Sample records for natal habitat-biased dispersal

  1. Roosting habitat use and selection by northern spotted owls during natal dispersal

    USGS Publications Warehouse

    Sovern, Stan G.; Forsman, Eric D.; Dugger, Catherine M.; Taylor, Margaret

    2015-01-01

    We studied habitat selection by northern spotted owls (Strix occidentalis caurina) during natal dispersal in Washington State, USA, at both the roost site and landscape scales. We used logistic regression to obtain parameters for an exponential resource selection function based on vegetation attributes in roost and random plots in 76 forest stands that were used for roosting. We used a similar analysis to evaluate selection of landscape habitat attributes based on 301 radio-telemetry relocations and random points within our study area. We found no evidence of within-stand selection for any of the variables examined, but 78% of roosts were in stands with at least some large (>50 cm dbh) trees. At the landscape scale, owls selected for stands with high canopy cover (>70%). Dispersing owls selected vegetation types that were more similar to habitat selected by adult owls than habitat that would result from following guidelines previously proposed to maintain dispersal habitat. Our analysis indicates that juvenile owls select stands for roosting that have greater canopy cover than is recommended in current agency guidelines.

  2. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.

    PubMed

    Camacho, Carlos; Canal, David; Potti, Jaime

    2016-08-08

    Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size

  3. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

    PubMed

    Fletcher, Robert J; Robertson, Ellen P; Wilcox, Rebecca C; Reichert, Brian E; Austin, James D; Kitchens, Wiley M

    2015-09-07

    Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals. © 2015 The Author(s).

  4. The effect of phenotypic traits and external cues on natal dispersal movements.

    PubMed

    Delgado, María del Mar; Penteriani, Vincenzo; Revilla, Eloy; Nams, Vilis O

    2010-05-01

    1. Natal dispersal has the potential to affect most ecological and evolutionary processes. However, despite its importance, this complex ecological process still represents a significant gap in our understanding of animal ecology due to both the lack of empirical data and the intrinsic complexity of dispersal dynamics. 2. By studying natal dispersal of 74 radiotagged juvenile eagle owls Bubo bubo (Linnaeus), in both the wandering and the settlement phases, we empirically addressed the complex interactions by which individual phenotypic traits and external cues jointly shape individual heterogeneity through the different phases of dispersal, both at nightly and weekly temporal scales. 3. Owls in poorer physical conditions travelled shorter total distances during the wandering phase, describing straighter paths and moving slower, especially when crossing heterogeneous habitats. In general, the owls in worse condition started dispersal later and took longer times to find further settlement areas. Net distances were also sex biased, with females settling at further distances. Dispersing individuals did not seem to explore wandering and settlement areas by using a search image of their natal surroundings. Eagle owls showed a heterogeneous pattern of patch occupancy, where few patches were highly visited by different owls whereas the majority were visited by just one individual. During dispersal, the routes followed by owls were an intermediate solution between optimized and randomized ones. Finally, dispersal direction had a marked directionality, largely influenced by dominant winds. These results suggest an asymmetric and anisotropic dispersal pattern, where not only the number of patches but also their functions can affect population viability. 4. The combination of the information coming from the relationships among a large set of factors acting and integrating at different spatial and temporal scales, under the perspective of heterogeneous life histories, are a

  5. Natal dispersal patterns are not associated with inbreeding avoidance in the Seychelles warbler.

    PubMed

    Eikenaar, C; Komdeur, J; Richardson, D S

    2008-07-01

    In this study, we test whether patterns of territory inheritance, social mate choice and female-biased natal dispersal act as inbreeding avoidance mechanisms in the cooperatively breeding Seychelles warbler. Our results show that Seychelles warblers do not reduce the likelihood of inbreeding by avoiding related individuals as mates. The occurrence of natural and experimentally induced territory inheritance did not depend on whether the remaining breeder was a parent of the potential inheritor or an unrelated breeder. Furthermore, dispersing individuals were no less related to their eventual mates than expected given the pool of candidates they could mate with. The female bias in natal dispersal distance observed in the Seychelles warbler does not facilitate inbreeding avoidance because, contrary to our prediction, there was no sex difference in the clustering of related opposite sex breeders around the natal territories of dispersers. As a result, the chance of females mating with relatives was not reduced by their greater dispersal distance compared with that of males.

  6. Application of Large-Scale Parentage Analysis for Investigating Natal Dispersal in Highly Vagile Vertebrates: A Case Study of American Black Bears (Ursus americanus)

    PubMed Central

    Moore, Jennifer A.; Draheim, Hope M.; Etter, Dwayne; Winterstein, Scott; Scribner, Kim T.

    2014-01-01

    Understanding the factors that affect dispersal is a fundamental question in ecology and conservation biology, particularly as populations are faced with increasing anthropogenic impacts. Here we collected georeferenced genetic samples (n = 2,540) from three generations of black bears (Ursus americanus) harvested in a large (47,739 km2), geographically isolated population and used parentage analysis to identify mother-offspring dyads (n = 337). We quantified the effects of sex, age, habitat type and suitability, and local harvest density at the natal and settlement sites on the probability of natal dispersal, and on dispersal distances. Dispersal was male-biased (76% of males dispersed) but a small proportion (21%) of females also dispersed, and female dispersal distances (mean ± SE  =  48.9±7.7 km) were comparable to male dispersal distances (59.0±3.2 km). Dispersal probabilities and dispersal distances were greatest for bears in areas with high habitat suitability and low harvest density. The inverse relationship between dispersal and harvest density in black bears suggests that 1) intensive harvest promotes restricted dispersal, or 2) high black bear population density decreases the propensity to disperse. Multigenerational genetic data collected over large landscape scales can be a powerful means of characterizing dispersal patterns and causal associations with demographic and landscape features in wild populations of elusive and wide-ranging species. PMID:24621593

  7. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  8. Carryover effects from natal habitat type upon competitive ability lead to trait divergence or source-sink dynamics.

    PubMed

    Kristensen, Nadiah Pardede; Johansson, Jacob; Chisholm, Ryan A; Smith, Henrik G; Kokko, Hanna

    2018-06-25

    Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability - a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype-habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. Estimating natal dispersal movement rates of female European ducks with multistate modeling

    USGS Publications Warehouse

    Blums, P.; Nichols, J.D.; Hines, J.E.; Lindberg, M.S.; Mednis, A.

    2003-01-01

    1. We used up to 34 years of capture-recapture data from about 22,100 new releases of day-old female ducklings and multistate modelling to test predictions about the influence of environmental, habitat and management factors on natal dispersal probability of three species of ducks within the Engure Marsh, Latvia. 2. The mean natal dispersal distances were very similar (c . 0?6-0?7 km) for all three species and were on average 2?7 times greater than breeding dispersal distances recorded within the same study system. 3. We were unable to confirm the kinship hypothesis and found no evidence that young first-nesting females nested closer to their relatives (either mother or sister) than to the natal nest. 4. Young female northern shovelers, like adults, moved from small islands to the large island when water level was high and vice versa when water level was low before the construction of elevated small islands. Movement probabilities between the two strata were much higher for young shovelers than adults, suggesting that young birds had not yet developed strong fidelity to the natal site. Movements of young female tufted ducks, unlike those of shovelers, were not dependent on water level fluctuations and reflected substantial flexibility in choice of first nesting sites. 5. Data for young birds supported our earlier conclusion that common pochard nesting habitats in black-headed gull colonies were saturated during the entire study period. Young females, like the two adult age groups, moved into and out of colonies with similar probability. Fidelity probability of female pochards to each stratum increased with age, being the lowest (0?62) for young (DK) females, intermediate (0?78) for yearlings (SY) and the highest (0?84) for adult (ASY) females. 6. Young female tufted ducks, like adults, showed higher probabilities of moving from islands to emergent marshes when water levels were higher both before and after habitat management. The relationship between the spring

  10. Natal and breeding dispersal of northern spotted owls

    USGS Publications Warehouse

    Forsman, E.D.; Anthony, R.G.; Reid, J.A.; Loschl, P.J.; Sovern, S.G.; Taylor, M.; Biswell, B.L.; Ellingson, A.; Meslow, E.C.; Miller, G.S.; Swindle, K.A.; Thrailkill, J.A.; Wagner, F.F.; Seaman, D.E.

    2002-01-01

    banded females, and 22.9 km for radio-marked females. On average, banded males and females settled within 4.2 and 7.0 territory widths of their natal sites, respectively. Maximum and final dispersal distances were largely independent of the number of days that juveniles were tracked. Although statistical tests of dispersal direction based on all owls indicated that direction of natal dispersal was non-random, the mean angular deviations and 95% CI's associated with the samples were large, and r-values (vector length) were small. This lead us to conclude that significant test results were the result of large sample size and were not biologically meaningful. Our samples were not large enough to test whether dispersal direction from individual territories was random. In the sample of radio-marked owls, 22% of males and 44% of females were paired at 1 year of age, but only 1.5% of males and 1.6% of females were actually breeding at 1 year of age. At 2 years of age, 68% of males and 77% of females were paired, but only 5.4% of males and 2.6% of females were breeding. In contrast to the radio-marked owls, most juveniles that were banded and relocated at 1 or 2 years of age were paired, although few were breeding. Although recruitment into the territorial population typically occurred when owls were 1-5 years old, 9% of banded juveniles were not recaptured until they were > 5 years old. We suspect that our estimates of age at recruitment of banded owls are biased high because of the likelihood that some individuals were not recaptured in the first year that they entered the territorial population. A minimum of 6% of the banded, non-juvenile owls on our demographic study areas changed territories each year (breeding dispersal). The likelihood of breeding dispersal was higher for females, young owls, owls that did not have a mate in the previous year, and owls that lost their mate from the previous year through death or divorce. Mean and median distances dispersed by adults were

  11. Social factors influencing natal dispersal in male white-faced capuchins (Cebus capucinus).

    PubMed

    Jack, Katharine M; Sheller, Claire; Fedigan, Linda M

    2012-04-01

    White-faced capuchin males disperse from their natal group at around 4.5 years of age, but there is much variation in dispersal timing: our youngest confirmed disperser was 19 months and the oldest 11 years old. In this study, we investigate possible factors influencing dispersal decisions in this species. Between 1983 and 2010, 64 males were born into three study groups in Santa Rosa National Park, Area de Conservación Guanacaste, and Costa Rica. As of August 2010, 21 died or were presumed dead (<14 months), 13 remained natal residents, and 30 were presumed dispersers. We used backward logistic regression to identify proximate factors that predict the occurrence of male natal dispersal. The occurrence of a takeover (significant positive association) and group size (nonsignificant negative association) were included in the model. Male age, number of maternal brothers, and number of adult males were not significant predictors of natal dispersal. The resultant model correctly classified 97% of dispersed and 89% of resident natal males, for an overall success rate of 95%. The occurrence of a group takeover was the strongest predictor of male dispersal, with natal males being 18.7 times more likely to disperse in the context of a group takeover than during peaceful times. A linear regression model showed that the tenure length of a male's probable father influences the age of natal dispersal, explaining 15% of the observed variation in age. However, when our oldest disperser was removed (an outlier) this effect disappeared. Collectively, these results indicate that group instability, as evidenced by the occurrence of a takeover, shorter tenure length of a natal male's father, and smaller group size, triggers natal dispersal in this species while the converse leads to a delay. These data add to our growing evidence of the enormous impact that takeovers have on the behavioral ecology of this species. © 2011 Wiley Periodicals, Inc.

  12. Chapter 7: Breeding and Natal Dispersal, Nest Habitat Loss and Implications for Marbled Murrelet Populations

    Treesearch

    George J. Divoky; Michael Horton

    1995-01-01

    Evidence of breeding and natal dispersal in alcids is typically provided by the resightings of banded birds, the establishment of new colonies, and/or evidence of immigration to established colonies. The difficulties in banding, observing, and censusing Marbled Murrelets at nesting areas preclude using any of these methods for this species. Based on the limited number...

  13. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest.

    PubMed

    Fattebert, Julien; Balme, Guy; Dickerson, Tristan; Slotow, Rob; Hunter, Luke

    2015-01-01

    Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the 'mate competition', 'resource competition' and 'resident fitness' hypotheses predict density-dependent dispersal patterns, while the 'inbreeding avoidance' hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among

  14. Density-Dependent Natal Dispersal Patterns in a Leopard Population Recovering from Over-Harvest

    PubMed Central

    Fattebert, Julien; Balme, Guy; Dickerson, Tristan; Slotow, Rob; Hunter, Luke

    2015-01-01

    Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved

  15. Prisoners in Their Habitat? Generalist Dispersal by Habitat Specialists: A Case Study in Southern Water Vole (Arvicola sapidus)

    PubMed Central

    Centeno-Cuadros, Alejandro; Román, Jacinto; Delibes, Miguel; Godoy, José Antonio

    2011-01-01

    Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus), a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km2) and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142) for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47) from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10%) between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats. PMID:21931775

  16. Natal and breeding philopatry in a black brant, Branta bernicla nigricans, metapopulation

    USGS Publications Warehouse

    Lindberg, Mark S.; Sedinger, James S.; Derksen, Dirk V.; Rockwell, Robert F.

    1998-01-01

    We estimated natal and breeding philopatry and dispersal probabilities for a metapopulation of Black Brant (Branta bernicla nigricans) based on observations of marked birds at six breeding colonies in Alaska, 1986–1994. Both adult females and males exhibited high (>0.90) probability of philopatry to breeding colonies. Probability of natal philopatry was significantly higher for females than males. Natal dispersal of males was recorded between every pair of colonies, whereas natal dispersal of females was observed between only half of the colony pairs. We suggest that female-biased philopatry was the result of timing of pair formation and characteristics of the mating system of brant, rather than factors related to inbreeding avoidance or optimal discrepancy. Probability of natal philopatry of females increased with age but declined with year of banding. Age-related increase in natal philopatry was positively related to higher breeding probability of older females. Declines in natal philopatry with year of banding corresponded negatively to a period of increasing population density; therefore, local population density may influence the probability of nonbreeding and gene flow among colonies.

  17. The ties that bind: Maternal kin bias in a multilevel primate society despite natal dispersal by both sexes.

    PubMed

    Städele, Veronika; Pines, Mathew; Swedell, Larissa; Vigilant, Linda

    2016-07-01

    In many social animals, individuals derive fitness benefits from close social bonds, which are often formed among kin of the philopatric sex. Hamadryas baboons, however, exhibit a hierarchical, multilevel social system where both sexes disperse from their natal one-male-unit (OMU). Although this would seem to hinder maintenance of kin ties, both sexes appear largely philopatric at the higher order band and clan levels, possibly allowing for bonds with same sex kin by both males and females. In order to investigate the possibility of kin bonds in hamadryas baboons, we identified kin dyads in a band without known pedigree information using a large panel of genetic markers: 1 Y-linked, 4 X-linked, and 23 autosomal microsatellites and part of the mitochondrial hypervariable region I. With these data, we performed a kinship analysis while accounting for misclassification rates through simulations and determined kinship among two types of dyads: leader and follower males and female dyads within OMUs. Leader and follower males were maternal relatives more often than expected by chance, suggesting that kinship plays a role in the formation of these relationships. Moreover, maternal female relatives were found in the same OMU more often than expected by chance, indicating that females may be motivated to maintain post-dispersal contact with maternal female kin. Our results suggest that hamadryas baboons can recognize maternal kin and that kin selection has contributed to shaping their complex social system. This implies that an ancestral maternal kin bias has been retained in hamadryas society. Am. J. Primatol. 78:731-744, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Dispersal and habitat use by post-fledging juvenile snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Erwin, R.M.; Haig, J.G.; Stotts, D.B.; Hatfield, J.S.

    1996-01-01

    We studied the postfledging dispersal movements and habitat use of juvenile Snowy Egrets (Egretta thula) (SNEG) and Black-crowned Night-Herons (Nycticorax nycticorax) (BCNH) in coastal Virginia using a dye (picric acid) and radiotelemetry. Results from monitoring radiomarked birds revealed significant differences both years between species, with SNEGs dispersing more widely than BCNHs. BCNH juveniles usually remained south of Delaware, but SNEGs often moved into Delaware and southern New Jersey. The maximum dispersal distance found for a SNEG was ca 340 km north of the natal colony. Temporal patterns of movement followed logistic relationships, with rapid initial movements, but relatively few movements after about 23 weeks for most birds. Cumulative distances moved by juvenile SNEGs during AugustSeptember differed from 1992 to 1993. No such year difference was found for BCNHs. Compared to SNEGs, BCNHs used man-made impoundments relatively more often than natural wetlands; however no quantitative assessment of habitat preferences could be made.

  19. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change.

    PubMed

    Garrard, Georgia E; McCarthy, Michael A; Vesk, Peter A; Radford, James Q; Bennett, Andrew F

    2012-01-01

    1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain

  20. Good reasons to leave home: proximate dispersal cues in a social spider.

    PubMed

    Berger-Tal, Reut; Berner-Aharon, Na'ama; Aharon, Shlomi; Tuni, Cristina; Lubin, Yael

    2016-07-01

    Natal dispersal is a successful tactic under a range of conditions in spite of significant costs. Habitat quality is a frequent proximate cause of dispersal, and studies have shown that dispersal increases both when natal habitat quality is good or poor. In social species kin competition, favouring dispersal may be balanced by the benefits of group living, favouring philopatry. We investigated the effect of changes in the local environment on natal dispersal of adult females in a social spider species, Stegodyphus dumicola (Araneae, Eresidae), with a flexible breeding system, where females can breed either within the colony or individually following dispersal. We manipulated foraging opportunities in colonies by either removing the capture webs or by adding prey and recorded the number of dispersing females around each focal colony, and their survival and reproductive success. We predicted that increasing kin competition should increase dispersal of less-competitive individuals, while reducing competition could cause either less dispersal (less competition) or more dispersal (a cue indicating better chances to establish a new colony). Dispersal occurred earlier and at a higher rate in both food-augmented and web-removal colonies than in control colonies. Fewer dispersing females survived and reproduced in the web-removal group than in the control or food-augmented groups. The results support our prediction that worsening conditions in web-removal colonies favour dispersal, whereby increased kin competition and increased energy expenditure on web renewal cause females to leave the natal colony. By contrast, prey augmentation may serve as a habitat-quality cue; when the surrounding habitat is expected to be of high quality, females assess the potential benefit of establishing a new colony to be greater than the costs of dispersal. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  1. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    USGS Publications Warehouse

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.

  2. BREEDING AND NATAL DISPERSAL IN THE PUERTO RICAN VIREO

    Treesearch

    BETHANY L. WOODWORTH; JOHN FAABORG; WAYNE J. ARENDT

    1998-01-01

    Information on dispersali s critical for understandingt he population dynamicso f birds. We estimated breeding and natal dispersal in two studies of a population of the Puerto Rican Vireo (Vireo latimeri) that is in danger of local extirpation due to low reproductive success from 7.1-29% of adult males and 12.5 - 25% of adult females changed territories between...

  3. Winter habitat quality but not long-distance dispersal influences apparent reproductive success in a migratory bird.

    PubMed

    Rushing, Clark S; Marra, Peter P; Dudash, Michele R

    2016-05-01

    Long-distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long-distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long-distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long-distance dispersers relative to non-dispersing individuals. In contrast, carry-over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high-quality winter territories were associated with higher mating and nesting success. These results suggest that although long-distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat.

  4. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics.

    PubMed

    Solmsen, N; Johannesen, J; Schradin, C

    2011-04-01

    Sex-biased dispersal is observed in many taxa, but few studies have compared sex-biased dispersal among and within populations. We addressed the magnitude and habitat dependency of sex-biased dispersal in social African striped mice by separating group-related from population-related genetic variance to understand the contribution of each sex to deme structure. As dispersal over unoccupied habitat is likely to be more costly than dispersal within a population, we predicted that individuals leaving the natal population have a lower body condition, being inferior to heavier territorial individuals. Fine-scale genetic structure was detected in both sexes. Female relatedness decreased continuously from R = 0.21 at 25 m to zero at 500 m. Maximum male relatedness R = 0.05 was constant at distances between 25 and 75 m, becoming zero at 100 m. Genetic variance (F(ST) ) among seven locations was significantly higher in females than in males, while inbreeding estimates (F(IS) ) were significantly higher in males than in females. Assignment tests estimated significantly more migrants among males, while Bayesian clustering estimated only a single genetic unit cluster for males among the seven locations. The mean body mass of migrant males (44 g) was significantly lower than for males that remained resident and thus dispersed within their sub-population (48 g). Combined, the results showed habitat-independent male-biased dispersal and high female philopatry, and suggested that body condition was more important than kinship in male dispersal decisions. We suggest that locally inferior males are important for gene flow between sub-populations. Thus, males might follow alternative dispersal tactics. © 2011 Blackwell Publishing Ltd.

  5. Juvenile movement and natal dispersal on northern goshawks in Arizona

    Treesearch

    J. David Wiens; Richard T. Reynolds; Barry R. Noon

    2006-01-01

    We investigated the departure, transient movement, and local settlement stages of natal dispersal in a population of Northern Goshawks (Accipiter gentilis) on the Kaibab Plateau of northern Arizona. The study included 614 color-banded juveniles produced at 555 nests during 1991-2003, 89 of which were radio-marked during 1998-2001. Radio-marked...

  6. Negative phenotypic and genetic correlation between natal dispersal propensity and nest-defence behaviour in a wild bird.

    PubMed

    Bize, Pierre; Daniel, Grégory; Viblanc, Vincent A; Martin, Julien G A; Doligez, Blandine

    2017-07-01

    Natural selection is expected to favour the integration of dispersal and phenotypic traits allowing individuals to reduce dispersal costs. Accordingly, associations have been found between dispersal and personality traits such as aggressiveness and exploration, which may facilitate settlement in a novel environment. However, the determinism of these associations has only rarely been explored. Here, we highlight the functional integration of individual personality in nest-defence behaviour and natal dispersal propensity in a long-lived colonial bird, the Alpine swift ( Apus melba ), providing insights into genetic constraints shaping the coevolution of these two traits. We report a negative association between natal dispersal and nest-defence (i.e. risk taking) behaviour at both the phenotypic and genetic level. This negative association may result from direct selection if risk-averseness benefits natal dispersers by reducing the costs of settlement in an unfamiliar environment, or from indirect selection if individuals with lower levels of nest defence also show lower levels of aggressiveness, reducing costs of settlement among unfamiliar neighbours in a colony. In both cases, these results highlight that risk taking is an important behavioural trait to consider in the study of dispersal evolution. © 2017 The Author(s).

  7. Phylogeography and Sex-Biased Dispersal across Riverine Manatee Populations (Trichechus inunguis and Trichechus manatus) in South America

    PubMed Central

    Satizábal, Paula; Mignucci-Giannoni, Antonio A.; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M.; García-Dávila, Carmen R.; Trujillo, Fernando; Caballero, Susana J.

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments. PMID:23285054

  8. Phylogeography and sex-biased dispersal across riverine manatee populations (Trichechus inunguis and Trichechus manatus) in South America.

    PubMed

    Satizábal, Paula; Mignucci-Giannoni, Antonio A; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M; García-Dávila, Carmen R; Trujillo, Fernando; Caballero, Susana J

    2012-01-01

    Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.

  9. Dispersal of male and female Culex quinquefasciatus and Aedes albopictus mosquitoes using stable isotope enrichment

    PubMed Central

    Roark, E. Brendan; Hamer, Gabriel L.

    2017-01-01

    The dispersal patterns of mosquito vectors are important drivers of vector-borne infectious disease dynamics and understanding movement patterns is pivotal to devise successful intervention strategies. Here, we investigate the dispersal patterns of two globally important mosquito vectors, Aedes albopictus and Culex quinquefasciatus, by marking naturally-occurring larvae with stable isotopes (13C or 15N). Marked individuals were captured with 32 CDC light trap, 32 gravid trap, and 16 BG Sentinel at different locations within two-kilometer radii of six larval habitats enriched with either 13C or 15N. In total, 720 trap nights from July to August 2013 yielded a total of 32,140 Cx. quinquefasciatus and 7,722 Ae. albopictus. Overall, 69 marked female mosquitoes and 24 marked male mosquitoes were captured throughout the study period. The distance that Cx. quinquefasciatus females traveled differed for host-seeking and oviposition-seeking traps, with females seeking oviposition sites traveling further than those seeking hosts. Our analysis suggests that 41% of Cx. quinquefasciatus females that were host-seeking occurred 1–2 kilometer from their respective natal site, while 59% remained within a kilometer of their natal site. In contrast, 59% of Cx. quinquefasciatus females that were seeking oviposition sites occurred between 1–2 kilometer away from their larval habitat, while 15% occurred > 2 kilometer away from their natal site. Our analysis estimated that approximately 100% of Ae. albopictus females remained within 1 km of their respective natal site, with 79% occurring within 250m. In addition, we found that male Ae. albopictus dispersed farther than females, suggesting male-biased dispersal in this Ae. albopictus population. This study provides important insights on the dispersal patterns of two globally relevant vector species, and will be important in planning next generation vector control strategies that mitigate mosquito-borne disease through sterile insect

  10. Wherever I may roam: social viscosity and kin affiliation in a wild population despite natal dispersal

    PubMed Central

    Hinde, Camilla A.; Garroway, Colin J.; Sheldon, Ben C.

    2016-01-01

    Dispersal affects the social contexts individuals experience by redistributing individuals in space, and the nature of social interactions can have important fitness consequences. During the vagrancy stage of natal dispersal, after an individual has left its natal site and before it has settled to breed, social affiliations might be predicted by opportunities to associate (e.g., distance in space and time between natal points of origin) or kin preferences. We investigated the social structure of a population of juvenile great tits (Parus major) and asked whether social affiliations during vagrancy were predicted by 1) the distance between natal nest-boxes, 2) synchrony in fledge dates, and 3) accounting for spatial and temporal predictors, whether siblings tended to stay together. We show that association strength was affected predominantly by spatial proximity at fledging and, to a lesser extent, temporal proximity in birth dates. Independently of spatial and temporal effects, sibling pairs associated more often than expected by chance. Our results suggest that the structure of the winter population is shaped primarily by limits to dispersal through incomplete population mixing. In addition, our results reveal kin structure, and hence the scope for fitness-related interactions between particular classes of kin. Both spatial-mediated and socially mediated population structuring can have implications for our understanding of the evolution of sociality. PMID:27418755

  11. Natal location influences movement and survival of a spatially structured population of snail kites

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Hines, J.E.

    2007-01-01

    Despite the accepted importance of the need to better understand how natal location affects movement decisions and survival of animals, robust estimates of movement and survival in relation to the natal location are lacking. Our study focuses on movement and survival related to the natal location of snail kites in Florida and shows that kites, in addition to exhibiting a high level of site tenacity to breeding regions, also exhibit particular attraction to their natal region. More specifically, we found that estimates of movement from post-dispersal regions were greater toward natal regions than toward non-natal regions (differences were significant for three of four regions). We also found that estimates of natal philopatry were greater than estimates of philopatry to non-natal regions (differences were statistically significant for two of four regions). A previous study indicated an effect of natal region on juvenile survival; in this study, we show an effect of natal region on adult survival. Estimates of adult survival varied among kites that were hatched in different regions. Adults experienced mortality rates characteristic of the region occupied at the time when survival was measured, but because there is a greater probability that kites will return to their natal region than to any other regions, their survival was ultimately influenced by their natal region. In most years, kites hatched in southern regions had greater survival probabilities than did kites hatched in northern regions. However, during a multiregional drought, one of the northern regions served as a refuge from drought, and during this perturbation, survival was greater for birds hatched in the north. Our study shows that natal location may be important in influencing the ecological dynamics of kites but also highlights the importance of considering temporal variation in habitat conditions of spatially structured systems when attempting to evaluate the conservation value of habitats.

  12. Natal dispersal in the cooperatively breeding Acorn Woodpecker

    USGS Publications Warehouse

    Koenig, Walter D.; Hooge, P.N.; Stanback, M.T.; Haydock, J.

    2000-01-01

    Dispersal data are inevitably biased toward short-distance events, often highly so. We illustrate this problem using our long-term study of Acorn Woodpeckers (Melanerpes formicivorus) in central coastal California. Estimating the proportion of birds disappearing from the study area and correcting for detectability within the maximum observable distance are the first steps toward achieving a realistic estimate of dispersal distributions. Unfortunately, there is generally no objective way to determine the fates of birds not accounted for by these procedures, much less estimating the distances they may have moved. Estimated mean and root-mean-square dispersal distances range from 0.22-2.90 km for males and 0.53-9.57 km for females depending on what assumptions and corrections are made. Three field methods used to help correct for bias beyond the limits of normal study areas include surveying alternative study sites, expanding the study site (super study sites), and radio-tracking dispersers within a population. All of these methods have their limitations or can only be used in special cases. New technologies may help alleviate this problem in the near future. Until then, we urge caution in interpreting observed dispersal data from all but the most isolated of avian populations.

  13. Proximate causes of natal dispersal in female yellow-bellied marmots, Marmota flaviventris.

    PubMed

    Armitage, Kenneth B; Van Vuren, Dirk H; Ozgul, Arpat; Oli, Madan K

    2011-01-01

    We investigated factors influencing natal dispersal in 231 female yearling yellow-bellied marmots (Marmota flaviventris) using comprehensive analysis of 10 years (1983-1993) of radiotelemetry and 37 years (1963-1999) of capture-mark-recapture data. Only individuals whose dispersal status was verified, primarily by radiotelemetry, were considered. Univariate analyses revealed that six of the 24 variables we studied significantly influenced dispersal: dispersal was less likely when the mother was present, amicable behavior with the mother and play behavior were more frequent, and spatial overlap was greater with the mother, with matriline females, and with other yearling females. Using both univariate and multivariate analyses, we tested several hypotheses proposed as proximate causes of dispersal. We rejected inbreeding avoidance, population density, body size, social intolerance, and kin competition as factors influencing dispersal. Instead, our results indicate that kin cooperation, expressed via cohesive behaviors and with a focus on the mother, influenced dispersal by promoting philopatry. Kin cooperation may be an underappreciated factor influencing dispersal in both social and nonsocial species.

  14. The link between behavioural type and natal dispersal propensity reveals a dispersal syndrome in a large herbivore

    PubMed Central

    Debeffe, L.; Morellet, N.; Bonnot, N.; Gaillard, J. M.; Cargnelutti, B.; Verheyden-Tixier, H.; Vanpé, C.; Coulon, A.; Clobert, J.; Bon, R.; Hewison, A. J. M.

    2014-01-01

    When individuals disperse, they modify the physical and social composition of their reproductive environment, potentially impacting their fitness. The choice an individual makes between dispersal and philopatry is thus critical, hence a better understanding of the mechanisms involved in the decision to leave the natal area is crucial. We explored how combinations of behavioural (exploration, mobility, activity and stress response) and morphological (body mass) traits measured prior to dispersal were linked to the subsequent dispersal decision in 77 roe deer Capreolus capreolus fawns. Using an unusually detailed multi-trait approach, we identified two independent behavioural continuums related to dispersal. First, a continuum of energetic expenditure contrasted individuals of low mobility, low variability in head activity and low body temperature with those that displayed opposite traits. Second, a continuum of neophobia contrasted individuals that explored more prior to dispersal and were more tolerant of capture with those that displayed opposite traits. While accounting for possible confounding effects of condition-dependence (body mass), we showed that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species. PMID:25030983

  15. Sex-biased dispersal promotes adaptive parental effects

    PubMed Central

    2010-01-01

    Background In heterogeneous environments, sex-biased dispersal could lead to environmental adaptive parental effects, with offspring selected to perform in the same way as the parent dispersing least, because this parent is more likely to be locally adapted. We investigate this hypothesis by simulating varying levels of sex-biased dispersal in a patchy environment. The relative advantage of a strategy involving pure maternal (or paternal) inheritance is then compared with a strategy involving classical biparental inheritance in plants and in animals. Results We find that the advantage of the uniparental strategy over the biparental strategy is maximal when dispersal is more strongly sex-biased and when dispersal distances of the least mobile sex are much lower than the size of the environmental patches. In plants, only maternal effects can be selected for, in contrast to animals where the evolution of either paternal or maternal effects can be favoured. Moreover, the conditions for environmental adaptive maternal effects to be selected for are more easily fulfilled in plants than in animals. Conclusions The study suggests that sex-biased dispersal can help predict the direction and magnitude of environmental adaptive parental effects. However, this depends on the scale of dispersal relative to that of the environment and on the existence of appropriate mechanisms of transmission of environmentally induced traits. PMID:20637098

  16. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  17. Biased dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket.

    PubMed

    Heidinger, Ina Monika Margret; Hein, Silke; Feldhaar, Heike; Poethke, Hans-Joachim

    2018-04-01

    In the highly fragmented landscape of central Europe, dispersal is of particular importance as it determines the long-term survival of animal populations. Dispersal not only secures the recolonization of patches where populations went extinct, it may also rescue small populations and thus prevent local extinction events. As dispersal involves different individual fitness costs, the decision to disperse should not be random but context-dependent and often will be biased toward a certain group of individuals (e.g., sex- and wing morph-biased dispersal). Although biased dispersal has far-reaching consequences for animal populations, immediate studies of sex- and wing morph-biased dispersal in orthopterans are very rare. Here, we used a combined approach of morphological and genetic analyses to investigate biased dispersal of Metrioptera bicolor, a wing dimorphic bush-cricket. Our results clearly show wing morph-biased dispersal for both sexes of M. bicolor. In addition, we found sex-biased dispersal for macropterous individuals, but not for micropters. Both, morphological and genetic data, favor macropterous males as dispersal unit of this bush-cricket species. To get an idea of the flight ability of M. bicolor, we compared our morphological data with that of Locusta migratoria and Schistocerca gregaria, which are very good flyers. Based on our morphological data, we suggest a good flight ability for macropters of M. bicolor, although flying individuals of this species are seldom observed. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. Dispersal and survival of a polygynandrous passerine

    USGS Publications Warehouse

    Craig, Heather R.; Kendall, Steve J.; Wild, Teri C.; Powell, Abby N.

    2015-01-01

    Although sex biases in survival and dispersal are thought to be linked to avian mating systems, little is known about these demographic patterns in less common mating strategies such as polygynandry. We investigated breeding-site fidelity, natal philopatry, and apparent survival of the polygynandrous Smith's Longspur (Calcarius pictus) over a 7-yr period at 2 areas in Alaska's Brooks Range. We used capture–recapture histories of 243 color-banded adults and 431 juveniles to estimate annual survival and determined dispersal patterns from 34 adults that were found breeding within the study areas over multiple years. Most adults (88%) returned to nest in the same breeding neighborhood as in previous years; mean dispersal distance was 300.9 ± 74.2 m and did not differ between sexes. Juveniles exhibited low natal philopatry; only 4% of banded hatch-year birds were resighted as adults during subsequent years. Those that did return dispersed, on average, 1,674.4 ± 465.8 m from their natal nests (n = 6). Model-averaged survival estimates indicated that annual survival of adult females (50–58%) was only slightly lower than that of males (60–63%); juvenile survival was 41% but was paired with a low (13%) encounter probability. We attribute the lack of sex bias in adult dispersal to this species' polygynandrous mating strategy. Within this system, there are multiple mates within a breeding neighborhood. We argue that natural selection may favor females that remain on the same, familiar breeding site, because they do not have to disperse to a new area to find a suitable mate. Dispersal among breeding populations most likely occurs by juveniles returning as adults. Our findings support hypotheses that suggest a relationship between dispersal and mating strategy and provide some of the first insight into the demographic patterns of a polygynandrous passerine.

  19. Recovery distances of nestling Bald Eagles banded in Florida and implications for natal dispersal and philopatry

    USGS Publications Warehouse

    Wood, Petra Bohall

    2009-01-01

    I used band recovery data to examine distances between banding and recovery locations for 154 nestling Florida Bald Eagles and discuss the implications for understanding natal dispersal and philopatry in this species. Band recoveries occurred in 23 U.S. states and five Canadian provinces between 1931–2005. Recovery distance from the natal nest averaged longer for the youngest age classes (ANOVA: F  =  3.59; df  =  5, 153; P  =  0.005), for individuals banded in earlier decades (F  =  1.94; df  =  5, 153; P  =  0.093), and for the months of May through October (F  =  3.10; df  =  12, 153;P < 0.001). Of 35 individuals classed as mature (≥3.9 yr old when recovered; range 3.9–36.5 yr), 31 were located within Florida, which suggested a strong degree of philopatry to the natal state. Among 21 mature eagles of known sex with known banding and recovery locations in Florida, females, particularly younger birds, had longer recovery distances (N  =  9, mean  =  93 km, SE  =  22.4) than did males (N  =  12, mean  =  31 km, SE  =  5.3; t  =  2.67, df  =  19, P  =  0.026). The records examined here suggest a high degree of philopatry and relatively short natal dispersal distances, particularly in male Bald Eagles.

  20. Natal dispersal and genetic structure in a population of the European wild rabbit (Oryctolagus cuniculus).

    PubMed

    Webb, N J; Ibrahim, K M; Bell, D J; Hewitt, G M

    1995-04-01

    A combination of behavioural observation, DNA fingerprinting, and allozyme analysis were used to examine natal dispersal in a wild rabbit population. Rabbits lived in territorial, warren based social groups. Over a 6-year period, significantly more male than female rabbits moved to a new social group before the start of their first breeding season. This pattern of female philopatry and male dispersal was reflected in the genetic structure of the population. DNA fingerprint band-sharing coefficients were significantly higher for females within the same group than for females between groups, while this was not the case for males. Wright's inbreeding coefficients were calculated from fingerprint band-sharing values and compared to those obtained from allozyme data. There was little correlation between the relative magnitudes of the F-statistics calculated using the two techniques for comparisons between different social groups. In contrast, two alternative methods for calculating FST from DNA fingerprints gave reasonably concordant values although those based on band-sharing were consistently lower than those calculated by an 'allele' frequency approach. A negative FIS value was obtained from allozyme data. Such excess heterozygosity within social groups is expected even under random mating given the social structure and sex-biased dispersal but it is argued that the possibility of behavioural avoidance of inbreeding should not be discounted in this species. Estimates of genetic differentiation obtained from allozyme and DNA fingerprint data agreed closely with reported estimates for the yellow-bellied marmot, a species with a very similar social structure to the European rabbit.

  1. Multiple proximate and ultimate causes of natal dispersal in white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.

    2008-01-01

    Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.

  2. Selection and sex-biased dispersal in a coastal shark: the influence of philopatry on adaptive variation.

    PubMed

    Portnoy, D S; Puritz, J B; Hollenbeck, C M; Gelsleichter, J; Chapman, D; Gold, J R

    2015-12-01

    Sex-biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear-encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male-mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude-associated selection. Our results indicate that in species with sex-biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments. © 2015 John Wiley & Sons Ltd.

  3. Fine-scale population genetic structure and sex-biased dispersal in the smooth snake (Coronella austriaca) in southern England.

    PubMed

    Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J

    2011-09-01

    Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.

  4. Effects of habitat availability on dispersion of a stream cyprinid

    USGS Publications Warehouse

    Freeman, Mary C.; Grossman, G.D.

    1993-01-01

    We analyzed temporal changes in the dispersion of the rosyside dace,Clinostomus funduloides, (family Cyprinidae) in a headwater stream, to assess the role of habitat availability in promoting fish aggregation. The dace foraged alone and in groups of up to about 25 individuals, and dispersion varied significantly among monthly censuses conducted from May through December. In two of three study pools, dace aggregated during July, October and/or December, but spread out during other months, especially during September when dispersion did not differ significantly from random. Dispersion was not significantly correlated with the total amount of suitable habitat available to foraging dace, but during summer, corresponded to the availability of depositional areas adjacent to rapid currents. Foragers aggregated in eddies or depositional areas during high stream discharge in July, and shifted out of depositional areas when current velocities declined from July to September. During late autumn, however, aggregations formed independently of changes in habitat conditions, and dace dispersion did not vary significantly among months in a third pool. The study suggests that dace dispersion cannot be predicted from the overall availability of suitable habitat as estimated from point measurements of depth and velocity; both the occurrence of a specific habitat feature (i.e., eddies adjacent to high velocity currents) and seasonal differences in behavior more strongly influenced the spatial distribution of foragers.

