN. Never-the-less such a comparison is never complete because of the new and creative use of these elements in complex modeling situations. One of the important features of QUAD4 and TRIA3 elements is the offset capability which allows the midsurface of the plate to be noncoincident with the surface of the grid points. None of the previous elements, with the exception of bar (beam), has this capability. The offset capability played a crucial role in the design of QUAD4 and TRIA3 elements. It allowed modeling layered composites, laminated plates and sandwich plates with the metal and composite face sheets. Even though the basic implementation of the offset capability is found to be sound in the previous applications, there is some uncertainty in relatively simple applications. The main purpose of this paper is to test the integrity of the offset capability and provide guidelines for its effective use. For the purpose of simplicity, references in this paper to the QUAD4 element will also include the TRIA3 element.
Crashworthy airframe design concepts: Fabrication and testing
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1982-01-01
Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1991-01-01
The new 1991 COSMIC/NASTRAN version, compatible with the older versions, tries to remove some old constraints and make it easier to extract information from the plot file. It also includes some useful improvements and new enhancements. New features available in the 1991 version are described. They include a new PLT1 tape with simplified ASCII plot commands and short records, combined hidden and shrunk plot, an x-y-z coordinate system on all structural plots, element offset plot, improved character size control, improved FIND and NOFIND logic, a new NASPLOT post-prosessor to perform screen plotting or generate PostScript files, and a BASIC/NASTPLOT program for PC.
Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program
NASA Technical Reports Server (NTRS)
Black, G. R.; Gallardo, V. C.; Storace, A. S.; Sagendorph, F.
1981-01-01
The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample.
Application of NASTRAN to TFTR toroidal field coil structures
NASA Technical Reports Server (NTRS)
Chen, S. J.; Lee, E.
1978-01-01
The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.
Random vibration analysis of space flight hardware using NASTRAN
NASA Technical Reports Server (NTRS)
Thampi, S. K.; Vidyasagar, S. N.
1990-01-01
During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.
Ninth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1980-01-01
The general application of finite element methodology and the specific application of NASTRAN to a wide variety of static and dynamic structural problems is addressed. Comparison with other approaches and new methods of analysis with nastran are included.
NASTRAN thermal analyzer status, experience, and new developments
NASA Technical Reports Server (NTRS)
Lee, H. P.
1975-01-01
The unique finite element based NASTRAN Thermal Analyzer originally developed as a general purpose heat transfer analysis incorporated into the NASTRAN system is described. The current status, experiences from field applications, and new developments are included.
NASTRAN user's guide: Level 15
NASA Technical Reports Server (NTRS)
1975-01-01
The NASTRAN structural analysis system is presented. This user's guide is an essential addition to the original four NASTRAN manuals. Clear, brief descriptions of capabilities with example input are included, with references to the location of more complete information.
Variable Complexity Structural Optimization of Shells
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Venkataraman, Satchi
1999-01-01
Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.
Variable Complexity Structural Optimization of Shells
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Venkataraman, Satchi
1998-01-01
Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
CARES - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES
NASA Technical Reports Server (NTRS)
Nemeth, N. N.
1994-01-01
The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES calculates the fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings. The program uses results from a commercial structural analysis program (MSC/NASTRAN or ANSYS) to evaluate component reliability due to inherent surface and/or volume type flaws. A multiple material capability allows the finite element model reliability to be a function of many different ceramic material statistical characterizations. The reliability analysis uses element stress, temperature, area, and volume output, which are obtained from two dimensional shell and three dimensional solid isoparametric or axisymmetric finite elements. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multi-axial stress states on material strength. The shear-sensitive Batdorf model requires a user-selected flaw geometry and a mixed-mode fracture criterion. Flaws intersecting the surface and imperfections embedded in the volume can be modeled. The total strain energy release rate theory is used as a mixed mode fracture criterion for co-planar crack extension. Out-of-plane crack extension criteria are approximated by a simple equation with a semi-empirical constant that can model the maximum tangential stress theory, the minimum strain energy density criterion, the maximum strain energy release rate theory, or experimental results. For comparison, Griffith's maximum tensile stress theory, the principle of independent action, and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. A more limited program, CARES/PC (COSMIC number LEW-15248) runs on a personal computer and estimates ceramic material properties from three-point bend bar data. CARES/PC does not perform fast fracture reliability estimation. CARES is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and on IBM 370 series computers under VM/CMS. On a VAX, CARES requires 10Mb of main memory. Five MSC/NASTRAN example problems and two ANSYS example problems are provided. There are two versions of CARES supplied on the distribution tape, CARES1 and CARES2. CARES2 contains sub-elements and CARES1 does not. CARES is available on a 9-track 1600 BPI VAX FILES-11 format magnetic tape (standard media) or in VAX BACKUP format on a TK50 tape cartridge. The program requires a FORTRAN 77 compiler and about 12Mb memory. CARES was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. IBM 370 is a trademark of International Business Machines. MSC/NASTRAN is a trademark of MacNeal-Schwendler Corporation. ANSYS is a trademark of Swanson Analysis Systems, Inc.
Implementation experiences of NASTRAN on CDC CYBER 74 SCOPE 3.4 operating system
NASA Technical Reports Server (NTRS)
Go, J. C.; Hill, R. G.
1973-01-01
The implementation of the NASTRAN system on the CDC CYBER 74 SCOPE 3.4 Operating System is described. The flexibility of the NASTRAN system made it possible to accomplish the change with no major problems. Various sizes of benchmark and test problems, ranging from two hours to less than one minute CP time were run on the CDC CYBER SCOPE 3.3, Univac EXEC-8, and CDC CYBER SCOPE 3.4. The NASTRAN installation deck is provided.
United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 1
1989-12-01
Analysis is required to supplement the experimental observations, which requires the formulation of a realistic model of the physical problem...RECOMMENDATION: a . From our point of view, the research team considere the NASTRAN model correct due to the vibrational frequencies, but we are still...structure of the program was understood, attempts were made to change the model from a thunderstorm simulation
NASTRAN as an analytical research tool for composite mechanics and composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.; Sullivan, T. L.
1976-01-01
Selected examples are described in which NASTRAN is used as an analysis research tool for composite mechanics and for composite structural components. The examples were selected to illustrate the importance of using NASTRAN as an analysis tool in this rapidly advancing field.
Integrated Design and Analysis Tools for Reduced Weight, Affordable Fiber Steered Composites
2004-09-15
110 3.3.5 FEA Package: MSC/PATRAN and MSC/ NASTRAN ...3.10 APPENDIX D: FIBER STEERING CONCEPTUAL DESIGN OF PRELIMINARY STUDIES USING MSC/ NASTRAN SOL 200...and Boundary Conditions ......................................................... 366 Figure 5.3.10 Nastran Analysis Results for Off-Axis Flaws
NASTRAN maintenance and enhancement experiences
NASA Technical Reports Server (NTRS)
Schmitz, R. P.
1975-01-01
The current capability is described which includes isoparametric elements, optimization of grid point sequencing, and eigenvalue routine. Overlay and coding errors were corrected for cyclic symmetry, transient response, and differential stiffness rigid formats. Error corrections and program enhancements are discussed along with developments scheduled for the current year and a brief description of analyses being performed using the program.
Sixteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1988-01-01
These are the proceedings of the Sixteenth NASTRAN Users' Colloquium held in Arlington, Virginia from 25 to 29 April, 1988. Technical papers contributed by participants review general application of finite element methodology and the specific application of the NASA Structural Analysis System (NASTRAN) to a variety of static and dynamic structural problems.
Transient analysis using conical shell elements
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Goeller, J. E.; Messick, W. T.
1973-01-01
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.
A NASTRAN primer for the analysis of rotating flexible blades
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.
1987-01-01
This primer provides documentation for using MSC NASTRAN in analyzing rotating flexible blades. The analysis of these blades includes geometrically nonlinear (large displacement) analysis under centrifugal loading, and frequency and mode shape (normal modes) determination. The geometrically nonlinear analysis using NASTRAN Solution sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. A sample problem with the complete NASTRAN input data is included. Items unique to rotating blade analyses, such as setting angle and centrifugal softening effects are emphasized.
IAC-1.5 - INTEGRATED ANALYSIS CAPABILITY
NASA Technical Reports Server (NTRS)
Vos, R. G.
1994-01-01
The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and a database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a database, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automating data transfer among analysis programs. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation modules are supplied for building and viewing models. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model Integration via Mesh Interpolation Coefficients), which transforms field values from one model to another; LINK, which simplifies incorporation of user specific modules into IAC modules; and DATAPAC, the National Bureau of Standards statistical analysis package. The IAC database contains structured files which provide a common basis for communication between modules and the executive system, and can contain unstructured files such as NASTRAN checkpoint files, DISCOS plot files, object code, etc. The user can define groups of data and relations between them. A full data manipulation and query system operates with the database. The current interface modules comprise five groups: 1) Structural analysis - IAC contains a NASTRAN interface for standalone analysis or certain structural/control/thermal combinations. IAC provides enhanced structural capabilities for normal modes and static deformation analysis via special DMAP sequences. 2) Thermal analysis - IAC supports finite element and finite difference techniques for steady state or transient analysis. There are interfaces for the NASTRAN thermal analyzer, SINDA/SINFLO, and TRASYS II. 3) System dynamics - A DISCOS interface allows full use of this simulation program for either nonlinear time domain analysis or linear frequency domain analysis. 4) Control analysis - Interfaces for the ORACLS, SAMSAN, NBOD2, and INCA programs allow a wide range of control system analyses and synthesis techniques. 5) Graphics - The graphics packages PLOT and MOSAIC are included in IAC. PLOT generates vector displays of tabular data in the form of curves, charts, correlation tables, etc., while MOSAIC generates color raster displays of either tabular of array type data. Either DI3000 or PLOT-10 graphics software is required for full graphics capability. IAC is available by license for a period of 10 years to approved licensees. The licensed program product includes one complete set of supporting documentation. Additional copies of the documentation may be purchased separately. IAC is written in FORTRAN 77 and has been implemented on a DEC VAX series computer operating under VMS. IAC can be executed by multiple concurrent users in batch or interactive mode. The basic central memory requirement is approximately 750KB. IAC includes the executive system, graphics modules, a database, general utilities, and the interfaces to all analysis and controls programs described above. Source code is provided for the control programs ORACLS, SAMSAN, NBOD2, and DISCOS. The following programs are also available from COSMIC a
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Abdallah, Ayman A.; Sullivan, Timothy L.
1993-01-01
By utilizing MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) in an existing NASA Lewis Research Center coupled loads methodology, solving modal equations of motion with initial conditions is possible using either coupled (Newmark-Beta) or uncoupled (exact mode superposition) integration available within module TRD1. Both the coupled and newly developed exact mode superposition methods have been used to perform transient analyses of various space systems. However, experience has shown that in most cases, significant time savings are realized when the equations of motion are integrated using the uncoupled solver instead of the coupled solver. Through the results of a real-world engineering analysis, advantages of using the exact mode superposition methodology are illustrated.
Experiences in porting NASTRAN (R) to non-traditional platforms
NASA Technical Reports Server (NTRS)
Davis, Gregory L.; Norton, Robert L.
1991-01-01
The 1990 UNIX version of NASTRAN was ported to two new platforms that are not supported by COSMIC: the Sun SPARC workstation and the Apple Macintosh using the A/UX version of UNIX. The experiences of the authers in porting NASTRAN is summarized here. Suggestions for users who might attempt similar ports are given.
Improved omit set displacement recoveries in dynamic analysis
NASA Technical Reports Server (NTRS)
Allen, Tom; Cook, Greg; Walls, Bill
1993-01-01
Two related methods for improving the dependent (OMIT set) displacements after performing a Guyan reduction are presented. The theoretical bases for the methods are derived. The NASTRAN DMAP ALTERs used to implement the methods in a NASTRAN execution are described. Data are presented that verify the methods and the NASTRAN DMAP ALTERs.
Composite blade structural analyzer (COBSTRAN) user's manual
NASA Technical Reports Server (NTRS)
Aiello, Robert A.
1989-01-01
The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.
Transient Analysis of Thermal Protection System for X-33 Aircraft using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Miura, Hirokazu; Chargin, M. K.; Bowles, J.; Tam, T.; Chu, D.; Chainyk, M.; Green, Michael J. (Technical Monitor)
1997-01-01
X-33 is an advanced technology demonstrator vehicle for the Reusable Launch Vehicle (RLV) program. The thermal protection system (TPS) for the X-33 is composed of complex layers of materials to protect internal components, while withstanding severe external temperatures induced by aerodynamic heating during high speed flight. It also serves as the vehicle aeroshell in some regions using a stand-off design. MSC/NASTRAN thermal analysis capability was used to predict transient temperature distribution (within the TPS) throughout a mission, from launch through the cool-off period after landing. In this paper, a typical analysis model, representing a point on the vehicle where the liquid oxygen tank is closest to the outer mold line, is described. The maximum temperature difference between the outer mold line and the internal surface of the liquid oxygen tank can exceed 1500 F. One dimensional thermal models are used to select the materials and determine the thickness of each layer for minimum weight while insuring that all materials remain within the allowable temperature range. The purpose of working with three dimensional (3D) comprehensive models using MSC/NASTRAN is to assess the 3D radiation effects and the thermal conduction heat shorts of the support fixtures.
New capacities and modifications for NASTRAN level 17.5 at DTNSRDC
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1980-01-01
Since 1970 DTNSRDC has been modifying NASTRAN to suite various Navy requirements. These modifications include capabilities as well as user conveniences and error corrections. The new features added to NASTRAN Level 17.5 are described. The subject areas of the additions include magnetostatics, piezoelectricity, fluid structure interactions, isoparametric finite elements, and shock design for shipboard equipment.
A NASTRAN Model of a Large Flexible Swing-Wing Bomber. Volume 1: NASTRAN Model Plane
NASA Technical Reports Server (NTRS)
Mock, W. D.
1982-01-01
A review was conducted of B-1 aircraft no. 2 (A/C-2) internal loads models to determine the minimum model complexity necessary to fulfill all of the airloads research study objectives. Typical model sizings were tabulated at selected vehicle locations, and scale layouts were prepared of the NASTRAN structural analysis model.
Update on Integrated Optical Design Analyzer
NASA Technical Reports Server (NTRS)
Moore, James D., Jr.; Troy, Ed
2003-01-01
Updated information on the Integrated Optical Design Analyzer (IODA) computer program has become available. IODA was described in Software for Multidisciplinary Concurrent Optical Design (MFS-31452), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 8a. To recapitulate: IODA facilitates multidisciplinary concurrent engineering of highly precise optical instruments. The architecture of IODA was developed by reviewing design processes and software in an effort to automate design procedures. IODA significantly reduces design iteration cycle time and eliminates many potential sources of error. IODA integrates the modeling efforts of a team of experts in different disciplines (e.g., optics, structural analysis, and heat transfer) working at different locations and provides seamless fusion of data among thermal, structural, and optical models used to design an instrument. IODA is compatible with data files generated by the NASTRAN structural-analysis program and the Code V (Registered Trademark) optical-analysis program, and can be used to couple analyses performed by these two programs. IODA supports multiple-load-case analysis for quickly accomplishing trade studies. IODA can also model the transient response of an instrument under the influence of dynamic loads and disturbances.
Blade Assessment for Ice Impact (BLASIM). User's manual, version 1.0
NASA Technical Reports Server (NTRS)
Reddy, E. S.; Abumeri, G. H.
1993-01-01
The Blade Assessment Ice Impact (BLASIM) computer code can analyze solid, hollow, composite, and super hybrid blades. The solid blade is made up of a single material where hollow, composite, and super hybrid blades are constructed with prescribed composite layup. The properties of a composite blade can be specified by inputting one of two options: (1) individual ply properties, or (2) fiber/matrix combinations. When the second option is selected, BLASIM utilizes ICAN (Integrated Composite ANalyzer) to generate the temperature/moisture dependent ply properties of the composite blade. Two types of geometry input can be given: airfoil coordinates or NASTRAN type finite element model. These features increase the flexibility of the program. The user's manual provides sample cases to facilitate efficient use of the code while gaining familiarity.
Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror
NASA Technical Reports Server (NTRS)
Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.
1987-01-01
The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.
Design of ceramic components with the NASA/CARES computer program
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.
1990-01-01
The ceramics analysis and reliability evaluation of structures (CARES) computer program is described. The primary function of the code is to calculate the fast-fracture reliability or failure probability of macro-scopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. CARES uses results from MSC/NASTRAN or ANSYS finite-element analysis programs to evaluate how inherent surface and/or volume type flaws component reliability. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effects of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or uniform uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for a single or multiple failure modes by using a least-squares analysis or a maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-to-fit-tests, 90 percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan 90 percent confidence band values are also provided. Examples are provided to illustrate the various features of CARES.
The Shock and Vibration Digest. Volume 4. Number 7, July 1972.
1972-07-01
who are con- structural analysis program cerned with maximum reliability NASTRAN will be discussed, of missiles, aircraft, submarines, Contact...within a designated epsilon at the interface between air and the first fluid. Trial solutions are made until the desired solution is bracketed and then
Determination of stores pointing error due to wing flexibility under flight load
NASA Technical Reports Server (NTRS)
Lokos, William A.; Bahm, Catherine M.; Heinle, Robert A.
1995-01-01
The in-flight elastic wing twist of a fighter-type aircraft was studied to provide for an improved on-board real-time computed prediction of pointing variations of three wing store stations. This is an important capability to correct sensor pod alignment variation or to establish initial conditions of iron bombs or smart weapons prior to release. The original algorithm was based upon coarse measurements. The electro-optical Flight Deflection Measurement System measured the deformed wing shape in flight under maneuver loads to provide a higher resolution database from which an improved twist prediction algorithm could be developed. The FDMS produced excellent repeatable data. In addition, a NASTRAN finite-element analysis was performed to provide additional elastic deformation data. The FDMS data combined with the NASTRAN analysis indicated that an improved prediction algorithm could be derived by using a different set of aircraft parameters, namely normal acceleration, stores configuration, Mach number, and gross weight.
NASA Technical Reports Server (NTRS)
Ingram, J. E.; Murray, T. O.
1989-01-01
An assessment of the static strength of the Aeroassist Flight Experiment (AFE) Carrier Vehicle is presented. The Carrier Vehicle is the structural component which provides the mounting platform for the experiments, on-board computers, batteries, and other black boxes. In addition, the Solid Rocket Motor (SRM), the Thrusters, and the Aerobrake are all attached directly to the Carrier Vehicle. The basic approach in this analysis was to develop a NASTRAN Finite Element Model as a parallel effort to the preliminary design, and to use the internal loads from this model to perform the stress analysis. The NASTRAN method of Inertial Relief was employed. This method involves either specifying a set of CG (center of gravity) accelerations or applying forces at the CG and representing the Carrier Vehicle and all its mounted devices with the proper stiffness and mass properties.
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
1990-04-01
Maxwell (Texas A&M University-) 4. ACCURACY OF THE QUAD& THICK SHELL ELEMENT ’........... .. 3.0 by William R. Case, Tiffany D. Bowles, Al ia K. Croft and...Computer Literacy: Mainframe Monsters and Pacman. Symposium on Advances and Trends in Structures and Dynamics, Washington, D.C., October 1984. 4. Woodward...No. 1, 1985. 5. Wilson, E.L., and M. Holt: CAL-80-Computer Assisted Learning of Structural Engineering. Symposium on Advances and Trends in
Technical and social impact of NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.
1972-01-01
Estimates are made as to the direction in which a new generation of general purpose applications programs can be expected to migrate. Predictions are made as to the impacts that space technology is liable to have within the field of structural engineering and on the society in which it interacts.
Enhancements to the IBM version of COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Brown, W. Keith
1989-01-01
Major improvements were made to the IBM version of COSMIC/NASTRAN by RPK Corporation under contract to IBM Corporation. These improvements will become part of COSMIC's IBM version and will be available in the second quarter of 1989. The first improvement is the inclusion of code to take advantage of IBM's new Vector Facility (VF) on its 3090 machines. The remaining improvements are modifications that will benefit all users as a result of the extended addressing capability provided by the MVS/XA operating system. These improvements include the availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk files. Another improvement is the elimination of multiple load modules that have to be loaded for every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of memory for open core and the in-memory data base.
KRASH 85 User’s Guide - Input/Output Format.
1985-07-01
speaking, any significant .crror in the model will result in a very large value for EPSILON (1>0.1) or will ca;use the NASTRAN solution to terminate with...with NASTRAN ) * A comprehensive energy balance, * Center of gravity (c.g.) displacement, velocity, acceleration and force time histories * Revised...initial conditions subroutine (combined with NASTRAN ) * A comprehensive energy balance * Center of gravity (e.g.) displacement, velocity, acceleration and
Elastic-plastic analysis of annular plate problems using NASTRAN
NASA Technical Reports Server (NTRS)
Chen, P. C. T.
1983-01-01
The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2010-01-01
A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P.; Reed, D.
1993-01-01
Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.
1985-05-01
8, 9 and 10) is analyzed using 8-ply laminat J composite made of graphite/epoxy (commercially identified by Type T 300/ 5208). The geometry, loading...IN ROCKWELL NASTRAN .. ............................................. . 47 by C. Liao and R..E. Allison .w. W1 njernationa1) 5. LAYERED COMPOSITE ...NASTRAN ................................ 225 by R. L. Citerley and P. J. Woytowitz (Anamet Laboratories, Inc.) 15. SYMMETRIC COMPOSITE LAMINATE STRESS
Transitioning of power flow in beam models with bends
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1990-01-01
The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.
NASTRAN nonlinear vibration analysis of beam and frame structures
NASA Technical Reports Server (NTRS)
Mei, C.; Rogers, J. L., Jr.
1975-01-01
A capability for the nonlinear vibration analysis of beam and frame structures suitable for use with NASTRAN level 15.5 is described. The nonlinearity considered is due to the presence of axial loads induced by longitudinal end restraints and lateral displacements that are large compared to the beam height. A brief discussion is included of the mathematical analysis and the geometrical stiffness matrix for a prismatic beam (BAR) element. Also included are a brief discussion of the equivalent linearization iterative process used to determine the nonlinear frequency, the required modifications to subroutines DBAR and XMPLBD of the NASTRAN code, and the appropriate vibration capability, four example problems are presented. Comparisons with existing experimental and analytical results show that excellent accuracy is achieved with NASTRAN in all cases.
The use of COSMIC NASTRAN in an integrated conceptual design environment
NASA Technical Reports Server (NTRS)
White, Gil
1989-01-01
Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.
Thermal stress analysis of ceramic structures with NASTRAN isoparametric solid elements
NASA Technical Reports Server (NTRS)
Lamberson, S. E.; Paul, D. B.
1978-01-01
The performance of the NASTRAN level 16.0, twenty node, isoparametric bricks (CIHEX2) at thermal loading was studied. A free ceramic plate was modelled using twenty node bricks of varying thicknesses. The thermal loading for this problem was uniform over the surface with an extremely large gradient through the thickness. No mechanical loading was considered. Temperature-dependent mechanical properties were considered in this analysis. The NASTRAN results were compared to one dimensional stress distributions calculated by direct numerical integration.
BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.
1984-12-31
the BLAS, Dodson and Lewis C.Remarks on "A. Proposal for a New Set of BLAS", Hanson D. Standard MSC/ NASTRAN Kernels, Komzsik E. Summary of Functions...Fortran names and that character string arguments for the BLAS could provide incr-ased naturalrness in the n3aL,’cs. D ’:andard MSC/ NASTRAN Kernels. Louis...Komnzsik, 8 pages. NASTRAN is a very large structural engineering system marketed by MacNeal- Schwvrdler Corp. (MSC). They are interested in
Structural analysis of light aircraft using NASTRAN
NASA Technical Reports Server (NTRS)
Wilkinson, M. T.; Bruce, A. C.
1973-01-01
An application of NASTRAN to the structural analysis of light aircraft was conducted to determine the cost effectiveness. A model of the Baby Ace D model homebuilt aircraft was used. The NASTRAN model of the aircraft consists of 193 grid points connected by 352 structural members. All members are either rod or beam elements, including bending of unsymmetrical cross sections and torsion of noncircular cross sections. The aerodynamic loads applied to the aircraft were in accordance with FAA regulations governing the utility category aircraft.
An Aeroelastic Analysis of a Thin Flexible Membrane
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.
2007-01-01
Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.
NASTRAN multipartitioning and one-shot substructuring
NASA Technical Reports Server (NTRS)
Levy, A.
1973-01-01
For intermediate size problems where all the data is accessible, the present method of substructuring in three separate phases (for static analysis) is unneccessarily cumbersome. The versatility of NASTRAN's DMAP and internal logic lends itself to finding a practical alternative to these procedures whereby self-contained special-purpose ALTER packages can be written to be run in one pass. Two examples are presented here under the titles of multipartitioning and one-shot substructuring. The flow of multipartitioning resembles that of the present three-phase substructuring. The basic effect is to partition the structure into substructures and operate on each substructure separately. This can be used to reduce the bandwidth of a given problem as well as to store information which will allow a change to be made in one of the substructures in a later run. This latter procedure is carried out in a second program titled one-shot substructuring.
A generic interface between COSMIC/NASTRAN and PATRAN (R)
NASA Technical Reports Server (NTRS)
Roschke, Paul N.; Premthamkorn, Prakit; Maxwell, James C.
1990-01-01
Despite its powerful analytical capabilities, COSMIC/NASTRAN lacks adequate post-processing adroitness. PATRAN, on the other hand is widely accepted for its graphical capabilities. A nonproprietary, public domain code mnemonically titled CPI (for COSMIC/NASTRAN-PATRAN Interface) is designed to manipulate a large number of files rapidly and efficiently between the two parent codes. In addition to PATRAN's results file preparation, CPI also prepares PATRAN's P/PLOT data files for xy plotting. The user is prompted for necessary information during an interactive session. Current implementation supports NASTRAN's displacement approach including the following rigid formats: (1) static analysis, (2) normal modal analysis, (3) direct transient response, and (4) modal transient response. A wide variety of data blocks are also supported. Error trapping is given special consideration. A sample session with CPI illustrates its simplicity and ease of use.
Applications of NASTRAN to nuclear problems
NASA Technical Reports Server (NTRS)
Spreeuw, E.
1972-01-01
The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.
Acoustic intensity calculations for axisymmetrically modeled fluid regions
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Everstine, Gordon C.
1992-01-01
An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
NASTRAN buckling study of a linear induction motor reaction rail
NASA Technical Reports Server (NTRS)
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
NASA Technical Reports Server (NTRS)
Siegel, W. H.
1978-01-01
As part of NASA's continuing research into hypersonics and 85 square foot hypersonic wing test section of a proposed hypersonic research airplane was laboratory tested. The project reported on in this paper has carried the hypersonic wing test structure project one step further by testing a single beaded panel to failure. The primary interest was focused upon the buckling characteristics of the panel under pure compression with boundary conditions similar to those found in a wing mounted condition. Three primary phases of analysis are included in the report. These phases include: experimental testing of the beaded panel to failure; finite element structural analysis of the beaded panel with the computer program NASTRAN; a summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. Comparisons between each of the analysis methods are also included.
Modal identification of structures from the responses and random decrement signatures
NASA Technical Reports Server (NTRS)
Brahim, S. R.; Goglia, G. L.
1977-01-01
The theory and application of a method which utilizes the free response of a structure to determine its vibration parameters is described. The time-domain free response is digitized and used in a digital computer program to determine the number of modes excited, the natural frequencies, the damping factors, and the modal vectors. The technique is applied to a complex generalized payload model previously tested using sine sweep method and analyzed by NASTRAN. Ten modes of the payload model are identified. In case free decay response is not readily available, an algorithm is developed to obtain the free responses of a structure from its random responses, due to some unknown or known random input or inputs, using the random decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a generalized payload model and from the space shuttle model.
1982-11-01
Service code exceeded operational code in the ratio of 10 : I. No redundant information was required. It was modular. Internal parts of the program...to NASA’s analyses. We were to try to find an existing finite element program of a quality that would be worth recommending to all NASA Centers. We...Distinct manuals were published for users, programmers, theory, and demonstration problems. 3 It abounded with service code to provide user conveniences
NASA Technical Reports Server (NTRS)
Lee, C. H.
1978-01-01
A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.
NESSUS/NASTRAN Interface (Modification of NESSUS to FORTRAN 90 Standard)
NASA Technical Reports Server (NTRS)
1997-01-01
The objective of this work has been to develop a FORTRAN 90 (F90) version of the NESSUS probabilistic analysis software, Version 6.2 with NASTRAN interface. The target platform for the modified NESSUS code is the SGI workstation.
Transient analysis of bodies with moving boundaries using NASTRAN
NASA Technical Reports Server (NTRS)
Frye, J. W.
1975-01-01
A scheme is presented which allows the modeling of a moving boundary with NASTRAN NOLIN cards. Various aspects and limitations of the approach are explained. Recommendations are given as to the procedure to be used in implementing the method.
Fourteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1986-01-01
The proceedings of a colloquium are presented along with technical papers contributed during the conference. Reviewed are general applications of finite element methodology and the specific application of the NASA Structural Analysis System, NASTRAN, to a variety of static and dynamic sturctural problems.
NASA Technical Reports Server (NTRS)
Camp, George H.; Fallon, Dennis J.
1987-01-01
The Underwater Explosions Research Division (UERD) of the David Taylor Naval Ship Research and Development Center makes extensive use of NASTRAN/COSMIC on a CDC 176 to evaluate the structural response of ship structures subjected to underwater explosion shock loadings in the time domain. As relatively new users, UERD engineers have experienced difficulties with the checkpoint/restart feature because of the vague instructions in the user manual. Working procedures for the application of the checkpoint/restart feature to the transient analysis using NASTRAN/COSMIC are illustrated.
NASA Technical Reports Server (NTRS)
Chen, Shu-Po
1999-01-01
This paper presents software for solving the non-conforming fluid structure interfaces in aeroelastic simulation. It reviews the algorithm of interpolation and integration, highlights the flexibility and the user-friendly feature that allows the user to select the existing structure and fluid package, like NASTRAN and CLF3D, to perform the simulation. The presented software is validated by computing the High Speed Civil Transport model.
Investigation of the Finite Element Software Packages at KSC
NASA Technical Reports Server (NTRS)
Lu, Chu-Ho
1991-01-01
The useful and powerful features of NASTRAN and three real world problems for the testing of the capabilities of different NASTRAN versions are discussed. The test problems involve direct transient analysis, nonlinear analysis, and static analysis. The experiences in using graphics software packages are also discussed. It was found that MSC/XL can be more useful if it can be improved to generate picture files of the analysis results and to extend its capabilities to support finite element codes other than MSC/NASTRAN. It was found that the current version of SDRC/I-DEAS (version VI) may have bugs in the module 'Data Loader'.
Application of symbolic/numeric matrix solution techniques to the NASTRAN program
NASA Technical Reports Server (NTRS)
Buturla, E. M.; Burroughs, S. H.
1977-01-01
The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.