  5. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Microsatellite DNA Suggests that Group Size Affects Sex-biased Dispersal Patterns in Red Colobus Monkeys

    PubMed Central

    Miyamoto, Michael M.; Allen, Julie M.; Gogarten, Jan F.; Chapman, Colin A.

    2013-01-01

    Dispersal is a major life history trait of social organisms influencing the behavioral and genetic structure of their groups. Unfortunately, primate dispersal is difficult to quantify, because of the rarity of these events and our inability to ascertain if individuals dispersed or died when they disappear. Socioecological models have been partially developed to understand the ecological causes of different dispersal systems and their social consequences. However, these models have yielded confusing results when applied to folivores. The folivorous red colobus monkey (Procolobus rufomitratus) in Kibale National Park, Uganda is thought to exhibit female-biased dispersal, although both sexes have been observed to disperse and there remains considerable debate over the selective pressures favoring the transfers of males and females and the causes of variation in the proportion of each sex to leave the natal group. We circumvent this problem by using microsatellite DNA data to investigate the prediction that female dispersal will be more frequent in larger groups as compared to smaller ones. The rationale for this prediction is that red colobus exhibit increased within-group competition in bigger groups, which should favor higher female dispersal rates and ultimately lower female relatedness. Genetic data from two unequally sized neighboring groups of red colobus demonstrate increased female relatedness within the smaller group, suggesting females are less likely to disperse when there is less within-group competition. We suggest that the dispersal system is mediated to some degree by scramble competition and group size. Since red colobus group sizes have increased throughout Kibale by over 50% in the last decade, these changes may have major implications for the genetic structure and ultimately the population viability of this endangered primate. PMID:23307485

  7. How do dispersal costs and habitat selection influence realized population connectivity?

    PubMed

    Burgess, Scott C; Treml, Eric A; Marshall, Dustin J

    2012-06-01

    Despite the importance of dispersal for population connectivity, dispersal is often costly to the individual. A major impediment to understanding connectivity has been a lack of data combining the movement of individuals and their survival to reproduction in the new habitat (realized connectivity). Although mortality often occurs during dispersal (an immediate cost), in many organisms costs are paid after dispersal (deferred costs). It is unclear how such deferred costs influence the mismatch between dispersal and realized connectivity. Through a series of experiments in the field and laboratory, we estimated both direct and indirect deferred costs in a marine bryozoan (Bugula neritina). We then used the empirical data to parameterize a theoretical model in order to formalize predictions about how dispersal costs influence realized connectivity. Individuals were more likely to colonize poor-quality habitat after prolonged dispersal durations. Individuals that colonized poor-quality habitat performed poorly after colonization because of some property of the habitat (an indirect deferred cost) rather than from prolonged dispersal per se (a direct deferred cost). Our theoretical model predicted that indirect deferred costs could result in nonlinear mismatches between spatial patterns of potential and realized connectivity. The deferred costs of dispersal are likely to be crucial for determining how well patterns of dispersal reflect realized connectivity. Ignoring these deferred costs could lead to inaccurate predictions of spatial population dynamics.

  8. Within- and between-year dispersal of American Avocets among multiple western Great Basin wetlands

    USGS Publications Warehouse

    Plissner, Jonathan H.; Haig, Susan M.; Oring, L.W.

    1999-01-01

    Connectivity of discrete habitat patches may be described in terms of the movements of individual organisms among such patches. To examine connectivity of widely dispersed alkali lake systems, we recorded post-breeding and subsequent breeding locations of color-banded American Avocets (Recurvirostra americana) in the western U.S. Great Basin, from 1995-1997. Among individuals observed during the post-breeding/premigratory season, over half of the 188 breeding adults were observed at lakes other than their breeding locations, whereas 70% of 125 post-fledged young were observed only at their natal lake systems. Of 46 breeding adults observed in consecutive years, only eight (17%) dispersed between different lake systems. Only 8% of chicks were observed after their first year, and only 1.3% returned to the natal area in subsequent breeding seasons. Adult and recently fledged birds from the southernmost breeding site were regularly observed in post-breeding aggregations at lakes several hundred kilometers to the north, suggesting seasonal differences in habitat quality at the lake systems studied. These results indicate the importance of maintaining habitat for post-breeding movements.

  9. Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine

    USGS Publications Warehouse

    Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.

    1996-01-01

    We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.

  10. Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis

    PubMed Central

    Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.

    2013-01-01

    The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957

  11. Using Genealogical Mapping and Genetic Neighborhood Sizes to Quantify Dispersal Distances in the Neotropical Passerine, the Black-Capped Vireo

    PubMed Central

    Athrey, Giridhar; Lance, Richard F.; Leberg, Paul L.

    2015-01-01

    Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species. PMID:26461257

  12. Quantile regression reveals hidden bias and uncertainty in habitat models

    Treesearch

    Brian S. Cade; Barry R. Noon; Curtis H. Flather

    2005-01-01

    We simulated the effects of missing information on statistical distributions of animal response that covaried with measured predictors of habitat to evaluate the utility and performance of quantile regression for providing more useful intervals of uncertainty in habitat relationships. These procedures were evaulated for conditions in which heterogeneity and hidden bias...

  13. Dispersal Timing: Emigration of Insects Living in Patchy Environments.

    PubMed

    Lakovic, Milica; Poethke, Hans-Joachim; Hovestadt, Thomas

    2015-01-01

    Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal.

  14. Spatial heterogeneity in the effects of climate and density-dependence on dispersal in a house sparrow metapopulation

    PubMed Central

    Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik

    2012-01-01

    Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299

  15. Brighter galaxy bias: underestimating the velocity dispersions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Old, L.; Gray, M. E.; Pearce, F. R.

    2013-09-01

    We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal ≥ 50 at five low-redshift snapshots from the publicly available De Lucia & Blaziot semi-analytic model galaxy catalogue. Clusters are also selected from the Tempel Sloan Digital Sky Survey Data Release 8 groups and clusters catalogue across the redshift range 0.021 ≤ z ≤ 0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction experienced by the brighter cluster members. The velocity dispersions of the parent dark matter (DM) haloes are compared to the galaxy cluster dispersions and the stacked distribution of DM particle velocities is examined alongside the corresponding galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of σgal/σDM ˜ 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocities distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35 per cent, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass dependent but also that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly

  16. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats

    PubMed Central

    Damschen, Ellen I.; Baker, Dirk V.; Bohrer, Gil; Nathan, Ran; Orrock, John L.; Turner, Jay R.; Brudvig, Lars A.; Haddad, Nick M.; Levey, Douglas J.; Tewksbury, Joshua J.

    2014-01-01

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences. PMID:24567398

  17. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats.

    PubMed

    Damschen, Ellen I; Baker, Dirk V; Bohrer, Gil; Nathan, Ran; Orrock, John L; Turner, Jay R; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2014-03-04

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences.

  18. Temporal and geographic patterns of kinship structure in common dolphins (Delphinus delphis) suggest site fidelity and female-biased long-distance dispersal.

    PubMed

    Ball, Laura; Shreves, Kypher; Pilot, Małgorzata; Moura, André E

    2017-01-01

    Social structure plays a crucial role in determining a species' dispersal patterns and genetic structure. Cetaceans show a diversity of social and mating systems, but their effects on dispersal and genetic structure are not well known, in part because of technical difficulties in obtaining robust observational data. Here, we combine genetic profiling and GIS analysis to identify patterns of kin distribution over time and space, to infer mating structure and dispersal patterns in short-beaked common dolphins ( Delphinus delphis ). This species is highly social, and exhibits weak spatial genetic structure in the Northeast Atlantic and Mediterranean Sea, thought to result from fluid social structure and low levels of site fidelity. We found that although sampled groups were not composed of closely related individuals, close kin were frequently found in the same geographic location over several years. Our results suggest that common dolphin exhibits some level of site fidelity, which could be explained by foraging for temporally varying prey resource in areas familiar to individuals. Dispersal from natal area likely involves long-distance movements of females, as males are found more frequently than females in the same locations as their close kin. Long-distance dispersal may explain the near panmixia observed in this species. By analysing individuals sampled in the same geographic location over multiple years, we avoid caveats associated with divergence-based methods of inferring sex-biased dispersal. We thus provide a unique perspective on this species' social structure and dispersal behaviour, and how it relates to the observed low levels of population genetic structure in European waters. Movement patterns and social interactions are aspects of wild animal's behaviour important for understanding their ecology. However, tracking these behaviours directly can be very challenging in wide-ranging species such as whales and dolphins. In this study, we used genetic

  19. Evidence for Female-Biased Dispersal in the Protandrous Hermaphroditic Asian Seabass, Lates calcarifer

    PubMed Central

    Yue, Gen Hua; Xia, Jun Hong; Liu, Feng; Lin, Grace

    2012-01-01

    Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F ST), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish. PMID:22701591

  20. Evidence for female-biased dispersal in the protandrous hermaphroditic Asian Seabass, Lates calcarifer.

    PubMed

    Yue, Gen Hua; Xia, Jun Hong; Liu, Feng; Lin, Grace

    2012-01-01

    Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F(ST)), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish.

  1. Habitat drives dispersal and survival of translocated juvenile desert tortoises

    USGS Publications Warehouse

    Nafus, Melia G.; Esque, Todd C.; Averill-Murray, Roy C.; Nussear, Kenneth E.; Swaisgood, Ronald R.

    2017-01-01

    5.Synthesis and applications. Resource managers using translocations as a conservation tool should prioritize acquiring data linking habitat to fitness. In particular, for species that depend on avoiding detection, refuges such as burrows and habitat that improved concealment had notable ability to improve survival and dispersal. Our study on juvenile Mojave desert tortoises showed that refuge availability or the distributions of habitat appropriate for concealment are important considerations for identifying translocation sites for species highly dependent on crypsis, camouflage, or other forms of habitat matching.

  2. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey.

    PubMed

    Spice, Erin K; Goodman, Damon H; Reid, Stewart B; Docker, Margaret F

    2012-06-01

    Most species with lengthy migrations display some degree of natal homing; some (e.g. migratory birds and anadromous salmonids) show spectacular feats of homing. However, studies of the sea lamprey (Petromyzon marinus) indicate that this anadromous species locates spawning habitat based on pheromonal cues from larvae rather than through philopatry. Previous genetic studies in the anadromous Pacific lamprey (Entosphenus tridentatus) have both supported and rejected the hypothesis of natal homing. To resolve this, we used nine microsatellite loci to examine the population structure in 965 Pacific lamprey from 20 locations from central British Columbia to southern California and supplemented this analysis with mitochondrial DNA restriction fragment length polymorphism analysis on a subset of 530 lamprey. Microsatellite analysis revealed (i) relatively low but often statistically significant genetic differentiation among locations (97% pairwise F(ST) values were <0.04 but 73.7% were significant); and (ii) weak but significant isolation by distance (r(2) = 0.0565, P = 0.0450) but no geographic clustering of samples. The few moderate F(ST) values involved comparisons with sites that were geographically distant or far upstream. The mtDNA analysis--although providing less resolution among sites (only 4.7%F(ST) values were significant)--was broadly consistent with the microsatellite results: (i) the southernmost site and some sites tributary to the Salish Sea were genetically distinct; and (ii) southern sites showed higher haplotype and private haplotype richness. These results are inconsistent with philopatry, suggesting that anadromous lampreys are unusual among species with long migrations, but suggest that limited dispersal at sea precludes panmixia in this species. © 2012 Blackwell Publishing Ltd.

  3. Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.

    PubMed

    Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.

  4. Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes

    PubMed Central

    Lenz, Johanna; Fiedler, Wolfgang; Caprano, Tanja; Friedrichs, Wolfgang; Gaese, Bernhard H.; Wikelski, Martin; Böhning-Gaese, Katrin

    2011-01-01

    Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions. PMID:21177686

  5. How cooperatively breeding birds identify relatives and avoid incest: New insights into dispersal and kin recognition.

    PubMed

    Riehl, Christina; Stern, Caitlin A

    2015-12-01

    Cooperative breeding in birds typically occurs when offspring - usually males - delay dispersal from their natal group, remaining with the family to help rear younger kin. Sex-biased dispersal is thought to have evolved in order to reduce the risk of inbreeding, resulting in low relatedness between mates and the loss of indirect fitness benefits for the dispersing sex. In this review, we discuss several recent studies showing that dispersal patterns are more variable than previously thought, often leading to complex genetic structure within cooperative avian societies. These empirical findings accord with recent theoretical models suggesting that sex- biased dispersal is neither necessary, nor always sufficient, to prevent inbreeding. The ability to recognize relatives, primarily by learning individual or group-specific vocalizations, may play a more important role in incest avoidance than currently appreciated. © 2015 WILEY Periodicals, Inc.

  6. Postfledging Forster's Tern movements, habitat selection, and colony attendance in San Francisco Bay

    USGS Publications Warehouse

    Ackerman, Joshua T.; Bluso-Demers, Jill D.; Takekawa, John Y.

    2009-01-01

    Relatively little is known about birds during the postfledging period when flighted chicks have left the nest and must learn to forage independently. We examined postfledging movements, habitat selection, and colony attendance of Forster's Terns (Sterna forsteri) radio-marked just before they fledged in San Francisco Bay, California. The proportion of the day spent at their natal colony declined as juveniles aged, from 65% at the time of fledging to <5% within two weeks of fledging. Accordingly, the distance postfledging terns were located from their colony increased as they aged, from <500 m within the first week of fledging to >5000 m by their fifth week. Time of day also influenced colony attendance, with older terns spending more time at the colony during nighttime hours (20:00 to 05:00) than during the day (06:00 to 19:00), when they were presumably foraging. Home ranges and core-use areas averaged 12.14 km2 and 2.23 km2, respectively. At each of four spatial scales of analysis, postfledging terns selected salt pond habitats strongly. No other habitat types were selected at any scale, but terns consistently avoided tidal flats and uplands. Terns also avoided open bay habitats at the two largest spatial scales, tidal marsh habitats at the two smallest scales, and sloughs and managed marshes at several scales. Within salt ponds, terns were located closer to salt-pond levees (58 m) than was expected (107 m). Our results indicate that tern chicks disperse from their natal colony within a few weeks of fledging, with older chicks using their natal colony primarily for roosting during the night, and that postfledging terns are highly dependent on salt ponds. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  7. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    PubMed

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  8. Disrupted dispersal and its genetic consequences: Comparing protected and threatened baboon populations (Papio papio) in West Africa.

    PubMed

    Ferreira da Silva, Maria Joana; Kopp, Gisela H; Casanova, Catarina; Godinho, Raquel; Minhós, Tânia; Sá, Rui; Zinner, Dietmar; Bruford, Michael W

    2018-01-01

    Dispersal is a demographic process that can potentially counterbalance the negative impacts of anthropogenic habitat fragmentation. However, mechanisms of dispersal may become modified in populations living in human-dominated habitats. Here, we investigated dispersal in Guinea baboons (Papio papio) in areas with contrasting levels of anthropogenic fragmentation, as a case study. Using molecular data, we compared the direction and extent of sex-biased gene flow in two baboon populations: from Guinea-Bissau (GB, fragmented distribution, human-dominated habitat) and Senegal (SEN, continuous distribution, protected area). Individual-based Bayesian clustering, spatial autocorrelation, assignment tests and migrant identification suggested female-mediated gene flow at a large spatial scale for GB with evidence of contact between genetically differentiated males at one locality, which could be interpreted as male-mediated gene flow in southern GB. Gene flow was also found to be female-biased in SEN for a smaller scale. However, in the southwest coastal part of GB, at the same geographic scale as SEN, no sex-biased dispersal was detected and a modest or recent restriction in GB female dispersal seems to have occurred. This population-specific variation in dispersal is attributed to behavioural responses to human activity in GB. Our study highlights the importance of considering the genetic consequences of disrupted dispersal patterns as an additional impact of anthropogenic habitat fragmentation and is potentially relevant to the conservation of many species inhabiting human-dominated environments.

  9. Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.

    PubMed

    Lam, King-Yeung; Lou, Yuan

    2014-02-01

    We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.

  10. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    PubMed

    Amaral, Katrina E; Palace, Michael; O'Brien, Kathleen M; Fenderson, Lindsey E; Kovach, Adrienne I

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  11. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem

    PubMed Central

    Amaral, Katrina E.; Palace, Michael; O’Brien, Kathleen M.; Fenderson, Lindsey E.; Kovach, Adrienne I.

    2016-01-01

    Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis). Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists. PMID:26954014

  12. A case study of assigning conservation value to dispersed habitat units for conservation planning

    USGS Publications Warehouse

    Rohweder, Jason J.; Sara C. Vacek,; Crimmins, Shawn M.; Thogmartin, Wayne E.

    2015-01-01

    Resource managers are increasingly tasked with developing habitat conservation plans in the face of numerous, sometimes competing, objectives. These plans must often be implemented across dispersed habitat conservation units that may contribute unequally to overall conservation objectives. Using U.S. Fish and Wildlife Service waterfowl production areas (WPA) in western Minnesota as our conservation landscape, we develop a landscape-scale approach for evaluating the conservation value of dispersed habitat conservation units with multiple conservation priorities. We evaluated conservation value based on a suite of variables directly applicable to conservation management practices, thus providing a direct link between conservation actions and outcomes. We developed spatial models specific to each of these conservation objectives and also developed two freely available prioritization tools to implement these analyses. We found that some WPAs provided high conservation value across a range of conservation objectives, suggesting that managing these specific areas would achieve multiple conservation goals. Conversely, other WPAs provided low conservation value for some objectives, suggesting they would be most effectively managed for a distinct set of specific conservation goals. Approaches such as ours provide a direct means of assessing the conservation value of dispersed habitat conservation units and could be useful in the development of habitat management plans, particularly when faced with multiple conservation objectives.

  13. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  14. Sex-biased dispersal of young Western Screech-owls (Otus kennicottii) in southwestern Idaho

    Treesearch

    Ethan Ellsworth; James R. Belthoff

    1997-01-01

    We examined dispersal distance of young Western Screech-owls (Otus kennicottii) from nest sites to overwintering sites in relation to two hypotheses for sex-biased dispersal. Overall, young Screech-owls (N = 31) dispersed an average of 10.6 ± 1.8 km to overwintering sites, and females (14.7 ± 2.5 km; N = 13) dispersed farther than...

  15. Potential roadside biases due to habitat changes along Breeding Bird Survey routes

    USGS Publications Warehouse

    Keller, C.M.E.; Scallan, J.T.

    1999-01-01

    Breeding Bird Surveys (BBS) are conducted along roadside routes to enable a large geographic area to be surveyed. Yet the potential biases of sampling populations only from roadsides have received little attention. We sampled aerial photography of BBS routes taken in the mid-1960s and late-1980s to evaluate whether habitat changes that occurred along roadsides were also occurring in the surrounding area, and whether the frequency of habitats encountered along roadsides were similar to that off-route. We examined 28 routes in Maryland and 25 routes in Ohio, and defined roadside area as within 200 m of the road, and off-route as 200-1,600 m from the road. Most habitat changes that occurred along BBS roadsides also were occurring in the off-route areas. However, increases in urban cover was significantly greater along the road in Maryland where urbanization of farmland was the predominant habitat change. The small increase in urban cover in Ohio was not significantly greater along the road. Construction of single family homes was greater along BBS roadsides in both states. In Ohio, the greatest change in habitat was the conversion of farmland back to forest, which was not significantly greater along the road. Changes associated with urbanization were more biased towards roadsides than the reforestation of farmland. Within one time period, roadside areas had less forest and more agricultural and urban cover types than occurred off-route.

  16. High Emigration Propensity and Low Mortality on Transfer Drives Female-Biased Dispersal of Pyriglena leucoptera in Fragmented Landscapes

    PubMed Central

    Awade, Marcelo; Candia-Gallardo, Carlos; Cornelius, Cintia; Metzger, Jean Paul

    2017-01-01

    Dispersal is a biological process performed in three stages: emigration, transfer and immigration. Intra-specific variation on dispersal behavior, such as sex-bias, is very common in nature, particularly in birds and mammals. However, dispersal is difficult to measure in the field and many hypotheses concerning the causes of sex-biased dispersal remain without empirical confirmation. An important limitation of most empirical studies is that inferences about sex-biased dispersal are based only on emigration proneness or immigration success data. Thus, we still do not know whether sex-biased immigration in fragmented landscapes occurs during emigration, transfer or in both stages. We conducted translocation and radiotracking experiments to assess i) whether inter-patch dispersal movements of a rainforest bird (Pyriglena leucoptera) is sex-biased and ii) how dispersal stages and the perceptual range of the individuals are integrated to generate dispersal patterns. Our results showed that inter-patch dispersal is sex-biased at all stages for P. leucoptera, as females not only exhibit a higher emigration propensity but are subjected to a lower risk of predation when moving through the matrix. Moreover, our data support a perceptual range of 80 m and our results showed that dispersal success decreases considerably when inter-patch distances exceeds this perceptual range. In this case, birds have a higher probability of travelling over longer routes and, as a consequence, the risk of predation increases, specially for males. Overall, results supported that assuming dispersal as a single-stage process to describe dispersal behavior may be misleading. In this way, our study advanced our understanding of processes and patterns related to inter-patch dispersal of neotropical forest birds, shedding light on potential implications for population dynamics and for the management of fragmented landscapes. PMID:28107517

  17. Combining a dispersal model with network theory to assess habitat connectivity.

    PubMed

    Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E

    2010-03-01

    Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.

  18. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes.

    PubMed

    Christie, Mark R; Knowles, L Lacey

    2015-06-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.

  19. Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

    PubMed Central

    Christie, Mark R; Knowles, L Lacey

    2015-01-01

    Corridors are frequently proposed to connect patches of habitat that have become isolated due to human-mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward-time, agent-based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade-off between corridor quality and corridor design whereby populations connected by high-quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long-term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes. PMID:26029259

  20. Explaining LIGO's observations via isolated binary evolution with natal kicks

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.

    2018-02-01

    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

  1. Evolution of complex density-dependent dispersal strategies.

    PubMed

    Parvinen, Kalle; Seppänen, Anne; Nagy, John D

    2012-11-01

    The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, "triple-threshold" strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

  2. Indirect estimates of natal dispersal distance from genetic data in a stream-dwelling fish (Mogurnda adspersa).

    PubMed

    Shipham, Ashlee; Schmidt, Daniel J; Hughes, Jane M

    2013-01-01

    Recent work has highlighted the need to account for hierarchical patterns of genetic structure when estimating evolutionary and ecological parameters of interest. This caution is particularly relevant to studies of riverine organisms, where hierarchical structure appears to be commonplace. Here, we indirectly estimate dispersal distance in a hierarchically structured freshwater fish, Mogurnda adspersa. Microsatellite and mitochondrial DNA (mtDNA) data were obtained for 443 individuals across 27 sites separated by an average of 1.3 km within creeks of southeastern Queensland, Australia. Significant genetic structure was found among sites (mtDNA Φ(ST) = 0.508; microsatellite F(ST) = 0.225, F'(ST) = 0.340). Various clustering methods produced congruent patterns of hierarchical structure reflecting stream architecture. Partial mantel tests identified contiguous sets of sample sites where isolation by distance (IBD) explained F(ST) variation without significant contribution of hierarchical structure. Analysis of mean natal dispersal distance (σ) within sets of IBD-linked sample sites suggested most dispersal occurs over less than 1 km, and the average effective density (D(e)) was estimated at 11.5 individuals km(-1); indicating sedentary behavior and small effective population size are responsible for the remarkable patterns of genetic structure observed. Our results demonstrate that Rousset's regression-based method is applicable to estimating the scale of dispersal in riverine organisms and that identifying contiguous populations that satisfy the assumptions of this model is achievable with genetic clustering methods and partial correlations.

  3. Frugivores bias seed-adult tree associations through nonrandom seed dispersal: a phylogenetic approach.

    PubMed

    Razafindratsima, Onja H; Dunham, Amy E

    2016-08-01

    Frugivores are the main seed dispersers in many ecosystems, such that behaviorally driven, nonrandom patterns of seed dispersal are a common process; but patterns are poorly understood. Characterizing these patterns may be essential for understanding spatial organization of fruiting trees and drivers of seed-dispersal limitation in biodiverse forests. To address this, we studied resulting spatial associations between dispersed seeds and adult tree neighbors in a diverse rainforest in Madagascar, using a temporal and phylogenetic approach. Data show that by using fruiting trees as seed-dispersal foci, frugivores bias seed dispersal under conspecific adults and under heterospecific trees that share dispersers and fruiting time with the dispersed species. Frugivore-mediated seed dispersal also resulted in nonrandom phylogenetic associations of dispersed seeds with their nearest adult neighbors, in nine out of the 16 months of our study. However, these nonrandom phylogenetic associations fluctuated unpredictably over time, ranging from clustered to overdispersed. The spatial and phylogenetic template of seed dispersal did not translate to similar patterns of association in adult tree neighborhoods, suggesting the importance of post-dispersal processes in structuring plant communities. Results suggest that frugivore-mediated seed dispersal is important for structuring early stages of plant-plant associations, setting the template for post-dispersal processes that influence ultimate patterns of plant recruitment. Importantly, if biased patterns of dispersal are common in other systems, frugivores may promote tree coexistence in biodiverse forests by limiting the frequency and diversity of heterospecific interactions of seeds they disperse. © 2016 by the Ecological Society of America.

  4. Should I Stay or Should I Go? A Habitat-Dependent Dispersal Kernel Improves Prediction of Movement

    PubMed Central

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes. PMID:21765890

  5. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    PubMed

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  6. Genetic detection of sex-biased and age-biased dispersal in a population of wild carnivore, the red fox, Vulpes vulpes.

    PubMed

    Gachot-Neveu, Helene; Lefevre, Pavine; Roeder, Jean-Jacques; Henry, Caroline; Poulle, Marie-Lazarine

    2009-02-01

    Field studies conducted on rural red fox (Vulpes vulpes) populations suggest that the majority of males tend to disperse while the majority of females tend to be philopatric, that males disperse farther than females, and that most of the foxes disperse during their first year of life. However, the quantification of dispersal parameters is poorly documented in the red fox, because this carnivore is notoriously difficult to follow from birth to maturity. The aim of this study was to test hypotheses from field data with the help of a molecular analysis using six random amplified polymorphic DNA (RAPD) markers. The study was conducted on samples collected from 85 foxes in a French rural population. Genetic and geographical distances between pairs of individuals were calculated for the 3570 potential pairs originating from this population to determine whether the foxes had dispersed. High genetic diversity and an absence of genetic clusters among studied individuals support the occurrence of intense and constant gene flow in the study population, probably induced by dispersion. At least 16.2% of the potential pairs we studied were subject to dispersal. Sex-biased dispersion was not observed, apart from a sex bias in favor of females towards long-distance dispersal. A predominance of males that ultimately dispersed a long distance could not thus be confirmed. Furthermore, it seems that dispersal did not occur primarily in the subadult age class in our rural study area, but that some pairs of juveniles may also have been involved in dispersal.

  7. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  8. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  9. Sex-biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher

    Treesearch

    Jody M. Tucker; Fred W. Allendorf; Richard L. Truex; Michael K. Schwartz

    2017-01-01

    Genetic connectivity results from the dispersal and reproduction of individuals across landscapes. Mammalian populations frequently exhibit sex-biased dispersal, but this factor has rarely been addressed in individual-based landscape genetics research. In this study, we evaluate the effects of sexbiased dispersal and landscape heterogeneity on genetic connectivity in a...

  10. Dispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregation.

    PubMed

    Velez-Zuazo, Ximena; Ramos, Willy D; van Dam, Robert P; Diez, Carlos E; Abreu-Grobois, Alberto; McMillan, W Owen

    2008-02-01

    We investigated the dispersal, recruitment and migratory behaviour of the hawksbill sea turtle (Eretmochelys imbricata), among different life-history stages and demographic segments of the large hawksbill turtle aggregation at Mona Island, Puerto Rico. There were significant differences in both mitochondrial DNA (mtDNA) haplotype diversity and haplotype frequencies among the adult males, females and juveniles examined, but little evidence for temporal heterogeneity within these same groups sampled across years. Consistent with previous studies and the hypothesis of strong natal homing, there were striking mtDNA haplotype differences between nesting females on Mona Island and nesting females in other major Caribbean rookeries. Breeding males also showed strong, albeit weaker, genetic evidence of natal homing. Overall, Bayesian mixed-stock analysis suggests that Mona Island was the natal rookery for 79% (65-94%) of males in the aggregation. In contrast, the Mona Island rookery accounted for only a small subset of the new juvenile recruits to the foraging grounds or in the population of older juvenile hawksbills turtles on Mona. Instead, both new recruits and the older juvenile hawksbill turtles on Mona more likely recruited from other Caribbean rookeries, suggesting that a mechanism besides natal homing must be influencing recruitment to feeding habitats. The difference in the apparent degree of natal homing behaviour among the different life-history stages of hawksbill turtles at Mona Island underscores the complexity of the species' life-history dynamics and highlights the need for both local and regional conservation efforts.

  11. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28< z< 1.08. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  12. Habitat corridors function as both drift fences and movement conduits for dispersing flies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, Joanna H.; Levey Douglas J.; Hogsette, Jerome A.

    2005-03-30

    Abstract Corridors connect otherwise isolated habitat patches and can direct movement of animals among such patches. In eight experimental landscapes, we tested two hypotheses of how corridors might affect dispersal behavior. The Traditional Corridor hypothesis posits that animals preferentially leave patches via corridors, following them into adjacent patches. The Drift Fence hypothesis posits that animals dispersing through matrix habitat are diverted into patches with corridors because they follow corridors when encountered. House flies (Musca domestica L.), a species that prefers the habitat of our patches and corridors, were released in a central patch (100•100 m) and recaptured in peripheral patchesmore » that were or were not connected by a corridor. Flies were captured more frequently in connected than unconnected patches, thereby supporting the Traditional Corridor hypothesis. The Drift Fence hypothesis was also supported, as flies were captured more frequently in unconnected patches with blind (dead end) corridors than in unconnected patches of equal area without blind corridors. A second experiment tested whether these results might be dependent on the type of patch-matrix boundary encountered by dispersing flies and whether edge-following behavior might be the mechanism underlying the observed corridor effect in the first experiment. We recorded dispersal patterns of flies released along forest edges with dense undergrowth in the forest (‘‘closed’’ edges) and along edges with little forest understory (‘‘open’’ edges). Flies were less likely to cross and more likely to follow closed edges than open edges, indicating that when patch and corridor edges are pronounced, edge-following behavior of flies may direct them along corridors into connected patches. Because edges in the first experiment were open, these results also suggest that corridor effects for flies in that experiment would have been even stronger if the edges around the

  13. Survival in patchy landscapes: the interplay between dispersal, habitat loss and fragmentation

    PubMed Central

    Niebuhr, Bernardo B. S.; Wosniack, Marina E.; Santos, Marcos C.; Raposo, Ernesto P.; Viswanathan, Gandhimohan M.; da Luz, Marcos G. E.; Pie, Marcio R.

    2015-01-01

    Habitat loss and fragmentation are important factors determining animal population dynamics and spatial distribution. Such landscape changes can lead to the deleterious impact of a significant drop in the number of species, caused by critically reduced survival rates for organisms. In order to obtain a deeper understanding of the threeway interplay between habitat loss, fragmentation and survival rates, we propose here a spatially explicit multi-scaled movement model of individuals that search for habitat. By considering basic ecological processes, such as predation, starvation (outside the habitat area), and competition, together with dispersal movement as a link among habitat areas, we show that a higher survival rate is achieved in instances with a lower number of patches of larger areas. Our results demonstrate how movement may counterbalance the effects of habitat loss and fragmentation in altered landscapes. In particular, they have important implications for conservation planning and ecosystem management, including the design of specific features of conservation areas in order to enhance landscape connectivity and population viability. PMID:26148488

  14. Effects of natal departure and water level on survival of juvenile snail kites (Rostrhamus sociabilis) in Florida

    USGS Publications Warehouse

    Dreitz, V.J.; Kitchens, W.M.; DeAngelis, D.L.

    2004-01-01

    Survival rate from fledging to breeding, or juvenile survival, is an important source of variation in lifetime reproductive success in birds. Therefore, determining the relationship between juvenile survival and environmental factors is essential to understanding fitness consequences of reproduction in many populations. With increases in density of individuals and depletion of food resources, quality of most habitats deteriorates during the breeding season. Individuals respond by dispersing in search of food resources. Therefore, to understand the influence of environmental factors on juvenile survival, it is also necessary to know how natal dispersal influences survival of juveniles. We examined effects of various environmental factors and natal dispersal behavior on juvenile survival of endangered Snail Kites (Rostrhamus sociabilis) in central and southern Florida, using a generalized estimating equations (GEEs) approach and model selection criteria. Our results suggested yearly effects and an influence of age and monthly minimum hydrologic levels on juvenile Snail Kite survival. Yearly variation in juvenile survival has been reported by other studies, and other reproductive components of Snail Kites also exhibit such variation. Age differences in juvenile survival have also been seen in other species during the juvenile period. Our results demonstrate a positive relationship between water levels and juvenile survival. We suggest that this is not a direct linear relationship, such that higher water means higher juvenile survival. The juvenile period is concurrent with onset of the wet season in the ecosystem we studied, and rainfall increases as juveniles age. For management purposes, we believe that inferences suggesting increasing water levels during the fledging period will increase juvenile survival may have short-term benefits but lead to long-term declines in prey abundance and possibly wetland vegetation structure.

  15. Average dispersal success: linking home range, dispersal, and metapopulation dynamics to reserve design.

    PubMed

    Fagan, William F; Lutscher, Frithjof

    2006-04-01

    Spatially explicit models for populations are often difficult to tackle mathematically and, in addition, require detailed data on individual movement behavior that are not easily obtained. An approximation known as the "average dispersal success" provides a tool for converting complex models, which may include stage structure and a mechanistic description of dispersal, into a simple matrix model. This simpler matrix model has two key advantages. First, it is easier to parameterize from the types of empirical data typically available to conservation biologists, such as survivorship, fecundity, and the fraction of juveniles produced in a study area that also recruit within the study area. Second, it is more amenable to theoretical investigation. Here, we use the average dispersal success approximation to develop estimates of the critical reserve size for systems comprising single patches or simple metapopulations. The quantitative approach can be used for both plants and animals; however, to provide a concrete example of the technique's utility, we focus on a special case pertinent to animals. Specifically, for territorial animals, we can characterize such an estimate of minimum viable habitat area in terms of the number of home ranges that the reserve contains. Consequently, the average dispersal success framework provides a framework through which home range size, natal dispersal distances, and metapopulation dynamics can be linked to reserve design. We briefly illustrate the approach using empirical data for the swift fox (Vulpes velox).

  16. The influence of food abundance, food dispersion and habitat structure on territory selection and size of an Afrotropical terrestrial insectivore

    USGS Publications Warehouse

    Stanley, Thomas R.; Newmark, William D.

    2015-01-01

    Most tropical insectivorous birds, unlike their temperate counterparts, hold and defend a feeding and breeding territory year-around. However, our understanding of ecological factors influencing territory selection and size in tropical insectivores is limited. Here we examine three prominent hypotheses relating food abundance, food dispersion (spatial arrangement of food items), and habitat structure to territoriality in the Usambara Thrush Turdus roehli. We first compared leaf-litter macro-invertebrate abundance and dispersion, and habitat structure between territories and random sites. We then examined the relation between these same ecological factors and territory size. Invertebrate abundance and dispersion were sparsely and evenly distributed across our study system and did not vary between territories and random sites. In contrast, habitat structure did vary between territories and random sites indicating the Usambara Thrush selects territories with open understorey and closed overstorey habitat. Invertebrate abundance and dispersion within territories of the Usambara Thrush were not associated with habitat structure. We believe the most likely explanation for the Usambara Thrush’s preference for open understorey and closed overstorey habitat relates to foraging behavior. Using information-theoretic model selection we found that invertebrate abundance was the highest-ranked predictor of territory size and was inversely related, consistent with food value theory of territoriality.

  17. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE PAGES

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; ...

    2017-03-07

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  18. Velocity segregation and systematic biases in velocity dispersion estimates with the SPT-GMOS spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel'dovich (SZ) selected galaxy clusters spanningmore » $ 0.28 < z < 1.08$. Our sample is primarily draw from the SPT-GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra---2868 cluster members. The velocity dispersion of star-forming cluster galaxies is $$17\\pm4$$% greater than that of passive cluster galaxies, and the velocity dispersion of bright ($$m < m^{*}-0.5$$) cluster galaxies is $$11\\pm4$$% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive vs. star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations in which suggests that our dispersions are systematically low by as much as 3\\% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Here, by measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.« less

  19. The ability of individuals to assess population density influences the evolution of emigration propensity and dispersal distance.

    PubMed

    Poethke, Hans Joachim; Gros, Andreas; Hovestadt, Thomas

    2011-08-07

    We analyze the simultaneous evolution of emigration and settlement decisions for actively dispersing species differing in their ability to assess population density. Using an individual-based model we simulate dispersal as a multi-step (patch to patch) movement in a world consisting of habitat patches surrounded by a hostile matrix. Each such step is associated with the same mortality risk. Our simulations show that individuals following an informed strategy, where emigration (and settlement) probability depends on local population density, evolve a lower (natal) emigration propensity but disperse over significantly larger distances - i.e. postpone settlement longer - than individuals performing density-independent emigration. This holds especially when variation in environmental conditions is spatially correlated. Both effects can be traced to the informed individuals' ability to better exploit existing heterogeneity in reproductive chances. Yet, already moderate distance-dependent dispersal costs prevent the evolution of multi-step (long-distance) dispersal, irrespective of the dispersal strategy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Contrasting patterns of survival and dispersal in multiple habitats reveal an ecological trap in a food-caching bird.

    PubMed

    Norris, D Ryan; Flockhart, D T Tyler; Strickland, Dan

    2013-11-01

    A comprehensive understanding of how natural and anthropogenic variation in habitat influences populations requires long-term information on how such variation affects survival and dispersal throughout the annual cycle. Gray jays Perisoreus canadensis are widespread boreal resident passerines that use cached food to survive over the winter and to begin breeding during the late winter. Using multistate capture-recapture analysis, we examined apparent survival and dispersal in relation to habitat quality in a gray jay population over 34 years (1977-2010). Prior evidence suggests that natural variation in habitat quality is driven by the proportion of conifers on territories because of their superior ability to preserve cached food. Although neither adults (>1 year) nor juveniles (<1 year) had higher survival rates on high-conifer territories, both age classes were less likely to leave high-conifer territories and, when they did move, were more likely to disperse to high-conifer territories. In contrast, survival rates were lower on territories that were adjacent to a major highway compared to territories that did not border the highway but there was no evidence for directional dispersal towards or away from highway territories. Our results support the notion that natural variation in habitat quality is driven by the proportion of coniferous trees on territories and provide the first evidence that high-mortality highway habitats can act as an equal-preference ecological trap for birds. Reproductive success, as shown in a previous study, but not survival, is sensitive to natural variation in habitat quality, suggesting that gray jays, despite living in harsh winter conditions, likely favor the allocation of limited resources towards self-maintenance over reproduction.