NASA Technical Reports Server (NTRS)
1989-01-01
The stress analysis/structural design of the Pressure-Fed Booster Engine Test Bed using the existing F-1 Test Facility Test Stand at Huntsville, Alabama is described. The analysis has been coded and set up for solution on NASTRAN. A separate stress program was established to take the NASTRAN output and perform stress checks on the members. Joint checks and other necessary additional checks were performed by hand. The notes include a brief description of other programs which assist in reproducing and reviewing the NASTRAN results. The redesign of the test stand members and the stress analysis was performed per the A.I.S.C. Code. Loads on the stand consist of the loaded run tanks; wind loads; seismic loads; live loads consisting of snow and ice: live and dead loads of steel; and loaded pressurant bottle. In combining loads, wind loads and seismic loads were each combined with full live loads. Wind and seismic loads were not combined. No one third increase in allowables was taken for the environmental loads except at decks 147 and 214, where the increase was used when considering the stay rods, brackets and stay beams. Wind and seismic loads were considered from each of the four coordinate directions (i.e. N,S,E,W) to give eight basic conditions. The analysis was run with the pressurant tank mounted at level 125. One seismic condition was also run with the tank mounted at levels 169 and 214. No failures were noted with mounting at level 169, but extensive deck failure with mounting at level 214 (the loadsets used are included on the tape, but no detailed results are included in the package). Decking support beams at levels 147 and 214 are not included in the model. The stress program thus does not reduce strut lengths to the length between support beams (the struts are attached to the beams at intersection points) and gives stress ratios larger than one for some of the struts. The affected members were therefore checked by hand.
Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock
NASA Technical Reports Server (NTRS)
Fallon, D. J.; Costanzo, F. A.; Handleton, R. T.; Camp, G. C.; Smith, D. C.
1987-01-01
The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results.
ACOSS FIVE (Active Control of Space Structures). Phase 1A
1982-03-01
The control design MKUCTUKAL MOOC L PtRFOHMANCl MÜDtL DISTURBANCE MODEL I ’ II Q|S£) XM=) STATE SPACE MODEL KEDUCED MODELS (HAC... library ) whose detailed numerical procedures, structural reduction, eigen-computations, etc., are implemented dif- ferently than in NASTRAN. SPAR was...i-i. rCappesser ..ctn. ..ir. A. .^llliars i /ui N. t-t. i.yer orlva ..rlin^ton, ^\\ 22209 o j i c e 7 11 \\ttn. iULO Library
NASA Technical Reports Server (NTRS)
Nelson, N. W.
1975-01-01
The application of NASTRAN to the design of a fluid solids unit plenum/cyclone/dipleg assembly is described. The major loads considered are thermal, pressure, and gravity. Such applications are of interest in the petroleum industry since the equipment described is historically critical.
Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Brown, W. K.
1990-01-01
A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.
Computer animation of modal and transient vibrations
NASA Technical Reports Server (NTRS)
Lipman, Robert R.
1987-01-01
An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.; Nemeth, Noel N.
1987-01-01
The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
NASA Technical Reports Server (NTRS)
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
NASA Technical Reports Server (NTRS)
1982-01-01
Guided missile cruiser equipped with advanced Aegis fleet defense system which automatically tracks hundreds of attacking aircraft or missiles, then fires and guides the ship's own weapons in response. Designed by Ingalls Shipbuilding for the US Navy, the U.S.S. Ticonderoga is the first of four CG-47 cruisers to be constructed. NASTRAN program was used previously in another Navy/Ingalls project involving design and construction of four DDG-993 Kidd Class guided missile destroyers.
NASA Technical Reports Server (NTRS)
Lee, H. P.
1977-01-01
The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.
Typical uses of NASTRAN in a petrochemical industry
NASA Technical Reports Server (NTRS)
Winter, J. R.
1978-01-01
NASTRAN was principally used to perform failure analysis and redesign process equipment. It was also employed in the evaluation of vendor designs and proposed design modifications to existing process equipment. Stress analysis of forced draft fans, distillation trays, metal stacks, jacketed pipes, heat exchangers, large centrifugal fans, and agitator support structures are described.
NASA Technical Reports Server (NTRS)
Macneal, R. H.; Harder, R. L.; Mason, J. B.
1973-01-01
A development for NASTRAN which facilitates the analysis of structures made up of identical segments symmetrically arranged with respect to an axis is described. The key operation in the method is the transformation of the degrees of freedom for the structure into uncoupled symmetrical components, thereby greatly reducing the number of equations which are solved simultaneously. A further reduction occurs if each segment has a plane of reflective symmetry. The only required assumption is that the problem be linear. The capability, as developed, will be available in level 16 of NASTRAN for static stress analysis, steady state heat transfer analysis, and vibration analysis. The paper includes a discussion of the theory, a brief description of the data supplied by the user, and the results obtained for two example problems. The first problem concerns the acoustic modes of a long prismatic cavity imbedded in the propellant grain of a solid rocket motor. The second problem involves the deformations of a large space antenna. The latter example is the first application of the NASTRAN Cyclic Symmetry capability to a really large problem.
1986-05-01
4. Bossi, J. A., Price, G. A., and Winkleblack, S. A., " Flexible Spacecraft Controller Design Using the Integrated Analysis Capability (IAC)," AIAA...P., "Integrated Control System Design Capabilities at the Goddard Space Flight Center," Pro- ceedings of the 2nd IEEE Control Systems Society...Symposium on Computer- Aided Control System Design (CACSD), Santa Barbara, California, March, 13-15 1985. 6. Frisch, H. P. "Integrated Analysis Capability
Analytical and experimental vibration studies of a 1/8-scale shuttle orbiter
NASA Technical Reports Server (NTRS)
Pinson, L. D.
1975-01-01
Natural frequencies and mode shapes for four symmetric vibration modes and four antisymmetric modes are compared with predictions based on NASTRAN finite-element analyses. Initial predictions gave poor agreement with test data; an extensive investigation revealed that the major factors influencing agreement were out-of-plane imperfections in fuselage panels and a soft fin-fuselage connection. Computations with a more refined analysis indicated satisfactory frequency predictions for all modes studied, within 11 percent of experimental values.
1989-03-01
statistical energy analysis , the finite clement method, and the power flow method. Experimental solutions are the most common in the literature. The authors of...to the added weights and inertias of the transducers attached to an experimental structure. Statistical energy analysis (SEA) is a computational method...Analysis and Diagnosis," Journal of Sound and Vibration, Vol. 115, No. 3, pp. 405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Systems
Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David
2000-01-01
This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.
Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A) Structural Math Model - A1
NASA Technical Reports Server (NTRS)
Ely, W.
1996-01-01
This report presents the description for the NASTRAN finite element for the AMSU-A1 module. The purpose of this report is to document the NASTRAN bulk data deck, transmitted under separate cover. The structural Math Model is to be used by the spacecraft contractor for dynamic loads analysis.
A fast hidden line algorithm for plotting finite element models
NASA Technical Reports Server (NTRS)
Jones, G. K.
1982-01-01
Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.
A method to model latent heat for transient analysis using NASTRAN
NASA Technical Reports Server (NTRS)
Harder, R. L.
1982-01-01
A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.
An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants
NASA Technical Reports Server (NTRS)
Burroughs, J. W.
1980-01-01
New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.
1987-01-01
The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
Power flows and Mechanical Intensities in structural finite element analysis
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1989-01-01
The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.
Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction
NASA Technical Reports Server (NTRS)
Howells, R. W.; Sciarra, J. J.
1975-01-01
A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
Structural analysis for a 40-story building
NASA Technical Reports Server (NTRS)
Hua, L.
1972-01-01
NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.
A NASTRAN Vibration Model of the AH-1G Helicopter Airframe. Volume 1
1974-06-01
Bulkhead .012 ZZ 1863343 Bulkhead .012 AAA 1863345 Bulkhead .012 j EBB 1863546 Bulkhead .012 j ccc 1863746 Bulkhead .012 \\ ODD 1863748...123 12) 123 RULE AAA AAA AAA AAA BBB EBB AAA AAA AAA AAA BBB BBB OMIT D.O.F. 456 456 123 123 123 123 123 123 123 123 RULE...load in the member Increases. The program determines the section properties, unsytnmetrical bending stresses, element loads and shear flows for a
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
The automated multi-stage substructuring system for NASTRAN
NASA Technical Reports Server (NTRS)
Field, E. I.; Herting, D. N.; Herendeen, D. L.; Hoesly, R. L.
1975-01-01
The substructuring capability developed for eventual installation in Level 16 is now operational in a test version of NASTRAN. Its features are summarized. These include the user-oriented, Case Control type control language, the automated multi-stage matrix processing, the independent direct access data storage facilities, and the static and normal modes solution capabilities. A complete problem analysis sequence is presented with card-by-card description of the user input.
Dynamic analysis of a long span, cable-stayed freeway bridge using NASTRAN
NASA Technical Reports Server (NTRS)
Salus, W. L.; Jones, R. E.; Ice, M. W.
1973-01-01
The dynamic analysis for earthquake- and wind-induced response of a long span, cable-stayed freeway bridge by NASTRAN in conjunction with post-processors is described. Details of the structural modeling, the input data generation, and numerical results are given. The influence of the dynamic analysis on the bridge design is traced from the project initiation to the development of a successful earthquake and wind resistant configuration.
NASA Technical Reports Server (NTRS)
Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.
1994-01-01
When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.
Summary of AH-1G flight vibration data for validation of coupled rotor-fuselage analyses
NASA Technical Reports Server (NTRS)
Dompka, R. V.; Cronkhite, J. D.
1986-01-01
Under a NASA research program designated DAMVIBS (Design Analysis Methods for VIBrationS), four U. S. helicopter industry participants (Bell Helicopter, Boeing Vertol, McDonnell Douglas Helicopter, and Sikorsky Aircraft) are to apply existing analytical methods for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. Bell Helicopter, as the manufacturer of the AH-1G, was asked to provide pertinent rotor data and to collect the OLS flight vibration data needed to perform the correlations. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM) developed by Bell which has been extensively documented and correlated with ground vibration tests.The AH-1G FEM was provided to each of the participants for use in their coupled rotor-fuselage analyses. This report describes the AH-1G OLS flight test program and provides the flight conditions and measured vibration data to be used by each participant in their correlation effort. In addition, the mechanical, structural, inertial and aerodynamic data for the AH-1G two-bladed teetering main rotor system are presented. Furthermore, modifications to the NASTRAN FEM of the fuselage structure that are necessary to make it compatible with the OLS test article are described. The AH-1G OLS flight test data was found to be well documented and provide a sound basis for evaluating currently existing analysis methods used for calculation of coupled rotor-fuselage vibrations.
JPL-IDEAS - ITERATIVE DESIGN OF ANTENNA STRUCTURES
NASA Technical Reports Server (NTRS)
Levy, R.
1994-01-01
The Iterative DEsign of Antenna Structures (IDEAS) program is a finite element analysis and design optimization program with special features for the analysis and design of microwave antennas and associated sub-structures. As the principal structure analysis and design tool for the Jet Propulsion Laboratory's Ground Antenna and Facilities Engineering section of NASA's Deep Space Network, IDEAS combines flexibility with easy use. The relatively small bending stiffness of the components of large, steerable reflector antennas allows IDEAS to use pinjointed (three translational degrees of freedom per joint) models for modeling the gross behavior of these antennas when subjected to static and dynamic loading. This facilitates the formulation of the redesign algorithm which has only one design variable per structural element. Input data deck preparation has been simplified by the use of NAMELIST inputs to promote clarity of data input for problem defining parameters, user selection of execution and design options and output requests, and by the use of many attractive and familiar features of the NASTRAN program (in many cases, NASTRAN and IDEAS formatted bulk data cards are interchangeable). Features such as simulation of a full symmetric structure based on analyses of only half the structure make IDEAS a handy and efficient analysis tool, with many features unavailable in any other finite element analysis program. IDEAS can choose design variables such as areas of rods and thicknesses of plates to minimize total structure weight, constrain the structure weight to a specified value while maximizing a natural frequency or minimizing compliance measures, and can use a stress ratio algorithm to size each structural member so that it is at maximum or minimum stress level for at least one of the applied loads. Calculations of total structure weight can be broken down according to material. Center of gravity weight balance, static first and second moments about the center of mass and optionally about a user-specified gridpoint, and lumped structure weight at grid points can also be calculated. Other analysis outputs include calculation of reactions, displacements, and element stresses due to specified gravity, thermal, and external applied loads; calculations of linear combinations of specific node displacements (e.g. to represent motions of rigid attachments not included in the structure model), natural frequency eigenvalues and eigenvectors, structure reactions and element stresses, and coordinates of effective modal masses. Cassegrain antenna boresight error analysis of a best fitting paraboloid and Cassegrain microwave antenna root mean square half-pathlength error analysis of a best fitting paraboloid are also performed. The IDEAS program is written in ATHENA FORTRAN and ASSEMBLER for an EXEC 8 operating system and was implemented on a UNIVAC 1100 series computer. The minimum memory requirement for the program is approximately 42,000 36-bit words. This program is available on a 9-track 1600 BPI magnetic tape in UNIVAC FURPUR format only; since JPL-IDEAS will not run on other platforms, COSMIC will not reformat the code to be readable on other platforms. The program was developed in 1988.
Enhancement of the Probabilistic CEramic Matrix Composite ANalyzer (PCEMCAN) Computer Code
NASA Technical Reports Server (NTRS)
Shah, Ashwin
2000-01-01
This report represents a final technical report for Order No. C-78019-J entitled "Enhancement of the Probabilistic Ceramic Matrix Composite Analyzer (PCEMCAN) Computer Code." The scope of the enhancement relates to including the probabilistic evaluation of the D-Matrix terms in MAT2 and MAT9 material properties card (available in CEMCAN code) for the MSC/NASTRAN. Technical activities performed during the time period of June 1, 1999 through September 3, 1999 have been summarized, and the final version of the enhanced PCEMCAN code and revisions to the User's Manual is delivered along with. Discussions related to the performed activities were made to the NASA Project Manager during the performance period. The enhanced capabilities have been demonstrated using sample problems.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.
1989-01-01
Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.
1987-08-01
HVAC duct hanger system over an extensive frequency range. The finite element, component mode synthesis, and statistical energy analysis methods are...800-5,000 Hz) analysis was conducted with Statistical Energy Analysis (SEA) coupled with a closed-form harmonic beam analysis program. These...resonances may be obtained by using a finer frequency increment. Statistical Energy Analysis The basic assumption used in SEA analysis is that within each band
NASA/CARES dual-use ceramic technology spinoff applications
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.
1994-01-01
NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.
Engine Structures Modeling Software System (ESMOSS)
NASA Technical Reports Server (NTRS)
1991-01-01
Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
FAST Mast Structural Response to Axial Loading: Modeling and Verification
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Elliott, Kenny B.; Templeton, Justin D.; Song, Kyongchan; Rayburn, Jeffery T.
2012-01-01
The International Space Station s solar array wing mast shadowing problem is the focus of this paper. A building-block approach to modeling and analysis is pursued for the primary structural components of the solar array wing mast structure. Starting with an ANSYS (Registered Trademark) finite element model, a verified MSC.Nastran (Trademark) model is established for a single longeron. This finite element model translation requires the conversion of several modeling and analysis features for the two structural analysis tools to produce comparable results for the single-longeron configuration. The model is then reconciled using test data. The resulting MSC.Nastran (Trademark) model is then extended to a single-bay configuration and verified using single-bay test data. Conversion of the MSC. Nastran (Trademark) single-bay model to Abaqus (Trademark) is also performed to simulate the elastic-plastic longeron buckling response of the single bay prior to folding.
Finite element modeling of electromagnetic fields and waves using NASTRAN
NASA Technical Reports Server (NTRS)
Moyer, E. Thomas, Jr.; Schroeder, Erwin
1989-01-01
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.
Learjet Model 55 Wing Analysis with Landing Loads
NASA Technical Reports Server (NTRS)
Boroughs, R. R.
1985-01-01
The NASTRAN analysis was used to determine the impact of new landing loads on the Learjet Model 55 wing. These new landing loads were the result of a performance improvement effort to increase the landing weight of the aircraft to 18,000 lbs. from 17,000 lbs. and extend the life of the tires and brakes by incorporating larger tires and heavy duty brakes. Landing loads for the original 17,000 lb. airplane landing configuration were applied to the full airplane NASTRAN model. The analytical results were correlated with the strain gage data from the original landing load static tests. The landing loads for the 18,000 lb. airplane were applied to the full airplane NASTRAN model, and a comparison was made with the original Model 55 data. The results of this comparison enable Learjet to determine the difference in stress distribution in the wing due to these two different sets of landing loads.
A general low frequency acoustic radiation capability for NASTRAN
NASA Technical Reports Server (NTRS)
Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.
1986-01-01
A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.
NASTRAN implementation of an isoparametric doubly-curved quadrilateral shell element
NASA Technical Reports Server (NTRS)
Potvin, A. B.; Leick, R. D.
1978-01-01
A quadrilateral shell element, CQUAD4, was added to level 15.5 and subsequently to level 16.0 of NASTRAN. The element exhibited doubly curved surfaces and used biquadratic interpolation functions. Reduced integration techniques were used to improve the performance of the element in thin shell problems. The creation of several new bulk data items is discussed, along with a special module, GPNORM, to process SHLNORM bulk data cards. In addition to the theoretical basis for the element stiffness matrix, consistent mass and load matrices are presented. Several potential sources of degenerate behavior of the element were investigated. Guidelines for proper use of the element were suggested. Performance of the element on several widely published classical examples was demonstrated. The results showed a significant improvement over presently available NASTRAN shell elements for even the coarsest meshes. Potential applications to two classes of practical problems are discussed.
Unsteady Aerodynamic Force Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2016-01-01
A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection, velocity, and acceleration sensors. This research demonstrates the feasibility of obtaining induced drag and lift forces through the use of distributed sensor technology with measured strain data. An active induced drag control system thus can be designed using the two computed aerodynamic forces, induced drag and lift, to improve the fuel efficiency of an aircraft. Interpolation elements between structural finite element grids and the CFD grids and centroids are successfully incorporated with the unsteady aeroelastic computation scheme. The most critical technology for the success of the proposed approach is the robust on-line parameter estimator, since the least-squares curve fitting method depends heavily on aeroelastic system frequencies and damping factors.
NASA Astrophysics Data System (ADS)
Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.
2016-12-01
The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.
Integrated modeling and analysis of a space-truss article
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Perez, Sharon E.; Pappa, Richard S.
1990-01-01
MSC/NASTRAN is being used in the Controls-Structures Interaction (CSI) program at NASA Langley Research Center as a key analytical tool for structural analysis as well as the basis for control law development, closed-loop performance evaluation, and system safety checks. Guest investigators from academia and industry are performing dynamics and control experiments on a flight-like deployable space truss called Mini-Mast to determine the effectiveness of various active-vibration control laws. MSC/NASTRAN was used to calculate natural frequencies and mode shapes below 100 Hz to describe the dynamics of the 20-meter-long lightweight Mini-Mast structure. Gravitational effects contribute significantly to structural stiffness and are accounted for through a two-phase solution in which the differential stiffness matrix is calculated and then used in the eigensolution. Reduced modal models are extracted for control law design and evaluation of closed-loop system performance. Predicted actuator forces from controls simulations are then applied to the extended model to predict member loads and stresses. These pre-test analyses reduce risks associated with the structural integrity of the test article, which is a major concern in closed-loop control experiments due to potential instabilities.
A design study for the addition of higher order parametric discrete elements to NASTRAN
NASA Technical Reports Server (NTRS)
Stanton, E. L.
1972-01-01
The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Exhibit D modular design attitude control system study
NASA Technical Reports Server (NTRS)
Chichester, F.
1984-01-01
A dynamically equivalent four body approximation of the NASTRAN finite element model supplied for hybrid deployable truss to support the digital computer simulation of the ten body model of the flexible space platform that incorporates the four body truss model were investigated. Coefficients for sensitivity of state variables of the linearized model of the three axes rotational dynamics of the prototype flexible spacecraft were generated with respect to the model's parameters. Software changes required to accommodate addition of another rigid body to the five body model of the rotational dynamics of the prototype flexible spacecraft were evaluated.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Spartan Release Engagement Mechanism (REM) stress and fracture analysis
NASA Technical Reports Server (NTRS)
Marlowe, D. S.; West, E. J.
1984-01-01
The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.
Cryogenic Tank Structure Sizing With Structural Optimization Method
NASA Technical Reports Server (NTRS)
Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.
2001-01-01
Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.
ACOSS Three (Active Control of Space Structures). Phase I.
1980-05-01
their assorted pitfalls, programs such as NASTRAN, SPAR, ASTRO , etc., are never-the-less the primary tools for generating dynamical models of...proofs and additional details, see Ref [*] Consider the system described in state-space form by: Dynamics: X = FX + Gu Sensors: y = HX = (F +GCH)X (1...input u and output y = Fx + Gu (6) y = Hx+Du (7) The input-output transfer function is given by y = (H(sI- F)-1G +D)u (8) or y(s) _ 1 N u(s) A(s) E
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
NEXUS/NASCAD- NASA ENGINEERING EXTENDIBLE UNIFIED SOFTWARE SYSTEM WITH NASA COMPUTER AIDED DESIGN
NASA Technical Reports Server (NTRS)
Purves, L. R.
1994-01-01
NEXUS, the NASA Engineering Extendible Unified Software system, is a research set of computer programs designed to support the full sequence of activities encountered in NASA engineering projects. This sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. NEXUS primarily addresses the process of prototype engineering, the task of getting a single or small number of copies of a product to work. Prototype engineering is a critical element of large scale industrial production. The time and cost needed to introduce a new product are heavily dependent on two factors: 1) how efficiently required product prototypes can be developed, and 2) how efficiently required production facilities, also a prototype engineering development, can be completed. NEXUS extendibility and unification are achieved by organizing the system as an arbitrarily large set of computer programs accessed in a common manner through a standard user interface. The NEXUS interface is a multipurpose interactive graphics interface called NASCAD (NASA Computer Aided Design). NASCAD can be used to build and display two and three-dimensional geometries, to annotate models with dimension lines, text strings, etc., and to store and retrieve design related information such as names, masses, and power requirements of components used in the design. From the user's standpoint, NASCAD allows the construction, viewing, modification, and other processing of data structures that represent the design. Four basic types of data structures are supported by NASCAD: 1) three-dimensional geometric models of the object being designed, 2) alphanumeric arrays to hold data ranging from numeric scalars to multidimensional arrays of numbers or characters, 3) tabular data sets that provide a relational data base capability, and 4) procedure definitions to combine groups of system commands or other user procedures to create more powerful functions. NASCAD has extensive abilities to handle IGES format data, including proposed solid geometry formats. This facilitates interfacing with other CAD systems. NEXUS/NASCAD supports the activities encountered in various engineering projects as follows: 1) Preliminary Design - Geometric models can be built from points, lines, arcs, splines, polygons, drive surfaces, ruled surfaces, and bicubic spline surfaces. Geometric models can be displayed in any view (including hidden line and hidden surface removal) to check design features, 2) Design Analysis - Geometric models and related data structures can be used to build a NASTRAN data deck. Calculated stress data can be added to model data structures and displayed as color variations on the geometric model, 3) Detailed Design - This phase consists of dimensioning and annotating the geometric model and generating manufacturing and assembly drawings, 4) Manufacturing - NASCAD developed geometric model and related data structures can be used to build input for the APT program which generates a cutter location (CL) file describing required tool motions, 5) Assembly - Generation of a robot plan for putting together or taking apart (repair) of a mechanical assembly based on an IGES solid geometry description, and 6) Testing - Correlation of test data can be made with predictions made during the design analysis phase. NEXUS/NASCAD is available by license for a period of ten (10) years to approved licensees. The licensed program product includes the source, executable code, command streams, and one set of documentation. Additional documentation may be purchased separately at any time. The NASTRAN and APT programs are distributed separately from the NEXUS/NASCAD system (contact COSMIC for details). The NEXUS/NASCAD system is written in FORTRAN 77 and PROLOG, with command streams in DEC Control Language (DCL), for interactive execution under VMS on a DEC VAX series computer. All of the PROLOG code deals with the robot strategy planner feature. A minimum recommended configuration is a DEC VAX with 1 megabyte of real memory, 100 megabytes of disk storage, and a floating point accelerator. For interactive graphics, NEXUS/NASCAD currently supports Tektronix 4114, 4016, 4115, & 4095 terminal, Lexidata Solidview terminals, and Ramtek 9400 terminals. Most features are supported on the VT 125, and the non-graphics features are available from any text terminal. The NEXUS/NASCAD system was first released in 1984 and was last updated in 1986.
Edge delamination of composite laminates subject to combined tension and torsional loading
NASA Technical Reports Server (NTRS)
Hooper, Steven J.
1990-01-01
Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.
DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (DEC VAX VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.
DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (IBM VERSION)
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1994-01-01
The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.
The GSFC NASTRAN thermal analyzer new capabilities
NASA Technical Reports Server (NTRS)
Lee, H. P.; Harder, R. L.
1976-01-01
An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses.
The NASTRAN user's manual (level 17.0)
NASA Technical Reports Server (NTRS)
1979-01-01
NASTRAN embodies a lumped element approach, wherein the distributed physical properties of a structure are represented by a model consisting of a finite number of idealized substructures or elements that are interconnected at a finite of grid points, to which loads are applied. All input and output data pertain to the idealized structural model. The general procedures for defining structural models are described and instructions are given for each of the bulk data cards and case control cards. Additional information on the case control cards and use of parameters is included for each rigid format.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
The use of NASTRAN model synthesis capability is illustrated. A classical truss problem is examined and the results are compared to results from other methods to test for accuracy. The problem is examined using both fixed interface modes and free interface modes. The solution is carried out for an applied dynamic load as far as recovery of forces in individual members as a function of time. Another small beam problem is used to compare different means of combining substructures.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-11-01
The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.
Effects of damping on mode shapes, volume 2
NASA Technical Reports Server (NTRS)
Gates, R. M.; Merchant, D. H.; Arnquist, J. L.
1977-01-01
Displacement, velocity, and acceleration admittances were calculated for a realistic NASTRAN structural model of space shuttle for three conditions: liftoff, maximum dynamic pressure and end of solid rocket booster burn. The realistic model of the orbiter, external tank, and solid rocket motors included the representation of structural joint transmissibilities by finite stiffness and damping elements. Data values for the finite damping elements were assigned to duplicate overall low-frequency modal damping values taken from tests of similar vehicles. For comparison with the calculated admittances, position and rate gains were computed for a conventional shuttle model for the liftoff condition. Dynamic characteristics and admittances for the space shuttle model are presented.
Burner liner thermal/structural load modeling: TRANCITS program user's manual
NASA Technical Reports Server (NTRS)
Maffeo, R.
1985-01-01
Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.
Stress concentration investigations using NASTRAN
NASA Technical Reports Server (NTRS)
Gillcrist, M. C.; Parnell, L. A.
1986-01-01
Parametic investigations are performed using several two dimensional finite element formulations to determine their suitability for use in predicting extremum stresses in marine propellers. Comparisons are made of two NASTRAN elements (CTRIM6 and CTRAIA2) wherein elasticity properties have been modified to yield plane strain results. The accuracy of the elements is investigated by comparing finite element stress predictions with experimentally determined stresses in two classical cases: (1) tension in a flat plate with a circular hole; and (2) a filleted flat bar subjected to in-plane bending. The CTRIA2 element is found to provide good results. The displacement field from a three dimensional finite element model of a representative marine propeller is used as the boundary condition for the two dimensional plane strain investigations of stresses in the propeller blade and fillet. Stress predictions from the three dimensional analysis are compared with those from the two dimensional models. The validity of the plane strain modifications to the NASTRAN element is checked by comparing the modified CTRIA2 element stress predictions with those of the ABAQUS plane strain element, CPE4.
Sensitivity Analysis of Wing Aeroelastic Responses
NASA Technical Reports Server (NTRS)
Issac, Jason Cherian
1995-01-01
Design for prevention of aeroelastic instability (that is, the critical speeds leading to aeroelastic instability lie outside the operating range) is an integral part of the wing design process. Availability of the sensitivity derivatives of the various critical speeds with respect to shape parameters of the wing could be very useful to a designer in the initial design phase, when several design changes are made and the shape of the final configuration is not yet frozen. These derivatives are also indispensable for a gradient-based optimization with aeroelastic constraints. In this study, flutter characteristic of a typical section in subsonic compressible flow is examined using a state-space unsteady aerodynamic representation. The sensitivity of the flutter speed of the typical section with respect to its mass and stiffness parameters, namely, mass ratio, static unbalance, radius of gyration, bending frequency, and torsional frequency is calculated analytically. A strip theory formulation is newly developed to represent the unsteady aerodynamic forces on a wing. This is coupled with an equivalent plate structural model and solved as an eigenvalue problem to determine the critical speed of the wing. Flutter analysis of the wing is also carried out using a lifting-surface subsonic kernel function aerodynamic theory (FAST) and an equivalent plate structural model. Finite element modeling of the wing is done using NASTRAN so that wing structures made of spars and ribs and top and bottom wing skins could be analyzed. The free vibration modes of the wing obtained from NASTRAN are input into FAST to compute the flutter speed. An equivalent plate model which incorporates first-order shear deformation theory is then examined so it can be used to model thick wings, where shear deformations are important. The sensitivity of natural frequencies to changes in shape parameters is obtained using ADIFOR. A simple optimization effort is made towards obtaining a minimum weight design of the wing, subject to flutter constraints, lift requirement constraints for level flight and side constraints on the planform parameters of the wing using the IMSL subroutine NCONG, which uses successive quadratic programming.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Flame trench analysis of NLS vehicles
NASA Technical Reports Server (NTRS)
Zeytinoglu, Nuri
1993-01-01
The present study takes the initial steps of establishing a better flame trench design criteria for future National Launch System vehicles. A three-dimensional finite element computer model for predicting the transient thermal and structural behavior of the flame trench walls was developed using both I-DEAS and MSC/NASTRAN software packages. The results of JANNAF Standardized Plume flowfield calculations of sea-level exhaust plume of the Space Shuttle Main Engine (SSME), Space Transportation Main Engine (STME), and Advanced Solid Rocket Motors (ASRM) were analyzed for different axial distances. The results of sample calculations, using the developed finite element model, are included. The further suggestions are also reported for enhancing the overall analysis of the flame trench model.
Aeroelastic Tailoring Study of N+2 Low-Boom Supersonic Commercial Transport Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2015-01-01
The Lockheed Martins N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA Armstrong Flight Research Center. A total of 111 design variables are used in the first optimization run. Total structural weight is the objective function in this optimization run. Design requirements for strength, buckling, and flutter are selected as constraint functions during the first optimization run. The MSC Nastran code is used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses are based on ZAERO code and landing and ground control loads are computed using an in-house code.
Measured and predicted structural behavior of the HiMAT tailored composite wing
NASA Technical Reports Server (NTRS)
Nelson, Lawrence H.
1987-01-01
A series of load tests was conducted on the HiMAT tailored composite wing. Coupon tests were also run on a series of unbalanced laminates, including the ply configuration of the wing, the purpose of which was to compare the measured and predicted behavior of unbalanced laminates, including - in the case of the wing - a comparison between the behavior of the full scale structure and coupon tests. Both linear and nonlinear finite element (NASTRAN) analyses were carried out on the wing. Both linear and nonlinear point-stress analyses were performed on the coupons. All test articles were instrumented with strain gages, and wing deflections measured. The leading and trailing edges were found to have no effect on the response of the wing to applied loads. A decrease in the stiffness of the wing box was evident over the 27-test program. The measured load-strain behavior of the wing was found to be linear, in contrast to coupon tests of the same laminate, which were nonlinear. A linear NASTRAN analysis of the wing generally correlated more favorably with measurements than did a nonlinear analysis. An examination of the predicted deflections in the wing root region revealed an anomalous behavior of the structural model that cannot be explained. Both hysteresis and creep appear to be less significant in the wing tests than in the corresponding laminate coupon tests.