  1. Space-use, movement and dispersal of sub-adult cougars in a geographically isolated population.

    PubMed

    Morrison, Carl D; Boyce, Mark S; Nielsen, Scott E

    2015-01-01

    Cougar (Puma concolor) observations have increased in Midwest North America, with breeding populations re-establishing in several regions east of their contemporary range. The Cypress Hills Uplands, located in southwest Saskatchewan and southeast Alberta, was recently re-colonized by cougars and now supports the easternmost confirmed breeding population of cougars in Canada. A number of factors contribute to this cougar range expansion, but it is dispersal that provides the mechanism for re-colonization of historic range. We used GPS-collar data to examine space-use and movement behavior of sub-adult cougars, the age class associated with dispersal, in the Cypress Hills. Conditional logistic regression and a two-stage modeling approach were used to estimate resource selection functions (RSF) of sub-adult cougars during two distinct ranging behaviors: transient movements (i.e., dispersal and exploratory forays) and localizing movements (i.e., temporary home ranges). Linear regression was used to model movement rates, measured as the distance between consecutive 3-h GPS-relocations, of sub-adult cougars relative to different habitats, times of day and between transient and localizing behavior. All individual sub-adult cougars displayed bouts of transient and localizing behavior. All male cougars dispersed from their natal ranges and travelled considerably farther distances than female cougars. One male dispersed over 750 km eastward through the agricultural belt of northern Montana and southern Saskatchewan. Males occupied temporary home ranges in more open habitats on the fringes of the insular Cypress Hills, while females appeared to be recruited into the adult population, occupying treed habitat that provided more suitable cover. During both ranging behaviors, sub-adult cougars selected for rugged terrain and proximity to hydrological features (likely supporting riparian habitats) and avoided open cover types. Differences in habitat selection between ranging

  2. Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago.

    PubMed

    Carvajal-Endara, Sofía; Hendry, Andrew P; Emery, Nancy C; Davies, T Jonathan

    2017-04-01

    Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non-random subset from source communities, which is thought to reflect dispersal limitation. However, non-random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes - because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration. © 2017 John Wiley & Sons Ltd/CNRS.

  3. The Cluster-EAGLE project: velocity bias and the velocity dispersion-mass relation of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom

    2018-03-01

    We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.

  4. Dispersal in the communally breeding groove-billed ani (Crotophaga sulcirostris)

    USGS Publications Warehouse

    Bowen, B.S.; Koford, Rolf R.; Vehrencamp, S.L.

    1989-01-01

    We studied dispersal in a color-banded population of the Groove-billed Ani (Crotophaga sulcirostris) in Costa Rica. Eight percent of the young alive at the end of the breeding season bred on their natal territories the next year and 4% remained but did not breed. Thirteen percent dispersed successfully within the study area and bred in communal groups or simple pairs. The remaining 75% of the young birds disappeared from the study area. Young males remained in the study area as breeders more frequently than did young females. Breeding dispersal occurred, with at least 9% of the adult population moving to a new territory each year.We used a demographic model to estimate the following dispersal fates for young birds. For both males and females, 62% of the young alive at the end of the breeding season in which they hatched obtained a breeding position the next year. Of those that dispersed from their natal territories, 59 to 70% of the males and 64 to 74% of the females obtained breeding positions. Of those that bred the year after they hatched, 22% of the males and 2% of the females bred in their natal units, 34% of the males and 6% of the females bred within the study area but outside their natal units, and 44% of the males and 92% of the females bred outside the study area. We estimated that all of the males and 28% of the females that bred the year after they hatched were within three territories of their natal sites.

  5. Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix).

    PubMed

    Lebigre, C; Alatalo, R V; Siitari, H

    2010-05-01

    Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex-biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female-biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.

  6. Metapopulation viability of an endangered shorebird depends on dispersal and human-created habitats: Piping plovers (Charadrius melodus) and prairie rivers

    USGS Publications Warehouse

    Catlin, Daniel H.; Zeigler, Sara; Bomberger Brown, M.; Dinan, Lauren R.; Fraser, James D.; Hunt, Kelsi L.; Jorgensen, Joel G.

    2016-01-01

    We found that functional connectivity, as measured by the rate of dispersal among subpopulations, increased as a result of the high flow event in our study metapopulation. Plovers also increased reproductive output following this event. Although the study metapopulation had a low overall probability of extinction, metapopulation persistence depended on anthropogenically created habitats that provided a small but stable source of nesting habitat and dispersers through time. However, all subpopulations remained small, even if persistent, making them individually vulnerable to extinction through stochastic events. Given the highly dynamic nature of habitat availability in this system, maintaining several subpopulations within the metapopulation and stable sources of habitat will be critical, and this species will likely remain conservation-reliant.

  7. Turnover and dispersal of prairie falcons in southwestern Idaho

    USGS Publications Warehouse

    Lehman, Robert N.; Steenhof, Karen; Carpenter, L.B.; Kochert, Michael N.

    2000-01-01

    We studied Prairie Falcon (Falco mexicanus) breeding dispersal, natal dispersal, and turnover at nesting areas in the Snake River Birds of Prey National Conservation Area (NCA) from 1971- 95. Of 61 nesting areas where falcons identified one year were known to be present or absent the following year, 57% had a different falcon. This turnover rate was 2-3 times higher than that reported elsewhere for large falcons, and may have been related to high nesting densities in the NCA. Turnover at nesting areas was independent of nesting success in the previous year, but was significantly higher for females nesting on large cliffs. Mean distance between natal and breeding locations for 26 falcons banded as nestlings and later encountered as nesting adults was 8.9 km. Natal dispersal distances were similar for males and females, but more than twice as many males marked as nestlings were later encountered nesting in the NCA. Fourteen adult falcons found on different nesting areas in successive years moved an average of 1.5 km between nesting areas; males dispersed significantly farther than females. Natal and breeding dispersal distances in the NCA were lower than those reported for Prairie Falcons in other study areas. Only four falcons banded as nestlings were found outside NCA boundaries during the breeding period, and only one of these birds was known to be occupying a nesting area. We encountered no falcons banded outside the NCA occupying nesting areas in the NCA during this study.

  8. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Treesearch

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  9. Localized extinction of an arboreal desert lizard caused by habitat fragmentation

    USGS Publications Warehouse

    Munguia-Vega, Adrian; Rodriguez-Estrella, Ricardo; Shaw, William W.; Culver, Melanie

    2013-01-01

    We adopted a species’ perspective for predicting extinction risk in a small, endemic, and strictly scansorial lizard (Urosaurus nigricaudus), in an old (∼60 year) and highly fragmented (8% habitat remaining) agricultural landscape from the Sonoran Desert, Mexico. We genotyped 10 microsatellite loci in 280 individuals from 11 populations in fragmented and continuous habitat. Individual dispersal was restricted to less than 400 m, according to analyses of spatial autocorrelation and spatially explicit Bayesian assignment methods. Within this scale, continuous areas and narrow washes with native vegetation allowed high levels of gene flow over tens of kilometers. In the absence of the native vegetation, cleared areas and highways were identified as partial barriers. In contrast, outside the scale of dispersal, cleared areas behaved as complete barriers, and surveys corroborated the species went extinct after a few decades in all small (less than 45 ha), isolated habitat fragments. No evidence for significant loss of genetic diversity was found, but results suggested fragmentation increased the spatial scale of movements, relatedness, genetic structure, and potentially affected sex-biased dispersal. A plausible threshold of individual dispersal predicted only 23% of all fragments in the landscape were linked with migration from continuous habitat, while complete barriers isolated the majority of fragments. Our study suggested limited dispersal, coupled with an inability to use a homogeneous and hostile matrix without vegetation and shade, could result in frequent time-delayed extinctions of small ectotherms in highly fragmented desert landscapes, particularly considering an increase in the risk of overheating and a decrease in dispersal potential induced by global warming.

  10. Sex-biased dispersal, kin selection and the evolution of sexual conflict.

    PubMed

    Faria, Gonçalo S; Varela, Susana A M; Gardner, Andy

    2015-10-01

    There is growing interest in resolving the curious disconnect between the fields of kin selection and sexual selection. Rankin's (2011, J. Evol. Biol. 24, 71-81) theoretical study of the impact of kin selection on the evolution of sexual conflict in viscous populations has been particularly valuable in stimulating empirical research in this area. An important goal of that study was to understand the impact of sex-specific rates of dispersal upon the coevolution of male-harm and female-resistance behaviours. But the fitness functions derived in Rankin's study do not flow from his model's assumptions and, in particular, are not consistent with sex-biased dispersal. Here, we develop new fitness functions that do logically flow from the model's assumptions, to determine the impact of sex-specific patterns of dispersal on the evolution of sexual conflict. Although Rankin's study suggested that increasing male dispersal always promotes the evolution of male harm and that increasing female dispersal always inhibits the evolution of male harm, we find that the opposite can also be true, depending upon parameter values. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  11. Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Marotz, Brian

    2005-01-01

    Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.

  12. Evolved dispersal strategies at range margins

    PubMed Central

    Dytham, Calvin

    2009-01-01

    Dispersal is a key component of a species's ecology and will be under different selection pressures in different parts of the range. For example, a long-distance dispersal strategy suitable for continuous habitat at the range core might not be favoured at the margin, where the habitat is sparse. Using a spatially explicit, individual-based, evolutionary simulation model, the dispersal strategies of an organism that has only one dispersal event in its lifetime, such as a plant or sessile animal, are considered. Within the model, removing habitat, increasing habitat turnover, increasing the cost of dispersal, reducing habitat quality or altering vital rates imposes range limits. In most cases, there is a clear change in the dispersal strategies across the range, although increasing death rate towards the margin has little impact on evolved dispersal strategy across the range. Habitat turnover, reduced birth rate and reduced habitat quality all increase evolved dispersal distances at the margin, while increased cost of dispersal and reduced habitat density lead to lower evolved dispersal distances at the margins. As climate change shifts suitable habitat poleward, species ranges will also start to shift, and it will be the dispersal capabilities of marginal populations, rather than core populations, that will influence the rate of range shifting. PMID:19324810

  13. Extremely long-distance seed dispersal by an overfished Amazonian frugivore.

    PubMed

    Anderson, Jill T; Nuttle, Tim; Saldaña Rojas, Joe S; Pendergast, Thomas H; Flecker, Alexander S

    2011-11-22

    Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.

  14. Extremely long-distance seed dispersal by an overfished Amazonian frugivore

    PubMed Central

    Anderson, Jill T.; Nuttle, Tim; Saldaña Rojas, Joe S.; Pendergast, Thomas H.; Flecker, Alexander S.

    2011-01-01

    Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337–552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700–2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants. PMID:21429923

  15. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE PAGES

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.; ...

    2017-11-24

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  16. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  17. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant Orangutans (genus: Pongo).

    PubMed

    Nater, Alexander; Nietlisbach, Pirmin; Arora, Natasha; van Schaik, Carel P; van Noordwijk, Maria A; Willems, Erik P; Singleton, Ian; Wich, Serge A; Goossens, Benoit; Warren, Kristin S; Verschoor, Ernst J; Perwitasari-Farajallah, Dyah; Pamungkas, Joko; Krützen, Michael

    2011-08-01

    The Southeast Asian Sunda archipelago harbors a rich biodiversity with a substantial proportion of endemic species. The evolutionary history of these species has been drastically influenced by environmental forces, such as fluctuating sea levels, climatic changes, and severe volcanic activities. Orangutans (genus: Pongo), the only Asian great apes, are well suited to study the relative impact of these forces due to their well-documented behavioral ecology, strict habitat requirements, and exceptionally slow life history. We investigated the phylogeographic patterns and evolutionary history of orangutans in the light of the complex geological and climatic history of the Sunda archipelago. Our study is based on the most extensive genetic sampling to date, covering the entire range of extant orangutan populations. Using data from three mitochondrial DNA (mtDNA) genes from 112 wild orangutans, we show that Sumatran orangutans, Pongo abelii, are paraphyletic with respect to Bornean orangutans (P. pygmaeus), the only other currently recognized species within this genus. The deepest split in the mtDNA phylogeny of orangutans occurs across the Toba caldera in northern Sumatra and, not as expected, between both islands. Until the recent past, the Toba region has experienced extensive volcanic activity, which has shaped the current phylogeographic patterns. Like their Bornean counterparts, Sumatran orangutans exhibit a strong, yet previously undocumented structuring into four geographical clusters. However, with 3.50 Ma, the Sumatran haplotypes have a much older coalescence than their Bornean counterparts (178 kya). In sharp contrast to the mtDNA data, 18 Y-chromosomal polymorphisms show a much more recent coalescence within Sumatra compared with Borneo. Moreover, the deep geographic structure evident in mtDNA is not reflected in the male population history, strongly suggesting male-biased dispersal. We conclude that volcanic activities have played an important role in the

  18. Metapopulation extinction risk: dispersal's duplicity.

    PubMed

    Higgins, Kevin

    2009-09-01

    Metapopulation extinction risk is the probability that all local populations are simultaneously extinct during a fixed time frame. Dispersal may reduce a metapopulation's extinction risk by raising its average per-capita growth rate. By contrast, dispersal may raise a metapopulation's extinction risk by reducing its average population density. Which effect prevails is controlled by habitat fragmentation. Dispersal in mildly fragmented habitat reduces a metapopulation's extinction risk by raising its average per-capita growth rate without causing any appreciable drop in its average population density. By contrast, dispersal in severely fragmented habitat raises a metapopulation's extinction risk because the rise in its average per-capita growth rate is more than offset by the decline in its average population density. The metapopulation model used here shows several other interesting phenomena. Dispersal in sufficiently fragmented habitat reduces a metapopulation's extinction risk to that of a constant environment. Dispersal between habitat fragments reduces a metapopulation's extinction risk insofar as local environments are asynchronous. Grouped dispersal raises the effective habitat fragmentation level. Dispersal search barriers raise metapopulation extinction risk. Nonuniform dispersal may reduce the effective fraction of suitable habitat fragments below the extinction threshold. Nonuniform dispersal may make demographic stochasticity a more potent metapopulation extinction force than environmental stochasticity.

  19. Habitat, dispersal and propagule pressure control exotic plant infilling within an invaded range

    Treesearch

    Robert J. Warren; T. Ursell; A.D. Keiser; M.A. Bradford

    2013-01-01

    Deep in the heart of a longstanding invasion, an exotic grass is still invading. Range infilling potentially has the greatest impact on native communities and ecosystem processes, but receives much less attention than range expansion. ‘Snapshot’ studies of invasive plant dispersal, habitat and propagule limitations cannot determine whether a landscape is saturated or...

  20. Natal and breeding philopatry of female Steller sea lions in southeastern Alaska.

    PubMed

    Hastings, Kelly K; Jemison, Lauri A; Pendleton, Grey W; Raum-Suryan, Kimberly L; Pitcher, Kenneth W

    2017-01-01

    Information on drivers of dispersal is critical for wildlife conservation but is rare for long-lived marine mammal species with large geographic ranges. We fit multi-state mark-recapture models to resighting data of 369 known-aged Steller sea lion (Eumetopias jubatus) females marked as pups on their natal rookeries in southeastern Alaska from 1994-2005 and monitored from 2001-15. We estimated probabilities of females being first observed parous at their natal site (natal philopatry), and of not moving breeding sites among years (breeding philopatry) at large (> 400 km, all five rookeries in southeastern Alaska) and small (< 4 km, all islands within the largest rookery, Forrester Island Complex, F) spatial scales. At the rookery scale, natal philopatry was moderately high (0.776-0.859) for most rookeries and breeding philopatry was nearly 1, with < 3% of females switching breeding rookeries between years. At more populous islands at F, natal philopatry was 0.500-0.684 versus 0.295-0.437 at less populous islands, and breeding philopatry was 0.919-0.926 versus 0.604-0.858. At both spatial scales, the probability of pupping at a non-natal site increased with population size of, and declined with distance from, the destination site. Natal philopatry of < 1 would increase gene flow, improve population resilience, and promote population recovery after decline in a heterogeneous environment. Very high breeding philopatry suggests that familiarity with neighboring females and knowledge of the breeding site (the topography of pupping sites and nearby foraging locations) may be a critical component to reproductive strategies of sea lions.

  1. Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway.

    PubMed

    Worth, J R P; Holland, B R; Beeton, N J; Schönfeld, B; Rossetto, M; Vaillancourt, R E; Jordan, G J

    2017-10-17

    Investigating species distributions across geographic barriers is a commonly utilized method in biogeography to help understand the functional traits that allow plants to disperse successfully. Here the biogeographic pattern analysis approach is extended by using chloroplast DNA whole-genome 'mining' to examine the functional traits that have impacted the dispersal of widespread temperate forest species across an intermittent seaway, the 200 km wide Bass Strait of south-eastern Australia. Multiple, co-distributed species of both dry and wet forests were sampled from five regions on either side of the Strait to obtain insights into past dispersal of these biomes via seed. Using a next-generation sequencing-based pool-seq method, the sharing of single nucleotide polymorphisms (SNPs) was estimated between all five regions in the chloroplast genome. A total of 3335 SNPs were detected in 20 species. SNP sharing patterns between regions provided evidence for significant seed-mediated gene flow across the study area, including across Bass Strait. A higher proportion of shared SNPs in dry forest species, especially those dispersed by birds, compared with wet forest species suggests that dry forest species have undergone greater seed-mediated gene flow across the study region during past climatic oscillations and sea level changes associated with the interglacial/glacial cycles. This finding is consistent with a greater propensity for long-distance dispersal for species of open habitats and proxy evidence that expansive areas of dry vegetation occurred during times of exposure of Bass Strait during glacials. Overall, this study provides novel genetic evidence that habitat type and its interaction with dispersal traits are major influences on dispersal of plants. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Estimating the occupancy of spotted owl habitat areas by sampling and adjusting for bias

    Treesearch

    David L. Azuma; James A. Baldwin; Barry R. Noon

    1990-01-01

    A basic sampling scheme is proposed to estimate the proportion of sampled units (Spotted Owl Habitat Areas (SOHAs) or randomly sampled 1000-acre polygon areas (RSAs)) occupied by spotted owl pairs. A bias adjustment for the possibility of missing a pair given its presence on a SOHA or RSA is suggested. The sampling scheme is based on a fixed number of visits to a...

  3. Natal and breeding philopatry of female Steller sea lions in southeastern Alaska

    PubMed Central

    2017-01-01

    Information on drivers of dispersal is critical for wildlife conservation but is rare for long-lived marine mammal species with large geographic ranges. We fit multi-state mark-recapture models to resighting data of 369 known-aged Steller sea lion (Eumetopias jubatus) females marked as pups on their natal rookeries in southeastern Alaska from 1994–2005 and monitored from 2001–15. We estimated probabilities of females being first observed parous at their natal site (natal philopatry), and of not moving breeding sites among years (breeding philopatry) at large (> 400 km, all five rookeries in southeastern Alaska) and small (< 4 km, all islands within the largest rookery, Forrester Island Complex, F) spatial scales. At the rookery scale, natal philopatry was moderately high (0.776–0.859) for most rookeries and breeding philopatry was nearly 1, with < 3% of females switching breeding rookeries between years. At more populous islands at F, natal philopatry was 0.500–0.684 versus 0.295–0.437 at less populous islands, and breeding philopatry was 0.919–0.926 versus 0.604–0.858. At both spatial scales, the probability of pupping at a non-natal site increased with population size of, and declined with distance from, the destination site. Natal philopatry of < 1 would increase gene flow, improve population resilience, and promote population recovery after decline in a heterogeneous environment. Very high breeding philopatry suggests that familiarity with neighboring females and knowledge of the breeding site (the topography of pupping sites and nearby foraging locations) may be a critical component to reproductive strategies of sea lions. PMID:28591130

  4. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR

    PubMed Central

    Hammock, Elizabeth A.D.; Law, Caitlin S.; Levitt, Pat

    2014-01-01

    R eliminates the expression of familiar odor bias in neonatal mice. This suggests a developmental role for AVP on familiarity bias, which has implications for species-typical life history trajectories of social learning and natal dispersal. PMID:23261858

  5. Proximate influences on female dispersal in white-tailed deer

    USGS Publications Warehouse

    Lutz, Clayton L.; Diefenbach, Duane R.; Rosenberry, Christopher S.

    2016-01-01

    Ultimate causes of animal dispersal have been hypothesized to benefit the dispersing individual because dispersal reduces competition for local resources, potential for inbreeding, and competition for breeding partners. However, proximate cues influence important features of dispersal behavior, including when dispersal occurs, how long it lasts, and direction, straightness, and distance of the dispersal path. Therefore, proximate cues that affect dispersal influence ecological processes (e.g., population dynamics, disease transmission, gene flow). We captured and radio-marked 277 juvenile female white-tailed deer (Odocoileus virginianus), of which 27 dispersed, to evaluate dispersal behavior and to determine proximate cues that may influence dispersal behavior. Female dispersal largely occurred at 1 year of age and coincided with the fawning season. Dispersal paths varied but generally were non-linear and prolonged. Physical landscape features (i.e., roadways, rivers, residential areas) influenced dispersal path direction and where dispersal terminated. Additionally, forays outside of the natal range that did not result in dispersal occurred among 52% of global positioning system (GPS)-collared deer (n = 25) during the dispersal period. Our results suggest intra-specific social interactions and physical landscape features influence dispersal behavior in female deer. Female dispersal behavior, particularly the lack of directionality, the semi-permeable nature of physical barriers, and the frequency of forays outside of the natal range, should be considered in regard to population management and controlling the spread of disease.

  6. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami.

    PubMed

    Ofori, Benjamin Y; Stow, Adam J; Baumgartner, John B; Beaumont, Linda J

    2017-01-01

    The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming "unlimited" or "no" dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham's skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020-2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23-63% at 1 km and 26-64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species' range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change.

  7. Between-Group Variation in Female Dispersal, Kin Composition of Groups, and Proximity Patterns in a Black-and-White Colobus Monkey (Colobus vellerosus)

    PubMed Central

    Wikberg, Eva C.; Sicotte, Pascale; Campos, Fernando A.; Ting, Nelson

    2012-01-01

    A growing body of evidence shows within-population variation in natal dispersal, but the effects of such variation on social relationships and the kin composition of groups remain poorly understood. We investigate the link between dispersal, the kin composition of groups, and proximity patterns in a population of black-and-white colobus (Colobus vellerosus) that shows variation in female dispersal. From 2006 to 2011, we collected behavioral data, demographic data, and fecal samples of 77 males and 92 females residing in eight groups at Boabeng-Fiema, Ghana. A combination of demographic data and a genetic network analysis showed that although philopatry was female-biased, only about half of the females resided in their natal groups. Only one group contained female-female dyads with higher average relatedness than randomly drawn animals of both sexes from the same group. Despite between-group variation in female dispersal and kin composition, female-female dyads in most of the study groups had higher proximity scores than randomly drawn dyads from the same group. We conclude that groups fall along a continuum from female dispersed, not kin-based, and not bonded to female philopatric, kin-based, and bonded. We found only partial support for the predicted link between dispersal, kin composition, and social relationships. In contrast to most mammals where the kin composition of groups is a good predictor of the quality of female-female relationships, this study provides further support for the notion that kinship is not necessary for the development and maintenance of social bonds in some gregarious species. PMID:23144951

  8. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  9. Shark attack in Natal.

    PubMed

    White, J A

    1975-02-01

    The injuries in 5 cases of shark attack in Natal during 1973-74 are reviewed. Experience in shark attacks in South Africa during this period is discussed (1965-73), and the value of protecting heavily utilized beaches in Natal with nets is assessed. The surgical applications of elasmobranch research at the Oceanographic Research Institute (Durban) and at the Headquarters of the Natal Anti-Shark Measures Board (Umhlanga Rocks) are described. Modern trends in the training of surf life-guards, the provision of basic equipment for primary resuscitation of casualties on the beaches, and the policy of general and local care of these patients in Natal are discussed.

  10. Modeling interpopulation dispersal by banner-tailed kangaroo rats

    USGS Publications Warehouse

    Skvarla, J.L.; Nichols, J.D.; Hines, J.E.; Waser, P.M.

    2004-01-01

    Many metapopulation models assume rules of population connectivity that are implicitly based on what we know about within-population dispersal, but especially for vertebrates, few data exist to assess whether interpopulation dispersal is just within-population dispersal "scaled up." We extended existing multi-stratum mark-release-recapture models to incorporate the robust design, allowing us to compare patterns of within- and between-population movement in the banner-tailed kangaroo rat (Dipodomys spectabilis). Movement was rare among eight populations separated by only a few hundred meters: seven years of twice-annual sampling captured >1200 individuals but only 26 interpopulation dispersers. We developed a program that implemented models with parameters for capture, survival, and interpopulation movement probability and that evaluated competing hypotheses in a model selection framework. We evaluated variants of the island, stepping-stone, and isolation-by-distance models of interpopulation movement, incorporating effects of age, season, and habitat (short or tall grass). For both sexes, QAICc values clearly favored isolation-by-distance models, or models combining the effects of isolation by distance and habitat. Models with probability of dispersal expressed as linear-logistic functions of distance and as negative exponentials of distance fit the data equally well. Interpopulation movement probabilities were similar among sexes (perhaps slightly biased toward females), greater for juveniles than adults (especially for females), and greater before than during the breeding season (especially for females). These patterns resemble those previously described for within-population dispersal in this species, which we interpret as indicating that the same processes initiate both within- and between-population dispersal.

  11. Genetic insights into dispersal distance and disperser fitness of African lions (Panthera leo) from the latitudinal extremes of the Kruger National Park, South Africa.

    PubMed

    van Hooft, Pim; Keet, Dewald F; Brebner, Diana K; Bastos, Armanda D S

    2018-04-03

    Female lions generally do not disperse far beyond their natal range, while males can disperse distances of over 200 km. However, in bush-like ecosystems dispersal distances less than 25 km are reported. Here, we investigate dispersal in lions sampled from the northern and southern extremes of Kruger National Park, a bush-like ecosystem in South Africa where bovine tuberculosis prevalence ranges from low to high across a north-south gradient. A total of 109 individuals sampled from 1998 to 2004 were typed using 11 microsatellite markers, and mitochondrial RS-3 gene sequences were generated for 28 of these individuals. Considerable north-south genetic differentiation was observed in both datasets. Dispersal was male-biased and generally further than 25 km, with long-distance male gene flow (75-200 km, detected for two individuals) confirming that male lions can travel large distances, even in bush-like ecosystems. In contrast, females generally did not disperse further than 20 km, with two distinctive RS-3 gene clusters for northern and southern females indicating no or rare long-distance female dispersal. However, dispersal rate for the predominantly non-territorial females from southern Kruger (fraction dispersers ≥0.68) was higher than previously reported. Of relevance was the below-average body condition of dispersers and their low presence in prides, suggesting low fitness. Large genetic differences between the two sampling localities, and low relatedness among males and high dispersal rates among females in the south, suggestive of unstable territory structure and high pride turnover, have potential implications for spread of diseases and the management of the Kruger lion population.

  12. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham’s skink, Egernia cunninghami

    PubMed Central

    Stow, Adam J.; Baumgartner, John B.; Beaumont, Linda J.

    2017-01-01

    The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming “unlimited” or “no” dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham’s skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020–2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23–63% at 1 km and 26–64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species’ range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change. PMID:28873398

  13. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.

    PubMed

    Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F

    2010-04-13

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  14. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks

    USGS Publications Warehouse

    Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.

    2010-01-01

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.

  15. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks

    PubMed Central

    Campbell Grant, Evan H.; Nichols, James D.; Lowe, Winsor H.; Fagan, William F.

    2010-01-01

    Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines. PMID:20351269

  16. Juvenile Survival in Common Loons Gavia Immer: Effects of Natal Lake Size and pH

    EPA Science Inventory

    Survival is a vexing parameter to measure in many young birds because of dispersal and delayed impacts of natal rearing conditions on fitness. Drawing upon marking and resighting records from an 18-year study of territorial behavior, we used Cormack-Jolly-Seber analysis with Prog...

  17. Structural complexity, movement bias, and metapopulation extinction risk in dendritic ecological networks

    USGS Publications Warehouse

    Campbell Grant, Evan H.

    2011-01-01

    Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.

  18. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  19. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles

    PubMed Central

    Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.

    2008-01-01

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188

  20. Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii)

    USGS Publications Warehouse

    Sedgwick, James A.

    2004-01-01

    I investigated the causes and consequences of adult breeding-site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii) in southeastern Oregon over a 10-year period, testing the general hypothesis that fidelity and dispersal distances are influenced by previous breeding performance. Willow Flycatchers adhered to the generally observed tendencies of passerine birds for low natal philopatry and high breedingsite fidelity. Site fidelity (return to the study area) of adult males (52.0%) and females (51.3%), and median dispersal distances between seasons (16 m vs. 19 m) were similar. Previous breeding performance and residency (age-experience), but not study-site quality, explained site fidelity in females. Site fidelity of females rearing 4–5 young (64.4%) exceeded that of unsuccessful females (40.0%), breeding dispersal was less (successful: 15 m; unsuccessful: 33 m), and novice residents were more site-faithful than former residents. Probability of site fidelity was higher for previously successful females (odds ratio = 4.76), those with greater seasonal fecundity (odds ratio = 1.58), novice residents (odds ratio = 1.41), and unparasitized females (odds ratio = 2.76). Male site fidelity was not related to residency, site quality, or previous breeding performance. Territory fidelity (return to the previous territory) in females was best explained by previous breeding performance, but not by site quality or residency. Previously successful females were more likely to return to their territory of the previous season than either unsuccessful (odds ratio = 14.35) or parasitized birds (odds ratio = 6.38). Male territory fidelity was not related to residency, site quality, or previous breeding performance. Natal philopatry was low (7.8%) and similar for males and females. Site quality appeared to influence philopatry, given that no birds reared at a low-quality study site returned there to breed, and birds reared there dispersed

  1. Pre-natal and post-natal growth trajectories and childhood cognitive ability and mental health.

    PubMed

    Yang, Seungmi; Tilling, Kate; Martin, Richard; Davies, Neil; Ben-Shlomo, Yoav; Kramer, Michael S

    2011-10-01

    Most studies of the associations between pre-natal or post-natal growth and cognitive ability have been based on children with pathologically slow growth measured between two time points only, rather than children with normal growth trajectories estimated from multiple measures of growth. We investigated the associations of pre-natal and post-natal trajectories in both weight and length/height through the first 5 years of life with cognitive ability and mental health at 6.5 years of age among healthy children. Our study is based on 11 899 children who were born healthy at ≥37 completed weeks with birth weight ≥2500 g and had up to 13 measures of weight and length/height from birth to age 5 years and cognitive ability and behaviour measured at 6.5 years. Using a linear spline random-effects model with 2 knots at 3 and 12 months, we estimated growth trajectories for each child from birth to age 5 years in weight and length/height in four periods: gestational age-specific birth weight and length (pre-natal 'growth'), early infancy (0-3 months), late infancy (3-12 months) and early childhood (1-5 years). We used generalized estimating equations to estimate mean differences in IQ and mental health according to pre-natal and post-natal growth trajectory. IQ was measured using the Wechsler Abbreviated Scales of Intelligence, and mental health was assessed using the Strengths and Difficulties Questionnaire. A 1 standard deviation (SD) in birth weight was positively associated with cognitive ability (0.82 IQ points, 95% CI: 0.54-1.10) after adjusting for confounders. For post-natal weight gain trajectories, a 1 SD faster weight gain was associated with an increase of 0.77 (95% CI: 0.42-1.11) IQ points for early infancy, 0.30 (95% CI: 0.02-0.58) points for late infancy, and 0.40 (95% CI: 0.04-0.76) for early childhood after adjusting for confounders and for earlier growth. For length/height trajectories, the magnitudes of increase in cognitive ability were similar

  2. Juvenile dispersal in Calomys venustus (Muridae: Sigmodontinae)

    NASA Astrophysics Data System (ADS)

    Priotto, José; Steinmann, Andrea; Provensal, Cecilia; Polop, Jaime

    2004-05-01

    Both spacing behaviour and dispersal movement are viewed as hierarchical processes in which the effects may be expressed at spatial scale. This research was carried out to examine the hypothesis that the presence of parents promotes the dispersal of juveniles from their natal nest and their father or mother home-range, in Calomys venustus.The study was carried out in four 0.25 ha fences (two controls and two experimentals), in a natural pasture. This study had two periods: Father Removal (FR) (August and December 1997; year one) and Mother Removal (MR) (August 1998 and January 1999; year two). For the FR treatment fathers were removed after juveniles were born, but in the MR treatment mothers were removed after the juveniles were weaned. The effect of parents on the dispersal distance of juveniles was analysed with respect to their natal nest and their mother and father home-range. Dispersal distance from the nest of C. venustus was independent of either male or female parent. Juveniles were more dispersing in relation to the centre of activity of their mothers than to that of their fathers, and females were more dispersing than males. Female juveniles overlap their home-range with their parents less than male juveniles do. The differences observed between female and male juveniles would be related to their different sexual maturation times, as well as to the female territoriality.

  3. Why do some males choose to breed at home when most other males disperse?

    PubMed Central

    Davidian, Eve; Courtiol, Alexandre; Wachter, Bettina; Hofer, Heribert; Höner, Oliver P.

    2016-01-01

    Dispersal is a key driver of ecological and evolutionary processes. Despite substantial efforts to explain the evolution of dispersal, we still do not fully understand why individuals of the same sex of a species vary in their propensity to disperse. The dominant hypothesis emphasizes movements and assumes that leaving home (dispersal) and staying at home (philopatry) are two alternative strategies providing different fitness. It suggests that only individuals of high phenotypic quality can pursue the most beneficial strategy; the others are left to do a “best-of-a-bad” job. An alternative hypothesis emphasizes settlement decisions and suggests that all individuals pursue a single strategy of choosing the breeding habitat or group with the highest fitness prospects; choosing the natal group (philopatry) and choosing a nonnatal group (dispersal) are then outcomes of these decisions. We tested both hypotheses using a long-term study of a free-ranging population of a group-living carnivore, the spotted hyena. We combined demographic data with data on dispersal-relevant phenotypic traits, breeding-group choice, survival, and reproductive success of 254 males. Our results contradict the best-of-a-bad-job hypothesis: philopatric males and dispersers were of similar phenotypic quality, had similar fitness, and applied similar settlement rules based on the fitness prospects in groups. Our findings demonstrate that the distribution of breeding partners can be more important in shaping dispersal patterns than the costs associated with the dispersal movement. The study provides novel insights into the processes leading to the coexistence of philopatry and dispersal within the same sex of a species. PMID:27034982

  4. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  5. Inbreeding and inbreeding avoidance in wild giant pandas.

    PubMed

    Hu, Yibo; Nie, Yonggang; Wei, Wei; Ma, Tianxiao; Van Horn, Russell; Zheng, Xiaoguang; Swaisgood, Ronald R; Zhou, Zhixin; Zhou, Wenliang; Yan, Li; Zhang, Zejun; Wei, Fuwen

    2017-10-01

    Inbreeding can have negative consequences on population and individual fitness, which could be counteracted by inbreeding avoidance mechanisms. However, the inbreeding risk and inbreeding avoidance mechanisms in endangered species are less studied. The giant panda, a solitary and threatened species, lives in many small populations and suffers from habitat fragmentation, which may aggravate the risk of inbreeding. Here, we performed long-term observations of reproductive behaviour, sampling of mother-cub pairs and large-scale genetic analyses on wild giant pandas. Moderate levels of inbreeding were found in 21.1% of mating pairs, 9.1% of parent pairs and 7.7% of panda cubs, but no high-level inbreeding occurred. More significant levels of inbreeding may be avoided passively by female-biased natal dispersal rather than by breeding dispersal or active relatedness-based mate choice mechanisms. The level of inbreeding in giant pandas is greater than expected for a solitary mammal and thus warrants concern for potential inbreeding depression, particularly in small populations isolated by continuing habitat fragmentation, which will reduce female dispersal and increase the risk of inbreeding. © 2017 John Wiley & Sons Ltd.

  6. Persistence in a Two-Dimensional Moving-Habitat Model.

    PubMed

    Phillips, Austin; Kot, Mark

    2015-11-01

    Environmental changes are forcing many species to track suitable conditions or face extinction. In this study, we use a two-dimensional integrodifference equation to analyze whether a population can track a habitat that is moving due to climate change. We model habitat as a simple rectangle. Our model quickly leads to an eigenvalue problem that determines whether the population persists or declines. After surveying techniques to solve the eigenvalue problem, we highlight three findings that impact conservation efforts such as reserve design and species risk assessment. First, while other models focus on habitat length (parallel to the direction of habitat movement), we show that ignoring habitat width (perpendicular to habitat movement) can lead to overestimates of persistence. Dispersal barriers and hostile landscapes that constrain habitat width greatly decrease the population's ability to track its habitat. Second, for some long-distance dispersal kernels, increasing habitat length improves persistence without limit; for other kernels, increasing length is of limited help and has diminishing returns. Third, it is not always best to orient the long side of the habitat in the direction of climate change. Evidence suggests that the kurtosis of the dispersal kernel determines whether it is best to have a long, wide, or square habitat. In particular, populations with platykurtic dispersal benefit more from a wide habitat, while those with leptokurtic dispersal benefit more from a long habitat. We apply our model to the Rocky Mountain Apollo butterfly (Parnassius smintheus).

  7. Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    PubMed Central

    2010-01-01

    Background The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales. Results Our results show that dispersal in C. australis is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females. Conclusions Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of

  8. Philopatry and dispersal patterns in tiger (Panthera tigris).

    PubMed

    Gour, Digpal Singh; Bhagavatula, Jyotsna; Bhavanishankar, Maradani; Reddy, Patlolla Anuradha; Gupta, Jaya A; Sarkar, Mriganka Shekhar; Hussain, Shaik Mohammed; Harika, Segu; Gulia, Ravinder; Shivaji, Sisinthy

    2013-01-01

    Tiger populations are dwindling rapidly making it increasingly difficult to study their dispersal and mating behaviour in the wild, more so tiger being a secretive and solitary carnivore. We used non-invasively obtained genetic data to establish the presence of 28 tigers, 22 females and 6 males, within the core area of Pench tiger reserve, Madhya Pradesh. This data was evaluated along with spatial autocorrelation and relatedness analyses to understand patterns of dispersal and philopatry in tigers within this well-managed and healthy tiger habitat in India. We established male-biased dispersal and female philopatry in tigers and reiterated this finding with multiple analyses. Females show positive correlation up to 7 kms (which corresponds to an area of approximately 160 km(2)) however this correlation is significantly positive only upto 4 kms, or 50 km(2) (r  = 0.129, p<0.0125). Males do not exhibit any significant correlation in any of the distance classes within the forest (upto 300 km(2)). We also show evidence of female dispersal upto 26 kms in this landscape. Animal movements are important for fitness, reproductive success, genetic diversity and gene exchange among populations. In light of the current endangered status of tigers in the world, this study will help us understand tiger behavior and movement. Our findings also have important implications for better management of habitats and interconnecting corridors to save this charismatic species.

  9. Interactions between Soil Habitat and Geographic Range Location Affect Plant Fitness

    PubMed Central

    Stanton-Geddes, John; Shaw, Ruth G.; Tiffin, Peter

    2012-01-01

    Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates. PMID:22615745

  10. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: Roles of vertical diel migration, water column, bedload transport and biological traits' expression

    NASA Astrophysics Data System (ADS)

    Pacheco, Aldo S.; Uribe, Roberto A.; Thiel, Martin; Oliva, Marcelo E.; Riascos, Jose M.