NASA Technical Reports Server (NTRS)
1996-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is a common task in the aerospace industry. Often, these problems are solved by static analysis with inertia relief. This technique allows for a free-free static analysis by balancing the applied loads with the inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus the displacement-dependent loads. A launch vehicle being acted upon by an aerodynamic loading can have such applied loads. The final displacements of such systems are commonly determined with iterative solution techniques. Unfortunately, these techniques can be time consuming and labor intensive. Because the coupled system equations for free-free systems with displacement-dependent loads can be written in closed form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. An MSC/NASTRAN (MacNeal-Schwendler Corporation/NASA Structural Analysis) DMAP (Direct Matrix Abstraction Program) Alter was used to include displacement-dependent loads in static analysis with inertia relief. It efficiently solved a common aerospace problem that typically has been solved with an iterative technique.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
NASTRAN analysis of the 1/8-scale space shuttle dynamic model
NASA Technical Reports Server (NTRS)
Bernstein, M.; Mason, P. W.; Zalesak, J.; Gregory, D. J.; Levy, A.
1973-01-01
The space shuttle configuration has more complex structural dynamic characteristics than previous launch vehicles primarily because of the high model density at low frequencies and the high degree of coupling between the lateral and longitudinal motions. An accurate analytical representation of these characteristics is a primary means for treating structural dynamics problems during the design phase of the shuttle program. The 1/8-scale model program was developed to explore the adequacy of available analytical modeling technology and to provide the means for investigating problems which are more readily treated experimentally. The basic objectives of the 1/8-scale model program are: (1) to provide early verification of analytical modeling procedures on a shuttle-like structure, (2) to demonstrate important vehicle dynamic characteristics of a typical shuttle design, (3) to disclose any previously unanticipated structural dynamic characteristics, and (4) to provide for development and demonstration of cost effective prototype testing procedures.
NASTRAN analysis of Tokamak vacuum vessel using interactive graphics
NASA Technical Reports Server (NTRS)
Miller, A.; Badrian, M.
1978-01-01
Isoparametric quadrilateral and triangular elements were used to represent the vacuum vessel shell structure. For toroidally symmetric loadings, MPCs were employed across model boundaries and rigid format 24 was invoked. Nonsymmetric loadings required the use of the cyclic symmetry analysis available with rigid format 49. NASTRAN served as an important analysis tool in the Tokamak design effort by providing a reliable means for assessing structural integrity. Interactive graphics were employed in the finite element model generation and in the post-processing of results. It was felt that model generation and checkout with interactive graphics reduced the modelling effort and debugging man-hours significantly.
Calculation of forces on magnetized bodies using COSMIC NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, John
1987-01-01
The methods described may be used with a high degree of confidence for calculations of magnetic traction forces normal to a surface. In this circumstance all models agree, and test cases have resulted in theoretically correct results. It is shown that the tangential forces are in practice negligible. The surface pole method is preferable to the virtual work method because of the necessity for more than one NASTRAN run in the latter case, and because distributed forces are obtained. The derivation of local forces from the Maxwell stress method involves an undesirable degree of manipulation of the problem and produces a result in contradiction of the surface pole method.
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1976-01-01
The NTA Level 15.5.2/3, was used to provide non-linear steady-state (NLSS) and non-linear transient (NLTR) thermal predictions for the International Ultraviolet Explorer (IUE) Scientific Instrument (SI). NASTRAN structural models were used as the basis for the thermal models, which were produced by a straight forward conversion procedure. The accuracy of this technique was sub-sequently demonstrated by a comparison of NTA predicts with the results of a thermal vacuum test of the IUE Engineering Test Unit (ETU). Completion of these tasks was aided by the use of NTA subroutines.
Initial investigations into the damping characteristics of wire rope vibration isolators
NASA Technical Reports Server (NTRS)
Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.
1987-01-01
Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.
Coupled NASTRAN/boundary element formulation for acoustic scattering
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.
1987-01-01
A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
Thermal and Structural Analysis of Helicopter Transmission Housings Using NASTRAN
NASA Technical Reports Server (NTRS)
Howells, R. W.; Sciarra, J. J.; Ng, G. S.
1976-01-01
The application of NASTRAN to improve the design of helicopter transmission housings is described. A finite element model of the complete forward rotor transmission housing for the Boeing Vertol CH-47C helicopter was used to study thermal distortion and stress, stress and deflection due to static and dynamic loads, load paths, and design optimization by the control of structural energy distribution. The analytical results are correlated with test data and used to reduce weight and to improve strength, service life, failsafety, and reliability. The techniques presented, although applied herein to helicopter transmissions, are sufficiently general to be applicable to any power transmission system.
NASA Technical Reports Server (NTRS)
Levy, A.; Zalesak, J.; Bernstein, M.; Mason, P. W.
1974-01-01
A NASTRAN analysis of the solid rocket booster (SRB) substructure of the space shuttle 1/8-scale structural dynamics model. The NASTRAN finite element modeling capability was first used to formulate a model of a cylinder 10 in. radius by a 200 in. length to investigate the accuracy and adequacy of the proposed grid point spacing. Results were compared with a shell analysis and demonstrated relatively accurate results for NASTRAN for the lower modes, which were of primary interest. A finite element model of the full SRB was then formed using CQUAD2 plate elements containing membrane and bending stiffness and CBAR offset bar elements to represent the longerons and frames. Three layers of three-dimensional CHEXAI elements were used to model the propellant. This model, consisting of 4000 degrees of freedom (DOF) initially, was reduced to 176 DOF using Guyan reduction. The model was then submitted for complex Eigenvalue analysis. After experiencing considerable difficulty with attempts to run the complete model, it was split into two substructres. These were run separately and combined into a single 116 degree of freedom A set which was successfully run. Results are reported.
Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle
NASA Technical Reports Server (NTRS)
Spellman, Regina L.
2003-01-01
The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design process, the failure prediction was used to help gain acceptance and confidence in this new tool. The correlated models and process were to be used to analyze the full BWB-LSV airframe design. The analysis and correlation with test results of the proof of concept box is presented here, including the comparison of the Nastran and Hypersizer results.
Statistical correlation analysis for comparing vibration data from test and analysis
NASA Technical Reports Server (NTRS)
Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.
1986-01-01
A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.
Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels
NASA Technical Reports Server (NTRS)
Madan, Ram C.; Sutton, Jason O.
1988-01-01
Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.
A study of interply layer effects on the free-edge stress field of angleplied laminates
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1984-01-01
The general-purpose finite-element program MSC/NASTRAN is used to study the interply layer effects on the free-edge stress field of symmetric angleplied laminates subjected to uniform tensile stress. The free-edge region is modeled as a separate substructure (superelement) which enables easy mesh refinement and provides the flexibility to move the superelement along the edge. The results indicate that the interply layer reduces the stress intensity significantly at the free edge. Another important observation of the study is that the failures observed near free edges of these types of laminates could have been caused by the interlaminar shear stresses.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Modal and Impact Dynamics Analysis of an Aluminum Cylinder
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
2002-01-01
This paper presents analyses for the modal characteristics and impact response of an all-aluminum cylinder. The analyses were performed in preparation for impact tests of the cylinder at The Impact Dynamics Research Facility (IDRF) at the NASA Langley Research Center. Mode shapes and frequencies were computed using NASTRAN and compared with existing experimental data to assess the overall accuracy of the mass and stiffness of the finite element model. A series of non-linear impact analyses were then performed using MSC Dytran in which the weight distribution on the floor and the impact velocity of the cylinder were varied. The effects of impact velocity and mass on the rebound and gross deformation of the cylinder were studied in this investigation.
Modelling chaotic vibrations using NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1993-01-01
Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.
NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
2001-01-01
The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.
Frequency response function (FRF) based updating of a laser spot welded structure
NASA Astrophysics Data System (ADS)
Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.
2018-04-01
The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.
General shape optimization capability
NASA Technical Reports Server (NTRS)
Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson
1991-01-01
A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.
Structural Modeling Using "Scanning and Mapping" Technique
NASA Technical Reports Server (NTRS)
Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)
2000-01-01
Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar components, then passed to AutoCAD for modification and correction of any discrepancies seen in the Photomodeler version of the 3Dmodel. These three software packages are fully compatible. The DXF file can be used to transfer drawings among those packages. To begin this entire process, we are using a small replica of an actual engine blade as a test object. This paper introduces the accomplishment of our recent work.
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
Static characteristics design of hydrostatic guide-ways based on fluid-structure interactions
NASA Astrophysics Data System (ADS)
Lin, Shuo; Yin, YueHong
2016-10-01
With the raising requirements in micro optical systems, the available machines become hard to achieve the process dynamic and accuracy in all aspects. This makes compact design based on fluid/structure interactions (FSI) important. However, there is a difficulty in studying FSI with oil film as fluid domain. This paper aims at static characteristic design of a hydrostatic guide-way with capillary restrictors based on FSI. The pressure distribution of the oil film land is calculated by solving the Reynolds-equation with Galerkin technique. The deformation of structure is calculated by commercial FEM software, MSC. Nastran. A matlab program is designed to realize the coupling progress by modifying the load boundary in the submitting file and reading the deformation result. It's obvious that the stiffness of the hydrostatic bearing decreases with the weakening of the bearing structure. This program is proposed to make more precise prediction of bearing stiffness.
Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system
NASA Technical Reports Server (NTRS)
Leifer, Joel; Gross, Michael
1987-01-01
The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.; Fischer, Richard T.
2001-01-01
This paper is written for the purpose of providing an introduction and set of guidelines for the use of a methodology for NASTRAN eigenvalue modeling of thin film inflatable structures. It is hoped that this paper will spare the reader from the problems and headaches the authors were confronted with during their investigation by presenting here not only an introduction and verification of the methodology, but also a discussion of the problems that this methodology can ensue. Our goal in this investigation was to verify the basic methodology through the creation and correlation of a simple model. An overview of thin film structures, their history, and their applications is given. Previous modeling work is then briefly discussed. An introduction is then given for the method of modeling. The specific mechanics of the method are then discussed in parallel with a basic discussion of NASTRAN s implementation of these mechanics. The problems encountered with the method are then given along with suggestions for their work-a-rounds. The methodology is verified through the correlation between an analytical model and modal test results of a thin film strut. Recommendations are given for the needed advancement of our understanding of this method and ability to accurately model thin film structures. Finally, conclusions are drawn regarding the usefulness of the methodology.
TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools
NASA Technical Reports Server (NTRS)
Marlowe, Jill M.; Dixon, Genevieve D.
1998-01-01
This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.
NASA Technical Reports Server (NTRS)
Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.
1990-01-01
The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.
NASA Technical Reports Server (NTRS)
Zalesak, J.
1975-01-01
A dynamic substructuring analysis, utilizing the component modes technique, of the 1/8 scale space shuttle orbiter finite element model is presented. The analysis was accomplished in 3 phases, using NASTRAN RIGID FORMAT 3, with appropriate Alters, on the IBM 360-370. The orbiter was divided into 5 substructures, each of which was reduced to interface degrees of freedom and generalized normal modes. The reduced substructures were coupled to yield the first 23 symmetric free-free orbiter modes, and the eigenvectors in the original grid point degree of freedom lineup were recovered. A comparison was made with an analysis which was performed with the same model using the direct coordinate elimination approach. Eigenvalues were extracted using the inverse power method.
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The mechanical properties of a symmetrical, eight-step, titanium-boron-epoxy joint are discussed. A study of the effect of adhesive and matrix stiffnesses on the axial, normal, and shear stress distributions was made using the finite element method. The NASA Structural Analysis Program (NASTRAN) was used for the analysis. The elastic modulus of the adhesive was varied from 345 MPa to 3100 MPa with the nominal value of 1030 MPa as a standard. The nominal values were used to analyze the stability of the joint. The elastic moduli were varied to determine their effect on the stresses in the joint.
Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions
NASA Technical Reports Server (NTRS)
Studebaker, Karen; Abrego, Anita
1994-01-01
The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.
A Finite Element Procedure for Calculating Fluid-Structure Interaction Using MSC/NASTRAN
NASA Technical Reports Server (NTRS)
Chargin, Mladen; Gartmeier, Otto
1990-01-01
This report is intended to serve two purposes. The first is to present a survey of the theoretical background of the dynamic interaction between a non-viscid, compressible fluid and an elastic structure is presented. Section one presents a short survey of the application of the finite element method (FEM) to the area of fluid-structure-interaction (FSI). Section two describes the mathematical foundation of the structure and fluid with special emphasis on the fluid. The main steps in establishing the finite element (FE) equations for the fluid structure coupling are discussed in section three. The second purpose is to demonstrate the application of MSC/NASTRAN to the solution of FSI problems. Some specific topics, such as fluid structure analogy, acoustic absorption, and acoustic contribution analysis are described in section four. Section five deals with the organization of the acoustic procedure flowchart. Section six includes the most important information that a user needs for applying the acoustic procedure to practical FSI problems. Beginning with some rules concerning the FE modeling of the coupled system, the NASTRAN USER DECKs for the different steps are described. The goal of section seven is to demonstrate the use of the acoustic procedure with some examples. This demonstration includes an analytic verification of selected FE results. The analytical description considers only some aspects of FSI and is not intended to be mathematically complete. Finally, section 8 presents an application of the acoustic procedure to vehicle interior acoustic analysis with selected results.
Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis
NASA Technical Reports Server (NTRS)
Cooper, Michael J.; Walton, William C.
1991-01-01
Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered.
Input Files and Procedures for Analysis of SMA Hybrid Composite Beams in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloys (SMAs) and SMA hybrid composites (SMAHCs) was recently implemented in the commercial codes MSC.Nastran and ABAQUS. The model is implemented and supported within the core of the commercial codes, so no user subroutines or external calculations are necessary. The model and resulting structural analysis has been previously demonstrated and experimentally verified for thermoelastic, vibration and acoustic, and structural shape control applications. The commercial implementations are described in related documents cited in the references, where various results are also shown that validate the commercial implementations relative to a research code. This paper is a companion to those documents in that it provides additional detail on the actual input files and solution procedures and serves as a repository for ASCII text versions of the input files necessary for duplication of the available results.
NASA Technical Reports Server (NTRS)
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
NASTRAN flutter analysis of advanced turbopropellers
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.
1982-01-01
An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs in NASTRAN was modified and applied to investigate the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) variable sweep. The two dimensional subsonic cascade unsteady aerodynamic theory was applied in a strip theory manner with appropriate modifications for the sweep effects. Each strip is associated with a chord selected normal to any spanwise reference curve such as the blade leading edge. The stability of three operating conditions of a 10-bladed propeller is analyzed. Each of these operating conditions is iterated once to determine the flutter boundary. A 5-bladed propeller is also analyzed at one operating condition to investigate stability. Analytical results obtained are in very good agreement with those from wind tunnel tests.
A comparison of performance of lightweight mirrors
NASA Technical Reports Server (NTRS)
Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.
1990-01-01
Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
Next-Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William; Fitzgerald, Matthew; Stahl, Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Institute for Aviation Research and Development Research Project
1989-01-01
Symbolics Artificial Intelligence * Vision Systems * Finite Element Modeling ( NASTRAN ) * Aerodynamic Paneling (VSAERO) Projects: * Software...34Wall Functions for k and epsilon for Turbulent Flow Through Rough and Smooth Pipes," Eleventh International Symposium on Turbulence, October 17-19, 1988
A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1988-01-01
High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.
Implementation of the block-Krylov boundary flexibility method of component synthesis
NASA Technical Reports Server (NTRS)
Carney, Kelly S.; Abdallah, Ayman A.; Hucklebridge, Arthur A.