    2013-03-01

    Post-larval dispersal along the sediment-water interface is an important process in the dynamics of macrobenthic populations and communities in marine sublittoral sediments. However, the modes of post-larval dispersal in low energy sublittoral habitats have been poorly documented. Herein we examined the specific dispersal mechanisms (diel vertical migration, water column, and bedload transport) and corresponding biological traits of the dispersing assemblage. At two sublittoral sites (sheltered and exposed) along the northern coast of Chile, we installed different trap types that capture benthic organisms with specific modes of dispersal (active emergence and passive water column drifting) and also by a combination of mechanisms (bedload transport, passive suspension and settlement from the water column). Our results show that even though there were common species in all types of traps, the post-larval macrobenthic assemblage depended on specific mechanisms of dispersal. At the sheltered site, abundant emerging taxa colonized sediments that were placed 0.5 m above the bottom and bedload-transported invertebrates appeared to be associated to the passive drifting of macroalgae. At the exposed site, assemblage dispersal was driven by specific mechanisms e.g. bedload transport and active emergence. At both sites the biological traits "small size, swimming, hard exoskeleton, free living and surface position" were associated to water column and bedload dispersal. This study highlights the importance of (i) the water-sediment interface for dispersal of post-larvae in sublittoral soft-bottom habitat, and (ii) a specific set of biological traits when dispersing either along the bottom or through the water column.

  11. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  12. Coping with heat: function of the natal coat of cape fur seal (Arctocephalus Pusillus Pusillus) pups in maintaining core body temperature.

    PubMed

    Erdsack, Nicola; Dehnhardt, Guido; Hanke, Wolf

    2013-01-01

    Cape fur seal (Arctocephalus pusillus) pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life.

  13. Coping with Heat: Function of The Natal Coat of Cape Fur Seal (Arctocephalus Pusillus Pusillus) Pups in Maintaining Core Body Temperature

    PubMed Central

    Erdsack, Nicola; Dehnhardt, Guido; Hanke, Wolf

    2013-01-01

    Cape fur seal (Arctocephalus pusillus) pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life. PMID:23951287

  14. Regeneration of a keystone semiarid shrub over its range in Spain: habitat degradation overrides the positive effects of plant-animal mutualisms.

    PubMed

    Rey, Pedro J; Cancio, Inmaculada; Manzaneda, Antonio J; González-Robles, Ana; Valera, Francisco; Salido, Teresa; Alcántara, Julio M

    2018-06-22

    Global change drivers are currently affecting semiarid ecosystems. Because these ecosystems differ from others in biotic and abiotic filters, cues for plant regeneration and management derived from elsewhere may not be applicable to semiarid ecosystems. We sought to determine the extent to which regional variation in regeneration prospects of a long-lived semiarid keystone shrub depends on anthropogenic habitat degradation, plant-animal interactions and climate determinants. We investigated the regeneration ability (via population size structure, juvenile density and juvenile/adult ratio), fruit set and seed dispersal of Ziziphus lotus in 25 localities spanning the range of its threatened habitats in Spain. We dissected the relative contribution of different regeneration determinants using multiple regression and structural equation modelling. Population regeneration was extremely poor, and size structures were biased towards large classes and low juvenile densities and juvenile/adult ratios. Poor regeneration was often coincident with seed dispersal collapse. However, the positive effect of seed dispersal on population regeneration disappeared after considering its relationship with habitat degradation. Protected areas did have juveniles. Together, these data suggest that habitat degradation directly impacts juvenile establishment. Our results provide insights into habitat and species management at the regional level. Z. lotus populations are currently driven by persistence-based dynamics through the longevity of the species. Nonetheless, collapsed seed dispersal, poor regeneration and the removal of adults from their habitats forecast extinction of Z. lotus in many remnants. The extreme longevity of Z. lotus grants opportunities for the recovery of its populations and habitats through effective enforcement of regulations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. How does pollen versus seed dispersal affect niche evolution?

    PubMed

    Aguilée, Robin; Shaw, Frank H; Rousset, François; Shaw, Ruth G; Ronce, Ophélie

    2013-03-01

    In heterogeneous landscapes, the genetic and demographic consequences of dispersal influence the evolution of niche width. Unless pollen is limiting, pollen dispersal does not contribute directly to population growth. However, by disrupting local adaptation, it indirectly affects population dynamics. We compare the effect of pollen versus seed dispersal on the evolution of niche width in heterogeneous habitats, explicitly considering the feedback between maladaptation and demography. We consider two scenarios: the secondary contact of two subpopulations, in distinct, formerly isolated habitats, and the colonization of an empty habitat with dispersal between the new and ancestral habitat. With an analytical model, we identify critical levels of genetic variance leading to niche contraction (secondary contact scenario), or expansion (new habitat scenario). We confront these predictions with simulations where the genetic variance freely evolves. Niche contraction occurs when habitats are very different. It is faster as total gene flow increases or as pollen predominates in overall gene flow. Niche expansion occurs when habitat heterogeneity is not too high. Seed dispersal accelerates it, whereas pollen dispersal tends to retard it. In both scenarios very high seed dispersal leads to extinction. Overall, our results predict a wider niche for species dispersing seeds more than pollen. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    PubMed

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  17. Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in Petén, Guatemala.

    PubMed

    Monroy, Maria Carlota; Bustamante, Dulce Maria; Rodas, Antonieta Guadalupe; Enriquez, Maria Eunice; Rosales, Regina Guadalupe

    2003-11-01

    Dispersion and invasion capacity of sylvatic populations of Triatoma dimidiata (Latreille) were investigated during 14 mo by means of experimental chicken coops installed in a nature reserve within the Maya Biosphere, Petén, Guatemala. In addition, palm trees, underground archeological holes (chultunes) and piles of limestones within the forest were inspected as potential sylvatic habitats of T. dimidiata. From the three types of sylvatic habitats we inspected, all served as shelter and breeding sites for T dimidiata. The natural infection of these bugs (n = 72) with Trypanosoma cruzi (Chagas) was high (25%) and represent a risk for humans who colonize the forest. T. dimidiata quickly invaded the experimental chicken coops installed in the primary forest, albeit at very low densities. However, only one adult bug was encountered in the chicken coops installed in a secondary forest. Dispersal of adult T. dimidiata was most apparent at the end of the dry season. Overall, our results indicate a potential risk for invasion by sylvatic T. dimidiata of domestic environments in this area, with a risk of T. cruzi transmission to humans. We suggest that a system of community-based surveillance should be developed to detect new infestations and organize prompt treatment of any new cases of acute Chagas disease that may result.

  18. Home Range, Movement, and Distribution Patterns of the Threatened Dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): A Thousand Times Greater Territory to Protect?

    PubMed Central

    Dolný, Aleš; Harabiš, Filip; Mižičová, Hana

    2014-01-01

    Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape. PMID:25006671

  19. Natal foraging philopatry in eastern Pacific hawksbill turtles.

    PubMed

    Gaos, Alexander R; Lewison, Rebecca L; Jensen, Michael P; Liles, Michael J; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A; Flores, Eric E; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L; Dutton, Peter H

    2017-08-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.

  20. Natal foraging philopatry in eastern Pacific hawksbill turtles

    PubMed Central

    Lewison, Rebecca L.; Jensen, Michael P.; Liles, Michael J.; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A.; Flores, Eric E.; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A.; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E.; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L.; Dutton, Peter H.

    2017-01-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry. PMID:28878969

  1. Calculating summary statistics for population chemical biomonitoring in women of childbearing age with adjustment for age-specific natality.

    PubMed

    Axelrad, Daniel A; Cohen, Jonathan

    2011-01-01

    The effects of chemical exposures during pregnancy on children's health have been an increasing focus of environmental health research in recent years, leading to greater interest in biomonitoring of chemicals in women of childbearing age in the general population. Measurements of mercury in blood from the National Health and Nutrition Examination Survey are frequently reported for "women of childbearing age," defined to be of ages 16-49 years. The intent is to represent prenatal chemical exposure, but blood mercury levels increase with age. Furthermore, women of different ages have different probabilities of giving birth. We evaluated options to address potential bias in biomonitoring summary statistics for women of childbearing age by accounting for age-specific probabilities of giving birth. We calculated median and 95th percentile levels of mercury, PCBs, and cotinine using these approaches: option 1: women aged 16-49 years without natality adjustment; option 2: women aged 16-39 years without natality adjustment; option 3: women aged 16-49 years, adjusted for natality by age; option 4: women aged 16-49 years, adjusted for natality by age and race/ethnicity. Among the three chemicals examined, the choice of option has the greatest impact on estimated levels of serum PCBs, which are strongly associated with age. Serum cotinine levels among Black non-Hispanic women of childbearing age are understated when age-specific natality is not considered. For characterizing in utero exposures, adjustment using age-specific natality provides a substantial improvement in estimation of biomonitoring summary statistics. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Mapping Habitat Connectivity for Multiple Rare, Threatened, and Endangered Species on and Around Military Installations

    DTIC Science & Technology

    2011-05-01

    choice model based on foraying behavior to predict natal dispersal destinations. We counted instances in which a female occupied the breeding position...movement for pollen dispersal by honey bees. Ecology 74:493-500. Müller, J., J. Stadler, R. Brandl., 2009. Composition versus physiognomy of vegetation

  3. Gene flow connects coastal populations of a habitat specialist, the Clapper Rail Rallus crepitans

    USGS Publications Warehouse

    Coster, Stephanie S.; Welsh, Amy B.; Costanzo, Gary R.; Harding, Sergio R.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographic range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of North America, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks, and a weak pattern of genetic differentiation that increased with geographic distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the North American Atlantic coast, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioral factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.

  4. Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models.

    PubMed Central

    Conradt, L; Bodsworth, E J; Roper, T J; Thomas, C D

    2000-01-01

    The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations. PMID:11007325

  5. Dispersal movements of juvenile Mexican Spotted Owls (Strix occidentalis lucida) in New Mexico

    Treesearch

    David P. Arsenault; Angela Hodgson; Peter B. Stacey

    1997-01-01

    Tail-mounted radio transmitters were attached to 12 juvenile and 3 sub-adult (yearling) Mexican Spotted Owls (Strix occidentalis lucida) in southwestern New Mexico from 1993 to 1996. Most juveniles dispersed from their natal territories during September. Intervals between dispersal of siblings ranged from 3 to more than 15 days. Juveniles exhibited...

  6. The role of landscape-dependent disturbance and dispersal in metapopulation persistence.

    PubMed

    Elkin, Ché M; Possingham, Hugh

    2008-10-01

    The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape-dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.

  7. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    PubMed

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Habitat use, but not gene flow, is influenced by human activities in two ecotypes of Egyptian fruit bat (Rousettus aegyptiacus).

    PubMed

    Centeno-Cuadros, A; Hulva, P; Romportl, D; Santoro, S; Stříbná, T; Shohami, D; Evin, A; Tsoar, A; Benda, P; Horáček, I; Nathan, R

    2017-11-01

    Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human-altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human-altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS- or radio-tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical-geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation-by-resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human-altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns. © 2017 John Wiley & Sons Ltd.

  9. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish.

    PubMed

    Dixson, Danielle L; Jones, Geoffrey P; Munday, Philip L; Planes, Serge; Pratchett, Morgan S; Thorrold, Simon R

    2014-01-01

    When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50% of their time in the cue) or increased their attraction to (increased preference but did not spend >50% of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.

  10. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates.

    PubMed

    Rodil, Iván F; Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf

    2017-01-01

    Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies.

  11. The role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates

    PubMed Central

    Lucena-Moya, Paloma; Jokinen, Henri; Ollus, Victoria; Wennhage, Håkan; Villnäs, Anna; Norkko, Alf

    2017-01-01

    Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific traits of the study organism. We examined the role of environmental and spatial factors in structuring benthic communities from a highly connected shallow beach network using a metacommunity approach. Both factors contributed to a varying degree to the structure of the local communities suggesting that environmental filters and dispersal-related mechanisms played key roles in determining abundance patterns. We categorized benthic taxa according to their dispersal mode (passive vs. active) and habitat specialization (generalist vs. specialist) to understand the relative importance of environment and dispersal related processes for shallow beach metacommunities. Passive dispersers were predicted by a combination of environmental and spatial factors, whereas active dispersers were not spatially structured and responded only to local environmental factors. Generalists were predicted primarily by spatial factors, while specialists were only predicted by local environmental factors. The results suggest that the role of the spatial component in metacommunity organization is greater in open coastal waters, such as shallow beaches, compared to less-connected environmentally controlled aquatic systems. Our results also reveal a strong environmental role in structuring the benthic metacommunity of shallow beaches. Specifically, we highlight the sensitivity of shallow beach macrofauna to environmental factors related to eutrophication proxies. PMID:28196112

  12. Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system.

    PubMed

    Kuhn, A; Bauman, D; Darras, H; Aron, S

    2017-10-01

    Reproduction and dispersal are key aspects of species life history that influence spatial genetic structure in populations. Several ant species in the genus Cataglyphis have evolved a unique breeding system in which new reproductives (that is, queens and males) are produced asexually by parthenogenesis; in contrast, non-reproductives (that is, workers) are produced via sexual reproduction by mates from distinct genetic lineages. We investigated how these two coexisting reproductive methods affect population-level spatial genetic structure using the ant Cataglyphis mauritanica as a model. We obtained genotypes for queens and their male mates from 338 colonies, and we found that the two lineages present in the study population occurred with equal frequency. Furthermore, analysis of spatial genetic structure revealed strong sex-biased dispersal. Because queens were produced by parthenogenesis and because they dispersed over short distances, there was an extreme level of spatial structuring: a mosaic of patches composed of clonal queens was formed. Males, on the other hand, dispersed over several hundred metres and, thus, across patches, ensuring successful interlineage mating.

  13. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    PubMed

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-04-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. © 2015 John Wiley & Sons Ltd.

  14. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef

    PubMed Central

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J.; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef’s vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180° as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  15. Vagrant western red-shouldered hawks: origins, natal dispersal patterns, and survival

    USGS Publications Warehouse

    Bloom, Peter H.; Scott, J. Michael; Papp, Joseph M.; Thomas, Scott E.; Kidd, Jeff W.

    2011-01-01

    We report the results of a 40-year study of the western Red-shouldered Hawk (Buteo lineatus elegans) involving the banding of 2742 nestlings in southern California from 1970 to 2009 (this study) plus 127 nestlings banded in other California studies (1956–2008) and the analyses of 119 records of subsequent recovery from the Bird Banding Laboratory (1957–2009). Of the Red-shouldered Hawks recovered, 109 (91.6%) moved 100 km (long-distance dispersers). Three (2.5%), all long-distance dispersers, were vagrants (recovered outside the species' range of residency), and were found 374 to 843 km northeast and south of their banding locations in the Mojave, Great Basin, and Vizcaino deserts. The distribution of directions of short-distance dispersal was bipolar, closely corresponding with the northwest—southeast orientation of the species' range in southern California, while that of long-distance dispersers was mainly to the north. One of 10 long-distance dispersers, a nonvagrant, survived well into the age of breeding (103.0 months), whereas eight of the other nine perished before 14.5 months. The implications of vagrancy for conservation of this resident subspecies are that a relatively small source area can contribute genetic material over a vastly larger receiving area but rarely does so because of high mortality rates. Nonetheless, the movements of vagrants we documented provide evidence for the species' potential to populate new landscapes in response to changing environmental conditions and to maintain genetic heterogeneity within existing populations.

  16. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orang-utans (Pongo pygmaeus).

    PubMed

    Arora, N; Van Noordwijk, M A; Ackermann, C; Willems, E P; Nater, A; Greminger, M; Nietlisbach, P; Dunkel, L P; Utami Atmoko, S S; Pamungkas, Joko; Perwitasari-Farajallah, Dyah; Van Schaik, C P; Krützen, M

    2012-07-01

    Philopatry and sex-biased dispersal have a strong influence on population genetic structure, so the study of species dispersal patterns and evolutionary mechanisms shaping them are of great interest. Particularly nongregarious mammalian species present an underexplored field of study: despite their lower levels of sociality compared to group-living species, interactions among individuals do occur, providing opportunities for cryptic kin selection. Among the least gregarious primates are orang-utans (genus: Pongo), in which preferential associations among females have nevertheless been observed, but for which the presence of kin structures was so far unresolved because of the equivocal results of previous genetic studies. To clarify relatedness and dispersal patterns in orang-utans, we examined the largest longitudinal set of individuals with combined genetic, spatial and behavioural data. We found that males had significantly higher mitochondrial DNA (mtDNA) variation and more unique haplotypes, thus underscoring their different maternal ancestries compared to females. Moreover, pedigree reconstruction based on 24 highly polymorphic microsatellite markers and mtDNA haplotypes demonstrated the presence of three matrilineal clusters of generally highly related females with substantially overlapping ranges. In orang-utans and possibly other nongregarious species, comparing average biparental relatedness (r) of males and females to infer sex-biased dispersal is extremely problematic. This is because the opportunistic sampling regime frequently employed in nongregarious species, combined with overlapping space use of distinct matrilineal clusters, leads to a strong downward bias when mtDNA lineage membership is ignored. Thus, in nongregarious species, correct inferences of dispersal can only be achieved by combining several genetic approaches with detailed spatial information. © 2012 Blackwell Publishing Ltd.

  17. Oak habitat recovery on California's largest islands: Scenarios for the role of corvid seed dispersal

    USGS Publications Warehouse

    Pesendorfer, Mario B.; Baker, Christopher M.; Stringer, Martin; McDonald-Madden, Eve; Bode, Michael; McEachern, A. Kathryn; Morrison, Scott A.; Sillett, T. Scott

    2018-01-01

    Seed dispersal by birds is central to the passive restoration of many tree communities. Reintroduction of extinct seed dispersers can therefore restore degraded forests and woodlands. To test this, we constructed a spatially explicit simulation model, parameterized with field data, to consider the effect of different seed dispersal scenarios on the extent of oak populations. We applied the model to two islands in California's Channel Islands National Park (USA), one of which has lost a key seed disperser.We used an ensemble modelling approach to simulate island scrub oak (Quercus pacifica) demography. The model was developed and trained to recreate known population changes over a 20-year period on 250-km2 Santa Cruz Island, and incorporated acorn dispersal by island scrub-jays (Aphelocoma insularis), deer mice (Peromyscus maniculatus) and gravity, as well as seed predation. We applied the trained model to 215-km2 Santa Rosa Island to examine how reintroducing island scrub-jays would affect the rate and pattern of oak population expansion. Oak habitat on Santa Rosa Island has been greatly reduced from its historical extent due to past grazing by introduced ungulates, the last of which were removed by 2011.Our simulation model predicts that a seed dispersal scenario including island scrub-jays would increase the extent of the island scrub oak population on Santa Rosa Island by 281% over 100 years, and by 544% over 200 years. Scenarios without jays would result in little expansion. Simulated long-distance seed dispersal by jays also facilitates establishment of discontinuous patches of oaks, and increases their elevational distribution.Synthesis and applications. Scenario planning provides powerful decision support for conservation managers. We used ensemble modelling of plant demographic and seed dispersal processes to investigate whether the reintroduction of seed dispersers could provide cost-effective means of achieving broader ecosystem restoration goals on

  18. Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    PubMed Central

    Galuardi, Benjamin; Lutcavage, Molly

    2012-01-01

    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns. PMID:22629461

  19. Small pelagic fish reproductive strategies in upwelling systems: A natal homing evolutionary model to study environmental constraints

    NASA Astrophysics Data System (ADS)

    Brochier, T.; Colas, F.; Lett, C.; Echevin, V.; Cubillos, L. A.; Tam, J.; Chlaida, M.; Mullon, C.; Fréon, P.

    2009-12-01

    Although little is known about the individual-level mechanisms that influence small pelagic fish species’ reproductive strategy, Mullon et al. [Mullon, C., Cury, P., Penven, P., 2002. Evolutionary individual-based model for the recruitment of anchovy ( Engraulis capensis) in the southern Benguela. Canadian Journal of Fisheries and Aquatic Sciences 59, 910-922] showed that the observed anchovy spawning patterns in the southern Benguela Current system off South Africa could be accurately reproduced by simulating a natal homing reproductive strategy, i.e. individuals spawning at their natal date and place. Here we used a similar method, i.e., an individual-based model of the natal homing reproductive strategy, and applied it to other upwelling systems: the northern Humboldt Current system off Peru, the southern Humboldt Current system off Chile and the central Canary Current system off Morocco. We investigated the spatial (horizontal and vertical) and seasonal spawning patterns that emerged after applying different environmental constraints in the model, and compared these to observed spawning patterns of sardine and anchovy in their respective systems. The selective environmental constraints tested were: (1) lethal temperature; (2) retention over the continental shelf; and (3) avoidance of dispersive structures. Simulated horizontal spatial patterns and seasonal patterns compared reasonably well with field data, but vertical patterns in most cases did not. Similarly to what was found for the southern Benguela, temperature was a determinant constraint in the southern Humboldt. The shelf retention constraint led to selection of a particular spawning season during the period of minimum upwelling in all three of the upwelling regions considered, and to spatial patterns that matched observed anchovy spawning off Chile and sardine spawning off Morocco. The third constraint, avoidance of dispersive structures, led to the emergence of a spawning season during the period of

  20. Seasonally biased or single-habitat sampling is not informative on the real prevalence of Dermacentor reticulatus-borne rickettsiae - A pilot study.

    PubMed

    Hornok, Sándor; Meli, Marina L; Gönczi, Enikő; Hofmann-Lehmann, Regina

    2017-03-01

    Dermacentor reticulatus is a tick species of high medical and veterinary importance, emerging in several parts of Europe. Up to now most studies focusing on zoonotic rickettsiae in D. reticulatus were based on ticks collected in a limited part of the questing period, and did not take into account the potential seasonal variations in the rate of infection with tick-borne rickettsiae. The aim of the present study was to investigate the latter phenomenon, i.e. to screen D. reticulatus adults, collected monthly in two urban habitats of Budapest, for the presence of three zoonotic Rickettsia spp. Altogether 852 D. reticulatus adults were collected, which showed significantly similar seasonal activity in the two evaluated habitats. Among the 413 molecularly analysed ticks, R. helvetica-infected D. reticulatus were only collected during autumn in habitat-1, in contrast to habitat-2. The overall prevalence of R. raoultii in D. reticulatus adults was significantly higher in habitat-1 than in habitat-2. In addition, the seasonal distribution of R. raoultii-infected ticks was different between the two habitats (in habitat-2 significantly more R. raoultii-infected ticks were collected in the autumn, in comparison with winter and spring). Rickettsia slovaca was not detected in any of the molecularly analysed ticks. The results clearly indicate that a single-time or seasonally biased collection of D. reticulatus adults and their subsequent molecular analysis may not be informative on the real prevalence of rickettsiae. This is because the availability/ activity of infected ticks shows significant seasonal fluctuations, both within and between habitats. Instead, for screening D. reticulatus-borne rickettsiae, it is important to collect monthly samples and then to assess seasonal prevalence and actual habitat-associated eco-epidemiological risks.

  1. Ecological considerations for the use of dispersants in oil spill response

    USGS Publications Warehouse

    Lindstedt-Siva, J.; Albers, P.H.; Fucik, K.W.; Maynard, N.G.; Allen, Tom E.

    1984-01-01

    A multidisciplinary task force with membership from government agencies, academia, and industry is developing ecologically based guidelines for dispersant use in marine and estuarine environments. The guidelines are organized by habitat type (e.g., coral reefs, rocky shores, bird habitats) and consider dispersant use to protect the habitats from impact, to mitigate impacts, and to clean the habitats after a spill. Each guideline contains a description of the habitat type covered, recommendations for dispersant use, and a background section reviewing the relevant literature. The goal is to minimize the ecological impacts of oil spills. Aesthetic, socioeconomic, and political factors are not considered, although it is recognized that these are important concerns during spill response. Use of dispersants is considered along with other appropriate countermeasures and compared with the “no cleanup” alternative.

  2. Patterns of Diversity in Soft-Bodied Meiofauna: Dispersal Ability and Body Size Matter

    PubMed Central

    Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H.; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M. Antonio

    2012-01-01

    Background Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. Methodology/Principal Findings As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Conclusion/Significance Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37

  3. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.

    PubMed

    Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M Antonio

    2012-01-01

    Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far

  4. Low-quality habitat corridors as movement conduits for two butterfly species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Nick, M.; Tewksbury, Joshua, J.

    2005-01-01

    Haddad, Nick, M, and Joshua J. Tewksbury. Low-quality habitat corridors as movement conduits for two butterfly species. Ecol. Apps. 15(1):250-257. Abstract. Corridors are a primary conservation tool to increase connectivity, promote individual movement, and increase gene flow among populations in fragmented landscapes. The establishment of effective conservation corridors will depend on constructing or pre-serving connecting habitat that attracts dispersing individuals. Yet, it remains unclear whether corridors must necessarily be composed of high-quality habitat to be effective and promote dispersal and gene flow. We address this issue with two mobile, open-habitat butterfly species, Junonia coenia HuÈbner and Euptoieta claudia Cramer. Usingmore » experimental landscapes created explicitly to examine the effects of corridors on dispersal rates, we show that open-habitat corridors can serve as dispersal conduits even when corridors do not support resident butterfly populations. Both butterfly species were rare near forest edges and equally rare in narrow corridors, yet both species dispersed more often between patches connected by these corridors than between isolated patches. At least for species that can traverse corridors within a generation, corridor habitat may be lower in quality than larger patches and still increase dispersal and gene flow. For these species, abundance surveys may not accurately represent the conservation value of corridors.« less

  5. Quantile regression models of animal habitat relationships

    USGS Publications Warehouse

    Cade, Brian S.

    2003-01-01

    Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative

  6. Genetic evidence for landscape effects on dispersal in the army ant Eciton burchellii.

    PubMed

    Soare, Thomas W; Kumar, Anjali; Naish, Kerry A; O'Donnell, Sean

    2014-01-01

    Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male-biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male-biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species. © 2013 John Wiley & Sons Ltd.

  7. Influence of habitat and intrinsic characteristics on survival of neonatal pronghorn

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2015-01-01

    Increased understanding of the influence of habitat (e.g., composition, patch size) and intrinsic (e.g., age, birth mass) factors on survival of neonatal pronghorn (Antilocapra americana) is a prerequisite to successful management programs, particularly as they relate to population dynamics and the role of population models in adaptive species management. Nevertheless, few studies have presented empirical data quantifying the influence of habitat variables on survival of neonatal pronghorn. During 2002–2005, we captured and radiocollared 116 neonates across two sites in western South Dakota. We documented 31 deaths during our study, of which coyote (Canis latrans) predation (n = 15) was the leading cause of mortality. We used known fate analysis in Program MARK to investigate the influence of intrinsic and habitat variables on neonatal survival. We generated a priori models that we grouped into habitat and intrinsic effects. The highest-ranking model indicated that neonate mortality was best explained by site, percent grassland, and open water habitat; 90-day survival (0.80; 90% CI = 0.71–0.88) declined 23% when grassland and water increased from 80.1 to 92.3% and 0.36 to 0.40%, respectively, across 50% natal home ranges. Further, our results indicated that grassland patch size and shrub density were important predictors of neonate survival; neonate survival declined 17% when shrub density declined from 5.0 to 2.5 patches per 100 ha. Excluding the site covariates, intrinsic factors (i.e., sex, age, birth mass, year, parturition date) were not important predictors of survival of neonatal pronghorns. Further, neonatal survival may depend on available land cover and interspersion of habitats. We have demonstrated that maintaining minimum and maximum thresholds for habitat factors (e.g., percentages of grassland and open water patches, density of shrub patches) throughout natal home ranges will in turn, ensure relatively high (>0.50) neonatal survival rates

  8. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.

    PubMed

    Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben

    2018-01-10

    Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.

  9. Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    PubMed Central

    Pilot, Małgorzata; Jędrzejewski, Włodzimierz; Sidorovich, Vadim E.; Meier-Augenstein, Wolfram; Hoelzel, A. Rus

    2012-01-01

    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ 13C and δ 15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores. PMID:22768075

  10. Birth-Weight, Pregnancy Term, Pre-Natal and Natal Complications Related to Child's Dental Anomalies.

    PubMed

    Prokocimer, T; Amir, E; Blumer, S; Peretz, B

    2015-01-01

    This cross-sectional study was aimed at determining whether certain pre-natal and natal conditions can predict specific dental anomalies. The conditions observed were: low birth-weight, preterm birth, pre-natal & natal complications. The dental anomalies observed were: enamel defects, total number of decayed, missing and filled teeth (total DMFT), disturbances in the tooth shape and disturbances in the number of teeth. Out of more than 2000 medical files of children aged 2-17 years old which were reviewed, 300 files met the selection criteria. Information recorded from the files included: age, gender, health status (the ASA physical status classification system by the American Society of Anesthesiologists), birth week, birth weight, total DMFT, hypomineralization, abnormal tooth shape, abnormal number of teeth and hypoplasia. Twenty one children out of 300 (7%) were born after a high-risk pregnancy, 25 children (8.3%) were born after high-risk birth, 20 children (6.7%) were born preterm - before week 37, and 29 children (9.7%) were born with a low birth weight (LBW) - 2500 grams or less. A relationship between a preterm birth and LBW to hypomineralization was found. And a relationship between a preterm birth and high-risk pregnancy to abnormal number of teeth was found. No relationship was found between birth (normal/high-risk) and the other parameters inspected. Preterm birth and LBW may predict hypomineralization in both primary and permanent dentitions. Furthermore, the study demonstrated that preterm birth and high-risk pregnancy may predict abnormal number of teeth in both dentitions.

  11. Environmental predictors of dispersal traits across a species' geographic range.

    PubMed

    LaRue, Elizabeth A; Holland, Jeffrey D; Emery, Nancy C

    2018-05-30

    Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden

  12. The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs

    NASA Astrophysics Data System (ADS)

    Black, Kerry P.

    1993-03-01

    Reef-scale, eddy-resolving numerical models are applied to discriminate between local trapping of neutrally buoyant passive material coming from a natal reef versus trapping of this material on reefs downstream. A hydrodynamic model is coupled with a Lagrangian (nongridded) dispersal simulation to map the movement of material such as passive larvae within and between natural reefs. To simplify the interpretation, a number of schematic reef shapes, sizes and spacings were devised to represent the most common cases typifying Australia's Great Barrier Reef. Prior investigations have shown that coral reefs on the Great Barrier Reef may retain material for times equivalent to the pelagic dispersal period of many species. This paper explores whether larvae are more likely to settle on the natal reef, settle downstream or fail to settle at all. The modelling neglects active larval behaviour and treats the vertically well-mixed case of notionally weightless particles only. The crown-of-thorns starfish larvae with a pelagic dispersal period of at least 10 days are one example of this case. Larvae are most likely to be found near the natal reef rather than its downstream neighbour, mostly because the currents take the vertically well-mixed material around, rather than onto, the downstream reef. Of all the simulations, the highest numbers were found on natal reefs (e.g. 8% after 10 days) while downstream numbers mostly varied between 0 and 1% after 10 days. Particle numbers equalised only when spacing between the two reefs was less than the reef length (6 km), or when the downstream reef was in the direct path of the larval stream.

  13. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin

    Treesearch

    Bruce E. Rieman; Daniel Isaak; Susan Adams; Dona Horan; David Nagel; Charles Luce; Deborah Myers

    2007-01-01

    A warming climate could profoundly affect the distribution and abundance of many fishes. Bull trout Salvelinus confluentus may be especially vulnerable to climate change given that spawning and early rearing are constrained by cold water temperatures creating a patchwork of natal headwater habitats across river networks. Because the size and...

  14. Nest-site fidelity and dispersal of Gyrfalcons estimated by noninvasive genetic sampling

    USGS Publications Warehouse

    Booms, T.L.; Talbot, S.L.; Sage, G.K.; McCaffery, B.J.; McCracken, K.G.; Schempf, P.F.

    2011-01-01

    We used feathers from adult Gyrfalcons (Falco rusticolus) molted in breeding territories and blood samples from nestlings to document nest-site fidelity and dispersal of breeding adults and juveniles at three areas 100- 350 km apart in Yukon Delta National Wildlife Refuge, Alaska, 2003-2007. We used genotypes from seven polymorphic microsatellite loci that provided a mean probability of identity of 0.91 ??10 -5. Breeding Gyrfalcons were highly faithful to study area and territory; we documented no dispersals of breeding birds among study areas and only one dispersal between territories. But their fidelity to nest sites was low; 22% of birds returned to the same nest site the following year. Distance among alternate nests within a territory averaged 750 m and was similar for both sexes. Mean tenure in a territory was 2.8 years, similar for both sexes, and distributed bimodally with peaks at 1 and 4 years. Mean annual turnover rate at the Ingakslugwat Hills (Volcanoes) study area was 20%. We detected three young that established breeding territories at distances ranging from 0 to 254 km from their natal territory, representing 2.5% apparent recruitment. Gyrfalcons in the Askinuk Mountains study area were slightly but statistically significantly differentiated genetically from those in the Volcanoes and Kilbuck Mountain study areas. These data are the first published on the nest-site fidelity, breeding dispersal, and natal dispersal of the Gyrfalcon in North America and demonstrate the utility of noninvasive genetic sampling to greatly improve our understanding of avian dispersal and its underlying mechanisms. ?? The Cooper Ornithological Society 2011.

  15. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    PubMed Central

    Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of ‘wasted’ seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of “wasted” seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities. PMID:28727747

  16. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change.

    PubMed

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Guézou, Anne; Cabrera, Fredy; Lötters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.

  17. Key Source Habitats and Potential Dispersal of Triatoma infestans Populations in Northwestern Argentina: Implications for Vector Control

    PubMed Central

    Gürtler, Ricardo E.; Cecere, María C.; Fernández, María del Pilar; Vazquez-Prokopec, Gonzalo M.; Ceballos, Leonardo A.; Gurevitz, Juan M.; Kitron, Uriel; Cohen, Joel E.

    2014-01-01

    Background Triatoma infestans —the principal vector of the infection that causes Chagas disease— defies elimination efforts in the Gran Chaco region. This study identifies the types of human-made or -used structures that are key sources of these bugs in the initial stages of house reinfestation after an insecticide spraying campaign. Methodology and Principal Findings We measured demographic and blood-feeding parameters at two geographic scales in 11 rural communities in Figueroa, northwest Argentina. Of 1,297 sites searched in spring, 279 (21.5%) were infested. Bug abundance per site and female fecundity differed significantly among habitat types (ecotopes) and were highly aggregated. Domiciles (human sleeping quarters) had maximum infestation prevalence (38.7%), human-feeding bugs and total egg production, with submaximal values for other demographic and blood-feeding attributes. Taken collectively peridomestic sites were three times more often infested than domiciles. Chicken coops had greater bug abundance, blood-feeding rates, engorgement status, and female fecundity than pig and goat corrals. The host-feeding patterns were spatially structured yet there was strong evidence of active dispersal of late-stage bugs between ecotopes. Two flight indices predicted that female fliers were more likely to originate from kitchens and domiciles, rejecting our initial hypothesis that goat and pig corrals would dominate. Conclusions and Significance Chicken coops and domiciles were key source habitats fueling rapid house reinfestation. Focusing control efforts on ecotopes with human-fed bugs (domiciles, storerooms, goat corrals) would neither eliminate the substantial contributions to bug population growth from kitchens, chicken coops, and pig corrals nor stop dispersal of adult female bugs from kitchens. Rather, comprehensive control of the linked network of ecotopes is required to prevent feeding on humans, bug population growth, and bug dispersal simultaneously. Our

  18. Seed dispersal and seedling establishment of Sarracenia purpurea (Sarraceniaceae).

    PubMed

    Ellison, Aaron M; Parker, Jerelyn N

    2002-06-01

    Plant ecologists continue to grapple with Reid's paradox, the observation that dispersal distances of most herbs and trees are too limited to account for their recolonization of northern latitudes following glacial recession. As global climate changes and natural habitats become increasingly fragmented, understanding patterns of seed dispersal and the potential for long-distance colonization takes on new importance. We studied the dispersal and establishment of the northern pitcher plant Sarracenia purpurea, which grows commonly in isolated bogs throughout Canada and eastern North America. Median dispersal distance of S. purpurea is only 5 cm, which is insufficient to explain its occurrence throughout formerly glaciated regions of North America. Establishment probability of seeds in the field is approximately 5%, and juveniles are normally found clustered around adult plants. The large-scale population genetic structure of this species can be accounted for by rare long-distance dispersal events, but its predictable occurrence in isolated habitats requires additional explanation. Reid's paradox remains an open question, and predicting long-range colonization into fragmented habitats by species with limited dispersal ability is a novel challenge.

  19. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  20. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche.

    PubMed

    Stronen, Astrid V; Navid, Erin L; Quinn, Michael S; Paquet, Paul C; Bryan, Heather M; Darimont, Christopher T

    2014-06-10

    Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present.

  1. Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal

    PubMed Central

    De Groot, G. A.; During, H. J.; Ansell, S. W.; Schneider, H.; Bremer, P.; Wubs, E. R. J.; Maas, J. W.; Korpelainen, H.; Erkens, R. H. J.

    2012-01-01

    Background and Aims Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal. Methods Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos. Key Results A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species. Conclusions The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated

  2. Historical and ecological determinants of genetic structure in arctic canids.

    PubMed

    Carmichael, L E; Krizan, J; Nagy, J A; Fuglei, E; Dumond, M; Johnson, D; Veitch, A; Berteaux, D; Strobeck, C

    2007-08-01

    Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.

  3. Dispersal of Warren root collar weevils (Coleoptera: Curculionidae) in three types of habitat.

    PubMed

    Machial, Laura A; Lindgren, B Staffan; Steenweg, Robin W; Aukema, Brian H

    2012-06-01

    Warren root collar weevil, Hylobius warreni Wood, is a native, flightless insect distributed throughout the boreal forest of North America. It is an emerging problem in young plantings of lodgepole pine, Pinus contorta variety latifolia, in western Canada, where larval feeding can kill young trees by girdling the root collar. Susceptible plantings are becoming more abundant following salvage harvesting and replanting activities in the wake of an ongoing epidemic of mountain pine beetle, Dendroctonus ponderosae (Hopkins). Previous studies using mark-trap-recapture methods found that movement rates of adult H. warreni were elevated in areas with high numbers of dead trees, consistent with a hypothesis that the insects immigrate from stands with high mountain pine beetle-caused tree mortality to young plantings in search of live hosts. Sampling methods were necessarily biased to insects captured in traps; however, potentially missing individuals that had died, left the study area, or simply remained stationary. Here, we used harmonic radar to examine weevil movement in three different habitats: open field, forest edge, and within a forest. We were able to reliably monitor all but two of 36 insects initially released, over 96 h (4 d). Weevils released in the open field had the highest rates of movement, followed by weevils released at the forest edge, then weevils released within the forest. Movement declined with decreasing ambient air temperature. Our results suggest that weevils tend to be relatively stationary in areas of live hosts, and hence may concentrate in a suitable area once such habitat is found.

  4. Mate-finding as an overlooked critical determinant of dispersal variation in sexually-reproducing animals.

    PubMed

    Gilroy, James J; Lockwood, Julie L

    2012-01-01

    Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.

  5. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors.

    PubMed

    Benz, Robin A; Boyce, Mark S; Thurfjell, Henrik; Paton, Dale G; Musiani, Marco; Dormann, Carsten F; Ciuti, Simone

    Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas' colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers' groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool by

  6. Dispersal Ecology Informs Design of Large-Scale Wildlife Corridors

    PubMed Central

    Benz, Robin A.; Boyce, Mark S.; Thurfjell, Henrik; Paton, Dale G.; Musiani, Marco; Dormann, Carsten F.; Ciuti, Simone

    2016-01-01

    Landscape connectivity describes how the movement of animals relates to landscape structure. The way in which movement among populations is affected by environmental conditions is important for predicting the effects of habitat fragmentation, and for defining conservation corridors. One approach has been to map resistance surfaces to characterize how environmental variables affect animal movement, and to use these surfaces to model connectivity. However, current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture dispersal limitations. Here we emphasize the importance of implementing dispersal ecology into landscape connectivity, i.e., observing patterns of habitat selection by dispersers during different phases of new areas’ colonization to infer habitat connectivity. Disperser animals undertake a complex sequence of movements concatenated over time and strictly dependent on species ecology. Using satellite telemetry, we investigated the movement ecology of 54 young male elk Cervus elaphus, which commonly disperse, to design a corridor network across the Northern Rocky Mountains. Winter residency period is often followed by a spring-summer movement phase, when young elk migrate with mothers’ groups to summering areas, and by a further dispersal bout performed alone to a novel summer area. After another summer residency phase, dispersers usually undertake a final autumnal movement to reach novel wintering areas. We used resource selection functions to identify winter and summer habitats selected by elk during residency phases. We then extracted movements undertaken during spring to move from winter to summer areas, and during autumn to move from summer to winter areas, and modelled them using step selection functions. We built friction surfaces, merged the different movement phases, and eventually mapped least-cost corridors. We showed an application of this tool

  7. Individual dispersal delays in a cooperative breeder: Ecological constraints, the benefits of philopatry and the social queue for dominance.

    PubMed

    Nelson-Flower, Martha J; Wiley, Elizabeth M; Flower, Tom P; Ridley, Amanda R

    2018-03-20

    Delayed dispersal is a key step in the evolution of familial animal societies and cooperative breeding. However, no consensus has been reached on the ecological and social circumstances driving delayed dispersal. Here, we test predictions from the ecological constraints and benefits of philopatry hypotheses as well as the recently proposed dual benefits hypothesis to better understand the evolution of group-living and cooperative breeding. Furthermore, we consider how individual social circumstances within groups affect dispersal decisions. We examine 11 years of life-history information on a wild population of cooperatively breeding southern pied babblers Turdoides bicolor. We investigate the effects of ecological conditions, natal-group membership and individual social context on male and female dispersal delays, disperser survival and acquisition of dominance. Female dispersal decisions are generally unconstrained by ecological or social circumstances. In contrast, males disperse in response to relaxed ecological constraints, decreases in nepotistic tolerance or when low social rank in the queue for dominance decreases their likelihood of gaining a dominant breeding position. Early dispersal by end-of-queue males often leads to a head-of-queue subordinate position in a non-natal group, thereby increasing access to dominant breeding positions. However, males and females remaining in natal groups gain benefits of philopatry via increased survival and, for head-of-queue males, very high likelihood of acquisition of a breeding position. Overall, predictions from the dual benefits hypothesis best describe these results, while some predictions from each of the ecological constraints and benefits of philopatry hypotheses were supported. The benefits of living and working together (collective action benefits) in large stable groups are of central importance in shaping dispersal delays in southern pied babbler societies. In addition, position in the subordinate social

  8. Assessing multi-taxa sensitivity to the human footprint, habitat fragmentation and loss by exploring alternative scenarios of dispersal ability and population size: A simulation approach

    Treesearch

    Brian K. Hand; Samuel A. Cushman; Erin L. Landguth; John Lucotch

    2014-01-01

    Quantifying the effects of landscape change on population connectivity is compounded by uncertainties about population size and distribution and a limited understanding of dispersal ability for most species. In addition, the effects of anthropogenic landscape change and sensitivity to regional climatic conditions interact to strongly affect habitat...

  9. Transition to independence by subadult beavers (Castor canadensis) in an unexploited, exponentially growing population

    USGS Publications Warehouse

    DeStefano, S.; Koenen, Kiana K. G.; Henner, C.M.; Strules, J.

    2006-01-01

    We conducted a 4-year study of beavers Castor canadensis to compare the movements, survival and habitat of adults established in existing colonies to juveniles dispersing to new sites in a region with high beaver densities along a suburban-rural gradient. Estimates of annual survival were high for adult and juvenile beavers. Of nine known mortalities, seven (78%) were juveniles. Mortalities occurred during spring-summer, and none during fall-winter. There was a trend toward higher-to-lower survival along the suburban-rural gradient, respectively. Human-induced mortality (e.g. trapping and shooting) was higher in rural areas, whereas nonhuman-induced mortality (e.g. disease, accidents) was higher in suburban areas. Fifteen (14 subadults and one adult) beavers moved from natal colonies to other areas. The average dispersal distance for subadults was 4.5 km (SE = 1.0) along streams or rivers, or 3.5 km (SE = 0.7) straight-line point-to-point. Most dispersal movements were made in spring (April-June). In two cases, individual subadults made return movements from their dispersal sites back to their natal colonies. Dispersal sites tended to be in smaller, shallower wetlands or streams and in areas with higher overstorey canopy closure compared with natal colonies. Woody vegetation usually preferred by beavers for food tended to be less common at dispersal sites than at natal colonies. In regions with high densities of beaver, dispersing juveniles are likely to attempt to colonize lower quality sites. High densities of beavers also lead to more human-beaver conflicts and, in Massachusetts, the pest control management options in place during the past decade have been ineffectual at controlling population levels. Alternately, in regions with no beavers or very low densities and where reintroductions are being attempted, the landscape matrix surrounding release sites should include suitable sites for dispersing young to establish colonies.

  10. Dispersal ecology of deadwood organisms and connectivity conservation.

    PubMed

    Komonen, Atte; Müller, Jörg

    2018-06-01

    Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood-dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark-recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long-distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long-distance dispersal. Particularly for fungi, more studies at management-relevant scales (1-10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species-specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management-relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long-distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high-quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases. © 2018 Society for Conservation Biology.

  11. Natal Host Plants Can Alter Herbivore Competition.

    PubMed

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  12. Natal Host Plants Can Alter Herbivore Competition

    PubMed Central

    Pan, Huipeng; Preisser, Evan L.; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore’s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems. PMID:28030636

  13. General relationships between consumer dispersal, resource dispersal and metacommunity diversity.

    PubMed

    Haegeman, Bart; Loreau, Michel

    2014-02-01

    One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here, we show that the diversity-dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialised to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump-shaped relationships between local diversity and dispersal are not universal. Diversity-dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels. © 2013 John Wiley & Sons Ltd/CNRS.

  14. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    NASA Astrophysics Data System (ADS)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, I.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  15. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  16. Impact of mimicking natural dispersion on breeding success of captive North American Cheetahs (Acinonyx jubatus).

    PubMed

    Gillman, Sierra J; Ziegler-Meeks, Karen; Eager, Carol; Tenhundfeld, Thomas A; Shaffstall, Wendy; Stearns, Mary Jo; Crosier, Adrienne E

    2017-09-01

    This paper examines the effects of transfer away from natal facility and littermate presence on cheetah breeding success in the AZA Species Survival Plan (SSP) population. Transfer and breeding history data for captive males and females were gathered from seven and four AZA SSP breeding facilities, respectively, to identify factors influencing breeding success. The results indicate that transfer history (p = 0.032), age at transfer (p = 0.013), and female littermate presence/absence (p = 0.04) was associated with breeding success, with females transferred away from their natal facility before sexual maturity and without littermates present accounting for the highest breeding success. Keeping males at their natal facility and/or removing them from their coalitions did not negatively affect their breeding success. Males appeared to demonstrate the same fecundity regardless of transfer history or coalition status, indicating that dispersal away from natal environment was not as critical for the breeding success of males compared with female cheetahs. These results highlight the significance of moving females away from their natal environment, as would occur in the wild, and separating them from their female littermates for optimization of breeding success in the ex situ population. © 2017 Wiley Periodicals, Inc.

  17. The use of pre-natal diagnostic techniques for sex selection: the Indian scene.

    PubMed

    Kusum

    1993-04-01

    The use of pre-natal diagnostic techniques only for sex determination followed by termination of pregnancy on a finding of female foetus, is an atrocious and unethical practice. The bias against a female has been stretched further back: from cradle to grave, it is now from womb to the grave. One cannot however ignore the conditions of the society which breed and encourage such practices. A girl suffers neglect and discrimination right from childhood; she is tortured, harassed and maltreated after marriage. At the work place she is exploited. A widow or a divorcee is looked down upon by the family and the society. All these things make her life miserable and not worth existence....

  18. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    USGS Publications Warehouse

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  19. Large-Scale Habitat Corridors for Biodiversity Conservation: A Forest Corridor in Madagascar.

    PubMed

    Ramiadantsoa, Tanjona; Ovaskainen, Otso; Rybicki, Joel; Hanski, Ilkka

    2015-01-01

    In biodiversity conservation, habitat corridors are assumed to increase landscape-level connectivity and to enhance the viability of otherwise isolated populations. While the role of corridors is supported by empirical evidence, studies have typically been conducted at small spatial scales. Here, we assess the quality and the functionality of a large 95-km long forest corridor connecting two large national parks (416 and 311 km2) in the southeastern escarpment of Madagascar. We analyze the occurrence of 300 species in 5 taxonomic groups in the parks and in the corridor, and combine high-resolution forest cover data with a simulation model to examine various scenarios of corridor destruction. At present, the corridor contains essentially the same communities as the national parks, reflecting its breadth which on average matches that of the parks. In the simulation model, we consider three types of dispersers: passive dispersers, which settle randomly around the source population; active dispersers, which settle only in favorable habitat; and gap-avoiding active dispersers, which avoid dispersing across non-habitat. Our results suggest that long-distance passive dispersers are most sensitive to ongoing degradation of the corridor, because increasing numbers of propagules are lost outside the forest habitat. For a wide range of dispersal parameters, the national parks are large enough to sustain stable populations until the corridor becomes severely broken, which will happen around 2065 if the current rate of forest loss continues. A significant decrease in gene flow along the corridor is expected after 2040, and this will exacerbate the adverse consequences of isolation. Our results demonstrate that simulation studies assessing the role of habitat corridors should pay close attention to the mode of dispersal and the effects of regional stochasticity.

  20. Large-Scale Habitat Corridors for Biodiversity Conservation: A Forest Corridor in Madagascar

    PubMed Central

    Ramiadantsoa, Tanjona; Ovaskainen, Otso; Rybicki, Joel; Hanski, Ilkka

    2015-01-01

    In biodiversity conservation, habitat corridors are assumed to increase landscape-level connectivity and to enhance the viability of otherwise isolated populations. While the role of corridors is supported by empirical evidence, studies have typically been conducted at small spatial scales. Here, we assess the quality and the functionality of a large 95-km long forest corridor connecting two large national parks (416 and 311 km2) in the southeastern escarpment of Madagascar. We analyze the occurrence of 300 species in 5 taxonomic groups in the parks and in the corridor, and combine high-resolution forest cover data with a simulation model to examine various scenarios of corridor destruction. At present, the corridor contains essentially the same communities as the national parks, reflecting its breadth which on average matches that of the parks. In the simulation model, we consider three types of dispersers: passive dispersers, which settle randomly around the source population; active dispersers, which settle only in favorable habitat; and gap-avoiding active dispersers, which avoid dispersing across non-habitat. Our results suggest that long-distance passive dispersers are most sensitive to ongoing degradation of the corridor, because increasing numbers of propagules are lost outside the forest habitat. For a wide range of dispersal parameters, the national parks are large enough to sustain stable populations until the corridor becomes severely broken, which will happen around 2065 if the current rate of forest loss continues. A significant decrease in gene flow along the corridor is expected after 2040, and this will exacerbate the adverse consequences of isolation. Our results demonstrate that simulation studies assessing the role of habitat corridors should pay close attention to the mode of dispersal and the effects of regional stochasticity. PMID:26200351

  1. Generalized avian dispersal syndrome contributes to Chinese tallow tree (Sapium sebiferum, Euphorbiaceae) invasiveness

    USGS Publications Warehouse

    Renne, I.J.; Barrow, W.C.; Johnson, Randall L.A.; Bridges, W.C.

    2002-01-01

    Plants possessing generalized dispersal syndromes are likely to be more invasive than those relying on specialist dispersal agents. To address this issue on a local and regional scale, avian seed dispersal of the invasive alien Chinese tallow tree (Sapium sebiferum (L.) Roxb.) was assessed in forests and spoil areas of South Carolina and along forest edges in Louisiana during the 1997-99 fruiting seasons. Tallow trees in these floristically distinct habitats had a few common and many casual visitors, and considerable species overlap among habitats was found. However, bird species differed in the importance of dispersing and dropping seeds among habitats. Important dispersal agents common to forests and spoil areas of South Carolina included Northern Flicker, American Robin and Redwinged Blackbird, whereas Red-bellied Woodpecker and European Starling were important in the former and latter habitat, respectively. In Louisiana, Red-bellied Woodpecker, American Robin, Northern Cardinal and Eastern Bluebird dispersed many seeds. Nearly all species foraging on seeds were winter residents. Estimated numbers of seeds dispersed and dropped were higher in spoil areas of South Carolina than in Louisiana because of higher numbers of individuals per visit, higher seed consumption and seed dropping rates, and longer foraging durations. Within South Carolina, more seeds were dispersed and dropped in spoil areas than in forests because of higher numbers of birds per visit. These findings show that among habitats, tallow tree attracts diverse but variable coteries of dispersal agents that are qualitatively similar in seed usage patterns. We suggest that its generalized dispersal syndrome contributes to effective seed dispersal by many bird species throughout its range. Effects of differential avian use among locales may include changes in local bird communities, and differing tallow tree demographics and invasion patterns.

  2. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    PubMed

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Humans as long-distance dispersers of rural plant communities.

    PubMed

    Auffret, Alistair G; Cousins, Sara A O

    2013-01-01

    Humans are known for their capacity to disperse organisms long distances. Long-distance dispersal can be important for species threatened by habitat destruction, but research into human-mediated dispersal is often focused upon few and/or invasive species. Here we use citizen science to identify the capacity for humans to disperse seeds on their clothes and footwear from a known species pool in a valuable habitat, allowing for an assessment of the fraction and types of species dispersed by humans in an alternative context. We collected material from volunteers cutting 48 species-rich meadows throughout Sweden. We counted 24,354 seeds of 197 species, representing 34% of the available species pool, including several rare and protected species. However, 71 species (36%) are considered invasive elsewhere in the world. Trait analysis showed that seeds with hooks or other appendages were more likely to be dispersed by humans, as well as those with a persistent seed bank. More activity in a meadow resulted in more dispersal, both in terms of species and representation of the source communities. Average potential dispersal distances were measured at 13 km. We consider humans capable seed dispersers, transporting a significant proportion of the plant communities in which they are active, just like more traditional vectors such as livestock. When rural populations were larger, people might have been regular and effective seed dispersers, and the net rural-urban migration resulting in a reduction in humans in the landscape may have exacerbated the dispersal failure evident in declining plant populations today. With the fragmentation of habitat and changes in land use resulting from agricultural change, and the increased mobility of humans worldwide, the dispersal role of humans may have shifted from providers of regular local and landscape dispersal to providers of much rarer long-distance and regional dispersal, and international invasion.

  4. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    PubMed

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  5. Dispersal of desert-adapted Drosophila: the saguaro-breeding D. nigrospiracula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.S.; Heed, W.B.

    1976-01-01

    Dispersal of Drosophila nigrospiracula on naturally occurring necrotic saguaro cacti occurs at rates up to three times higher than those observed for any other Drosophila. In eight separate experiments, a total of 3,034 marked flies were captured at 22 cacti. Overall immigration rates averaged 6.83 percent over 371 m. Immigration from a single cohort averaged 3.67 percent overall distances. Effective-population sizes at a single cacti are estimated from 361 to 3,999, while the overall population of D. nigrospiracula is estimated at 100 billion flies. The genetics of large, mobile populations has been considered, using island, stepping-stone, and isolation-by-distance models. Allmore » three models suggest that D. nigrospiracula is so mobile that drift plays a minor role. The population acts as if it were panmictic. This view is supported further by behavioral considerations. Immigrants are an effective part of mating populations. Barriers to dispersal are nonexistent. Adverse habitat conditions increase dispersal rates. Three explanations are proposed for the high dispersal rates of D. nigrospiracula. First, immature adults may be more mobile than mature flies. Second, dispersal may be increased by food stress. If so, baited studies, which considerably enrich the environment, underestimate dispersal rates in adverse environments. Third, dispersal rates are an evolutionary response to habitat predictability. Those species (such as D. nigrospiracula at cacti) which occupy short-lived and widely-spaced habitats are more mobile than species (such as D. melanogaster at a garbage dump) which occupy a small, rich, constantly renewed habitat.« less

  6. Families in space: relatedness in the Barents Sea population of polar bears (Ursus maritimus).

    PubMed

    Zeyl, E; Aars, J; Ehrich, D; Wiig, O

    2009-02-01

    The kin structure and dispersal pattern of polar bears (Ursus maritimus) of the Barents Sea was investigated during the spring mating season using two complementary approaches. First, individual genotypes based on the analyses of 27 microsatellite loci of 583 polar bears were related to field information gathered from 1146 bears in order to reconstruct the animals' pedigrees and to infer geographical distances between adult bears of different relatedness categories. According to the data, the median natal dispersal distance of the male animals was 52 km while that of the females was 93 km. Second, the relatedness of pairs of adult bears was estimated and correlated to the geographical distance between them. The female dyads had a much stronger kin structure than the male dyads. The 'pedigree approach' revealed a male kin structure which could not be detected using the 'relatedness approach'. This suggests that, on a broader scale, effective dispersal is slightly male biased. Despite fidelity to natal areas, male-mediated gene flow may nevertheless prevent genetic differentiation. Males might occasionally shift their home range which could therefore lead to a male-biased breeding dispersal. Our results showed that a nonterritorial species such as the polar bear that has a high dispersal potential, lives in a highly unstable environment and migrates seasonally is still able to exhibit a distinct kin structure during the mating season.

  7. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  8. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  9. Movements of juvenile Gyrfalcons from western and interior Alaska following departure from their natal areas

    USGS Publications Warehouse

    McIntyre, Carol L.; Douglas, David C.; Adams, Layne G.

    2009-01-01

    Juvenile raptors often travel thousands of kilometers from the time they leave their natal areas to the time they enter a breeding population. Documenting movements and identifying areas used by raptors before they enter a breeding population is important for understanding the factors that influence their survival. In North America, juvenile Gyrfalcons (Falco rusticolus) are routinely observed outside the species' breeding range during the nonbreeding season, but the natal origins of these birds are rarely known. We used satellite telemetry to track the movements of juvenile Gyrfalcons during their first months of independence. We instrumented nestlings with lightweight satellite transmitters within 10 d of estimated fledging dates on the Seward Peninsula in western Alaska and in Denali National Park (Denali) in interior Alaska. Gyrfalcons spent an average of 41.4 ± 6.1 d (range  =  30–50 d) in their natal areas after fledging. The mean departure date from natal areas was 27 August ± 6.4 d. We tracked 15 individuals for an average of 70.5 ± 28.1 d post-departure; Gyrfalcons moved from 105 to 4299 km during this period and tended to move greater distances earlier in the tracking period than later in the tracking period. Gyrfalcons did not establish temporary winter ranges within the tracking period. We identified several movement patterns among Gyrfalcons, including unidirectional long-distance movements, multidirectional long- and short-distance movements, and shorter movements within a local region. Gyrfalcons from the Seward Peninsula remained in western Alaska or flew to eastern Russia with no movements into interior Alaska. In contrast, Gyrfalcons from Denali remained in interior Alaska, flew to northern and western Alaska, or flew to northern Alberta. Gyrfalcons from both study areas tended to move to coastal, riparian, and wetland areas during autumn and early winter. Because juvenile Gyrfalcons dispersed over a large geographic area and across three

  10. Habitat use by prairie raccoons during the waterfowl breeding season

    USGS Publications Warehouse

    Fritzell, E.K.

    1978-01-01

    Mobility and habitat use of raccoons (Procyon lotor) in an intensively farmed area of the prairie pothole region were studied during the waterfowl breeding seasons (April-July) of 1973-75. Over 5700 locations of 30 raccoons were analyzed. Movement patterns varied with sex, age, and reproductive status. Adult males moved regularly throughout slightly overlapping ranges that averaged 2560 ha. Yearling males dispersed during May-June but their movements before and after dispersal were similar. Parous or pregnant females (mostly adults) had ranges averaging 806 ha but their movements were confined to smaller areas near the litter site after parturition. Nulliparous yearling females did not disperse and their ranges averaged 656 ha. Building sites, wooded areas, and wetlands were the only habitats preferentially used both at night and during the day. Eighty-one percent of all nocturnal locations and 94 percent of all diurnal locations were in these 3 habitats which comprised only 10 percent of the study area. Use of building sites decreased concomitantly with increased use of wetlands. Upland habitats were seldom used.

  11. War rape, natality and genocide.

    PubMed

    Schott, Robin May

    2011-01-01

    Feminist philosophy can make an important contribution to the field of genocide studies, and issues relating to gender and war are gaining new attention. In this article I trace legal and philosophical analyses of sexual violence against women in war. I analyze the strengths and limitations of the concept of social death—introduced into this field by Claudia Card—for understanding the genocidal features of war rape, and draw on the work of Hannah Arendt to understand the central harm of genocide as an assault on natality. The threat to natality posed by the harms of rape, forced pregnancy and forced maternity lie in the potential expulsion from the public world of certain groups—including women who are victims, members of the 'enemy' group, and children born of forced birth.

  12. Hares promote seed dispersal and seedling establishment after volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Nomura, Nanae; Tsuyuzaki, Shiro

    2015-02-01

    Although seed dispersal through animal guts (endozoochory) is a process that determines plant establishment, the behaviour of carriers mean that the seeds are not always dispersed to suitable habitats for germination. The germinable seeds of Gaultheria miqueliana were stored in the pellets of a hare (Lepus timidus ainu) on Mount Koma in northern Japan. To clarify the roles of hares in seed dispersal and germination, field censuses and laboratory experiments were conducted. The field observations were conducted on pellets and seeds in four habitats (bare ground, G. miqueliana shrub patch, Salix reinii patch, and Larix kaempferi understory), and the laboratory experiments were conducted on seed germination with different light, water potential and cold stratification treatments. The laboratory experiments confirmed that seed germination began a few weeks after the sowing of seeds, independent of cold stratification, when light was sufficient and the water potential was low. The seeds did not germinate at high water potential. The pellets were gradually degraded in situ. More seeds germinated from crushed than from intact pellets. Therefore, over the long term, seeds germinated when exposed to light due to the degradation of pellets. The pellets were proportionally dispersed among the four studied habitats. More seeds sown in the field germinated more in shaded habitats, such as in the Gaultheria patch and the Larix understory, and seeds did not germinate on bare ground, where drought often occurred. Thus, the hares had two roles in the dispersal and germination of seeds: (1) the expansion of G. miqueliana populations through seed dispersal to various habitats and (2) the facilitation of delayed seed germination to avoid risks of hazards such as drought. The relationships between small mammals represented by the hare and the shrubs that produce berries are likely to be more mutually evolved than was previously thought.

  13. Forest cover influences dispersal distance of white-tailed deer

    USGS Publications Warehouse

    Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.; Grund, M.D.

    2005-01-01

    Animal dispersal patterns influence gene flow, disease spread, population dynamics, spread of invasive species, and establishment of rare or endangered species. Although differences in dispersal distances among taxa have been reported, few studies have described plasticity of dispersal distance among populations of a single species. In 2002-2003, we radiomarked 308 juvenile (7- to 10-month-old), male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. By using a meta-analysis approach, we compared dispersal rates and distances from these populations together with published reports of 10 other nonmigratory populations of white-tailed deer. Population density did not influence dispersal rate or dispersal distance, nor did forest cover influence dispersal rate. However, average (r2 = 0.94, P < 0.001, d.f. = 9) and maximum (r2 = 0.86, P = 0.001, d.f. = 7) dispersal distances of juvenile male deer were greater in habitats with less forest cover. Hence, dispersal behavior of this habitat generalist varies, and use of landscape data to predict population-specific dispersal distances may aid efforts to model population spread, gene flow, or disease transmission. ?? 2005 American Society of Mammalogists.

  14. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.

    PubMed

    Fernández-Chacón, Albert; Stefanescu, Constantí; Genovart, Meritxell; Nichols, James D; Hines, James E; Páramo, Ferran; Turco, Marco; Oro, Daniel

    2014-01-01

    Many species are found today in the form of fragmented populations occupying patches of remnant habitat in human-altered landscapes. The persistence of these population networks requires a balance between extinction and colonization events assumed to be primarily related to patch area and isolation, but the contribution of factors such as the characteristics of patch and matrix habitats, the species' traits (habitat specialization and dispersal capabilities) and variation in climatic conditions have seldom been evaluated simultaneously. The identification of environmental variables associated with patch occupancy and turnover may be especially useful to enhance the persistence of multiple species under current global change. However, for robust inference on occupancy and related parameters, we must account for detection errors, a commonly overlooked problem that leads to biased estimates and misleading conclusions about population dynamics. Here, we provide direct empirical evidence of the effects of different environmental variables on the extinction and colonization rates of a rich butterfly community in the western Mediterranean. The analysis was based on a 17-year data set containing detection/nondetection data on 73 butterfly species for 26 sites in north-eastern Spain. Using multiseason occupancy models, which take into account species' detectability, we were able to obtain robust estimates of local extinction and colonization probabilities for each species and test the potential effects of site covariates such as the area of suitable habitat, topographic variability, landscape permeability around the site and climatic variability in aridity conditions. Results revealed a general pattern across species with local habitat composition and landscape features as stronger predictors of occupancy dynamics compared with topography and local aridity. Increasing area of suitable habitat in a site strongly decreased local extinction risks and, for a number of species

  15. Modeling habitat dynamics accounting for possible misclassification

    USGS Publications Warehouse

    Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.

    2012-01-01

    Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.

  16. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche

    PubMed Central

    2014-01-01

    Background Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. Results We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Conclusions Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present. PMID:24915756

  17. Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries.

    PubMed

    Martin, Amanda E; Fahrig, Lenore

    2015-12-01

    Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.

  18. Dispersal of adult culex mosquitoes in an urban west nile virus hotspot: a mark-capture study incorporating stable isotope enrichment of natural larval habitats.

    PubMed

    Hamer, Gabriel L; Anderson, Tavis K; Donovan, Danielle J; Brawn, Jeffrey D; Krebs, Bethany L; Gardner, Allison M; Ruiz, Marilyn O; Brown, William M; Kitron, Uriel D; Newman, Christina M; Goldberg, Tony L; Walker, Edward D

    2014-03-01

    Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems.

  19. Habitat heterogeneity hypothesis and edge effects in model metacommunities.

    PubMed

    Hamm, Michaela; Drossel, Barbara

    2017-08-07

    Spatial heterogeneity is an inherent property of any living environment and is expected to favour biodiversity due to a broader niche space. Furthermore, edges between different habitats can provide additional possibilities for species coexistence. Using computer simulations, this study examines metacommunities consisting of several trophic levels in heterogeneous environments in order to explore the above hypotheses on a community level. We model heterogeneous landscapes by using two different sized resource pools and evaluate the combined effect of dispersal and heterogeneity on local and regional species diversity. This diversity is obtained by running population dynamics and evaluating the robustness (i.e., the fraction of surviving species). The main results for regional robustness are in agreement with the habitat heterogeneity hypothesis, as the largest robustness is found in heterogeneous systems with intermediate dispersal rates. This robustness is larger than in homogeneous systems with the same total amount of resources. We study the edge effect by arranging the two types of resources in two homogeneous blocks. Different edge responses in diversity are observed, depending on dispersal strength. Local robustness is highest for edge habitats that contain the smaller amount of resource in combination with intermediate dispersal. The results show that dispersal is relevant to correctly identify edge responses on community level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dispersal of wolves (Canis lupus) in northeastern Minnesota, 1969-1989

    USGS Publications Warehouse

    Gese, E.M.; Mech, L.D.

    1991-01-01

    We examined the dispersal patterns of radio-collared wolves (Canis lupus) from 21 packs in the Superior National Forest, Minnesota, from 1969 to 1989. A total of 316 wolves (542 wolf-years) were captured, radio-collared, and followed during 21 years of radio-tracking; 75 were identified as dispersers. Both sexes dispersed equally. Of the adults, yearlings, and pups, 8, 75, and 16%, respectively, dispersed. Most dispersers left when they were 11-12 months old, only a few wolves dispersing as adults. Dispersal occurred mainly in February-April and October-November. Adults dispersed short distances into nearby territories, but yearlings and pups dispersed both short and long distances. Yearling and pup dispersal rates were highest when the wolf population was increasing or decreasing and low when the population was stable. Adults had the highest pairing and denning success, yearlings had moderate pairing and low denning success, and pups had low pairing and denning success. Yearlings and pups that dispersed a short distance had a higher success of settling in a new territory, likely reflecting available vacancies in nearby territories. Thirty-five percent of the known-age wolves remained in their natal territory for >2 years; two wolves were known to have remained for >7 years. The relative weight of pups at capture apparently did not affect their age or success of dispersal or the tendency to disperse.

  1. [Facilitation and limitation on plant recruitment by animal dispersers].

    PubMed

    Li, Ning; Wang, Zheng; Pan, Yang; Bai, Bing; Lu, Chang-Hu

    2012-09-01

    In plant-animal network, seed dispersers play both facilitation and limitation roles on plant recruitment. This paper summarized the effects of the dispersers foraging and spatial utilization behaviors on plant recruitment at population level, and analyzed the dispersal effectiveness of the dispersers in the facilitation and limitation on plant recruitment at community level. Different food-treating behaviors of animal dispersers have decisive role on the fate of seeds, and the seed fate has interspecific difference. The role of plants in animal dietary also determines the plants recruitment fate. When preferred by animal dispersers, the seeds can escape the impact of forest fragmentation. The spatial behavior of the dispersers can cause seed fate change. Whether the dispersers' movement distance can escape the distance limitation of conspecific adults determines the seed recruitment. The spatial concordance between the animal suitable habitat and the plant recruitment habitat directly affects the dispersal efficiency. The non-redundancy of effective dispersers not only leads the seed dispersal network to be more stable, but also benefits plant recruitment. Ineffective dispersal of the dispersers limits plant recruitment, but supplies suitable chance for other plants colonization. Future researches should incorporate the animal behavior in plant recruitment researches, and to explore the roles of animal dispersers in vegetation recovery from the aspect of ecosystem service should be the focus in the study of restoration ecology.

  2. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation.

    PubMed

    Ingle, Nina M R

    2003-01-01

    In the moist Neotropics, vertebrate frugivores have a much greater role in the dispersal of forest and successional woody plants than wind, and bats rather than birds play the dominant role in dispersing early successional species. I investigated whether these patterns also occurred in a Philippine montane rainforest and adjacent successional vegetation. I also asked whether seed mass was related to probability of dispersal between habitats. A greater number of woody species and stems in the forest produced vertebrate-dispersed seeds than wind-dispersed seeds. Although input of forest seeds into the successional area was dominated by vertebrate-dispersed seeds in terms of species richness, wind-dispersed seeds landed in densities 15 times higher. Frugivorous birds dispersed more forest seeds and species into the successional area than bats, and more successional seeds and species into the forest. As expected, seed input declined with distance from source habitat. Low input of forest seeds into the successional area at the farthest distance sampled, 40 m from forest edge, particularly for vertebrate-dispersed seeds, suggests very limited dispersal out of forest even into a habitat in which woody successional vegetation provides perches and fruit resources. For species of vertebrate-dispersed successional seeds, probability of dispersal into forest declined significantly with seed mass.

  3. Roads and bats: a meta-analysis and review of the evidence on vehicle collisions and barrier effects.

    PubMed

    Fensome, Amy Grace; Mathews, Fiona

    2016-10-01

    Roads are a potential threat to bat conservation. In addition to the direct risk of collision of bats with vehicles, roads could pose a threat to bat populations as a result of habitat loss, degradation and fragmentation, and could act as barriers to movements of bats between habitats.We performed a systematic review of the literature and conducted meta-analyses to assess the threat posed by roads to bats as a result of 1) collisions between bats and vehicles and 2) roads acting as barriers to movements of bats.Based on collated records of 1207 bat road casualties in Europe, we found that low-flying species are more prone to collisions than high-flying species, and that juveniles are more vulnerable to collisions than adults. In addition, meta-analysis identified a significant bias towards male casualties. Casualties included rare species such as Barbastella barbastellus and geographically restricted species such as Rhinolophus species.The bias towards male casualties could be indicative of greater natal philopatry or lower dispersal among females, or of sexual segregation in habitats of varying quality, i.e. females may occupy better quality habitats than males, and road density may be lower in better quality habitats.Whether or not roads act as barriers to the movement of bats depends on a complex interplay of habitat and species-specific behaviour. For example, the presence of favourable habitat for bats - notably woodland - was found in this review to be linked with significantly reduced barrier effects but a heightened risk of collision.Our data suggest that roads do pose a threat to bats. Future research should assess the contribution of traffic noise and street lighting to the barrier effect of roads. Where new road schemes are monitored by ecological practitioners, it is vital that consistent protocols are employed to ensure that bat activity can be compared before and after the road is built. Evidence from such research should be used to minimize the risks

  4. Source-Sink Colonization as a Possible Strategy of Insects Living in Temporary Habitats.

    PubMed

    Frouz, Jan; Kindlmann, Pavel

    2015-01-01

    Continuous colonization and re-colonization is critical for survival of insect species living in temporary habitats. When insect populations in temporary habitats are depleted, some species may escape extinction by surviving in permanent, but less suitable habitats, in which long-term population survival can be maintained only by immigration from other populations. Such situation has been repeatedly described in nature, but conditions when and how this occurs and how important this phenomenon is for insect metapopulation survival are still poorly known, mainly because it is difficult to study experimentally. Therefore, we used a simulation model to investigate, how environmental stochasticity, growth rate and the incidence of dispersal affect the positive effect of permanent but poor ("sink") habitats on the likelihood of metapopulation persistence in a network of high quality but temporary ("source") habitats. This model revealed that permanent habitats substantially increase the probability of metapopulation persistence of insect species with poor dispersal ability if the availability of temporary habitats is spatio-temporally synchronized. Addition of permanent habitats to a system sometimes enabled metapopulation persistence even in cases in which the metapopulation would otherwise go extinct, especially for species with high growth rates. For insect species with low growth rates the probability of a metapopulation persistence strongly depended on the proportions of "source" to "source" and "sink" to "source" dispersal rates.

  5. [The organization of medical stomatological care of women in post-natal period].

    PubMed

    Kulikova, N G; Omeltchuk, N N; Zalenskiy, V A; Tkachenko, A S

    2014-01-01

    The article presents the following new data. The medical social aspects of women with stomatological pathology during post-natal period are characterized by age gender, professional, educational and organizational aspects. The issues of impact of characteristics of medical stomatological care of women in post-natal period are considered. The results of survey of women in post-natal period using questionnaire targeted to detection of stomatological diseases are presented.

  6. Potential role of frugivorous birds (Passeriformes) on seed dispersal of six plant species in a restinga habitat, southeastern Brazil.

    PubMed

    Gomes, Verônica Souza da Mota; Correia, Maria Célia Rodrigues; de Lima, Heloisa Alves; Alves, Maria Alice S

    2008-03-01

    Restingas are considered stressful habitats associated with the Brazilian Atlantic forest, and their ecological interactions are poorly known. The goal of the present study was to determine the potential role of frugivorous birds as seed dispersers in a restinga habitat. Data were collected in Parque Nacional da Restinga de Jurubatiba, southeastern Brazil, where the main physiognomy (Open Clusia Formation) is characterized by the presence of patches of vegetation covering 20 to 48 % of the sandy soil and reaching a height of 5 m. Birds were captured with mist nets (12 x 2.5 m; 36 mm mesh; 1,680 net-hrs) and had their fecal and regurgitate samples inspected for seeds. Six plant species found in these bird samples were studied. The germination of seeds obtained from plants was compared to those from the birds. Both groups of seeds were set on Petri dishes at room temperature and washed when infected with fungi. In general, there was no effect on germination rate, and the effect on germination speed was negative. Germination of seeds from Pilosocereus arrabidae treated by the birds seemed to be influenced by storage of defecated seeds, while few Miconia cinnamomifolia seeds both from plants and from birds germinated. Ocotea notata presented a great variation in time to the onset of germination, perhaps an advantage against dissecation. Aechmea nudicaulis, Clusia hilariana and Erythroxylum subsessile probably take advantage of the arrival to favorable microhabitats, not by the gut effect on the seeds. All plant species studied are numerically important for the community and some of them are main actors in the succession of vegetation patches. Among the birds, Mimus gilvus is an important resident species, endemic to restingas in Brazil, while Turdus amaurochalinus is a visitor and may be important for plants that fructify during its passage by the study site. Although the effect of pulp removal was only tested for one species (Achmea nudicaulis) in the present study

  7. Failure of pre-natal ultrasonography to prevent urinary infection associated with underlying urological abnormalities.

    PubMed

    Lakhoo, K; Thomas, D F; Fuenfer, M; D'Cruz, A J

    1996-06-01

    To analyse the reasons underlying the failure of routine pre-natal ultrasonography to prevent the subsequent development of urinary tract infection (UTI) in children with predisposing urological abnormalities. This retrospective study comprised 39 children (22 females and 17 males) who had at least one documented UTI, the presence of an anatomical anomaly of the urinary tract recognized as predisposing to UTI and had undergone ultrasonography of the urinary tract undertaken in fetal life as part of routine maternal ante-natal ultrasonography. Four categories of patients were defined: Group A, those with normal findings on pre-natal ultrasonography and no urological abnormality detected; Group B, those with a urological abnormality detected but where there was a subsequent failure of communication among clinicians; Group C, those with a urological abnormality but who received inappropriate or sub-optimal post-natal management and; Group D, those with a urological abnormality but who had a UTI despite appropriate post-natal management. In each case, the most severe documented episode of UTI was categorized as: Grade I, asymptomatic bacteriuria; Grade II, mild/moderate symptomatic UTI and; Grade III, severe symptomatic UTI necessitating hospital admission. Group A comprised 22 (56%), Group B three (9%), Group C two (5%) and Group D 12 children (31%). Of the 22 children in Group A, nine experienced a UTI of sufficient severity to necessitate hospital admission. Of the 12 children in Group D only one required hospital admission. The failure of pre-natal ultrasonography to identify the underlying predisposing urological abnormality was the most important factor contributing to subsequent UTI in post-natal life. Failure of communication and inappropriate post-natal management were numerically unimportant. In some children, UTI occurred despite pre-natal detection of their underlying anomaly and appropriate post-natal management. However, in this group the UTI was less

  8. Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: Determinants and consequences for recruitment

    USGS Publications Warehouse

    Etherington, L.L.; Eggleston, D.B.

    2003-01-01

    We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.

  9. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2011-01-01

    We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134...