1993-01-01
A method of dynamic substructuring is presented which utilizes a set of static Ritz vectors as a replacement for normal eigenvectors in component mode synthesis. This set of Ritz vectors is generated in a recurrence relationship, which has the form of a block-Krylov subspace. The initial seed to the recurrence algorithm is based on the boundary flexibility vectors of the component. This algorithm is not load-dependent, is applicable to both fixed and free-interface boundary components, and results in a general component model appropriate for any type of dynamic analysis. This methodology was implemented in the MSC/NASTRAN normal modes solution sequence using DMAP. The accuracy is found to be comparable to that of component synthesis based upon normal modes. The block-Krylov recurrence algorithm is a series of static solutions and so requires significantly less computation than solving the normal eigenspace problem.
Extension of HCDstruct for Transonic Aeroservoelastic Analysis of Unconventional Aircraft Concepts
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Gern, Frank H.
2017-01-01
A substantial effort has been made to implement an enhanced aerodynamic modeling capability in the Higher-fidelity Conceptual Design and structural optimization tool. This additional capability is needed for a rapid, physics-based method of modeling advanced aircraft concepts at risk of structural failure due to dynamic aeroelastic instabilities. To adequately predict these instabilities, in particular for transonic applications, a generalized aerodynamic matching algorithm was implemented to correct the doublet-lattice model available in Nastran using solution data from a priori computational fluid dynamics anal- ysis. This new capability is demonstrated for two tube-and-wing aircraft configurations, including a Boeing 737-200 for implementation validation and the NASA D8 as a first use case. Results validate the current implementation of the aerodynamic matching utility and demonstrate the importance of using such a method for aircraft configurations featuring fuselage-wing aerodynamic interaction.
Response analysis of an automobile shipping container
NASA Technical Reports Server (NTRS)
Hua, L.; Lee, S. H.; Johnstone, B.
1973-01-01
The design and development of automobile shipping containers to reduce enroute damage are discussed. Vibration tests were conducted to determine the system structural integrity. A dynamic analysis was made using NASTRAN and the results of the test and the analysis are compared.
NASA Astrophysics Data System (ADS)
Romeo, Giulio; Frulla, Giacomo
2002-07-01
A research is being carried out at the Turin Polytechnic University aiming at the design of an HAVE/UAV (High Altitude Very-long Endurance/Uninhabited Air Vehicle) and manufacturing of a scale-sized solar-powered prototype. The vehicle should climg to 17-20 km by taking advantage, mainly, of direct sun radiation and maintaining; electric energy not requeired for propulsion and payload operation is pumped back into the fuel cells energy storage system for the night. A computer program has been developed for carrying out a parametric study for the platform design, by taking into account the solar radiation change over one year, the altitude, masses and efficiencies of solar cells and fuel cells, aerodynamic performances, etc. A parametric study shows as fuel cells and solar cells efficiency and mass give the most influence on the platform dimensions. A wide use of high modulus CFRP has been made in designing the structure in order to minimise the airframe weight. The whole mass resulted of 70 kg. The classical hydraulic loading rig was designed for applying the ultimate shear-bending-torsion load to the structure and to verify the theoretical behaviour. A finite element analysis has been carried out by using the MSC/PATRAN/NASTRAN code in order to predict th static and dynamic behaviour. A good correlation has been obtained between the theoretical, numerical and experimental results up to a load corresponding to 5g.
Position of the prosthesis and the incidence of dislocation following total hip replacement.
He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song
2007-07-05
Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.
Design sensitivity analysis of rotorcraft airframe structures for vibration reduction
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta
1987-01-01
Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.
A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid
2004-01-01
Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.
Improved accuracy for finite element structural analysis via an integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arhur T.
1999-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft
NASA Technical Reports Server (NTRS)
Boroughs, R. R.; Padmanabhan, V.
1983-01-01
The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.
Steady state solutions to dynamically loaded periodic structures
NASA Technical Reports Server (NTRS)
Kalinowski, A. J.
1980-01-01
The general problem of solving for the steady state (time domain) dynamic response (i.e., NASTRAN rigid format-8) of a general elastic periodic structure subject to a phase difference loading of the type encountered in traveling wave propagation problems was studied. Two types of structural configurations were considered; in the first type, the structure has a repeating pattern over a span that is long enough to be considered, for all practical purposes, as infinite; in the second type, the structure has structural rotational symmetry in the circumferential direction. The theory and a corresponding set of DMAP instructions which permits the NASTRAN user to automatically alter the rigid format-8 sequence to solve the intended class of problems are presented. Final results are recovered as with any ordinary rigid format-8 solution, except that the results are only printed for the typical periodic segment of the structure. A simple demonstration problem having a known exact solution is used to illustrate the implementation of the procedure.
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
NASA Technical Reports Server (NTRS)
Orifici, Adrian C.; Krueger, Ronald
2010-01-01
With capabilities for simulating delamination growth in composite materials becoming available, the need for benchmarking and assessing these capabilities is critical. In this study, benchmark analyses were performed to assess the delamination propagation simulation capabilities of the VCCT implementations in Marc TM and MD NastranTM. Benchmark delamination growth results for Double Cantilever Beam, Single Leg Bending and End Notched Flexure specimens were generated using a numerical approach. This numerical approach was developed previously, and involves comparing results from a series of analyses at different delamination lengths to a single analysis with automatic crack propagation. Specimens were analyzed with three-dimensional and two-dimensional models, and compared with previous analyses using Abaqus . The results demonstrated that the VCCT implementation in Marc TM and MD Nastran(TradeMark) was capable of accurately replicating the benchmark delamination growth results and that the use of the numerical benchmarks offers advantages over benchmarking using experimental and analytical results.
Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads
NASA Technical Reports Server (NTRS)
Negaard, G. R.
1980-01-01
The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.
A NASTRAN investigation of simulated projectile damage effects on a UH-1B tail boom model
NASA Technical Reports Server (NTRS)
Futterer, A. T.
1980-01-01
A NASTRAN model of a UH-1B tail boom that had been designed for another project was used to investigate the effect on structural integrity of simulated projectile damage. Elements representing skin, and sections of stringers, longerons and bulkheads were systematically deleted to represent projectile damage. The structure was loaded in a manner to represent the flight loads that would be imposed on the tail boom at a 130 knot cruise. The deflection of four points on the rear of the tail boom relative to the position of these points for the unloaded, undamaged condition of the tail boom was used as a measure of the loss of structural rigidity. The same procedure was then used with the material properties of the aluminum alloys replaced with the material properties of T300/5208 high strength graphite/epoxy fibrous composite material, (0, + or - 45, 90)s for the skin and (0, + or - 45)s for the longerons, stringers, and bulk heads.
1987-03-01
calculated by Griffel et al. (121 is correct. 13 ,"’L * Thermal conductivity in gadolinium is not a function of temperature. " The adiabatic...Capability for NASTRAN Using Isoparametric Finite ,. Elements," DTNSRDC Report CMC-1-73 (Jan 1973). 12. Griffel , M., R.E. Skochdopole, R.E., and F.H. Spedding
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
ACOSS SEVEN (Active Control of Space Structures)
1981-09-01
methodology we arrive at the stability conditions indicated in Figure 2-35. The Liapunov stability parameters, 2-40 the epsilons , are direct functions of the...variation is driven by the desire to vary the natural frequen- cies by 10%. Dynamic analyses were conducted on both perturbed models using NASTRAN . The
NASTRAN documentation for flutter analysis of advanced turbopropellers
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1982-01-01
An existing capability developed to conduct modal flutter analysis of tuned bladed-shrouded discs was modified to facilitate investigation of the subsonic unstalled flutter characteristics of advanced turbopropellers. The modifications pertain to the inclusion of oscillatory modal aerodynamic loads of blades with large (backward and forward) varying sweep.
NASA Technical Reports Server (NTRS)
1991-01-01
Navistar International Transportation Corporation, Chicago, IL, used three separate NASA-developed technologies in the design and testing of their 3000 Series Bus Chassis which was developed expressly for school bus applications. For structural analysis, they used the MSC/NASTRAN program which mathematically analyzes a design and predicts how it will hold up under stress. They also used the SPATE 9000 system for non-contact measurement of stress, load transfer mechanisms, detection of hidden flaws, and monitoring structural changes during fatigue testing. SPATE 9000 was based on infrared stress measurement technology developed by Langley Research Center. They also employed the Wyle Ride Quality Meter, which was developed by Langley to aid in passenger aircraft design by providing an accurate measurement of ride vibration and sound level. These numbers translate into a subjective discomfort level index. These technologies contribute to the company's 45-48 percent share of the school bus chassis market.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Modal forced vibration analysis of aerodynamically excited turbosystems
NASA Technical Reports Server (NTRS)
Elchuri, V.
1985-01-01
Theoretical aspects of a new capability to determine the vibratory response of turbosystems subjected to aerodynamic excitation are presented. Turbosystems such as advanced turbopropellers with highly swept blades, and axial-flow compressors and turbines can be analyzed using this capability. The capability has been developed and implemented in the April 1984 release of the general purpose finite element program NASTRAN. The dynamic response problem is addressed in terms of the normal modal coordinates of these tuned rotating cyclic structures. Both rigid and flexible hubs/disks are considered. Coriolis and centripetal accelerations, as well as differential stiffness effects are included. Generally non-uniform steady inflow fields and uniform flow fields arbitrarily inclined at small angles with respect to the axis of rotation of the turbosystem are considered sources of aerodynamic excitation. The spatial non-uniformities are considered to be small deviations from a principally uniform inflow. Subsonic and supersonic relative inflows are addressed, with provision for linearly interpolating transonic airloads.
Stress analysis of the space telescope focal plane structure joint
NASA Technical Reports Server (NTRS)
Foster, W. A., Jr.; Shoemaker, W. L.
1985-01-01
Two major efforts were begun concerning the Space Telescope focal plane structure joint. The 3-D solid finite element modeling of the bipod flexure plate was carried out. Conceptual models were developed for the load transfer through the three major bolts to the flexure plate. The flexure plate drawings were reconstructed using DADAM for the purpose of developing a file from which the coordinates of any point on the flexure plate could be determined and also to locate the attachment points of the various components which connect with the flexure plate. For modeling convenience the CADAM drawing of the flexure plate has been divided into several regions which will be subdivided into finite elements using MSGMESH, which is a finite element mesh generator available with MSC/NASTRAN. In addition to the CADAM work on the flexure plate, an effort was also begun to develop computer aided drawings of the peripheral beam which will be used to assist in modeling the connection between it and the flexure plate.
Stability analysis of a reinforced carbon carbon shell
NASA Technical Reports Server (NTRS)
Agan, W. E.; Jordan, B. M.
1977-01-01
This paper presents the development of a stability analysis for the nose cap of the NASA Space Shuttle Orbiter. Stability is evaluated by the differential stiffness analysis of the NASTRAN finite-element computer code, addressing those nonstandard characteristics in the nose cap such as nonuniform curvature, asymmetrical and nonuniform loads, support fixity, and various combinations of membrane and bending stresses. A full-sized nose cap, thinner than production, was statically tested and stability analyzed. The failing load level correlated to within 30%. The region and mode of buckling that occurred during test was accurately predicted by analysis. The criterion for predicting instability is based on the behavior of the nonlinear deflections. The deflections are nonlinear elastic in that the stresses are well within the elastic range of the material, but the geometry-load relationship produces nonlinear deflections. The load-deflection relationship is well defined by differential stiffness analysis up to the zero-slope portion of the curve, the point of neutral stability or where the shell 'snaps through' just prior to general instability.
A noniterative improvement of Guyan reduction
NASA Technical Reports Server (NTRS)
Ganesan, N.
1993-01-01
In determining the natural modes and frequencies of a linear elastic structure, Guyan reduction is often used to reduce the size of the mass and stiffness matrices and the solution of the reduced system is obtained first. The reduced system modes are then expanded to the size of the original system by using a static transformation linking the retained degrees of freedom to the omitted degrees of freedom. In the present paper, the transformation matrix of Guyan reduction is modified to include additional terms from a series accounting for the inertial effects. However, the inertial terms are dependent on the unknown frequencies. A practical approximation is employed to compute the inertial terms without any iteration. This new transformation is implemented in NASTRAN using a DMAP sequence alter. Numerical examples using a cantilever beam illustrate the necessary condition for allowing a large number of additional terms in the proposed series correction of Guyan reduction. A practical example of a large model of the Plasma Motor Generator module to be flown on a Delta launch vehicle is also presented.
Next generation lightweight mirror modeling software
NASA Astrophysics Data System (ADS)
Arnold, William R.; Fitzgerald, Matthew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-09-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 3-5 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any text editor, all the shell thickness parameters and suspension spring rates are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
NASA Technical Reports Server (NTRS)
Mason, P. W.; Harris, H. G.; Zalesak, J.; Bernstein, M.
1974-01-01
The methods and procedures used in the analysis and testing of the scale model are reported together with the correlation of the analytical and experimental results. The model, the NASTRAN finite element analysis, and results are discussed. Tests and analytical investigations are also reported.
NASTRAN User’s Colloquium (6th) Held in Cleveland, Ohio on 4-6 October 1977
1977-10-01
strain energy due to the bending and tvisting of the plate midsurface , and the second integral represents the strain energy due to midsurface ...model of the midsurface of the blade with the blade thickness defined by four data patches which are described in the next section. PHYSICAL
Improved accuracy for finite element structural analysis via a new integrated force method
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo
1992-01-01
A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.
2010-01-01
Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.
Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Patel, Hemant D.
2005-01-01
A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
Distributed Finite Element Analysis Using a Transputer Network
NASA Technical Reports Server (NTRS)
Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy
1989-01-01
The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.
Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm
NASA Astrophysics Data System (ADS)
Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.
2012-07-01
Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations affecting steady state responses due to numerical roundoffs coming from the coupled mode shape extraction method and from the associated non numerical zeros frequencies. Geometric rigid body modes are usually the preferred solution for dynamic transient analysis but are not retained by NASTRAN when the chosen eigensolver is Lanczos, even using a SUPORT card. The SWARM microvibration problem described above has been considered as a benchmark case for various codes (NASTRAN, PERMAS, DCAP - multi-body software) and methods (direct or modal transients). A specific DMAP in NASTRAN has been written to overcome the limitation imposed by the Lanczos method and considerations on the conditioning of the FEM are discussed. An assessment on the accuracy of the different rigid body modes calculation methods is finally proposed.
NASA Technical Reports Server (NTRS)
Hennrich, C. W.; Konrath, E. J., Jr.
1973-01-01
A basic automated substructure analysis capability for NASTRAN is presented which eliminates most of the logistical data handling and generation chores that are currently associated with the method. Rigid formats are proposed which will accomplish this using three new modules, all of which can be added to level 16 with a relatively small effort.
2005-06-01
test, the entire turbulence model was changed from standard k- epsilon to Spalart- Allmaras. Using these different tools of turbulence models, a few...this research, leaving only pre-existing finite element models to be used. At some point a NASTRAN model was developed for vibrations analysis but
Modeling a ball screw/ball nut in substructuring
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1991-01-01
In the particular NASTRAN application discussed here, a nut was attached to a stationary structure. The object of the analysis was to determine the vibration characteristics of the whole structure for various configurations; i.e., the evaluation of the mode shapes and frequencies when parts were moved to different mating positions. Details of the analysis are given.
Generalizing the TRAPRG and TRAPAX finite elements
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1983-01-01
The NASTRAN TRAPRG and TRAPAX finite elements are very restrictive as to shape and grid point numbering. The elements must be trapezoidal with two sides parallel to the radial axis. In addition, the ordering of the grid points on the element connection card must follow strict rules. The paper describes the generalization of these elements so that these restrictions no longer apply.
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Widrick, Timothy W.; Ludwiczak, Damian R.