  10. Genetic structure, spatial organization, and dispersal in two populations of bat-eared foxes

    PubMed Central

    Kamler, Jan F; Gray, Melissa M; Oh, Annie; Macdonald, David W

    2013-01-01

    We incorporated radio-telemetry data with genetic analysis of bat-eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home-range sizes, and group sizes. Kin clustering occurred only for female dyads in the high-density population. Relatedness was negatively correlated with distance only for female dyads in the high-density population, and for male and mixed-sex dyads in the low-density population. Home-range overlap of neighboring female dyads was significantly greater in the high compared to low-density population, whereas overlap within other dyads was similar between populations. Amount of home-range overlap between neighbors was positively correlated with genetic relatedness for all dyad-site combinations, except for female and male dyads in the low-density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high-density population, and overall exhibited a male-biased dispersal pattern. Our results indicated that genetic structure within populations of bat-eared foxes was sex-biased, and was interrelated to density and group sizes, as well as sex-biases in philopatry and dispersal distances. We conclude that a combination of male-biased dispersal rates, adult dispersals, and sex-biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae. PMID:24101981

  11. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the

  12. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize

  13. Landscape connectivity promotes plant biodiversity spillover into non-target habitats.

    PubMed

    Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Haddad, Nick M; Levey, Douglas J

    2009-06-09

    Conservation efforts typically focus on maximizing biodiversity in protected areas. The space available for reserves is limited, however, and conservation efforts must increasingly consider how management of protected areas can promote biodiversity beyond reserve borders. Habitat corridors are considered an important feature of reserves because they facilitate movement of organisms between patches, thereby increasing species richness in those patches. Here we demonstrate that by increasing species richness inside target patches, corridors additionally benefit biodiversity in surrounding non-target habitat, a biodiversity "spillover" effect. Working in the world's largest corridor experiment, we show that increased richness extends for approximately 30% of the width of the 1-ha connected patches, resulting in 10-18% more vascular plant species around patches of target habitat connected by corridors than around unconnected but otherwise equivalent patches of habitat. Furthermore, corridor-enhanced spillover into non-target habitat can be predicted by a simple plant life-history trait: seed dispersal mode. Species richness of animal-dispersed plants in non-target habitat increased in response to connectivity provided by corridors, whereas species richness of wind-dispersed plants was unaffected by connectivity and increased in response to changes in patch shape--higher edge-to-interior ratio--created by corridors. Corridors promoted biodiversity spillover for native species of the threatened longleaf pine ecosystem being restored in our experiment, but not for exotic species. By extending economically driven spillover concepts from marine fisheries and crop pollination systems, we show how reconnecting landscapes amplifies biodiversity conservation both within and beyond reserve borders.

  14. Development of Adaptive Management Tools to Guide Habitat Allocations for At-Risk Species

    DTIC Science & Technology

    2014-01-01

    Results indicated that the mating system assumptions can have a large impact on the ability of the model to approximate data collected in the field...indicated that strength of habitat preferences during dispersal for juvenile and subadult male dispersal also significantly impacted model fit. Certainly...the influence of habitat loss, as these structural (or geometric) changes are often confounded in real landscapes, the impact of fragmentation is

  15. Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats.

    PubMed

    Bonebrake, Timothy C; Beissinger, Steven R

    2010-06-01

    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.

  16. Dispersal patterns of red foxes relative to population density

    USGS Publications Warehouse

    Allen, Stephen H.; Sargeant, Alan B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  17. Does learning or instinct shape habitat selection?

    PubMed

    Nielsen, Scott E; Shafer, Aaron B A; Boyce, Mark S; Stenhouse, Gordon B

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments.

  18. Effects of landscape corridors on seed dispersal by birds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levey, Douglas, J.; Bolker, Benjamin M.; Tewksbury, Joshua J.

    2005-07-01

    Levey, Douglas, J., Benjamin M. Bolker, Joshua J. Tewksbury, Sarah Sargent, and Nick M. Haddad. 2005. Effects of landscape corridors on seed dispersal by birds. Science 309:146-148. Abstract: Habitat fragmentation threatens biodiversity by disrupting dispersal. The mechanisms and consequences of this disruption are controversial, primarily because most organisms are difficult to track. We examined the effect of habitat corridors on long-distance dispersal of seeds by birds, and tested whether small-scale (G20 meters) movements of birds could be scaled up to predict dispersal of seeds across hundreds of meters in eight experimentally fragmented landscapes. A simulation model accurately predicted the observedmore » pattern of seed rain and revealed that corridors functioned through edge following behavior of birds. Our study shows how models based on easily observed behaviors can be scaled up to predict landscape-level processes.« less

  19. Enhanced spin wave propagation in magnonic rings by bias field modulation

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  20. Habitat history improves prediction of biodiversity in rainforest fauna

    PubMed Central

    Graham, Catherine H.; Moritz, Craig; Williams, Stephen E.

    2006-01-01

    Patterns of biological diversity should be interpreted in light of both contemporary and historical influences; however, to date, most attempts to explain diversity patterns have largely ignored history or have been unable to quantify the influence of historical processes. The historical effects on patterns of diversity have been hypothesized to be most important for taxonomic groups with poor dispersal abilities. We quantified the relative stability of rainforests over the late Quaternary period by modeling rainforest expansion and contraction in 21 biogeographic subregions in northeast Australia across four time periods. We demonstrate that historical habitat stability can be as important, and in endemic low-dispersal taxa even more important, than current habitat area in explaining spatial patterns of species richness. In contrast, patterns of endemic species richness for taxa with high dispersal capacity are best predicted by using current environmental parameters. We also show that contemporary patterns of species turnover across the region are best explained by historical patterns of habitat connectivity. These results clearly demonstrate that spatially explicit analyses of the historical processes of persistence and colonization are both effective and necessary for understanding observed patterns of biodiversity. PMID:16407139

  1. Sibship effects on dispersal behaviour in a pre-industrial human population.

    PubMed

    Nitsch, A; Lummaa, V; Faurie, C

    2016-10-01

    Understanding dispersal behaviour and its determinants is critical for studies on life-history maximizing strategies. Although many studies have investigated the causes of dispersal, few have focused on the importance of sibship, despite that sibling interactions are predicted to lead to intrafamilial differences in dispersal patterns. Using a large demographic data set from pre-industrial Finland (n = 9000), we tested whether the sex-specific probability of dispersal depended on the presence of same-sex or opposite-sex elder siblings who can both compete and cooperate in the family. Overall, following our predictions, the presence of same-sex elder siblings increased the probability of dispersal from natal population for both sexes, whereas the number of opposite-sex siblings had less influence. Among males, dispersal was strongly linked to access to land resources. Female dispersal was mainly associated with competition over availability of mates but likely mediated by competition over access to wealthy mates rather mate availability per se. Besides ecological constraints, sibling interactions are strongly linked with dispersal decisions and need to be better considered in the studies on the evolution of family dynamics and fitness maximizing strategies in humans and other species. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid.

    PubMed

    Vanden Broeck, An; Van Landuyt, Wouter; Cox, Karen; De Bruyn, Luc; Gyselings, Ralf; Oostermeijer, Gerard; Valentin, Bertille; Bozic, Gregor; Dolinar, Branko; Illyés, Zoltán; Mergeay, Joachim

    2014-07-07

    Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.

  3. High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid

    PubMed Central

    2014-01-01

    Background Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. Results We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) ‘outlier’ loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. Conclusions The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe. PMID:24998243

  4. Female dispersal, social organization, and infanticide in langurs: are they linked to human disturbance?

    PubMed

    Sterck, E H

    1998-01-01

    Female dispersal in gregarious animals can involve the desertion of a site, desertion of a social group, or both. Group desertion may be related to inbreeding avoidance. Group fidelity may result from cooperation among females in a group. Site fidelity will be more likely when food can be monopolized and when the population density is close to habitat saturation. The degree of habitat saturation was approximated with a measure of human disturbance. The influence of these various factors on the incidence of female dispersal was investigated for langur populations using data from the literature. The results suggest that female dispersal in langurs involved site desertion, not group desertion. The incidence of female dispersal may affect the social organization of langurs. I propose that when females do not disperse, male takeovers prevail, whereas in populations where female dispersal regularly occurs bisexual groups are disbanded or new groups are formed, a process I call female split-merger. Male takeover is thought to occur when site fidelity is high, female split-merger when site fidelity is low. These processes were indeed found to occur in these circumstances. The dispersal of females might prevent infanticide, whereas male takeover might promote it. Indeed, in studies with male takeover, more infants fell victim to infanticide than in studies with female split-merger. Therefore, female dispersal in langurs is an effective female counterstrategy to infanticide. The factor that had the most profound effect on female dispersal, social organization, and infanticide was habitat saturation. Habitat saturation was measured as the degree of human disturbance, and its influence on the behavior of langurs is probably of relatively recent date. This may lead to an evolutionary transient situation and may explain the discrepancy between current socioecological theories and the behavior of langurs in populations lacking female dispersal.

  5. Project Pró-natal: population-based study of perinatal and infant mortality in natal, Northeast Brazil.

    PubMed

    Ramos, A M; Maranhão, T D; Macedo, A S; Pollock, J I; Emond, A M

    2000-01-01

    The Pró-Natal project is a collaborative initiative that aims to improve maternal and infant health in a deprived community in Natal, Northeast Brazil. To assess the perinatal and infant mortality in this population of 40,000, we have collected over a 2-year period a consecutive series of 39 autopsy examinations on deaths under 1 year of age. During this period there were 2212 live births in the study population. The 14 perinatal deaths are described using the Wrigglesworth classification, and the 25 infant deaths, using a clinicopathological system. The contribution of normally formed stillbirths was small (14%), which probably reflects the underreporting of stillbirths in this community. The most common cause of death in the live births was complications of prematurity (43%). Specific causes (22%) of perinatal deaths were predominantly infections, including one case of congenital syphilis. Perinatal asphyxia was diagnosed in 14%, and there was one case (7%) of a chromosome abnormality. Infant deaths were predominantly due to respiratory (45%) and gastrointestinal infections (28%), with chronic malnutrition as an underlying cause in 80% of cases. Prenatal care could theoretically have prevented three of the perinatal deaths, and a further six deaths could have been avoided by improved management of labor and the immediate neonatal period. Prevention of malnutrition and improved treatment of acute infections would contribute to a reduction in infant mortality in this population. The Pró-Natal project will use these data to design preventative interventions to reduce perinatal and infant mortality in this community.

  6. Fine scale relationships between sex, life history, and dispersal of masu salmon

    USGS Publications Warehouse

    Kitanishi, Shigeru; Yamamoto, Toshiaki; Koizumi, Itsuro; Dunham, Jason B.; Higashi, Seigo

    2012-01-01

    Identifying the patterns and processes driving dispersal is critical for understanding population structure and dynamics. In many organisms, sex-biased dispersal is related to the type of mating system. Considerably less is known about the influence of life history variability on dispersal. Here we investigated patterns of dispersal in masu salmon (Oncorhynchus masou) to evaluate influences of sex and life history on dispersal. As expected, assignment tests and isolation by distance analysis revealed that dispersal of marine-migratory masu salmon was male-biased. However, dispersal of resident and migratory males did not follow our expectation and marine-migratory individuals dispersed more than residents. This may be because direct competition between marine-migratory and resident males is weak or that the cost of dispersal is smaller for marine-migratory individuals. This study revealed that both sex and migratory life history influence patterns of dispersal at a local scale in masu salmon.

  7. Natal movement in juvenile Atlantic salmon: a body size-dependent strategy?

    Treesearch

    Sigurd Einum; Anders G. Finstad; Grethe Robertsen; Keith H. Nislow; Simon McKelvey; John D. Armstrong

    2012-01-01

    If competitive ability depends on body size, then the optimal natal movement from areas of high local population density can also be predicted to be size-dependent. Specifically, small, competitively-inferior individuals would be expected to benefit most from moving to areas of lower local density. Here we evaluate whether individual variation in natal movement...

  8. Distributions of occupied and vacant butterfly habitats in fragmented landscapes.

    PubMed

    Thomas, C D; Thomas, J A; Warren, M S

    1992-12-01

    We found several rare UK butterflies to be restricted to relatively large and non-isolated habitat patches, while small patches and those that are isolated from population sources remain vacant. These patterns of occurrence are generated by the dynamic processes of local extinction and colonization. Habitat patches act as terrestrial archipelagos in which long-term population persistence, and hence effective long-term conservation, rely on networks of suitable habitats, sufficiently close to allow natural dispersal.

  9. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil.

    PubMed

    Cullen, Laury; Stanton, Jessica C; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L L; Akçakaya, H Reşit

    2016-01-01

    Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.

  10. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil

    PubMed Central

    Cullen, Laury; Stanton, Jessica C.; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L. L.; Akçakaya, H. Reşit

    2016-01-01

    Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes. PMID:27973584

  11. Estimation by capture-recapture of recruitment and dispersal over several sites

    USGS Publications Warehouse

    Lebreton, J.D.; Hines, J.E.; Pradel, R.; Nichols, J.D.; Spendelow, J.A.

    2003-01-01

    Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii.

  12. Dispersal and life history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes.

    PubMed

    Löbel, Swantje; Rydin, Håkan

    2009-09-01

    Host trees for obligate epiphytes are dynamic patches that emerge, grow and fall, and metacommunity diversity critically depends on efficient dispersal. Even though species that disperse by large asexual diaspores are strongly dispersal limited, asexual dispersal is common. The stronger dispersal limitation of asexually reproducing species compared to species reproducing sexually via small spores may be compensated by higher growth rates, lower sensitivity to habitat conditions, higher competitive ability or younger reproductive age. We compared growth and reproduction of different groups of epiphytic bryophytes with contrasting dispersal (asexual vs. sexual) and life history strategies (colonists, short- and long-lived shuttle species, perennial stayers) in an old-growth forest stand in the boreo-nemoral region in eastern Sweden. No differences were seen in relative growth rates between asexual and sexual species. Long-lived shuttles had lower growth rates than colonists and perennial stayers. Most groups grew best at intermediate bark pH. Interactions with other epiphytes had a small, often positive effect on growth. Neither differences in sensitivity of growth to habitat conditions nor differences in competitive abilities among species groups were found. Habitat conditions, however, influenced the production of sporophytes, but not of asexual diaspores. Presence of sporophytes negatively affected growth, whereas presence of asexual diaspores did not. Sexual species had to reach a certain colony size before starting to reproduce, whereas no such threshold existed for asexual reproduction. The results indicate that the epiphyte metacommunity is structured by two main trade-offs: dispersal distance vs. reproductive age, and dispersal distance vs. sensitivity to habitat quality. There seems to be a trade-off between growth and sexual reproduction, but not asexual. Trade-offs in species traits may be shaped by conflicting selection pressures imposed by habitat

  13. Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?

    PubMed

    Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle

    2009-08-01

    Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.

  14. Does Learning or Instinct Shape Habitat Selection?

    PubMed Central

    Nielsen, Scott E.; Shafer, Aaron B. A.; Boyce, Mark S.; Stenhouse, Gordon B.

    2013-01-01

    Habitat selection is an important behavioural process widely studied for its population-level effects. Models of habitat selection are, however, often fit without a mechanistic consideration. Here, we investigated whether patterns in habitat selection result from instinct or learning for a population of grizzly bears (Ursus arctos) in Alberta, Canada. We found that habitat selection and relatedness were positively correlated in female bears during the fall season, with a trend in the spring, but not during any season for males. This suggests that habitat selection is a learned behaviour because males do not participate in parental care: a genetically predetermined behaviour (instinct) would have resulted in habitat selection and relatedness correlations for both sexes. Geographic distance and home range overlap among animals did not alter correlations indicating that dispersal and spatial autocorrelation had little effect on the observed trends. These results suggest that habitat selection in grizzly bears are partly learned from their mothers, which could have implications for the translocation of wildlife to novel environments. PMID:23341983

  15. Male-biased predation of western green lizards by Eurasian kestrels

    NASA Astrophysics Data System (ADS)

    Costantini, David; Bruner, Emiliano; Fanfani, Alberto; Dell'Omo, Giacomo

    2007-12-01

    Selective predation can be an important force driving the evolution of organisms. In particular, sex-biased predation is expected to have implications for sexual selection, sex allocation and population dynamics. In this study, we analysed sex differences in the predation of the western green lizard ( Lacerta bilineata) by the Eurasian kestrel ( Falco tinnunculus) during the reproductive season. In addition, we investigated whether the rate of predation differed during the 8-year study period and among the three habitats studied. We collected lizard remains from nest boxes of kestrels. Freshly killed lizards were sexed by visual inspection, whilst the sex of head remains was assigned by analysing the cephalic scale morphology using geometric morphometrics. Our results show that the risk of being predated by a kestrel in our population was overall about 3.55 times higher for males than for females. To our knowledge this is the first study showing a male-biased predation in a lizard species. The selective predation of males was consistent between years over the 8-year study period (1999-2006) and also consistent between the three types of kestrel hunting habitat. Overall predation rates on lizards differed between habitats, depending on the year. We propose that the observed sex-biased predation is mainly due to sex differences in lizard behaviour.

  16. The Japanese Marten Favors Actinidia arguta, a Forest Edge Liane as a Directed Seed Disperser.

    PubMed

    Yasumoto, Yui; Takatsuki, Seiki

    2015-06-01

    This study demonstrates the potential of the Japanese marten (Martes melampus) to serve as a directed seed disperser of Actinidia arguta, a representative forest edge liane. Fecal compositions of the Japanese marten in a western part of Tokyo, Japan were analyzed by the point-frame method. It fed on fruits in autumn (73.1%) and winter (63.0%), and the seeds of A. arguta were most frequently eaten (47.4%). Although the vegetation in the study area was dominated by forest (95.5%), seeds found in the marten feces were dominated by those of forest edge plants (92.1%), suggesting a strong selective bias, both habitat and food, toward these species. The density of marten feces was also higher at forest edges than forest interiors. A. arguta plants were more abundant at forest edges than within the forest at Afan Wood, Nagano Prefecture. These results suggest that the Japanese marten selectively uses forest edges as a location for feeding and defecation and thus functions as a directed seed disperser of A. arguta.

  17. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    NASA Astrophysics Data System (ADS)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-12-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  18. A genetic test of the natal homing versus social facilitation models for green turtle migration.

    PubMed

    Meylan, A B; Bowen, B W; Avise, J C

    1990-05-11

    Female green turtles exhibit strong nest-site fidelity as adults, but whether the nesting beach is the natal site is not known. Under the natal homing hypothesis, females return to their natal beach to nest, whereas under the social facilitation model, virgin females follow experienced breeders to nesting beaches and after a "favorable" nesting experience, fix on that site for future nestings. Differences shown in mitochondrial DNA genotype frequency among green turtle colonies in the Caribbean Sea and Atlantic Ocean are consistent with natal homing expectations and indicate that social facilitation to nonnatal sites is rare.

  19. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi

    PubMed Central

    Norros, Veera; Karhu, Elina; Nordén, Jenni; Vähätalo, Anssi V; Ovaskainen, Otso

    2015-01-01

    Assessment of the costs and benefits of dispersal is central to understanding species' life-history strategies as well as explaining and predicting spatial population dynamics in the changing world. While mortality during active movement has received much attention, few have studied the costs of passive movement such as the airborne transport of fungal spores. Here, we examine the potential of extreme environmental conditions to cause dispersal mortality in wood-decay fungi. These fungi play a key role as decomposers and habitat creators in forest ecosystems and the populations of many species have declined due to habitat loss and fragmentation. We measured the effect of simulated solar radiation (including ultraviolet A and B) and freezing at −25°C on the spore germinability of 17 species. Both treatments but especially sunlight markedly reduced spore germinability in most species, and species with thin-walled spores were particularly light sensitive. Extrapolating the species' laboratory responses to natural irradiance conditions, we predict that sunlight is a relevant source of dispersal mortality at least at larger spatial scales. In addition, we found a positive effect of spore size on spore germinability, suggesting a trade-off between dispersal distance and establishment. We conclude that freezing and particularly sunlight can be important sources of dispersal mortality in wood-decay fungi which can make it difficult for some species to colonize isolated habitat patches and habitat edges. PMID:26380666

  20. Individual dispersal, landscape connectivity and ecological networks.

    PubMed

    Baguette, Michel; Blanchet, Simon; Legrand, Delphine; Stevens, Virginie M; Turlure, Camille

    2013-05-01

    Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi-causal process; its restriction to an 'escape reaction' to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor-quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species- and landscape-specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species

  1. Description of a new species of Lamellothyrea Krikken (Coleoptera, Scarabaeidae, Cetoniinae) from the iSimangaliso Wetland Park, KwaZulu-Natal (South Africa)

    PubMed Central

    Perissinotto, Renzo

    2017-01-01

    Abstract Recent data and material obtained from northern KwaZulu-Natal (South Africa) and Maputo Bay (Mozambique) have provided support for the description of a new species of the genus Lamellothyrea Krikken, 1980. The genus previously included only one species, L. descarpentriesi, with uncertain and poorly defined type locality, i.e. “Transvaal”. It is now evident that two different species are actually involved, L. descarpentriesi with currently known distribution limited to the coastal area north of Maputo, and L. isimangaliso sp. n. with a known distribution range virtually restricted to the iSimangaliso Wetland Park, in north-eastern KwaZulu-Natal. The two species appear to be separated by a substantial discontinuity in southern Mozambique and can be easily separated on the basis of their clypeal structure, extent of white dorsal tomentum and shape of aedeagal parameres. Both species appear to be restricted to the coastal belt, with L. isimangaliso sp. n. occupying almost exclusively dune forest habitats. In this species, adult activity depends on rainfall and shows two peaks, one at the onset of summer and the second in autumn. PMID:29118591

  2. Flight Morphology, Compound Eye Structure and Dispersal in the Bog and the Cranberry Fritillary Butterflies: An Inter- and Intraspecific Comparison.

    PubMed

    Turlure, Camille; Schtickzelle, Nicolas; Van Dyck, Hans; Seymoure, Brett; Rutowski, Ronald

    2016-01-01

    Understanding dispersal is of prime importance in conservation and population biology. Individual traits related to motion and navigation during dispersal may differ: (1) among species differing in habitat distribution, which in turn, may lead to interspecific differences in the potential for and costs of dispersal, (2) among populations of a species that experiences different levels of habitat fragmentation; (3) among individuals differing in their dispersal strategy and (4) between the sexes due to sexual differences in behaviour and dispersal tendencies. In butterflies, the visual system plays a central role in dispersal, but exactly how the visual system is related to dispersal has received far less attention than flight morphology. We studied two butterfly species to explore the relationships between flight and eye morphology, and dispersal. We predicted interspecific, intraspecific and intersexual differences for both flight and eye morphology relative to i) species-specific habitat distribution, ii) variation in dispersal strategy within each species and iii) behavioural differences between sexes. However, we did not investigate for potential population differences. We found: (1) sexual differences that presumably reflect different demands on both male and female visual and flight systems, (2) a higher wing loading (i.e. a proxy for flight performance), larger eyes and larger facet sizes in the frontal and lateral region of the eye (i.e. better navigation capacities) in the species inhabiting naturally fragmented habitat compared to the species inhabiting rather continuous habitat, and (3) larger facets in the frontal region in dispersers compared to residents within a species. Hence, dispersers may have similar locomotory capacity but potentially better navigation capacity. Dispersal ecology and evolution have attracted much attention, but there are still significant gaps in our understanding of the mechanisms of dispersal. Unfortunately, for many species

  3. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals.

    PubMed

    Silva, Marina; Oliveira, Marisa; Vieira, Daniel; Brandão, Andreia; Rito, Teresa; Pereira, Joana B; Fraser, Ross M; Hudson, Bob; Gandini, Francesca; Edwards, Ceiridwen; Pala, Maria; Koch, John; Wilson, James F; Pereira, Luísa; Richards, Martin B; Soares, Pedro

    2017-03-23

    India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y

  4. Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains

    Treesearch

    Lucretia E. Olson; Joel D. Sauder; Nathan M. Albrecht; Ray S. Vinkey; Samuel A. Cushman; Michael K. Schwartz

    2014-01-01

    Climate change impacts many species through shifts in habitat. The intensity of this impact will depend on the dispersal rates of the species, the patchiness of the environment, and the velocity of habitat change. Here we examine how dispersal affects projected future habitat availability for a threatened carnivore, the fisher (Pekania [Martes] pennanti). We used non-...

  5. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: Insights from spatial autocorrelation analysis of individual genotypes

    Treesearch

    H. M. Neville; D. J. Isaak; J. B. Dunham; R. F. Thurow; B. E. Rieman

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of finescale genetic structuring due to the spatial clustering of related individuals on spawning grounds....

  6. Illumination and the perception of remote habitat patches by whit footed mice

    Treesearch

    Patrick A. Zollner; Steven L. Lima

    1999-01-01

    Perceptual range, or the distance at which habitat 'patches' can be perceived, constrains an animal's informational window on a given landscape. If such constraints are great, they may limit successful dispersal between distant habitat patches. On dark nights, nocturnal white-footed mice, Peromyscus leucopus, have surprisingly limited...

  7. Long-distance dispersal of non-native pine bark beetles from host resources

    Treesearch

    Kevin Chase; Dave Kelly; Andrew M. Liebhold; Martin K.-F. Bader; Eckehard G. Brockerhoff

    2017-01-01

    Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. The aim of the present study was to determine the long distance dispersal capabilities of two non-native pine bark beetles (Hylurgus...

  8. Impacts of climate change and renewable energy development on habitat of an endemic squirrel, Xerospermophilus mohavensis, in the Mojave Desert, USA

    USGS Publications Warehouse

    Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.

    2016-01-01

    Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.

  9. Confounding factors in the detection of species responses to habitat fragmentation.

    PubMed

    Ewers, Robert M; Didham, Raphael K

    2006-02-01

    genetic structure of fragment-dwelling populations. Again, the matrix habitat is a strong determinant of fragmentation effects within remnants because of its role in regulating dispersal and dispersal-related mortality, the provision of spatial subsidies and the potential mediation of edge-related microclimatic gradients. We show that confounding factors can mask many fragmentation effects. For instance, there are multiple ways in which species traits like trophic level, dispersal ability and degree of habitat specialisation influence species-level responses. The temporal scale of investigation may have a strong influence on the results of a study, with short-term crowding effects eventually giving way to long-term extinction debts. Moreover, many fragmentation effects like changes in genetic, morphological or behavioural traits of species require time to appear. By contrast, synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of population decline may magnify the impacts of fragmentation. To conclude, we emphasise that anthropogenic fragmentation is a recent phenomenon in evolutionary time and suggest that the final, long-term impacts of habitat fragmentation may not yet have shown themselves.

  10. Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal.

    PubMed

    Naoe, Shoji; Tayasu, Ichiro; Sakai, Yoichiro; Masaki, Takashi; Kobayashi, Kazuki; Nakajima, Akiko; Sato, Yoshikazu; Yamazaki, Koji; Kiyokawa, Hiroki; Koike, Shinsuke

    2016-04-25

    In a warming climate, temperature-sensitive plants must move toward colder areas, that is, higher latitude or altitude, by seed dispersal [1]. Considering that the temperature drop with increasing altitude (-0.65°C per 100 m altitude) is one hundred to a thousand times larger than that of the equivalent latitudinal distance [2], vertical seed dispersal is probably a key process for plant escape from warming temperatures. In fact, plant geographical distributions are tracking global warming altitudinally rather than latitudinally, and the extent of tracking is considered to be large in plants with better-dispersed traits (e.g., lighter seeds in wind-dispersed plants) [1]. However, no study has evaluated vertical seed dispersal itself due to technical difficulty or high cost. Here, we show using a stable oxygen isotope that black bears disperse seeds of wild cherry over several hundred meters vertically, and that the dispersal direction is heavily biased towards the mountain tops. Mountain climbing by bears following spring-to-summer plant phenology is likely the cause of this biased seed dispersal. These results suggest that spring- and summer-fruiting plants dispersed by animals may have high potential to escape global warming. Our results also indicate that the direction of vertical seed dispersal can be unexpectedly biased, and highlight the importance of considering seed dispersal direction to understand plant responses to past and future climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico.

    PubMed

    Zárate, Diego A; Andresen, Ellen; Estrada, Alejandro; Serio-Silva, Juan Carlos

    2014-09-01

    Recent evidence has shown that primates worldwide use agroecosystems as temporary or permanent habitats. Detailed information on how these primates are using these systems is scant, and yet their role as seed dispersers is often implied. The main objective of this study was to compare the activity, foraging patterns and seed dispersal role of black howler monkeys (Alouatta pigra) inhabiting shaded cocoa plantations and rainforest in southern Chiapas, Mexico. We gathered data on three monkey groups living in shaded cocoa plantations and three groups living in rainforest, using focal sampling, and collecting fecal samples. General activity and foraging patterns were similar in both habitats, with the exception that monkeys in the cocoa habitat spent more time feeding on petioles. Monkeys in shaded cocoa plantations dispersed 51,369 seeds (4% were seeds ≥3 mm width) of 16 plant species. Monkeys in the rainforest dispersed 6,536 seeds (78% were seeds ≥3 mm width) of 13 plant species. Our data suggest that the difference between habitats in the proportion of large versus small seeds dispersed reflects differences in fruit species abundance and availability in cocoa versus forest. Mean seed dispersal distances were statistically similar in both habitats (cocoa = 149 m, forest = 86 m). We conclude that the studied cocoa plantations provide all elements necessary to constitute a long-term permanent habitat for black howler monkeys. In turn, howler monkeys living in these plantations are able to maintain their functional role as seed dispersers for those native tree and liana species present within their areas of activities. © 2014 Wiley Periodicals, Inc.

  12. Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Aubret, Fabien; Clobert, Jean; Cote, Julien

    2014-01-01

    Predation is a strong selective pressure generating morphological, physiological and behavioural responses in organisms. As predation risk is often higher during juvenile stages, antipredator defences expressed early in life are paramount to survival. Maternal effects are an efficient pathway to produce such defences. We investigated whether maternal exposure to predator cues during gestation affected juvenile morphology, behaviour and dispersal in common lizards (Zootoca vivipara). We exposed 21 gravid females to saurophagous snake cues for one month while 21 females remained unexposed (i.e. control). We measured body size, preferred temperature and activity level for each neonate, and released them into semi-natural enclosures connected to corridors in order to measure dispersal. Offspring from exposed mothers grew longer tails, selected lower temperatures and dispersed thrice more than offspring from unexposed mothers. Because both tail autotomy and altered thermoregulatory behaviour are common antipredator tactics in lizards, these results suggest that mothers adjusted offspring phenotype to risky natal environments (tail length) or increased risk avoidance (dispersal). Although maternal effects can be passive consequences of maternal stress, our results strongly militate for them to be an adaptive antipredator response that may increase offspring survival prospects. PMID:25122225

  13. Dispersal and establishment of vascular epiphytes in human-modified landscapes

    PubMed Central

    Zotz, Gerhard

    2017-01-01

    Abstract The ongoing destruction of old-growth forests puts tropical forest species under great pressure because of the resulting habitat loss. A pre-requisite for the maintenance of a viable metacommunity in a fragmented landscape is the connectivity between habitable patches. We experimentally studied four vital steps of epiphyte dispersal in different habitat types in western Panama. (i) Seed falling velocity (Vterm) is known to correlate with long-distance dispersal via convective updraft. All measured Vterm of bromeliad and orchid seeds fell into a range of velocities with a high chance of long-distance dispersal. (ii) We quantified attachment success of bromeliad seeds as a function of bark rugosity with >30 common tree species in the region. Even fine bark structure allowed effective attachment. (iii and iv) Successful establishment is achieved when a seed germinates and a plantlet grows and survives. Germination success and early establishment of four bromeliad species did not differ between isolated trees, teak plantations or secondary forest patches. Microclimatic differences between habitat types were marginal and neither germination nor establishment correlated significantly with annual precipitation. The findings suggest a large capacity for dispersal and successful early establishment for these anemochorous species. A potentially regenerating forest may receive considerable input from sources such as pasture trees and in this way gain structural complexity, which also greatly enhances its value for other forest organisms. PMID:29225763

  14. Using data from an encounter sampler to model fish dispersal

    USGS Publications Warehouse

    Obaza, A.; DeAngelis, D.L.; Trexler, J.C.

    2011-01-01

    A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0.05 to 0.15 m s-1 for small poeciliids and fundulids to 0.1 to 1.8 m s-1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.

  15. Dependence of Halo Bias and Kinematics on Assembly Variables

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoju; Zheng, Zheng

    2018-06-01

    Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.

  16. Banded mongooses avoid inbreeding when mating with members of the same natal group.

    PubMed

    Sanderson, Jennifer L; Wang, Jinliang; Vitikainen, Emma I K; Cant, Michael A; Nichols, Hazel J

    2015-07-01

    Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard-female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate-guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited. © 2015 John Wiley & Sons Ltd.

  17. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss.

    PubMed

    Bommarco, Riccardo; Biesmeijer, Jacobus C; Meyer, Birgit; Potts, Simon G; Pöyry, Juha; Roberts, Stuart P M; Steffan-Dewenter, Ingolf; Ockinger, Erik

    2010-07-07

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species-area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities.

  18. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss

    PubMed Central

    Bommarco, Riccardo; Biesmeijer, Jacobus C.; Meyer, Birgit; Potts, Simon G.; Pöyry, Juha; Roberts, Stuart P. M.; Steffan-Dewenter, Ingolf; Öckinger, Erik

    2010-01-01

    Habitat loss poses a major threat to biodiversity, and species-specific extinction risks are inextricably linked to life-history characteristics. This relationship is still poorly documented for many functionally important taxa, and at larger continental scales. With data from five replicated field studies from three countries, we examined how species richness of wild bees varies with habitat patch size. We hypothesized that the form of this relationship is affected by body size, degree of host plant specialization and sociality. Across all species, we found a positive species–area slope (z = 0.19), and species traits modified this relationship. Large-bodied generalists had a lower z value than small generalists. Contrary to predictions, small specialists had similar or slightly lower z value compared with large specialists, and small generalists also tended to be more strongly affected by habitat loss as compared with small specialists. Social bees were negatively affected by habitat loss (z = 0.11) irrespective of body size. We conclude that habitat loss leads to clear shifts in the species composition of wild bee communities. PMID:20219735

  19. Don't bet against the natal homing abilities of marine fishes.

    PubMed

    Bentzen, Paul; Bradbury, Ian R

    2016-06-01

    Whether marine fishes are capable of homing to their natal areas has long been something of an enigma. For some estuarine species or sharks (which have extended nondispersal juvenile stages or are born as relatively large, fully formed juveniles), the answer is clearly 'yes' (Thorrold et al. ; Feldheim et al. ), but for most marine fishes, the issue is much more mysterious. Many species have free-floating eggs, and most have pelagic, passively dispersing larvae. It is challenging to imagine how adult fish might navigate to a region of the ocean they experienced only as eggs or larvae, and easier to assume that such dispersal leads inexorably to high gene flow, and even panmixia. One way to resolve the conundrum would be to track fish from hatching to reproduction, but for marine fishes with tiny eggs and drifting larvae, this is notoriously difficult to do (Bradbury & Laurel ). In this issue of Molecular Ecology, Bonanomi et al. () use a creative approach to solve this challenge for Atlantic cod (Gadus morhua) populations that mingle in the vicinity of Greenland. They show that cod that disperse more than a 1000 km away from Iceland as eggs and larvae, then spend years growing on the far side of Greenland, while mixing with two local populations, return as adults to spawning areas near Iceland - and further, that this behaviour has remained stable over more than six decades. They manage this feat with a clever use of historical cod tracking data, modern genomic data and genetic analysis of decades-old DNA obtained from archived materials. Their results have important implications for our view of the biocomplexity of marine fish populations, and how we should manage them. © 2016 John Wiley & Sons Ltd.

  20. Factors affecting breeding dispersal of European ducks on Engure Marsh, Latvia

    USGS Publications Warehouse

    Blums, P.; Nichols, J.D.; Lindberg, M.S.; Hines, J.E.; Mednis, A.

    2003-01-01

    1. We used up to 35 years of capture-recapture data from nearly 3300 individual female ducks nesting on Engure Marsh, Latvia, and multistate modelling to test predictions about the influence of environmental, habitat and management factors on breeding dispersal probability within the marsh. 2. Analyses based on observed dispersal distances of common pochards and tufted ducks provided no evidence that breeding success in year t influenced dispersal distance between t and t + 1. 3. Breeding dispersal distances (year t to t + 1) of pochards and tufted ducks were associated with a delay in relative nest initiation dates in year t + 1. The delay was greater for pochards (c. 4 days) than for tufted ducks (c. 2 days) when females dispersed > 0.8 km. 4. Northern shovelers and tufted ducks moved from a large island to small islands at low water levels and from small islands to the large island at high water levels before the construction of elevated small islands (1960-82). Following this habitat management (1983-94). breeding fidelity was extremely high and not influenced by water level in the marsh for either species. 5. Because pochard nesting habitats in black-headed gull colonies were saturated during the entire study period, nesting females moved into and out of colonies with similar probabilities. Local survival probabilities and incubation body masses were higher for both yearlings (SY) and adults (ASY) nesting within gull colonies, suggesting that these females were of better quality than females nesting outside of the colonies. 6. Tufted ducks showed higher probabilities of moving from islands to emergent marshes when water levels were higher both before and after habitat management. However, rates of movement for a given water level were higher during the period before management than after. 7. Both pochards and tufted ducks exhibited asymmetric movement with respect to proximity to water, with higher movement probabilities to near-water nesting locations than

  1. Use of non-alpine anthropogenic habitats by American pikas (Ochotona princeps) in western Oregon, USA

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.

    2011-01-01

    The American pika (Ochotona princeps Richardson) has long been characterized in field guides and popular literature as an obligate inhabitant of alpine talus and as having relatively low dispersal capability. However, recent work reveals pikas to have broader habitat associations than previously reported. Over a large portion of the western slope of the Cascade Range in Oregon, pikas inhabit relatively low-elevation sites far from alpine areas and frequently occur in rocky man-made habitats such as roadcuts or rock quarries. We present observations of pikas in these previously overlooked habitats and discuss implications for (1) the proposed listing of the American pika as an endangered or threatened species; (2) furthering our understanding of pika population dynamics, habitat associations, and dispersal capabilites; and (3) management of federal, state, and private forest lands.

  2. THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, P.; Norris, M. A.; Ven, G. van de

    2016-03-20

    High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less

  3. Foray search: an effective systematic dispersal strategy in fragmented landscapes

    Treesearch

    L. Conradt; P.A. Zollner; T.J. Roper; C.D. Thomas

    2003-01-01

    In the absence of evidence to the contrary, population models generally assume that the dispersal trajectories of animals are random, but systematic dispersal could be more efficient at detecting new habitat and may therefore constitute a more realistic assumption. Here, we investigate, by means of simulations, the properties of a potentially widespread systematic...

  4. Hilton College Farm School, Natal, South Africa.

    ERIC Educational Resources Information Center

    Beveridge, Sue

    1989-01-01

    The Hilton College Farm School is a primary school providing for the educational needs of children in a rural area of Natal, South Africa. Described are the school's historical development, funding sources, staffing, and development of an affiliated pre-primary school. (JDD)

  5. High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser.

    PubMed

    Timóteo, Sérgio; Ramos, Jaime Albino; Vaughan, Ian Phillip; Memmott, Jane

    2016-04-04

    The pressing need to conserve and restore habitats in the face of ongoing species loss [1, 2] requires a better understanding of what happens to communities when species are lost or reinstated [3, 4]. Theoretical models show that communities are relatively insensitive to species loss [5, 6]; however, they disagree with field manipulations showing a cascade of extinctions [7, 8] and have seldom been tested under field conditions (e.g., [9]). We experimentally removed the most abundant seed-dispersing ant species from seed dispersal networks in a Mediterranean landscape, replicating the experiment in three types of habitat, and then compared these communities to un-manipulated control communities. Removal did not result in large-scale changes in network structure. It revealed extensive structural plasticity of the remaining community, which rearranged itself through rewiring, while maintaining its functionality. The remaining ant species widened their diet breadth in a way that maintained seed dispersal, despite the identity of many interactions changing. The species interaction strength decreased; thus, the importance of each ant species for seed dispersal became more homogeneous, thereby reducing the dependence of seed species on one dominant ant species. Compared to the experimental results, a simulation model that included rewiring considerably overestimated the effect of species loss on network robustness. If community-level species loss models are to be of practical use in ecology or conservation, they need to include behavioral and population responses, and they need to be routinely tested under field conditions; doing this would be to the advantage of both empiricists and theoreticians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neutrino trigger of the magnetorotational mechanism of a natal-pulsar kick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. V., E-mail: avkuzn@uniyar.ac.ru; Mikheev, N. V., E-mail: mikheev@uniyar.ac.ru

    2013-10-15

    A mechanism generating a natal-neutron-star kick and involving only standard neutrinos is discussed. In this mechanism, the neutrino effect on the plasma of the supernova-core envelope in a magnetorotational explosion accompanied by the generation of a strong toroidal magnetic field leads to a redistribution of the magnetic field B in the 'upper' and 'lower' hemispheres of the supernova-core envelope. The emerging asymmetry of the magnetic-field pressure may generate a natal-pulsar kick.