1995-01-01
Solving for the displacements of free-free coupled systems acted upon by static loads is commonly performed throughout the aerospace industry. Many times, these problems are solved using static analysis with inertia relief. This solution technique allows for a free-free static analysis by balancing the applied loads with inertia loads generated by the applied loads. For some engineering applications, the displacements of the free-free coupled system induce additional static loads. Hence, the applied loads are equal to the original loads plus displacement-dependent loads. Solving for the final displacements of such systems is commonly performed using iterative solution techniques. Unfortunately, these techniques can be time-consuming and labor-intensive. Since the coupled system equations for free-free systems with displacement-dependent loads can be written in closed-form, it is advantageous to solve for the displacements in this manner. Implementing closed-form equations in static analysis with inertia relief is analogous to implementing transfer functions in dynamic analysis. Using a MSC/NASTRAN DMAP Alter, displacement-dependent loads have been included in static analysis with inertia relief. Such an Alter has been used successfully to solve efficiently a common aerospace problem typically solved using an iterative technique.
An alternative to Guyan reduction of finite-element models
NASA Technical Reports Server (NTRS)
Lin, Jiguan Gene
1988-01-01
Structural modeling is a key part of structural system identification for large space structures. Finite-element structural models are commonly used in practice because of their general applicability and availability. The initial models generated by using a standard computer program such as NASTRAN, ANSYS, SUPERB, STARDYNE, STRUDL, etc., generally contain tens of thousands of degrees of freedom. The models must be reduced for purposes of identification. Not only does the magnitude of the identification effort grow exponentially as a function of the number of degrees of freedom, but numerical procedures may also break down because of accumulated round-off errors. Guyan reduction is usually applied after a static condensation. Misapplication of Guyan reduction can lead to serious modeling errors. It is quite unfortunate and disappointing, since the accuracy of the original detailed finite-element model one tries very hard to achieve is lost by the reduction. First, why and how Guyan reduction always causes loss of accuracy is examined. An alternative approach is then introduced. The alternative can be thought of as an improvement of Guyan reduction, the Rayleigh-Ritz method, and in particular the recent algorithm of Wilson, Yuan, and Dickens. Unlike Guyan reduction, the use of the alternative does not need any special insight, experience, or skill for partitioning the structural degrees of freedom. In addition to model condensation, this alternative approach can also be used for predicting analytically, quickly, and economically, what are those structural modes that are excitable by a force actuator at a given trial location. That is, in the excitation of the structural modes for identification, it can be used for guiding the placement of the force actuators.
Grid Stiffened Structure Analysis Tool
NASA Technical Reports Server (NTRS)
1999-01-01
The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.
NASA Astrophysics Data System (ADS)
1990-01-01
The dynamic response of Sandia National Laboratories' 34-m Darrieus rotor wind turbine at Bushland, Texas, is presented. The formulation used a double-multiple streamtube aerodynamic model with a turbulent airflow and included the effects of linear aeroelastic forces. The structural analysis used established procedures with the program MSC/NASTRAN. The effects of aeroelastic forces on the damping of natural modes agree well with previous results at operating rotor speeds, but show some discrepancies at very high rotor speeds. A number of alternative expressions for the spectrum of turbulent wind were investigated. The model loading represented by each does not differ significantly; a more significant difference is caused by imposing a full lateral coherence of the turbulent flow. Spectra of the predicted stresses at various locations show that without aeroelastic forces, very severe resonance is likely to occur at certain natural frequencies. Inclusion of aeroelastic effects greatly attenuates this stochastic response, especially in modes involving in-plane blade bending.
Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST
NASA Technical Reports Server (NTRS)
Oken, S.; Skoumal, D. E.
1975-01-01
A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.
A downloadable meshed human canine tooth model with PDL and bone for finite element simulations.
Boryor, Andrew; Hohmann, Ansgar; Geiger, Martin; Wolfram, Uwe; Sander, Christian; Sander, Franz Günter
2009-09-01
The aim of this study is to relieve scientists from the complex and time-consuming task of model generation by providing a model of a canine tooth and its periradicular tissues for Finite Element Method (FEM) simulations. This was achieved with diverse commercial software, based on a micro-computed tomography of the specimen. The Finite Element (FE) Model consists of enamel, dentin, nerve (innervation), periodontal ligament (PDL), and the surrounding cortical bone with trabecular structure. The area and volume meshes are of a very high quality in order to represent the model in a detailed form. Material properties are to be set individually by every user. The tooth model is provided for Abaqus, Ansys, HyperMesh, Nastran and as STL files, in an ASCII format for free download. This can help reduce the cost and effort of generating a tooth model for some research institutions, and may encourage other research groups to provide their high quality models for other researchers. By providing FE models, research results, especially FEM simulations, could be easily verified by others.
Analysis of an unswept propfan blade with a semiempirical dynamic stall model
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Kaza, K. R. V.
1989-01-01
The time history response of a propfan wind tunnel model with dynamic stall is studied analytically. The response obtained from the analysis is compared with available experimental data. The governing equations of motion are formulated in terms of blade normal modes which are calculated using the COSMIC-NASTRAN computer code. The response analysis considered the blade plunging and pitching motions. The lift, drag and moment coefficients for angles of attack below the static stall angle are obtained from a quasi-steady theory. For angles above static stall angles, a semiempirical dynamic stall model based on a correction to angle of attack is used to obtain lift, drag and moment coefficients. Using these coefficients, the aerodynamic forces are calculated at a selected number of strips, and integrated to obtain the total generalized forces. The combined momentum-blade element theory is used to calculate the induced velocity. The semiempirical stall model predicted a limit cycle oscillation near the setting angle at which large vibratory stresses were observed in an experiment. The predicted mode and frequency of oscillation also agreed with those measured in the experiment near the setting angle.
A new look at the simultaneous analysis and design of structures
NASA Technical Reports Server (NTRS)
Striz, Alfred G.
1994-01-01
The minimum weight optimization of structural systems, subject to strength and displacement constraints as well as size side constraints, was investigated by the Simultaneous ANalysis and Design (SAND) approach. As an optimizer, the code NPSOL was used which is based on a sequential quadratic programming (SQP) algorithm. The structures were modeled by the finite element method. The finite element related input to NPSOL was automatically generated from the input decks of such standard FEM/optimization codes as NASTRAN or ASTROS, with the stiffness matrices, at present, extracted from the FEM code ANALYZE. In order to avoid ill-conditioned matrices that can be encountered when the global stiffness equations are used as additional nonlinear equality constraints in the SAND approach (with the displacements as additional variables), the matrix displacement method was applied. In this approach, the element stiffness equations are used as constraints instead of the global stiffness equations, in conjunction with the nodal force equilibrium equations. This approach adds the element forces as variables to the system. Since, for complex structures and the associated large and very sparce matrices, the execution times of the optimization code became excessive due to the large number of required constraint gradient evaluations, the Kreisselmeier-Steinhauser function approach was used to decrease the computational effort by reducing the nonlinear equality constraint system to essentially a single combined constraint equation. As the linear equality and inequality constraints require much less computational effort to evaluate, they were kept in their previous form to limit the complexity of the KS function evaluation. To date, the standard three-bar, ten-bar, and 72-bar trusses have been tested. For the standard SAND approach, correct results were obtained for all three trusses although convergence became slower for the 72-bar truss. When the matrix displacement method was used, correct results were still obtained, but the execution times became excessive due to the large number of constraint gradient evaluations required. Using the KS function, the computational effort dropped, but the optimization seemed to become less robust. The investigation of this phenomenon is continuing. As an alternate approach, the code MINOS for the optimization of sparse matrices can be applied to the problem in lieu of the Kreisselmeier-Steinhauser function. This investigation is underway.
Complex eigenvalue analysis of rotating structures
NASA Technical Reports Server (NTRS)
Patel, J. S.; Seltzer, S. M.
1972-01-01
A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.
Alignment displacements of the solar optical telescope primary mirror
NASA Technical Reports Server (NTRS)
Medenica, W. V.
1978-01-01
Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.
Design Spectrum Analysis in NASTRAN
NASA Technical Reports Server (NTRS)
Butler, T. G.
1984-01-01
The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.
1994-01-01
Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.
Response of the Alliance 1 Proof-of-Concept Airplane Under Gust Loads
NASA Technical Reports Server (NTRS)
Naser, A. S.; Pototzky, A. S.; Spain, C. V.
2001-01-01
This report presents the work performed by Lockheed Martin's Langley Program Office in support of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The primary purpose of this work was to develop and demonstrate a gust analysis method which accounts for the span-wise variation of gust velocity. This is important because these unmanned aircraft having high aspect ratios and low wing loading are very flexible, and fly at low speeds. The main focus of the work was therefore to perform a two-dimensional Power Spectrum Density (PSD) analysis of the Alliance 1 Proof-of-Concept Unmanned Aircraft, As of this writing, none of the aircraft described in this report have been constructed. They are concepts represented by analytical models. The process first involved the development of suitable structural and aeroelastic Finite Element Models (FEM). This was followed by development of a one-dimensional PSD gust analysis, and then the two-dimensional (PSD) analysis of the Alliance 1. For further validation and comparison, two additional analyses were performed. A two-dimensional PSD gust analysis was performed on a simplet MSC/NASTRAN example problem. Finally a one-dimensional discrete gust analysis was performed on Alliance 1. This report describes this process, shows the relevant comparisons between analytical methods, and discusses the physical meanings of the results.
NASA Technical Reports Server (NTRS)
Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.
1989-01-01
Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.
NASA Technical Reports Server (NTRS)
Butler, T. G.
1985-01-01
Some of the problems that confront an analyst in free body modeling, to satisfy rigid body conditions are discussed and with some remedies for these problems are presented. The problems of detecting these culprits at various levels within the analysis are examined. A new method within NASTRAN for checking the model for defects very early in the analysis without requiring the analyst to bear the expense of an eigenvalue analysis before discovering these defects is outlined.
NASA Technical Reports Server (NTRS)
Mason, P. W.; Harris, H. G.; Zalesak, J.; Bernstein, M.
1974-01-01
The NASA Structural Analysis System (NASTRAN) Model 1 finite element idealization, input data, and detailed analytical results are presented. The data presented include: substructuring analysis for normal modes, plots of member data, plots of symmetric free-free modes, plots of antisymmetric free-free modes, analysis of the wing, analysis of the cargo doors, analysis of the payload, and analysis of the orbiter.
A verification procedure for MSC/NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.
1995-01-01
Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.
Structural analysis of low-speed composite propfan blades for the LRCSW wind tunnel model
NASA Technical Reports Server (NTRS)
Ernst, Michael A.
1992-01-01
The Naval Weapons Center at China Lake, CA, is currently in the process of evaluating propulsion systems for the Long Range Conventional Standoff Weapons (LRCSW). At present, the Advanced Counter-Rotating Propfan system is being considered. The methodologies are documented which were used to structurally analyze the 0.55 scale CM1 composite propfan blades for the LRCSW with COBSTRAN and MSC/NASTRAN. Significant results are also reported.
Study of auxiliary propulsion requirements for large space systems, volume 2
NASA Technical Reports Server (NTRS)
Smith, W. W.; Machles, G. W.
1983-01-01
A range of single shuttle launched large space systems were identified and characterized including a NASTRAN and loading dynamics analysis. The disturbance environment, characterization of thrust level and APS mass requirements, and a study of APS/LSS interactions were analyzed. State-of-the-art capabilities for chemical and ion propulsion were compared with the generated propulsion requirements to assess the state-of-the-art limitations and benefits of enhancing current technology.
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Test results from large wing and fuselage panels
NASA Technical Reports Server (NTRS)
Madan, Ram C.; Voldman, Mike
1993-01-01
This paper presents the first results in an assessment of the strength, stiffness, and damage tolerance of stiffened wing and fuselage subcomponents. Under this NASA funded program, 10 large wing and fuselage panels, variously fabricated by automated tow placement and dry-stitched preform/resin transfer molding, are to be tested. The first test of an automated tow placement six-longeron fuselage panel under shear load was completed successfully. Using NASTRAN finite-element analysis the stiffness of the panel in the linear range prior to buckling was predicted within 3.5 percent. A nonlinear analysis predicted the buckling load within 10 percent and final failure load within 6 percent. The first test of a resin transfer molding six-stringer wing panel under compression was also completed. The panel failed unexpectedly in buckling because of inadequate supporting structure. The average strain was 0.43 percent with a line load of 20.3 kips per inch of width. This strain still exceeds the design allowable strains. Also, the stringers did not debond before failure, which is in contrast to the general behavior of unstitched panels.
Prediction of induced vibrations for a passenger - car ferry
NASA Astrophysics Data System (ADS)
Crudu, L.; Neculet, O.; Marcu, O.
2016-08-01
In order to evaluate the ship hull global vibrations, propeller excitation must be properly considered being mandatory to know enough accurate the magnitude of the induced hull pressure impulses. During the preliminary design stages, the pressures induced on the aft part of the ship by the operating propeller can be evaluated based on the guidelines given by the international standards or by the provisions of the Classification Societies. These approximate formulas are taking into account the wake field which, unfortunately, can be only estimated unless experimental towing tank tests are carried out. Another possibility is the numerical evaluation with different Computational Fluid Dynamics (CFD) codes. However, CFD methods are not always easy to be used requiring an accurate description of the hull forms in the aft part of the ship. The present research underlines these aspects during the preliminary prediction of propeller induced vibrations for a double-ended passenger-car ferry propelled by two azimuth fixed pitch thrusters placed at both ends of the ship. The evaluation of the global forced vibration is performed considering the 3D global Finite Element (FE) model, with NX Nastran for Windows. Based on the presented results, the paper provides reliable information to be used during the preliminary design stages.
NASA Technical Reports Server (NTRS)
Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander
2011-01-01
A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.
Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.
Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F
2010-01-01
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.
Analysis and design of on-grade reinforced concrete track support structures
NASA Technical Reports Server (NTRS)
Mclean, F. G.; Williams, R. D.; Greening, L. R.
1972-01-01
For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.
NASTRAN data generation and management using interactive graphics
NASA Technical Reports Server (NTRS)
Smootkatow, M.; Cooper, B. M.
1972-01-01
A method of using an interactive graphics device to generate a large portion of the input bulk data with visual checks of the structure and the card images is described. The generation starts from GRID and PBAR cards. The visual checks result from a three-dimensional display of the model in any rotated position. By detailing the steps, the time saving and cost effectiveness of this method may be judged, and its potential as a useful tool for the structural analyst may be established.
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Cunningham, H. J.
1976-01-01
The Level 16 flutter analysis capability was applied to an aspect-ratio-6.8 subsonic transport type wing, an aspect-ratio-1.7 arrow wing, and an aspect-ratio-1.3 all movable horizontal tail with a geared elevator. The transport wing and arrow wing results are compared with experimental results obtained in the Langley transonic dynamic tunnel and with other calculated results obtained using subsonic lifting surface (kernel function) unsteady aerodynamic theory.
Aeroelastic Analysis of a Distributed Electric Propulsion Wing
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer
2017-01-01
An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.
Analysis of high velocity impact on hybrid composite fan blades
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Recent developments in the analysis of high velocity impact of composite blades are described, using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an interply hybrid composite aircraft engine fan blade is described in detail. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.
NASA Technical Reports Server (NTRS)
Ko, William L.; Lung, Shun-Fat
2017-01-01
Non-classical stress concentration behavior in a stretched circular hyperelastic sheet (outer radius b = 10 in., thickness t = 0.0625 in.) containing a central hole (radius a = 0.5 in.) was analyzed. The hyperelastic sheet was subjected to different levels of remote radial stretchings. Nastran large-strain large-deformation analysis and the Blatz-Ko large deformation theory were used to calculate the equal-biaxial stress concentration factors K. The results show that the values of K calculated from the Blatz-Ko theory and Nastran are extremely close. Unlike the classical linear elasticity theory, which gives the constant K = 2 for the equal-biaxial stress field, the hyperelastic K values were found to increase with increased stretching and can exceed the value K = 6 at a remote radial extension ratio of 2.35. The present K-values compare fairly well with the K-values obtained by previous works. The effect of the hole-size on K-values was investigated. The values of K start to decrease from a hole radius a = 0.125 in. down to K = 1 (no stress concentration) as a shrinks to a = 0 in. (no hole). Also, the newly introduced stretch and strain magnification factors {K(sub ?),K(sub e) } are also material- and deformation-dependent, and can increase from linear levels of {1.0, 4.0} and reaching {3.07, 4.61}, respectively at a remote radial extension ratio of 2.35.