  7. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  8. Estimated home ranges can misrepresent habitat relationships on patchy landscapes

    USGS Publications Warehouse

    Mitchell, M.S.; Powell, R.A.

    2008-01-01

    Home ranges of animals are generally structured by the selective use of resource-bearing patches that comprise habitat. Based on this concept, home ranges of animals estimated from location data are commonly used to infer habitat relationships. Because home ranges estimated from animal locations are largely continuous in space, the resource-bearing patches selected by an animal from a fragmented distribution of patches would be difficult to discern; unselected patches included in the home range estimate would bias an understanding of important habitat relationships. To evaluate potential for this bias, we generated simulated home ranges based on optimal selection of resource-bearing patches across a series of simulated resource distributions that varied in the spatial continuity of resources. For simulated home ranges where selected patches were spatially disjunct, we included interstitial, unselected cells most likely to be traveled by an animal moving among selected patches. We compared characteristics of the simulated home ranges with and without interstitial patches to evaluate how insights derived from field estimates can differ from actual characteristics of home ranges, depending on patchiness of landscapes. Our results showed that contiguous home range estimates could lead to misleading insights on the quality, size, resource content, and efficiency of home ranges, proportional to the spatial discontinuity of resource-bearing patches. We conclude the potential bias of including unselected, largely irrelevant patches in the field estimates of home ranges of animals can be high, particularly for home range estimators that assume uniform use of space within home range boundaries. Thus, inferences about the habitat relationships that ultimately define an animal's home range can be misleading where animals occupy landscapes with patchily distributed resources.

  9. When genes move farther than offspring: gene flow by male gamete dispersal in the highly philopatric bat species Thyroptera tricolor.

    PubMed

    Buchalski, M R; Chaverri, G; Vonhof, M J

    2014-02-01

    For species characterized by philopatry of both sexes, mate selection represents an important behaviour for inbreeding avoidance, yet the implications for gene flow are rarely quantified. Here, we present evidence of male gamete-mediated gene flow resulting from extra-group mating in Spix's disc-winged bat, Thyroptera tricolor, a species which demonstrates all-offspring philopatry. We used microsatellite and capture-recapture data to characterize social group structure and the distribution of mated pairs at two sites in southwestern Costa Rica over four breeding seasons. Relatedness and genetic spatial autocorrelation analyses indicated strong kinship within groups and over short distances (<50 m), resulting from matrilineal group structure and small roosting home ranges (~0.2 ha). Despite high relatedness among-group members, observed inbreeding coefficients were low (FIS  = 0.010 and 0.037). Parentage analysis indicated mothers and offspring belonged to the same social group, while fathers belonged to different groups, separated by large distances (~500 m) when compared to roosting home ranges. Simulated random mating indicated mate choice was not based on intermediate levels of relatedness, and mated pairs were less related than adults within social groups on average. Isolation-by-distance (IBD) models of genetic neighbourhood area based on father-offspring distances provided direct estimates of mean gamete dispersal distances (r^) > 10 roosting home range equivalents. Indirect estimates based on genetic distance provided even larger estimates of r^, indicating direct estimates were biased low. These results suggest extra-group mating reduces the incidence of inbreeding in T. tricolor, and male gamete dispersal facilitates gene flow in lieu of natal dispersal of young. © 2013 John Wiley & Sons Ltd.

  10. A test of the substitution-habitat hypothesis in amphibians.

    PubMed

    Martínez-Abraín, Alejandro; Galán, Pedro

    2018-06-01

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  11. Dispersal and individual quality in a long lived species

    USGS Publications Warehouse

    Cam, E.; Monnat, J.-Y.; Royle, J. Andrew

    2004-01-01

    The idea of differences in individual quality has been put forward in numerous long-term studies in long-lived species to explain differences in lifetime production among individuals. Despite the important role of individual heterogeneity in vital rates in demography, population dynamics and life history theory, the idea of 'individual quality' is elusive. It is sometimes assumed to be a static or dynamic individual characteristic. When considered as a dynamic trait, it is sometimes assumed to vary deterministically or stochastically, or to be confounded with the characteristics of the habitat. We addressed heterogeneity in reproductive performance among individuals established in higher-quality habitat in a long-lived seabird species. We used approaches to statistical inference based on individual random effects permitting quantification of heterogeneity in populations and assessment of individual variation from the population mean. We found evidence of heterogeneity in breeding probability, not success probability. We assessed the influence of dispersal on individual reproductive potential. Dispersal is likely to be destabilizing in species with high site and mate fidelity. We detected heterogeneity after dispersal, not before. Individuals may perform well regardless of quality before destabilization, including those that recruited in higher-quality habitat by chance, but only higher-quality individuals may be able to overcome the consequences of dispersal. Importantly, results differed when accounting for individual heterogeneity (an increase in mean breeding probability when individuals dispersed), or not (a decrease in mean breeding probability). In the latter case, the decrease in mean breeding probability may result from a substantial decrease in breeding probability in a few individuals and a slight increase in others. In other words, the pattern observed at the population mean level may not reflect what happens in the majority of individuals.

  12. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of

  13. The 'male escape hypothesis': sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian.

    PubMed

    Mathiron, Anthony G E; Lena, Jean-Paul; Baouch, Sarah; Denoël, Mathieu

    2017-04-26

    Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts ( Lissotriton helveticus ) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the 'male escape hypothesis') and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. © 2017 The Author(s).

  14. Oceanography promotes self-recruitment in a planktonic larval disperser.

    PubMed

    Teske, Peter R; Sandoval-Castillo, Jonathan; van Sebille, Erik; Waters, Jonathan; Beheregaray, Luciano B

    2016-09-30

    The application of high-resolution genetic data has revealed that oceanographic connectivity in marine species with planktonic larvae can be surprisingly limited, even in the absence of major barriers to dispersal. Australia's southern coast represents a particularly interesting system for studying planktonic larval dispersal, as the hydrodynamic regime of the wide continental shelf has potential to facilitate onshore retention of larvae. We used a seascape genetics approach (the joint analysis of genetic data and oceanographic connectivity simulations) to assess population genetic structure and self-recruitment in a broadcast-spawning marine gastropod that exists as a single meta-population throughout its temperate Australian range. Levels of self-recruitment were surprisingly high, and oceanographic connectivity simulations indicated that this was a result of low-velocity nearshore currents promoting the retention of planktonic larvae in the vicinity of natal sites. Even though the model applied here is comparatively simple and assumes that the dispersal of planktonic larvae is passive, we find that oceanography alone is sufficient to explain the high levels of genetic structure and self-recruitment. Our study contributes to growing evidence that sophisticated larval behaviour is not a prerequisite for larval retention in the nearshore region in planktonic-developing species.

  15. Evolutionary consequences of habitat loss for Pacific anadromous salmonids

    PubMed Central

    McClure, Michelle M; Carlson, Stephanie M; Beechie, Timothy J; Pess, George R; Jorgensen, Jeffrey C; Sogard, Susan M; Sultan, Sonia E; Holzer, Damon M; Travis, Joseph; Sanderson, Beth L; Power, Mary E; Carmichael, Richard W

    2008-01-01

    Large portions of anadromous salmonid habitat in the western United States has been lost because of dams and other blockages. This loss has the potential to affect salmonid evolution through natural selection if the loss is biased, affecting certain types of habitat differentially, and if phenotypic traits correlated with those habitat types are heritable. Habitat loss can also affect salmonid evolution indirectly, by reducing genetic variation and changing its distribution within and among populations. In this paper, we compare the characteristics of lost habitats with currently accessible habitats and review the heritability of traits which show correlations with habitat/environmental gradients. We find that although there is some regional variation, inaccessible habitats tend to be higher in elevation, wetter and both warmer in the summer and colder in the winter than habitats currently available to anadromous salmonids. We present several case studies that demonstrate either a change in phenotypic or life history expression or an apparent reduction in genetic variation associated with habitat blockages. These results suggest that loss of habitat will alter evolutionary trajectories in salmonid populations and Evolutionarily Significant Units. Changes in both selective regime and standing genetic diversity might affect the ability of these taxa to respond to subsequent environmental perturbations. Both natural and anthropogenic and should be considered seriously in developing management and conservation strategies. PMID:25567633

  16. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  17. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    PubMed

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  18. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors

    PubMed Central

    Croze, Ottavio A.; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A.; Brandt, Luca

    2013-01-01

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design. PMID:23407572

  19. Home range and movements of American alligators (Alligator mississippiensis) in an estuary habitat

    USGS Publications Warehouse

    Fujisaki, Ikuko; Hart, Kristen M.; Mazzotti, Frank J.; Cherkiss, Michael S.; Sartain-Iverson, Autumn R.; Jeffery, Brian M.; Beauchamp, Jeffrey S.; Denton, Mathew J.

    2014-01-01

    This study reveals consistent use of estuary habitat by American alligators. The alligators showed variations in their movement pattern and seasonal habitat, with movement attributable to environmental factors. Although satellite-derived locations were more dispersed compared to locations collected using VHF radio-tags, data collected from VHF tracking omitted some habitat used for a short period of time, indicating the effectiveness of satellite telemetry to continuously track animals for ecosystem-scale studies.

  20. Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration.

    PubMed

    Parkyn, Stephanie M; Smith, Brian J

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  1. Dispersal Constraints for Stream Invertebrates: Setting Realistic Timescales for Biodiversity Restoration

    NASA Astrophysics Data System (ADS)

    Parkyn, Stephanie M.; Smith, Brian J.

    2011-09-01

    Biodiversity goals are becoming increasingly important in stream restoration. Typical models of stream restoration are based on the assumption that if habitat is restored then species will return and ecological processes will re-establish. However, a range of constraints at different scales can affect restoration success. Much of the research in stream restoration ecology has focused on habitat constraints, namely the in-stream and riparian conditions required to restore biota. Dispersal constraints are also integral to determining the timescales, trajectory and potential endpoints of a restored ecosystem. Dispersal is both a means of organism recolonization of restored sites and a vital ecological process that maintains viable populations. We review knowledge of dispersal pathways and explore the factors influencing stream invertebrate dispersal. From empirical and modeling studies of restoration in warm-temperate zones of New Zealand, we make predictions about the timescales of stream ecological restoration under differing levels of dispersal constraints. This process of constraints identification and timescale prediction is proposed as a practical step for resource managers to prioritize and appropriately monitor restoration sites and highlights that in some instances, natural recolonization and achievement of biodiversity goals may not occur.

  2. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    NASA Astrophysics Data System (ADS)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  3. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape - dispersal versus establishment.

    PubMed

    Lõhmus, Kertu; Paal, Taavi; Liira, Jaan

    2014-08-01

    Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape

  4. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Treesearch

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  5. Determinants of emigration and their impact on survival during dispersal in fox and jackal populations

    PubMed Central

    Kapota, Dror; Dolev, Amit; Bino, Gilad; Yosha, Dotan; Guter, Amichai; King, Roni; Saltz, David

    2016-01-01

    Animals disperse in response to poor resource conditions as a strategy of escaping harsh competition and stress, but may also disperse under good resource conditions, as these provide better chances of surviving dispersal and gaining fitness benefits such as avoiding kin competition and inbreeding. Individual traits should mediate the effect of resources, yielding a complex condition-dependent dispersal response. We investigated how experimental food reductions in a food-rich environment around poultry-growing villages interact with individual-traits (age, gender, body-mass) in two sympatric canids, red foxes and golden jackals, to jointly affect emigration propensity and survival during dispersal. Sub-adult foxes emigrated more frequently from the food-rich habitat than from the pristine, food-limited habitat, while adult foxes showed the opposite trend. During dispersal, adults exhibited lower survival while sub-adults did not experience additional mortality costs. Although fox mortality rates increased in response to food reduction, dispersal remained unchanged, while jackals showed strong dispersal response in two of the three repetitions. Jackal survival under food reduction was lowest for the dispersing individuals. While resources are an important dispersal determinant, different age classes and species experience the same resource environment differently and consequently have different motivations, yielding different dispersal responses and consequences. PMID:27050564

  6. Accelerated tumor invasion under non-isotropic cell dispersal in glioblastomas

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim; Solé, Ricard V.

    2013-05-01

    Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biased random walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction-diffusion-advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread.

  7. The ‘male escape hypothesis’: sex-biased metamorphosis in response to climatic drivers in a facultatively paedomorphic amphibian

    PubMed Central

    Mathiron, Anthony G. E.; Lena, Jean-Paul; Baouch, Sarah

    2017-01-01

    Paedomorphosis is a major evolutionary process that bypasses metamorphosis and allows reproduction in larvae. In newts and salamanders, it can be facultative with paedomorphs retaining gills and metamorphs dispersing. The evolution of these developmental processes is thought to have been driven by the costs and benefits of inhabiting aquatic versus terrestrial habitats. In this context, we aimed at testing the hypothesis that climatic drivers affect phenotypic transition and the difference across sexes because sex-ratio is biased in natural populations. Through a replicated laboratory experiment, we showed that paedomorphic palmate newts (Lissotriton helveticus) metamorphosed at a higher frequency when water availability decreased and metamorphosed earlier when temperature increased in these conditions. All responses were sex-biased, and males were more prone to change phenotype than females. Our work shows how climatic variables can affect facultative paedomorphosis and support theoretical models predicting life on land instead of in water. Moreover, because males metamorphose and leave water more often and earlier than females, these results, for the first time, give an experimental explanation for the rarity of male paedomorphosis (the ‘male escape hypothesis’) and suggest the importance of sex in the evolution of paedomorphosis versus metamorphosis. PMID:28424346

  8. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices

    Treesearch

    Michael Bevers; Curtis H. Flather

    1999-01-01

    We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...

  9. Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere.

    PubMed

    Viljoen, Jan-Adriaan; Muasya, A Muthama; Barrett, Russell L; Bruhl, Jeremy J; Gibbs, Adele K; Slingsby, Jasper A; Wilson, Karen L; Verboom, G Anthony

    2013-12-01

    The broad austral distribution of Schoeneae is almost certainly a product of long-distance dispersal. Owing to the inadequacies of existing phylogenetic data and a lack of rigorous biogeographic analysis, relationships within the tribe remain poorly resolved and its pattern of radiation and dispersal uncertain. We employed an expanded sampling of taxa and markers and a rigorous analytic approach to address these limitations. We evaluated the roles of geography and ecology in stimulating the initial radiation of the group and its subsequent dispersal across the southern hemisphere. A dated tree was reconstructed using reversible-jump Markov chain Monte Carlo (MCMC) with a polytomy prior and molecular dating, applied to data from two nuclear and three cpDNA regions. Ancestral areas and habitats were inferred using dispersal-extinction-cladogenesis models. Schoeneae originated in Australia in the Paleocene. The existence of a "hard" polytomy at the base of the clade reflects the rapid divergence of six principal lineages ca. 50 Ma, within Australia. From this ancestral area, Schoeneae have traversed the austral oceans with remarkable frequency, a total of 29 distinct dispersal events being reported here. Dispersal rates between landmasses are not explicable in terms of the geographical distances separating them. Transoceanic dispersal generally involved habitat stasis. Although the role of dispersal in explaining global distribution patterns is now widely accepted, the apparent ease with which such dispersal may occur has perhaps been under-appreciated. In Schoeneae, transoceanic dispersal has been remarkably frequent, with ecological opportunity, rather than geography, being most important in dictating dispersal patterns.

  10. Costs of detection bias in index-based population monitoring

    USGS Publications Warehouse

    Moore, C.T.; Kendall, W.L.

    2004-01-01

    Managers of wildlife populations commonly rely on indirect, count-based measures of the population in making decisions regarding conservation, harvest, or control. The main appeal in the use of such counts is their low material expense compared to methods that directly measure the population. However, their correct use rests on the rarely-tested but often-assumed premise that they proportionately reflect population size, i.e., that they constitute a population index. This study investigates forest management for the endangered Red-cockaded Woodpecker (Picoides borealis) and the Wood Thrush (Hylocichla mustelina) at the Piedmont National Wildlife Refuge in central Georgia, U.S.A. Optimal decision policies for a joint species objective were derived for two alternative models of Wood Thrush population dynamics. Policies were simulated under scenarios of unbiasedness, consistent negative bias, and habitat-dependent negative bias in observed Wood Thrush densities. Differences in simulation outcomes between biased and unbiased detection scenarios indicated the expected loss in resource objectives (here, forest habitat and birds) through decision-making based on biased population counts. Given the models and objective function used in our analysis, expected losses were as great as 11%, a degree of loss perhaps not trivial for applications such as endangered species management. Our analysis demonstrates that costs of uncertainty about the relationship between the population and its observation can be measured in units of the resource, costs which may offset apparent savings achieved by collecting uncorrected population counts.

  11. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  12. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  13. Corridor Use Predicted from Behaviors at Habitat Boundaries.

    PubMed

    Haddad, Nick M

    1999-02-01

    Through empirical studies and simulation, I demonstrate how simple behaviors can be used in lieu of detailed dispersal studies to predict the effects of corridors on interpatch movements. Movement paths of three butterfly species were measured in large (1.64 ha) experimental patches of open habitat, some of which were connected by corridors. Butterflies that "reflected" off boundaries between open patches and the surrounding forest also emigrated from patches through corridors at rates higher than expected from random movement. This was observed for two open-habitat species, Eurema nicippe and Phoebis sennae; however, edges and corridors had no effect on a habitat generalist, Papilio troilus. Behaviorally based simulation models, which departed from correlated random walks only at habitat boundaries, predicted that corridors increase interpatch movement rates of both open-habitat species. Models also predicted that corridors have proportionately greater effects as corridor width increases, that movement rates increase before leveling off as corridor width increases, and that corridor effects decrease as patch size increases. This study suggests that corridors direct movements of habitat-restricted species and that local behaviors may be used to predict the conservation potential of corridors in fragmented landscapes.

  14. The devil is in the dispersers: Predictions of landscape connectivity change with demography

    Treesearch

    Nicholas B. Elliot; Samuel A. Cushman; David W. Macdonald; Andrew J. Loveridge

    2014-01-01

    Concern about the effects of habitat fragmentation has led to increasing interest in dispersal and connectivity modelling. Most modern techniques for connectivity modelling have resistance surfaces as their foundation. However, resistance surfaces for animal movement are frequently estimated without considering dispersal, despite being the principal natural mechanism...

  15. Nesting fidelity and molecular evidence for natal homing in the freshwater turtle, Graptemys kohnii

    PubMed Central

    Freedberg, Steven; Ewert, Michael A; Ridenhour, Benjamin J; Neiman, Maurine; Nelson, Craig E

    2005-01-01

    Numerous studies of sea turtle nesting ecology have revealed that females exhibit natal homing, whereby they imprint on the nesting area from which they hatch and subsequently return there to nest as adults. Because freshwater turtles comprise the majority of reptiles known to display environmental sex determination (ESD), the study of natal homing in this group may shed light on recent evolutionary models of sex allocation that are predicated on natal homing in reptiles with ESD. We examined natal homing in Graptemys kohnii, a freshwater turtle with ESD, using mitochondrial sequencing, microsatellite genotyping and mark and recapture of 290 nesting females. Females showed high fidelity to nesting areas, even after being transplanted several kilometres away. A Mantel test revealed significant genetic isolation by distance with respect to nesting locations (r=0.147; p<0.05), suggesting that related females nest in close proximity to one another. The patterns of fidelity and genotype distributions are consistent with homing at a scale that may affect population sex ratios. PMID:16006324

  16. Extensive dispersal of Roanoke logperch (Percina rex) inferred from genetic marker data

    USGS Publications Warehouse

    Roberts, James H.; Angermeier, Paul; Hallerman, Eric M.

    2016-01-01

    The dispersal ecology of most stream fishes is poorly characterised, complicating conservation efforts for these species. We used microsatellite DNA marker data to characterise dispersal patterns and effective population size (Ne) for a population of Roanoke logperchPercina rex, an endangered darter (Percidae). Juveniles and candidate parents were sampled for 2 years at sites throughout the Roanoke River watershed. Dispersal was inferred via genetic assignment tests (ATs), pedigree reconstruction (PR) and estimation of lifetime dispersal distance under a genetic isolation-by-distance model. Estimates of Ne varied from 105 to 1218 individuals, depending on the estimation method. Based on PR, polygamy was frequent in parents of both sexes, with individuals spawning with an average of 2.4 mates. The sample contained 61 half-sibling pairs, but only one parent–offspring pair and no full-sib pairs, which limited our ability to discriminate natal dispersal of juveniles from breeding dispersal of their parents between spawning events. Nonetheless, all methods indicated extensive dispersal. The AT indicated unrestricted dispersal among sites ≤15 km apart, while siblings inferred by the PR were captured an average of 14 km and up to 55 km apart. Model-based estimates of median lifetime dispersal distance (6–24 km, depending on assumptions) bracketed AT and PR estimates, indicating that widely dispersed individuals do, on average, contribute to gene flow. Extensive dispersal of P. rex suggests that darters and other small benthic stream fishes may be unexpectedly mobile. Monitoring and management activities for such populations should encompass entire watersheds to fully capture population dynamics.

  17. Cognitive biases in processing infant emotion by women with depression, anxiety and post-traumatic stress disorder in pregnancy or after birth: A systematic review.

    PubMed

    Webb, Rebecca; Ayers, Susan

    2015-01-01

    Perinatal psychological problems such as post-natal depression are associated with poor mother-baby interaction, but the reason for this is not clear. One explanation is that mothers with negative mood have biased processing of infant emotion. This review aimed to synthesise research on processing of infant emotion by pregnant or post-natal women with anxiety, depression or post-traumatic stress disorder (PTSD). Systematic searches were carried out on 11 electronic databases using terms related to negative affect, childbirth and perception of emotion. Fourteen studies were identified which looked at the effect of depression, anxiety and PTSD on interpretation of infant emotional expressions (k = 10), or reaction times when asked to ignore emotional expressions (k = 4). Results suggest mothers with depression and anxiety are more likely to identify negative emotions (i.e., sadness) and less accurate at identifying positive emotions (i.e., happiness) in infant faces. Additionally, women with depression may disengage faster from positive and negative infant emotional expressions. Very few studies examined PTSD (k = 2), but results suggest biases towards specific infant emotions may be influenced by characteristics of the traumatic event. The implications of this research for mother-infant interaction are explored.

  18. Long-term colonization ecology of forest-dwelling species in a fragmented rural landscape – dispersal versus establishment

    PubMed Central

    Lõhmus, Kertu; Paal, Taavi; Liira, Jaan

    2014-01-01

    Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two-step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest-dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed-canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient-demanding and mycorrhizal-dependent, stress-tolerant disturbance-sensitive competitors, while corridor specialists are large-seeded disturbance-tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment-related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity-enhancing landscape

  19. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were

  20. Detection biases yield misleading patterns of species persistence and colonization in fragmented landscapes

    USGS Publications Warehouse

    Ruiz-Gutierrez, Viviana; Zipkin, Elise F.

    2011-01-01

    Species occurrence patterns, and related processes of persistence, colonization and turnover, are increasingly being used to infer habitat suitability, predict species distributions, and measure biodiversity potential. The majority of these studies do not account for observational error in their analyses despite growing evidence suggesting that the sampling process can significantly influence species detection and subsequently, estimates of occurrence. We examined the potential biases of species occurrence patterns that can result from differences in detectability across species and habitat types using hierarchical multispecies occupancy models applied to a tropical bird community in an agricultural fragmented landscape. Our results suggest that detection varies widely among species and habitat types. Not incorporating detectability severely biased occupancy dynamics for many species by overestimating turnover rates, producing misleading patterns of persistence and colonization of agricultural habitats, and misclassifying species into ecological categories (i.e., forest specialists and generalists). This is of serious concern, given that most research on the ability of agricultural lands to maintain current levels of biodiversity by and large does not correct for differences in detectability. We strongly urge researchers to apply an inferential framework which explicitly account for differences in detectability to fully characterize species-habitat relationships, correctly guide biodiversity conservation in human-modified landscapes, and generate more accurate predictions of species responses to future changes in environmental conditions.

  1. Inbreeding avoidance, patch isolation and matrix permeability influence dispersal and settlement choices by male agile antechinus in a fragmented landscape.

    PubMed

    Banks, Sam C; Lindenmayer, David B

    2014-03-01

    Animal dispersal is highly non-random and has important implications for the dynamics of populations in fragmented habitat. We identified interpatch dispersal events from genetic tagging, parentage analyses and assignment tests and modelled the factors associated with apparent emigration and post-dispersal settlement choices by individual male agile antechinus (Antechinus agilis, a marsupial carnivore of south-east Australian forests). Emigration decisions were best modelled with on data patch isolation and inbreeding risk. The choice of dispersal destination by males was influenced by inbreeding risk, female abundance, patch size, patch quality and matrix permeability (variation in land cover). Males were less likely to settle in patches without highly unrelated females. Our findings highlight the importance of individual-level dispersal data for understanding how multiple processes drive non-randomness in dispersal in modified landscapes. Fragmented landscapes present novel environmental, demographic and genetic contexts in which dispersal decisions are made, so the major factors affecting dispersal decisions in fragmented habitat may differ considerably from unfragmented landscapes. We show that the spatial scale of genetic neighbourhoods can be large in fragmented habitat, such that dispersing males can potentially settle in the presence of genetically similar females after moving considerable distances, thereby necessitating both a choice to emigrate and a choice of where to settle to avoid inbreeding. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  2. Gut shuttle service: endozoochory of dispersal-limited soil fauna by gastropods.

    PubMed

    Türke, Manfred; Lange, Markus; Eisenhauer, Nico

    2018-03-01

    Numerous important ecosystem functions and services depend on soil biodiversity. However, little is known about the mechanisms which maintain the vast belowground biodiversity and about the filters shaping soil community composition. Yet, biotic interactions like facilitation and dispersal by animals are assumed to play a crucial role, particularly as most soil animal taxa are strongly limited in their active dispersal abilities. Here, we report on a newfound interaction of potentially high ubiquity and importance in soil communities: the endozoochorous dispersal of soil fauna by gastropods. We focus on the dispersal-limited group of oribatid mites, one of the most diverse and abundant soil animal groups. In a field survey in a German riparian forest, 73% of 40 collected slugs (Arion vulgaris) egested a total of 135 oribatid mites, belonging to 35 species. Notably, 70% of the egested mites were alive and survived the gut passage through slugs. Similar results were found for Roman snails (Helix pomatia), indicating the generality of our findings across different gastropod taxa. Complementary laboratory experiments confirmed our field observations, revealing that oribatid mites are, indeed, ingested and egested alive by slugs, and that they are able to independently escape the faeces and colonise new habitats. Our results strongly indicate that gastropods may help soil organisms to disperse within habitats, to overcome dispersal barriers, and to reach short-lived resource patches. Gastropods might even disperse whole multi-trophic micro-ecosystems, a discovery that could have profound implications for our understanding of dispersal mechanisms and the distribution of soil biodiversity.

  3. Natal Tooth Associated with Fibrous Hyperplasia – A Rare Case Report

    PubMed Central

    Munjal, Deepti; Dhingra, Renuka; Malik, Narender Singh; Sidhu, Gagandeep Kaur

    2015-01-01

    Eruption of tooth at about 6 months of age is a significant stage in child’s life and is an emotional event for parents. However, a tooth present in the oral cavity of newborn can lead to a lot of delusions. Natal and neonatal teeth are of utmost importance not only for a dentist but also for a paediatrician due to parent’s anxiety, folklore superstitions and numerous associated complications with it. This paper reports a rare case, wherein a natal tooth has led to the development of a reactive fibrous hyperplasia in an 8-week-old infant. PMID:26023656

  4. Spatial variation in post-dispersal seed removal in an Atlantic forest: Effects of habitat, location and guilds of seed predators

    NASA Astrophysics Data System (ADS)

    Christianini, Alexander V.; Galetti, Mauro

    2007-11-01

    Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.

  5. Ghost crab populations respond to changing morphodynamic and habitat properties on sandy beaches

    NASA Astrophysics Data System (ADS)

    Lucrezi, Serena

    2015-01-01

    The morphodynamic state and habitat properties of microtidal sandy beaches largely account for variations in macrofauna structure. In ecological theory, the habitat harshness hypothesis and the habitat safety hypothesis explain variations in macrofauna populations of the intertidal and supratidal zones of sandy beaches. The former hypothesis states that intertidal macrofauna should increase from reflective to dissipative beaches. The latter hypothesis supports the idea that supratidal species are more successful on reflective beaches, given their relative independence from the swash. However, trends in abundance of supratidal species, particularly crustaceans, have been unclear and further investigation is therefore needed. This study tested the two hypotheses on the largest invertebrate intertidal-to-supratidal crustacean on sandy beaches, namely the ghost crab (genus Ocypode). Variations in ghost crab burrow density, abundance, size and across-shore distribution were measured on four warm-temperate microtidal sandy beaches in KwaZulu-Natal, South Africa. Burrow numbers increased with beach morphodynamic state, while average burrow size decreased. The steepest, narrowest and most inundation-prone beach represented the least hospitable environment for the ghost crabs. The results that are reported here tend to support the habitat harshness hypothesis. However, the relevance of i) individual physical variables, ii) tidal action, and iii) the ecology of various species, in shaping ghost crab population dynamics, is also discussed. The results contribute to the knowledge regarding population dynamics of intertidal and supratidal crustaceans across beach types.

  6. Does survey method bias the description of northern goshawk nest-site structure?

    USGS Publications Warehouse

    Daw, S.K.; DeStefano, S.; Steidl, R.J.

    1998-01-01

    Past studies on the nesting habitat of northern goshawks (Accipiter gentilis) often relied on nests found opportunistically, either during timber-sale operations, by searching apparently 'good' goshawk habitat, or by other search methods where areas were preselected based on known forest conditions. Therefore, a bias in the characterization of habitat surrounding northern goshawk nest sites may exist toward late-forest structure (large trees, high canopy closure). This potential problem has confounded interpretation of data on nesting habitat of northern goshawks and added to uncertainty in the review process to consider the species for federal listing as threatened or endangered. Systematic survey methods, which strive for complete coverage of an area and often use broadcasts of conspecific calls, have been developed to overcome these potential biases, but no study has compared habitat characteristics around nests found opportunistically with those found systematically. We compared habitat characteristics in a 0.4-ha area around nests found systematically (n = 27) versus those found opportunistically (n = 22) on 3 national forests in eastern Oregon. We found that both density of large trees (systematic: x?? = 16.4 ?? 3.1 trees/ha; x?? ?? SE; opportunistic: x?? = 21.3 ?? 3.2; P = 0.56) and canopy closure (systematic: x?? = 72 ?? 2%; opportunistic: x?? = 70 ?? 2%; P = 0.61) were similar around nests found with either search method. Our results diminish concern that past survey methods mischaracterized northern goshawk nest-site structure. However, because northern goshawks nest in a variety of forest cover types with a wide range of structural characteristics, these results do not decrease the value of systematic survey methods in determining the most representative habitat descriptions for northern goshawks. Rigorous survey protocols allow repeatability and comparability of monitoring efforts and results over time.

  7. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  8. Local population differentiation in Bromus tectorum L. in relation to habitat-specific selection regimes

    Treesearch

    Jason W. Scott; Susan E. Meyer; Keith R. Merrill; Val J. Anderson

    2010-01-01

    A central question of invasion biology is how an exotic species invades new habitats following its initial establishment. Three hypotheses to explain this expansion are: (1) the existence of 'general purpose' genotypes, (2) the in situ evolution of novel genotypes, and (3) the dispersal of existing specialized genotypes into habitats for which they are pre-...

  9. Habitat connectivity and ecosystem productivity: implications from a simple model.

    USGS Publications Warehouse

    Cloern, J.E.

    2007-01-01

    The import of resources (food, nutrients) sustains biological production and food webs in resource-limited habitats. Resource export from donor habitats subsidizes production in recipient habitats, but the ecosystem-scale consequences of resource translocation are generally unknown. Here, I use a nutrient-phytoplankton-zooplankton model to show how dispersive connectivity between a shallow autotrophic habitat and a deep heterotrophic pelagic habitat can amplify overall system production in metazoan food webs. This result derives from the finite capacity of suspension feeders to capture and assimilate food particles: excess primary production in closed autotrophic habitats cannot be assimilated by consumers; however, if excess phytoplankton production is exported to food-limited heterotrophic habitats, it can be assimilated by zooplankton to support additional secondary production. Transport of regenerated nutrients from heterotrophic to autotrophic habitats sustains higher system primary production. These simulation results imply that the ecosystem-scale efficiency of nutrient transformation into metazoan biomass can be constrained by the rate of resource exchange across habitats and that it is optimized when the transport rate matches the growth rate of primary producers. Slower transport (i.e., reduced connectivity) leads to nutrient limitation of primary production in autotrophic habitats and food limitation of secondary production in heterotrophic habitats. Habitat fragmentation can therefore impose energetic constraints on the carrying capacity of aquatic ecosystems. The outcomes of ecosystem restoration through habitat creation will be determined by both functions provided by newly created aquatic habitats and the rates of hydraulic connectivity between them.

  10. Dispersion dynamics of quantum cascade lasers

    DOE PAGES

    Burghoff, David; Yang, Yang; Reno, John L.; ...

    2016-12-20

    A key parameter underlying the efficacy of any nonlinear optical process is group velocity dispersion. In quantum cascade lasers (QCLs), there have been several recent demonstrations of devices exploiting nonlinearities in both the mid-infrared and the terahertz. Though the gain of QCLs has been well studied, the dispersion has been much less investigated, and several questions remain about its dynamics and precise origin. In this work, we use time-domain spectroscopy to investigate the dispersion of broadband terahertz QCLs, and demonstrate that contributions from both the material and the intersubband transitions are relevant. We show that in contrast to the lasermore » gain—which is clamped to a fixed value above lasing threshold—the dispersion changes with bias even above threshold, which is a consequence of shifting intersubband populations. In conclusion, we also examine the role of higher-order dispersion in QCLs and discuss the ramifications of our result for devices utilizing nonlinear effects, such as frequency combs.« less

  11. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    PubMed

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  12. Nutrient transport within and between habitats through seed dispersal processes by woolly monkeys in north-western Amazonia.

    PubMed

    Stevenson, Pablo R; Guzmán-Caro, Diana C

    2010-11-01

    The contribution of vertebrate animals to nutrient cycling has proven to be important in various ecosystems. However, the role of large bodied primates in nutrient transport in neotropical forests is not well documented. Here, we assess the role of a population of woolly monkeys (Lagothrix lagothricha lugens) as vectors of nutrient movement through seed dispersal. We estimated total seed biomass transported by the population within and between two habitats (terra firme and flooded forests) at Tinigua Park, Colombia, and quantified potassium (K), phosphorus (P) and nitrogen (N) content in seeds of 20 plant species from both forests. Overall, the population transported an estimated minimum of 11.5 (±1.2 SD) g of potassium, 13.2 (±0.7) g of phosphorus and 34.3 (±0.1) g nitrogen, within 22.4 (±2.0) kg of seeds ha(-1) y(-1). Approximately 84% of all nutrients were deposited in the terra firme forest mostly through recycling processes, and also through translocation from the flooded forest. This type of translocation represents an important and high-quality route of transport since abiotic mechanisms do not usually move nutrients upwards, and since chemical tests show that seeds from flooded forests have comparatively higher nutrient contents. The overall contribution to nutrient movement by the population of woolly monkeys is significant because of the large amount of biomass transported, and the high phosphorus content of seeds. As a result, the phosphorus input generated by these monkeys is of the same order of magnitude as other abiotic mechanisms of nutrient transport such as atmospheric deposition and some weathering processes. Our results suggest that via seed dispersal processes, woolly monkey populations can contribute to nutrient movement in tropical forests, and may act as important nutrient input vectors in terra firme forests. © 2010 Wiley-Liss, Inc.

  13. Riga-Fede Disease Associated with Natal Teeth: Two Different Approaches in the Same Case.

    PubMed

    Volpato, Luiz Evaristo Ricci; Simões, Cintia Aparecida Damo; Simões, Flávio; Nespolo, Priscila Alves; Borges, Álvaro Henrique

    2015-01-01

    Natal teeth are those present in the oral cavity at the child's birth. These teeth can cause ulcers on the ventral surface of the tongue, lip, and the mother's breast characterizing the Riga-Fede Disease. The treatment depends on the tooth's mobility and the risk of aspiration or swallowing; whether it is supernumerary or regular primary teeth; whether it is causing interference in breastfeeding; breast and oral soft tissue injuries; and the general state of child's health. A 1-month-old female infant was diagnosed with two natal teeth and an ulcerated lesion on the ventral surface of the tongue, leading to the clinical diagnosis of Riga-Fede Disease. The treatment performed consisted of the maintenance of the natal tooth that showed no increased mobility, adding a small increment of glass ionomer cement to its incisal edge, and orientation for hygiene with saline solution. Due to the increased mobility of the other natal tooth, surgical removal was performed. There was regular monitoring of the patient and complete wound healing was observed after 15 days. The proposed treatment was successful and the patient is still in follow-up without recurrence of the lesion after one year.

  14. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).

    PubMed

    Willis, C G; Hall, J C; Rubio de Casas, R; Wang, T Y; Donohue, K

    2014-12-01

    Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit traits, and how the evolution of these traits is correlated with shifts in geographic range size, habitat and diversification rates in the tribe Brassiceae (Brassicaceae). The phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates. It was found that the evolution of traits associated with limited dispersal evolved only in association with compensatory traits that increase dispersal ability. The evolution of increased dispersal ability occurred in multiple ways through the correlated evolution of different combinations of fruit traits. The evolution of traits that increase dispersal ability was in turn associated with larger seed size, increased geographic range size and higher diversification rates. This study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Dispersal Patterns of Coastal Fish: Implications for Designing Networks of Marine Protected Areas

    PubMed Central

    Di Franco, Antonio; Gillanders, Bronwyn M.; De Benedetto, Giuseppe; Pennetta, Antonio; De Leo, Giulio A.; Guidetti, Paolo

    2012-01-01

    Information about dispersal scales of fish at various life history stages is critical for successful design of networks of marine protected areas, but is lacking for most species and regions. Otolith chemistry provides an opportunity to investigate dispersal patterns at a number of life history stages. Our aim was to assess patterns of larval and post-settlement (i.e. between settlement and recruitment) dispersal at two different spatial scales in a Mediterranean coastal fish (i.e. white sea bream, Diplodus sargus sargus) using otolith chemistry. At a large spatial scale (∼200 km) we investigated natal origin of fish and at a smaller scale (∼30 km) we assessed “site fidelity” (i.e. post-settlement dispersal until recruitment). Larvae dispersed from three spawning areas, and a single spawning area supplied post-settlers (proxy of larval supply) to sites spread from 100 to 200 km of coastline. Post-settlement dispersal occurred within the scale examined of ∼30 km, although about a third of post-settlers were recruits in the same sites where they settled. Connectivity was recorded both from a MPA to unprotected areas and vice versa. The approach adopted in the present study provides some of the first quantitative evidence of dispersal at both larval and post-settlement stages of a key species in Mediterranean rocky reefs. Similar data taken from a number of species are needed to effectively design both single marine protected areas and networks of marine protected areas. PMID:22355388

  16. California red-legged frog (Rana draytonii) movement and habitat use: Implications for conservation

    USGS Publications Warehouse

    Fellers, G.M.; Kleeman, P.M.