Weight optimal design of lateral wing upper covers made of composite materials
NASA Astrophysics Data System (ADS)
Barkanov, Evgeny; Eglītis, Edgars; Almeida, Filipe; Bowering, Mark C.; Watson, Glenn
2016-09-01
The present investigation is devoted to the development of a new optimal design of lateral wing upper covers made of advanced composite materials, with special emphasis on closer conformity of the developed finite element analysis and operational requirements for aircraft wing panels. In the first stage, 24 weight optimization problems based on linear buckling analysis were solved for the laminated composite panels with three types of stiffener, two stiffener pitches and four load levels, taking into account manufacturing, reparability and damage tolerance requirements. In the second stage, a composite panel with the best weight/design performance from the previous study was verified by nonlinear buckling analysis and optimization to investigate the effect of shear and fuel pressure on the performance of stiffened panels, and their behaviour under skin post-buckling. Three rib-bay laminated composite panels with T-, I- and HAT-stiffeners were modelled with ANSYS, NASTRAN and ABAQUS finite element codes to study their buckling behaviour as a function of skin and stiffener lay-ups, stiffener height, stiffener top and root width. Owing to the large dimension of numerical problems to be solved, an optimization methodology was developed employing the method of experimental design and response surface technique. Optimal results obtained in terms of cross-sectional areas were verified successfully using ANSYS and ABAQUS shared-node models and a NASTRAN rigid-linked model, and were used later to estimate the weight of the Advanced Low Cost Aircraft Structures (ALCAS) lateral wing upper cover.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Composite transport wing technology development
NASA Technical Reports Server (NTRS)
Madan, Ram C.
1988-01-01
The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
NASA Astrophysics Data System (ADS)
Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton
2005-09-01
The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.
Control and characterization of a bistable laminate generated with piezoelectricity
NASA Astrophysics Data System (ADS)
Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.
2017-08-01
Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.
NASA Technical Reports Server (NTRS)
Melis, M. E.
1994-01-01
A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is tabular. The VAX VMS version is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution media) or a 9-track 1600 BPI DEC VAX FILES-11 format magnetic tape, and it requires about 124K of main memory. The standard distribution media for the IRIS version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The memory requirement for the IRIS version is 627K. COMGEN was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. PATRAN is a registered trademark of PDA Engineering. SGI IRIS and IRIX are trademarks of Silicon Graphics, Inc. MS-DOS is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT&T.
NASA Technical Reports Server (NTRS)
Smith, Andrew; Harrison, Phil
2010-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the predicted and measured flight data. Future assessment will incorporate hybrid methods in VAOne analysis (i.e., boundary element methods, BEM and finite element methods, FEM). These hybrid methods will enable the ability to import NASTRAN models providing much more detailed modeling of the underlying beams and support structure of the ARES 1-X test vehicle. Measured acoustic data will be incorporated into these analyses to improve correlation for additional post flight analysis.
1980-05-01
36 wing were replaced by a six foot extension and winglet on the 28/29 wing (see Figures 1 & 2). The outward appearance of the 28/29 wing in the...in NASA TMX-3428 (Ref. 1). This model was later updated in the outboard section with the six foot extension and winglet attachment structure. Sizing...incorporated to provide stiffness and an internal lo3d path for forces developed by the winglet , since the winglet was mounted very near the trailing
Determination and Control of Optical and X-Ray Wave Fronts
NASA Technical Reports Server (NTRS)
Kim, Young K.
1997-01-01
A successful design of a space-based or ground optical system requires an iterative procedure which includes the kinematics and dynamics of the system in operating environment, control synthesis and verification. To facilitate the task of designing optical wave front control systems being developed at NASA/MSFC, a multi-discipline dynamics and control tool has been developed by utilizing TREETOPS, a multi-body dynamics and control simulation, NASTRAN and MATLAB. Dynamics and control models of STABLE and ARIS were developed for TREETOPS simulation, and their simulation results are documented in this report.
Application of NASTRAN in nonlinear analysis of a cartridge case neck separation malfunction
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Frederick, D. L.
1975-01-01
The problem of case neck separation malfunction in the field of ammunition structural analysis is investigated. The axi-symmetric solid of revolution RING element was utilized in the manual piecewise linear analysis to obtain the expansion of the wall of the cartridge case and barrel chamber by the pressure of propellant gases and the stresses in the structure. The analysis included the varying material properties along the wall of the case and the chamber. Additional instructions were provided to change the element material ID's without recomputing the entire stiffness matrix.
Static analysis of a sonar dome rubber window
NASA Technical Reports Server (NTRS)
Lai, J. L.
1978-01-01
The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.
Analysis of magnetic fields using variational principles and CELAS2 elements
NASA Technical Reports Server (NTRS)
Frye, J. W.; Kasper, R. G.
1977-01-01
Prospective techniques for analyzing magnetic fields using NASTRAN are reviewed. A variational principle utilizing a vector potential function is presented which has as its Euler equations, the required field equations and boundary conditions for static magnetic fields including current sources. The need for an addition to this variational principle of a constraint condition is discussed. Some results using the Lagrange multiplier method to apply the constraint and CELAS2 elements to simulate the matrices are given. Practical considerations of using large numbers of CELAS2 elements are discussed.
Buckling analysis of the quadripod structure for the NASA 70-meter antenna
NASA Technical Reports Server (NTRS)
Chian, Chian T.
1987-01-01
As part of the effort to extend the diameter of three Deep Space Network large earth antennas from 64 meters to 70 meters, a slim profiled quadripod structure was designed to support a 7.7 meter diameter subreflector for the 70 meter antenna. The new quadripod design, which particularly emphasizes reduced radio frequency blockage, is achieved by means of a narrow cross sectional profile of the legs. Buckling analysis, using NASTRAN, was conducted in this study to verify the safety margin for the quadripod structural stability.
Habitable Exoplanet Imager Optical-Mechanical Design and Analysis
NASA Technical Reports Server (NTRS)
Gaskins, Jonathan; Stahl, H. Philip
2017-01-01
The Habitable Exoplanet Imager (HabEx) is a space telescope currently in development whose mission includes finding and spectroscopically characterizing exoplanets. Effective high-contrast imaging requires tight stability requirements of the mirrors to prevent issues such as line of sight and wavefront errors. PATRAN and NASTRAN were used to model updates in the design of the HabEx telescope and find how those updates affected stability. Most of the structural modifications increased first mode frequencies and improved line of sight errors. These studies will be used to help define the baseline HabEx telescope design.
Automated Loads Analysis System (ATLAS)
NASA Technical Reports Server (NTRS)
Gardner, Stephen; Frere, Scot; O’Reilly, Patrick
2013-01-01
ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
NASA Technical Reports Server (NTRS)
Alberts, Thomas E.; Xia, Houchun; Chen, Yung
1992-01-01
The effectiveness of constrained viscoelastic layer damping treatment designs is evaluated separately as passive control measures for low frequency joint dominated modes and higher frequency boom flexure dominated modes using a NASTRAN finite element analysis. Passive damping augmentation is proposed which is based on a constrained viscoelastic layer damping treatment applied to the surface of the manipulators's flexible booms. It is pointed out that even the joint compliance dominated modes can be damped to some degree through appropriate design of the treatment.
Moraes, Sandra Lúcia Dantas de; Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Lemos, Cleidiel Aparecido Araujo; Gomes, Jéssica Marcela de Luna; Pellizzer, Eduardo Piza
2018-01-01
The aim of this study was to evaluate the effect of varying the diameter, connection type and loading on stress distribution in the cortical bone for implants with a high crown-implant ratio. Six 3D models were simulated with the InVesalius, Rhinoceros 3D 4.0 and SolidWorks 2011 software programs. Models were composed of bone from the posterior mandibular region; they included an implant of 8.5 mm length, diameter Ø 3.75 mm or Ø 5.00 mm and connection types such as external hexagon (EH), internal hexagon (IH) and Morse taper (MT). Models were processed using the Femap 11.2 and NeiNastran 11.0 programs and by using an axial force of 200 N and oblique force of 100 N. Results were recorded in terms of the maximum principal stress. Oblique loading showed high stress in the cortical bone compared to that shown by axial loading. The results showed that implants with a wide diameter showed more favorable stress distribution in the cortical bone region than regular diameter, regardless of the connection type. Morse taper implants showed better stress distribution compared to other connection types, especially in the oblique loading. Thus, oblique loading showed higher stress concentration in cortical bone tissue when compared with axial loading. Wide diameter implant was favorable for improved stress distribution in the cortical bone region, while Morse taper implants showed lower stress concentration than other connections.
Criteria for representing circular arc and sine wave spar webs by non-curved elements
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
The basic problem of how to simply represent a curved web of a spar in a finite element structural model was addressed. The ratio of flat web to curved web axial deformations and longitudinal rotations were calculated using NASTRAN models. Multiplying factors were developed from these calculations for various web thicknesses. These multiplying factors can be applied directly to the area and moment of inertia inputs of the finite element model. This allows the thermal stress relieving configurations of sine wave and circular arc webs to be simply accounted for in finite element structural models.
Fatigue impact on Mod-1 wind turbine design
NASA Technical Reports Server (NTRS)
Stahle, C. V., Jr.
1978-01-01
Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.
NASA Technical Reports Server (NTRS)
1975-01-01
Preliminary estimates were prepared of the economic benefits to the U.S. economy from secondary applications of NASA technology. Technology is defined as the body of knowledge concerning how society's resources can be combined to yield economic goods and services, and NASA technology represents NASA's contribution to this body of technical knowledge. Secondary applications refer to uses of NASA generated knowledge for purposes other than those primary mission-oriented ones for which the original R&D was done. Case studies in cryogenics, integrated circuits, gas turbines, and NASTRAN are presented.
Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels
NASA Technical Reports Server (NTRS)
Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.
2008-01-01
This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.
NASTRAN User’s Colloquium (12th), Held in Orlando, FLorida on May 7-11, 1984
1984-08-01
Tennessee Eastman Company) 10.K-FINITE ELEMENT PREDICTION OF ACOUSTIC SCATTERING AND RADIATION FROM SUBMERGED ELASTIC STRUCTURES ... ...... .192 by...MCB’Iee) 2 (MRC*Ivv+MRR*O+MRB’ ) (MRC*H(R+MRRIRR+MRBFIBR) (MRCO+MRRO+MRBIee) p + LL(MBC I vv+ MBR *O+MBB*O) (MBCHCR+ MBR *IRR+MBB*HBR) (MBC’O+ MBR *O+MBB*Iee)J I...for the reed would consist of the partition MRR only and would be devoid of MCR and MBR and so would their transposes; i.e., no mass coupling between
Modeling, system identification, and control of ASTREX
NASA Technical Reports Server (NTRS)
Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.
1993-01-01
The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.
A Comparison of the Optimization and Analysis of Doubly Curved Shells Using MSC/NASTRAN and ASTROS
1990-12-01
BMC(7,5)=I.OD+00 CALL BMAT (X1,RI,X2,R2,0.OD+00,B,DL) CALL EMAT(DNU,E,T,G) C C DO BMC*E*B C DO 100 J1=1,7 DO 100 J2=1,5 DO 100 J3=1,5 DO 100 J4=1,6...ELEMENT LENGTH. C SUBROUTINE BMAT (XI,RI,X2,R2,DKSI,B,DL) DOUBLE PRECISION XI,RI,X2,R2,DKSI,B(S,6),DL,R,PHI,CPR,SPR,R, &DKMDKP, DLINV C C EXPLANATION OF
Finite element based N-Port model for preliminary design of multibody systems
NASA Astrophysics Data System (ADS)
Sanfedino, Francesco; Alazard, Daniel; Pommier-Budinger, Valérie; Falcoz, Alexandre; Boquet, Fabrice
2018-02-01
This article presents and validates a general framework to build a linear dynamic Finite Element-based model of large flexible structures for integrated Control/Structure design. An extension of the Two-Input Two-Output Port (TITOP) approach is here developed. The authors had already proposed such framework for simple beam-like structures: each beam was considered as a TITOP sub-system that could be interconnected to another beam thanks to the ports. The present work studies bodies with multiple attaching points by allowing complex interconnections among several sub-structures in tree-like assembly. The TITOP approach is extended to generate NINOP (N-Input N-Output Port) models. A Matlab toolbox is developed integrating beam and bending plate elements. In particular a NINOP formulation of bending plates is proposed to solve analytic two-dimensional problems. The computation of NINOP models using the outputs of a MSC/Nastran modal analysis is also investigated in order to directly use the results provided by a commercial finite element software. The main advantage of this tool is to provide a model of a multibody system under the form of a block diagram with a minimal number of states. This model is easy to operate for preliminary design and control. An illustrative example highlights the potential of the proposed approach: the synthesis of the dynamical model of a spacecraft with two deployable and flexible solar arrays.
Basic research on design analysis methods for rotorcraft vibrations
NASA Technical Reports Server (NTRS)
Hanagud, S.
1991-01-01
The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.
Aeroelastic Tailoring Study of N+2 Low Boom Supersonic Commerical Transport Aircraft
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2015-01-01
The Lockheed Martin N+2 Low - boom Supersonic Commercial Transport (LSCT) aircraft was optimized in this study through the use of a multidisciplinary design optimization tool developed at the National Aeronautics and S pace Administration Armstrong Flight Research Center. A total of 111 design variables we re used in the first optimization run. Total structural weight was the objective function in this optimization run. Design requirements for strength, buckling, and flutter we re selected as constraint functions during the first optimization run. The MSC Nastran code was used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses we re based on ZAERO code, and landing and ground control loads were computed using an in - house code. The w eight penalty to satisfy all the design requirement s during the first optimization run was 31,367 lb, a 9.4% increase from the baseline configuration. The second optimization run was prepared and based on the big-bang big-crunch algorithm. Six composite ply angles for the second and fourth composite layers were selected as discrete design variables for the second optimization run. Composite ply angle changes can't improve the weight configuration of the N+2 LSCT aircraft. However, this second optimization run can create more tolerance for the active and near active strength constraint values for future weight optimization runs.
Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Batista, Victor Eduardo de Souza; Noritomi, Pedro Yoshito; Pellizzer, Duardo Piza
2018-01-01
The purpose of this study was to evaluate different retention systems (cement- or screw-retained) and crown designs (non-splinted or splinted) of fixed implant-supported restorations, in terms of stress distributions in implants/components and bone tissue, by 3-dimensional (3D) finite element analysis. Four 3D models were simulated with the InVesalius, Rhinoceros 3D, and SolidWorks programs. Models were made of type III bone from the posterior maxillary area. Models included three 4.0-mm-diameter Morse taper (MT) implants with different lengths, which supported metal-ceramic crowns. Models were processed by the Femap and NeiNastran programs, using an axial force of 400 N and oblique force of 200 N. Results were visualized as the von Mises stress and maximum principal stress (σmax). Under axial loading, there was no difference in the distribution of stress in implants/components between retention systems and splinted crowns; however, in oblique loading, cemented prostheses showed better stress distribution than screwed prostheses, whereas splinted crowns tended to reduce stress in the implant of the first molar. In the bone tissue cemented prostheses showed better stress distribution in bone tissue than screwed prostheses under axial and oblique loading. The splinted design only had an effect in the screwed prosthesis, with no influence in the cemented prosthesis. Cemented prostheses on MT implants showed more favorable stress distributions in implants/components and bone tissue. Splinting was favorable for stress distribution only for screwed prostheses under oblique loading.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for two programs in the state's postsecondary-level computer information systems technology cluster: computer programming and network support. Presented in the introduction are program descriptions and suggested course…
Study and Analyses on the Structural Performance of a Balance
NASA Technical Reports Server (NTRS)
Karkehabadi, R.; Rhew, R. D.; Hope, D. J.
2004-01-01
Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.