    2007-01-01

    Nonbreeding habitats are critically important for Rana draytonii, especially for individuals that breed in temporary bodies of water. We radiotracked 123 frogs to evaluate seasonal habitat use. Individual frogs were continuously tracked for up to 16 months. Some individuals remained at breeding ponds all year, but 66% of female and 25% of male frogs moved to nonbreeding areas, even when the breeding site retained water. Frogs at our main study site moved 150 m (median), roughly the distance to the nearest suitable nonbreeding area. The greatest straight-line distance traveled was 1.4 km, although the presumed distance traveled was 2.8 km. Females were more likely than males to move from permanent ponds (38% of females, 16% of males), but among dispersing frogs, males and females did not differ in distance moved. Some frogs left breeding sites shortly after oviposition (median = 12 days for females, 42.5 days for males), but many individuals remained until the site was nearly dry. Fog provided moisture for dispersal or migration throughout the summer. Our data demonstrate that maintaining populations of pond-breeding amphibians requires that all essential habitat components be protected; these include (1) breeding habitat, (2) nonbreeding habitat, and (3) migration corridors. In addition, a buffer is needed around all three areas to ensure that outside activities do not degrade any of the three habitat components. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  17. The Importance of Dispersal for Bacterial Community Composition and Functioning

    PubMed Central

    Lindström, Eva S.; Östman, Örjan

    2011-01-01

    We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into. PMID:21998714

  18. Introduced birds incompletely replace seed dispersal by a native frugivore

    PubMed Central

    Pejchar, Liba

    2015-01-01

    The widespread loss of native species and the introduction of non-native species has important consequences for island ecosystems. Non-native species may or may not functionally replace the role of native species in ecological processes such as seed dispersal. Although the majority of Hawaii's native plants require bird-mediated seed dispersal, only one native frugivore, Omao (Myadestes obscurus), persists in sufficient numbers to fill this functional role. Omao are restricted to less than half their original range, but two introduced frugivores are abundant throughout Hawaii. Given large-scale extinctions on islands, it is important to understand whether introduced birds serve as functional replacements or whether the absence of native frugivores alters plant communities. To assess seed dispersal by native and introduced birds, seed rain, vegetation characteristics, bird diet, density and habitat use were measured at three sites with Omao and three sites without Omao on Hawaii Island. The diet of native and introduced birds overlapped substantially, but Omao dispersed a variety of native species (n = 6) relatively evenly. In contrast, introduced birds dispersed an invasive species and fewer native species (n = 4), and >90 % of seeds dispersed by introduced birds were from two ubiquitous small-seeded species. Seed rain was significantly greater and more species rich at sites with Omao. These findings suggest that patterns of seed dispersal are altered following the local extinction of a native island frugivore. To more directly evaluate the relative roles of native and introduced frugivores in ecological processes, future studies could include reintroducing Omao to a suitable habitat within its historic range, or novel introductions to nearby islands where closely related species are now extinct. In an era of widespread extinction and invasion of island ecosystems, understanding the consequences of novel animal assemblages for processes like seed dispersal will be

  19. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    PubMed Central

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  20. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient

    NASA Astrophysics Data System (ADS)

    Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.

    2016-11-01

    Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.

  1. Larval dispersal connects fish populations in a network of marine protected areas

    PubMed Central

    Planes, Serge; Jones, Geoffrey P.; Thorrold, Simon R.

    2009-01-01

    Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms. PMID:19307588

  2. Larval dispersal connects fish populations in a network of marine protected areas.

    PubMed

    Planes, Serge; Jones, Geoffrey P; Thorrold, Simon R

    2009-04-07

    Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms.

  3. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  4. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    PubMed

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  5. Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    NASA Astrophysics Data System (ADS)

    Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena

    2017-02-01

    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones.

  6. Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    PubMed Central

    Polte, Patrick; Kotterba, Paul; Moll, Dorothee; von Nordheim, Lena

    2017-01-01

    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones. PMID:28205543

  7. Food web complexity and stability across habitat connectivity gradients.

    PubMed

    LeCraw, Robin M; Kratina, Pavel; Srivastava, Diane S

    2014-12-01

    The effects of habitat connectivity on food webs have been studied both empirically and theoretically, yet the question of whether empirical results support theoretical predictions for any food web metric other than species richness has received little attention. Our synthesis brings together theory and empirical evidence for how habitat connectivity affects both food web stability and complexity. Food web stability is often predicted to be greatest at intermediate levels of connectivity, representing a compromise between the stabilizing effects of dispersal via rescue effects and prey switching, and the destabilizing effects of dispersal via regional synchronization of population dynamics. Empirical studies of food web stability generally support both this pattern and underlying mechanisms. Food chain length has been predicted to have both increasing and unimodal relationships with connectivity as a result of predators being constrained by the patch occupancy of their prey. Although both patterns have been documented empirically, the underlying mechanisms may differ from those predicted by models. In terms of other measures of food web complexity, habitat connectivity has been empirically found to generally increase link density but either reduce or have no effect on connectance, whereas a unimodal relationship is expected. In general, there is growing concordance between empirical patterns and theoretical predictions for some effects of habitat connectivity on food webs, but many predictions remain to be tested over a full connectivity gradient, and empirical metrics of complexity are rarely modeled. Closing these gaps will allow a deeper understanding of how natural and anthropogenic changes in connectivity can affect real food webs.

  8. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.

    PubMed

    Brothers, J Roger; Lohmann, Kenneth J

    2015-02-02

    Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sonoran pronghorn habitat use on landscapes disturbed by military activities

    USGS Publications Warehouse

    Krausman, P.R.; Harris, L.K.; Haas, S.K.; Koenen, Kiana K. G.; Devers, P.; Bunting, D.; Barb, M.

    2005-01-01

    The Sonoran pronghorn (Antilocapra americana sonoriensis) population in the United States declined to ???33 animals in January 2003. Low population numbers and unstable recruitment are concerns for biologists managing this subspecies. We examined habitat use by pronghorn from 1999 to 2002 on a portion of the Barry M. Goldwater Range (BMGR) used for military exercises. We overlaid locations of pronghorn (n= 1,203) on 377 1-km2 blocks within the North (NTAC) and South Tactical Ranges (STAC), BMGR; we classified vegetation associations and disturbance status (e.g., airfields, targets, roads) for each block. Locations of pronghorn were distributed in proportion to vegetation associations on NTAC and STAC. Sightings of pronghorns were biased toward disturbed blocks, with 73% of locations of pronghorn occurring in proximity to mock airfields, high-explosive hills (e.g., targets for live high-explosive bombs and rockets), other targets, and roads. Disturbed landscapes on the BMGR may attract Sonoran pronghorn by creating favorable forage. Habitat manipulations simulating the effects of military disturbances on the landscape (e.g., improved forage) may improve remaining Sonoran pronghorn habitat. Antilocapra americana sonoriensis, Barry M. Goldwater Air Force Range, disturbed habitat, habitat availability, habitat use, military activity, Sonoran pronghorn.

  10. Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney.

    PubMed

    Kuybulu, Ayça Esra; Öktem, Faruk; Çiriş, İbrahim Metin; Sutcu, Recep; Örmeci, Ahmet Rıfat; Çömlekçi, Selçuk; Uz, Efkan

    2016-01-01

    The aim of the present study was to investigate oxidative stress and apoptosis in kidney tissues of male Wistar rats that pre- and postnatally exposed to wireless electromagnetic field (EMF) with an internet frequency of 2.45 GHz for a long time. The study was conducted in three groups of rats which were pre-natal, post-natal. and sham exposed groups. Oxidative stress markers and histological evaluation of kidney tissues were studied. Renal tissue malondialdehyde (MDA) and total oxidant (TOS) levels of pre-natal group were high and total antioxidant (TAS) and superoxide dismutase (SOD) levels were low. Spot urine NAG/creatinine ratio was significantly higher in pre- and post-natal groups (p < 0.001). Tubular injury was detected in most of the specimens in post-natal groups. Immunohistochemical analysis showed low-intensity staining with Bax in cortex, high-intensity staining with Bcl-2 in cortical and medullar areas of pre-natal group (p values, 0.000, 0.002, 0.000, respectively) when compared with sham group. Bcl2/Bax staining intensity ratios of medullar and cortical area was higher in pre-natal group than sham group (p = 0.018, p = 0.011). Based on this study, it is thought that chronic pre- and post-natal period exposure to wireless internet frequency of EMF may cause chronic kidney damages; staying away from EMF source in especially pregnancy and early childhood period may reduce negative effects of exposure on kidney.

  11. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  12. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space.

    PubMed

    Masui, Kiyoshi Wesley; Sigurdson, Kris

    2015-09-18

    We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

  13. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space

    NASA Astrophysics Data System (ADS)

    Masui, Kiyoshi Wesley; Sigurdson, Kris

    2015-09-01

    We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

  14. Equity and Excellence: The Emergence, Consolidation and Internalization of Education Development at the University of Natal

    ERIC Educational Resources Information Center

    Odendaal, Marie; Deacon, Roger

    2009-01-01

    Education development in South Africa emerged during the transition from apartheid to democracy, in a context especially marked by political and financial pressures. This case study of the University of Natal (now the University of KwaZulu-Natal) demonstrates how a strategy combining equity with excellence aimed to facilitate increased access to…

  15. Machado de Assis's "Dom Casmurro" and "Soneto De Natal": The Calculated Mediocrity of a Mute Prophet

    ERIC Educational Resources Information Center

    Lewis, Christopher T.

    2016-01-01

    Joaquim Maria Machado de Assis's poem "Soneto de Natal" and the chapter "Um soneto" from his novel "Dom Casmurro" exhibit striking points of intersection that describe the same process: the creation of a sonnet. In the novel, Bentinho abandons his attempt with only a first and last line. "Soneto de Natal"…

  16. Educational Leadership with an Ethics of Plurality and Natality

    ERIC Educational Resources Information Center

    Berger, Iris

    2015-01-01

    This paper aims to impregnate the concept of educational leadership with new meanings and new possibilities. I draw on Hannah Arendt's ("The human condition." University of Chicago Press, Chicago, 1958/1998) political thought, particularly, her concepts of "plurality" and "natality" alongside the distinction she made…

  17. Effects of Crude Oil, Dispersant, and Oil-Dispersant Mixtures on Human Fecal Microbiota in an In Vitro Culture System

    PubMed Central

    Kim, Jong Nam; Kim, Bong-Soo; Kim, Seong-Jae; Cerniglia, Carl E.

    2012-01-01

    ABSTRACT The Deepwater Horizon oil spill of 2010 raised concerns that dispersant and dispersed oil, as well as crude oil itself, could contaminate shellfish and seafood habitats with hazardous residues that had potential implications for human health and the ecosystem. However, little is known about the effects of crude oil and dispersant on the human fecal microbiota. The aim of this research was to evaluate the potential effects of Deepwater Horizon crude oil, Corexit 9500 dispersant, and their combination on human fecal microbial communities, using an in vitro culture test system. Fecal specimens from healthy adult volunteers were made into suspensions, which were then treated with oil, dispersant, or oil-dispersant mixtures under anaerobic conditions in an in vitro culture test system. Perturbations of the microbial community, compared to untreated control cultures, were assessed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and pyrosequencing methods. DGGE and pyrosequencing analysis showed that oil-dispersant mixtures reduced the diversity of fecal microbiota from all individuals. Real-time PCR results indicated that the copy numbers of 16S rRNA genes in cultures treated with dispersed oil or oil alone were significantly lower than those in control incubations. The abundance of the Bacteroidetes decreased in crude oil-treated and dispersed-oil-treated cultures, while the Proteobacteria increased in cultures treated with dispersed oil. In conclusion, the human fecal microbiota was affected differently by oil and dispersed oil, and the influence of dispersed oil was significantly greater than that of either oil or dispersant alone compared to control cultures. PMID:23093387

  18. Subordinate females in the cooperatively breeding Seychelles warbler obtain direct benefits by joining unrelated groups.

    PubMed

    Groenewoud, Frank; Kingma, Sjouke A; Hammers, Martijn; Dugdale, Hannah L; Burke, Terry; Richardson, David S; Komdeur, Jan

    2018-05-11

    1.In many cooperatively breeding animals, a combination of ecological constraints and benefits of philopatry favours offspring taking a subordinate position on the natal territory instead of dispersing to breed independently. However, in many species individuals disperse to a subordinate position in a non-natal group ("subordinate between-group" dispersal), despite losing the kin-selected and nepotistic benefits of remaining in the natal group. It is unclear which social, genetic and ecological factors drive between-group dispersal. 2.We aim to elucidate the adaptive significance of subordinate between-group dispersal by examining which factors promote such dispersal, whether subordinates gain improved ecological and social conditions by joining a non-natal group, and whether between-group dispersal results in increased lifetime reproductive success and survival. 3.Using a long-term dataset on the cooperatively-breeding Seychelles warbler (Acrocephalus sechellensis), we investigated 4.how a suite of proximate factors (food availability, group composition, age and sex of focal individuals, population density) promote subordinate between-group dispersal by comparing such dispersers with subordinates that dispersed to a dominant position or became floaters. We then analysed whether subordinates that moved to a dominant or non-natal subordinate position, or became floaters, gained improved conditions relative to the natal territory, and compared fitness components between the three dispersal strategies. 5.We show that individuals that joined another group as non-natal subordinates were mainly female and that, similar to floating, between-group dispersal was associated with social and demographic factors that constrained dispersal to an independent breeding position. Between-group dispersal was not driven by improved ecological or social conditions in the new territory and did not result in higher survival. Instead, between-group dispersing females often became co

  19. Unusual larval habitats and life history of chironomid (Diptera) genera

    USGS Publications Warehouse

    Hudson, Patrick L.

    1987-01-01

    Ninety-three genera, representing all subfamilies of Chironomidae, are organized into 9 categories of unusual habitats or life history including hygropetric, riparian (bank, floodplain, upland), hyporheic, symbiotic, and intertidal; others live in water held in plants or mine into unusual substrates. In riparian zones precise location of optimum habitat is difficult to determine as is definition of habitat within the continuum from shoreline to upland areas. The ecological importance of the riparian group appears to lie in its processing of coarse particulate matter along the floodplain of streams and rivers. All riparian genera are zoogeographically useful and can be used in reconstructing evolutionary dispersal pathways because they are adapted to unique habits that have remained largely undisturbed by human activities.

  20. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  1. Matching watershed and otolith chemistry to establish natal origin of an endangered desert lake sucker

    USGS Publications Warehouse

    Strohm, Deanna D.; Budy, Phaedra; Crowl, Todd A.

    2017-01-01

    Stream habitat restoration and supplemental stocking of hatchery-reared fish have increasingly become key components of recovery plans for imperiled freshwater fish; however, determining when to discontinue stocking efforts, prioritizing restoration areas, and evaluating restoration success present a conservation challenge. In this study, we demonstrate that otolith microchemistry is an effective tool for establishing natal origin of the June Sucker Chasmistes liorus, an imperiled potamodromous fish. This approach allows us to determine whether a fish is of wild or hatchery origin in order to assess whether habitat restoration enhances recruitment and to further identify areas of critical habitat. Our specific objectives were to (1) quantify and characterize chemical variation among three main spawning tributaries; (2) understand the relationship between otolith microchemistry and tributary chemistry; and (3) develop and validate a classification model to identify stream origin using otolith microchemistry data. We quantified molar ratios of Sr:Ca, Ba:Ca, and Mg:Ca for water and otolith chemistry from three main tributaries to Utah Lake, Utah, during the summer of 2013. Water chemistry (loge transformed Sr:Ca, Ba:Ca, and Mg:Ca ratios) differed significantly across all three spawning tributaries. We determined that Ba:Ca and Sr:Ca ratios were the most important variables driving our classification models, and we observed a strong linear relationship between water and otolith values for Sr:Ca and Ba:Ca but not for Mg:Ca. Classification models derived from otolith element : Ca signatures accurately sorted individuals to their experimental tributary of origin (classification tree: 89% accuracy; random forest model: 91% accuracy) and determined wild versus hatchery origin with 100% accuracy. Overall, this study aids in evaluating the effectiveness of restoration, tracking progress toward recovery, and prioritizing future restoration plans for fishes of conservation

  2. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  3. Food supplementation mitigates dispersal-dependent differences in nest defence in a passerine bird.

    PubMed

    Récapet, Charlotte; Daniel, Grégory; Taroni, Joëlle; Bize, Pierre; Doligez, Blandine

    2016-05-01

    Dispersing and non-dispersing individuals often differ in phenotypic traits (e.g. physiology, behaviour), but to what extent these differences are fixed or driven by external conditions remains elusive. We experimentally tested whether differences in nest-defence behaviour between dispersing and non-dispersing individuals changed with local habitat quality in collared flycatchers, by providing additional food during the nestling rearing period. In control (non-food-supplemented) nests, dispersers were less prone to defend their brood compared with non-dispersers, whereas in food-supplemented nests, dispersing and non-dispersing individuals showed equally strong nest defence. We discuss the importance of dispersal costs versus adaptive flexibility in reproductive investment in shaping these differences in nest-defence behaviour between dispersing and non-dispersing individuals. Irrespective of the underlying mechanisms, our study emphasizes the importance of accounting for environmental effects when comparing traits between dispersing and non-dispersing individuals, and in turn assessing the costs and benefits of dispersal. © 2016 The Author(s).

  4. Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds.

    PubMed

    Amos, Nevil; Harrisson, Katherine A; Radford, James Q; White, Matt; Newell, Graeme; Mac Nally, Ralph; Sunnucks, Paul; Pavlova, Alexandra

    2014-06-01

    Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape

  5. Association of marital status and years of schooling with perinatal outcome: the influence of pre-natal care as an intermediate variable.

    PubMed

    Faundes, A; Hardy, E; Diaz, J; Pinotti, J

    1982-01-01

    The association between mother's education and perinatal mortality, and between marital status and proportion of preterm deliveries was analyzed using data from 20,000 women and newborns delivered at the Hospital Barros Luco-Trudeau in Santiago, Chile. A highly significant correlation was found, but after being controlled by pre-natal care, that association disappeared for those mothers with good pre-natal care, remaining only as a part of the association for women who did not attend the pre-natal clinics or did not follow minimal standards of care. The definition used for "good pre-natal care" was much less demanding than WHO recommendation. We required a minimum of only 5 visits, starting before the 5th month of the pregnancy and with blood pressure and body weight registered at each visit. Pre-natal assistance was provided mostly by registered midwives, with occasional consultation by physicians. The efficiency of a low cost health activity, such as pre-natal care, in improving infant health is held in contrast with the inefficiency of high cost technology when applied to developing countries' health problems.

  6. Persistent lingual ulceration (Riga-Fede disease) in an infant with Down syndrome and natal teeth: a case report.

    PubMed

    Senanayake, Manouri P; Karunaratne, Irantha

    2014-08-22

    Riga-Fede disease is a rare pediatric condition in which chronic lingual ulceration results from repetitive trauma. Neonatal teeth or underlying neuro-developmental disorders which include Down syndrome are described as causative factors, but to the best of our knowledge, this is the first case report of both Down syndrome and natal teeth coexisting. The need for early extraction in the presence of two risk factors is highlighted in this case report. An 18-month-old Sinhalese male presented with an ulcerating lingual mass on the ventral surface of the tongue. The lesion had progressed over the past six months. He also had clinically diagnosed Down syndrome.The ulcer was non-tender, indurated, and had elevated margins. It was not bleeding and two natal teeth in lower central dentition were seen in apposition with the lesion. There was no regional lymphadenopathy but the ulcer was causing concerns as it mimicked a malignant lesion. A clinical diagnosis of Riga-Fede disease caused by raking movements of the tongue against anterior natal teeth by a child who was developmentally delayed and prone to suck on his tongue was made. The mother was reassured and the natal teeth were extracted. Early extraction of natal teeth is recommended only if there is a risk of aspiration or interference with breast feeding. Although Down syndrome is among the neuro-developmental conditions that lead to this lesion, its occurrence is usually at an older age. The presence of natal teeth together with Down syndrome caused the lesion to occur in infancy. Awareness of the benign nature of this rare condition by pediatricians and dental practitioners is important as it will allay anxiety and avoid unnecessary biopsy. This case also highlights the impact of two risk factors and needs consideration as an added indication for the early extraction of natal teeth.

  7. A Case Report of Gender Dysphoria with Morbid Jealousy in a Natal Female

    PubMed Central

    Rao, G. Prasad; Aparna, B.

    2017-01-01

    Gender dysphoria is a new entity introduced in the Diagnostic and Statistical Manual of Mental Disorder V to address the distress of the previously labeled gender identity disorder patients. It is less commonly seen in natal females, often starting in their childhood. Adults and adolescent natal females with early-onset gender dysphoria are almost always gynephilic. This case report is presented to discuss the interesting evolution of the symptoms in gender dysphoria case with difficulties in adjusting to the assigned sexual role, relationship problems, morbid jealousy, and severe depressive features with suicidal ideations. PMID:29284816

  8. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    PubMed

    Alarcón, Diego; Cavieres, Lohengrin A

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.

  9. In the Right Place at the Right Time: Habitat Representation in Protected Areas of South American Nothofagus-Dominated Plants after a Dispersal Constrained Climate Change Scenario

    PubMed Central

    Alarcón, Diego; Cavieres, Lohengrin A.

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  10. Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution.

    PubMed

    Warren, Robert J

    2016-01-01

    A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species

  11. Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution

    PubMed Central

    Warren, Robert J.

    2016-01-01

    A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species

  12. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  13. Neutron Star Natal Kick and Jets in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2018-03-01

    We measure the angle between the neutron star (NS) natal kick direction and the inferred direction of jets according to the morphology of 12 core collapse supernova remnants (SNR), and find that the distribution is almost random, but missing small angles. The 12 SNRs are those for which we could both identify morphological features that we can attribute to jets and for which the direction of the NS natal kick is given in the literature. Unlike some claims for spin-kick alignment, here we rule out jet-kick alignment. We discuss the cumulative distribution function of the jet-kick angles under the assumption that dense clumps that are ejected by the explosion accelerate the NS by the gravitational attraction, and suggest that the jet feedback explosion mechanism might in principle account for the distribution of jet-kick angles.

  14. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  15. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca).

    PubMed

    Pilot, M; Dahlheim, M E; Hoelzel, A R

    2010-01-01

    In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.

  16. Dispersal and gene flow in the rare, parasitic Large Blue butterfly Maculinea arion.

    PubMed

    Ugelvig, L V; Andersen, A; Boomsma, J J; Nash, D R

    2012-07-01

    Dispersal is crucial for gene flow and often determines the long-term stability of meta-populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark-recapture observations that are suspected to be poor predictors of long-distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark-recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ∼20km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ∼10km. © 2012 Blackwell Publishing Ltd.

  17. Loss of frugivore seed dispersal services under climate change.

    PubMed

    Mokany, Karel; Prasad, Soumya; Westcott, David A

    2014-05-27

    The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.

  18. Can dispersal mode predict corridor effects on plant parasites?

    PubMed

    Sullivan, Lauren L; Johnson, Brenda L; Brudvig, Lars A; Haddad, Nick M

    2011-08-01

    Habitat corridors, a common management strategy for increasing connectivity in fragmented landscapes, have experimentally validated positive influences on species movement and diversity. However, long-standing concerns that corridors could negatively impact native species by spreading antagonists, such as disease, remain largely untested. Using a large-scale, replicated experiment, we evaluated whether corridors increase the incidence of plant parasites. We found that corridor impacts varied with parasite dispersal mode. Connectivity provided by corridors increased incidence of biotically dispersed parasites (galls on Solidago odora) but not of abiotically dispersed parasites (foliar fungi on S. odora and three Lespedeza spp.). Both biotically and abiotically dispersed parasites responded to edge effects, but the direction of responses varied across species. Although our results require additional tests for generality to other species and landscapes, they suggest that, when establishing conservation corridors, managers should focus on mitigating two potential negative effects: the indirect effects of narrow corridors in creating edges and direct effects of corridors in enhancing connectivity of biotically dispersed parasites.

  19. NATAL-74; Towards a Common Programming Language for CAL.

    ERIC Educational Resources Information Center

    Brahan, J. W.; Colpitts, B. A.

    NATAL-74 is a programing language designed for Canadian computer aided learning (CAL) programs. The language has two fundamental elements: the UNIT provides the interface between the student and the subject matter, and the PROCEDURE element embodies teaching strategy. Desirable features of several programing languages have been adapted to cope…

  20. An Alternative to Adaptation by Sexual Selection: Habitat Choice.

    PubMed

    Porter, Cody K; Akcali, Christopher K

    2018-06-09

    Adaptation in mating signals and preferences has generally been explained by sexual selection. We propose that adaptation in such mating traits might also arise via a non-mutually exclusive process wherein individuals preferentially disperse to habitats where they experience high mating performance. Here we explore the evolutionary implications of this process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Interspecific nematode signals regulate dispersal behavior.

    PubMed

    Kaplan, Fatma; Alborn, Hans T; von Reuss, Stephan H; Ajredini, Ramadan; Ali, Jared G; Akyazi, Faruk; Stelinski, Lukasz L; Edison, Arthur S; Schroeder, Frank C; Teal, Peter E

    2012-01-01

    Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective juveniles (IJ)s of entomopathogenic nematodes (EPN), e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9). A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9) and C. elegans (ascr#2) dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.

  2. Predicting suitable habitat of the Chinese monal (Lophophorus lhuysii) using ecological niche modeling in the Qionglai Mountains, China.

    PubMed

    Wang, Bin; Xu, Yu; Ran, Jianghong

    2017-01-01

    Understanding the distribution and the extent of suitable habitats is crucial for wildlife conservation and management. Knowledge is limited regarding the natural habitats of the Chinese monal ( Lophophorus lhuysii ), which is a vulnerable Galliform species endemic to the high-montane areas of southwest China and a good candidate for being an umbrella species in the Qionglai Mountains. Using ecological niche modeling, we predicted current potential suitable habitats for the Chinese monal in the Qionglai Mountains with 64 presence points collected between 2005 and 2015. Suitable habitats of the Chinese monal were associated with about 31 mm precipitation of the driest quarter, about 15 °C of maximum temperature of the warmest month, and far from the nearest human residential locations (>5,000 m). The predicted suitable habitats of the Chinese monal covered an area of 2,490 km 2 , approximately 9.48% of the Qionglai Mountains, and was highly fragmented. 54.78% of the suitable habitats were under the protection of existing nature reserves and two conservation gaps were found. Based on these results, we provide four suggestions for the conservation management of the Chinese monal: (1) ad hoc surveys targeting potential suitable habitats to determine species occurrence, (2) more ecological studies regarding its dispersal capacity, (3) establishment of more corridors and green bridges across roads for facilitating species movement or dispersal, and (4) minimization of local disturbances.

  3. Assignment tests, telemetry and tag-recapture data converge to identify natal origins of leatherback turtles foraging in Atlantic Canadian waters.

    PubMed

    Stewart, Kelly R; James, Michael C; Roden, Suzanne; Dutton, Peter H

    2013-07-01

    Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first

  4. Does behaviour affect the dispersal of flatback post-hatchlings in the Great Barrier Reef?

    PubMed Central

    Critchell, Kay; Fuentes, Mariana M. P. B.; Limpus, Colin J.; Wolanski, Eric; Hamann, Mark

    2017-01-01

    The ability of individuals to actively control their movements, especially during the early life stages, can significantly influence the distribution of their population. Most marine turtle species develop oceanic foraging habitats during different life stages. However, flatback turtles (Natator depressus) are endemic to Australia and are the only marine turtle species with an exclusive neritic development. To explain the lack of oceanic dispersal of this species, we predicted the dispersal of post-hatchlings in the Great Barrier Reef (GBR), Australia, using oceanographic advection-dispersal models. We included directional swimming in our models and calibrated them against the observed distribution of post-hatchling and adult turtles. We simulated the dispersal of green and loggerhead turtles since they also breed in the same region. Our study suggests that the neritic distribution of flatback post-hatchlings is favoured by the inshore distribution of nesting beaches, the local water circulation and directional swimming during their early dispersal. This combination of factors is important because, under the conditions tested, if flatback post-hatchlings were entirely passively transported, they would be advected into oceanic habitats after 40 days. Our results reinforce the importance of oceanography and directional swimming in the early life stages and their influence on the distribution of a marine turtle species. PMID:28573024

  5. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    PubMed

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. Safety and Security in Schools in KwaZulu-Natal

    ERIC Educational Resources Information Center

    White, C. J.; Gina, J. M.; Coetzee, I. E. M.

    2015-01-01

    This article is based on research conducted on the topic: "Safety and security in schools: The case of KwaZulu-Natal." For the research project a purposive sample consisting of secondary school learners, teachers, school governing body chairpersons and principals were selected from the rural and township schools used in this study to…

  7. Stepping-stones and dispersal flow: establishment of a meta-population of Milu (Elaphurus davidianus) through natural re-wilding

    PubMed Central

    Yang, Daode; Song, Yucheng; Ma, Jianzhang; Li, Pengfei; Zhang, Hong; Price, Mark R Stanley; Li, Chunlin; Jiang, Zhigang

    2016-01-01

    The Milu (Père David’s deer, Elaphurus davidianus) became extinct in China in the early 20th century but was reintroduced to the country. The reintroduced Milu escaped from a nature reserve and dispersed to the south of the Yangtze River. We monitored these accidentally escaped Milu from 1995 to 2012. The escaped Milu searched for vacant habitat patches as “stepping stones” and established refuge populations. We recorded 122 dispersal events of the escaped Milu. Most dispersal events occurred in 1998, 2003, 2006 and 2010. Milu normally disperse in March, July and November. Average dispersal distance was 14.08 ± 9.03 km, with 91.41% shorter than 25 km. After 5 generations, by the end of 2012, 300 wild Milu were scattered in refuge populations in the eastern and southern edges of the Dongting Lake. We suggest that population density is the ultimate cause for Milu dispersal, whereas floods and human disturbance are proximate causes. The case of the Milu shows that accidentally escaped animals can establish viable populations; however, the dispersed animals were subject to chance in finding “stepping stones”. The re-wilded Milu persist as a meta-population with sub-populations linked by dispersals through marginal habitats in an anthropogenic landscape. PMID:27272326

  8. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  9. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    USGS Publications Warehouse

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  10. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.

  11. Metapopulation dynamics and the evolution of dispersal

    NASA Astrophysics Data System (ADS)

    Parvinen, Kalle

    A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.

  12. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  13. Trajectory Dispersed Vehicle Process for Space Launch System

    NASA Technical Reports Server (NTRS)

    Statham, Tamara; Thompson, Seth

    2017-01-01

    The Space Launch System (SLS) vehicle is part of NASA's deep space exploration plans that includes manned missions to Mars. Manufacturing uncertainties in design parameters are key considerations throughout SLS development as they have significant effects on focus parameters such as lift-off-thrust-to-weight, vehicle payload, maximum dynamic pressure, and compression loads. This presentation discusses how the SLS program captures these uncertainties by utilizing a 3 degree of freedom (DOF) process called Trajectory Dispersed (TD) analysis. This analysis biases nominal trajectories to identify extremes in the design parameters for various potential SLS configurations and missions. This process utilizes a Design of Experiments (DOE) and response surface methodologies (RSM) to statistically sample uncertainties, and develop resulting vehicles using a Maximum Likelihood Estimate (MLE) process for targeting uncertainties bias. These vehicles represent various missions and configurations which are used as key inputs into a variety of analyses in the SLS design process, including 6 DOF dispersions, separation clearances, and engine out failure studies.

  14. A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape

    PubMed Central

    Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J

    2014-01-01

    Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2–36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both

  15. A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape.

    PubMed

    Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J

    2014-05-01

    Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both

  16. Soil disturbance effects on the composition of seed-dispersing ants in roadside environments.

    PubMed

    Palfi, Zsofia; Spooner, Peter G; Robinson, Wayne

    2017-02-01

    Myrmecochory (the dispersal of seeds by ants) is a significant ecological process in sclerophyll woodlands, but habitat disturbance is known to alter the extent and success of this mutualism. We investigated the influence of soil disturbance on the composition of the seed-dispersing ant community. Surveys were conducted in roadside verges where soils are regularly disturbed by road maintenance activities. Using a 'cafeteria' bait station approach, we selected 24 roads of different widths to investigate ant composition and abundance in relation to soil disturbance. We found ant species richness was greater in non-disturbed than disturbed zones, where road verge width significantly influenced results. The composition and abundance of individual seed-dispersing ant species varied between disturbed and non-disturbed zones. Rhytidoponera metallica were more abundant in non-disturbed sites, whereas Melophorus bruneus and Monomorium rothseini were more frequently recorded in disturbed areas. Commonly found Iridomyrmex purpureus was significantly more abundant in disturbed zones in narrow roadsides and vice versa in wide roadsides, and strongly influenced total community composition. Variation in the abundance of commonly recorded Iridomyrmex and Monomorium genera were related more to site conditions (roadside width and habitat) than soil disturbance. The rich composition of seed dispersing ants in roadside environments, and the effects of soil disturbances on these ant communities that we describe, provide a key insight to important seed dispersal vectors occurring in fragmented rural landscapes.

  17. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota

    PubMed Central

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well

  18. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    PubMed

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  19. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest.

    PubMed

    Bai, Xuejiao; Queenborough, Simon A; Wang, Xugao; Zhang, Jian; Li, Buhang; Yuan, Zuoqiang; Xing, Dingliang; Lin, Fei; Ye, Ji; Hao, Zhanqing

    2012-11-01

    Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ≥ 4 years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.

  20. The role of reserves and anthropogenic elements for functional connectivity and resilience of ephemeral habitats

    USGS Publications Warehouse

    Uden, Daniel R.; Hellman, Michelle L.; Angeler, David G.; Allen, Craig R.

    2014-01-01

    Ecological reserves provide important wildlife habitat in many landscapes, and the functional connectivity of reserves and other suitable habitat patches is crucial for the persistence and resilience of spatially structured populations. To maintain or increase connectivity at spatial scales larger than individual patches, conservation actions may focus on creating and maintaining reserves and/or influencing management on non-reserves. Using a graph-theoretic approach, we assessed the functional connectivity and spatial distribution of wetlands in the Rainwater Basin of Nebraska, USA, an intensively cultivated agricultural matrix, at four assumed, but ecologically realistic, anuran dispersal distances. We compared connectivity in the current landscape to the historical landscape and putative future landscapes, and evaluated the importance of individual and aggregated reserve and non-reserve wetlands for maintaining connectivity. Connectivity was greatest in the historical landscape, where wetlands were also the most densely distributed. The construction of irrigation reuse pits for water storage has maintained connectivity in the current landscape by replacing destroyed wetlands, but these pits likely provide suboptimal habitat. Also, because there are fewer total wetlands (i.e., wetlands and irrigation reuse pits) in the current landscape than the historical landscape, and because the distribution of current wetlands is less clustered than that of historical wetlands, larger and longer dispersing, sometimes nonnative species may be favored over smaller, shorter dispersing species of conservation concern. Because of their relatively low number, wetland reserves do not affect connectivity as greatly as non-reserve wetlands or irrigation reuse pits; however, they likely provide the highest quality anuran habitat. To improve future levels of resilience in this wetland habitat network, management could focus on continuing to improve the conservation status of non

  1. Colonization of steelhead in a natal stream after barrier removal

    USGS Publications Warehouse

    Weigel, Dana E.; Connolly, Patrick J.; Martens, Kyle D.; Powell, Madison S.

    2013-01-01

    Colonization of vacant habitats is an important process for supporting the long-term persistence of populations and species. We used a before–after experimental design to follow the process of colonization by steelhead Oncorhynchus mykiss (anadromous Rainbow Trout) at six monitoring sites in a natal stream, Beaver Creek, after the modification or removal of numerous stream passage barriers. Juvenile O. mykiss were collected at monitoring sites by using a backpack electrofisher. Passive integrated transponder tags and instream tag reading stations were used in combination with 16 microsatellite markers to determine the source, extent, and success of migrant O. mykiss after implementation of the barrier removal projects. Steelhead migrated into the study area during the first spawning season after passage was established. Hatchery steelhead, although comprising more than 80% of the adult returns to the Methow River basin, constituted a small proportion (23%) of the adult O. mykiss colonizing the study area. Adult steelhead and fluvial Rainbow Trout entered the stream during the first spawning season after barrier removal and were passing the uppermost tag reader (12 km upstream from the mouth) 3–4 years later. Parr that were tagged in Beaver Creek returned as adults, indicating establishment of the anadromous life history in the study area. Population genetic measures at the lower two monitoring sites (lower 4 km of Beaver Creek) significantly changed within one generation (4–5 years). Colonization and expansion of steelhead occurred more slowly than expected due to the low number of adults migrating into the study area.

  2. Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity.

    PubMed

    Bryson, Mitch; Ferrari, Renata; Figueira, Will; Pizarro, Oscar; Madin, Josh; Williams, Stefan; Byrne, Maria

    2017-08-01

    Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure-from-motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure-from-motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat-forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure-from-motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain-and-tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure-from-motion and photogrammetry.

  3. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    NASA Astrophysics Data System (ADS)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  4. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): Evidence of sedentary and mobile individuals

    USGS Publications Warehouse

    Prechtel, Austin R.; Coulter, Alison A.; Etchison, Luke; Jackson, P. Ryan; Goforth, Reuben R.

    2018-01-01

    Unregulated rivers provide unobstructed corridors for the dispersal of both native and invasive species. We sought to evaluate range size and habitat use of an invasive species (Silver Carp, Hypophthalmichthys molitrix) in an unimpounded river reach (Wabash River, IN), to provide insights into the dispersal of invasive species and their potential overlap with native species. We hypothesized that range size would increase with fish length, be similar among sexes, and vary annually while habitats used would be deeper, warmer, lower velocity, and of finer substrate. Silver Carp habitat use supported our hypotheses but range size did not vary with sex or length. 75% home range varied annually, suggesting that core areas occupied by individuals may change relative to climate-based factors (e.g., water levels), whereas broader estimates of range size remained constant across years. Ranges were often centered on landscape features such as tributaries and backwaters. Results of this study indicate habitat and landscape features as potential areas where Silver Carp impacts on native ecosystems may be the greatest. Observed distribution of range sizes indicates the presence of sedentary and mobile individuals within the population. Mobile individuals may be of particular importance as they drive the spread of the invasive species into new habitats.

  5. Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity.

    PubMed

    Milanesi, P; Holderegger, R; Bollmann, K; Gugerli, F; Zellweger, F

    2017-02-01

    Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting β values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality. © 2016 by the Ecological Society of America.

  6. Multiscale habitat use and selection in cooperatively breeding Micronesian kingfishers

    USGS Publications Warehouse

    Kesler, D.C.; Haig, S.M.

    2007-01-01

    Information about the interaction between behavior and landscape resources is key to directing conservation management for endangered species. We studied multi-scale occurrence, habitat use, and selection in a cooperatively breeding population of Micronesian kingfishers (Todiramphus cinnamominus) on the island of Pohnpei, Federated States of Micronesia. At the landscape level, point-transect surveys resulted in kingfisher detection frequencies that were higher than those reported in 1994, although they remained 15-40% lower than 1983 indices. Integration of spatially explicit vegetation information with survey results indicated that kingfisher detections were positively associated with the amount of wet forest and grass-urban vegetative cover, and they were negatively associated with agricultural forest, secondary vegetation, and upland forest cover types. We used radiotelemetry and remote sensing to evaluate habitat use by individual kingfishers at the home-range scale. A comparison of habitats in Micronesian kingfisher home ranges with those in randomly placed polygons illustrated that birds used more forested areas than were randomly available in the immediate surrounding area. Further, members of cooperatively breeding groups included more forest in their home ranges than birds in pair-breeding territories, and forested portions of study areas appeared to be saturated with territories. Together, these results suggested that forest habitats were limited for Micronesian kingfishers. Thus, protecting and managing forests is important for the restoration of Micronesian kingfishers to the island of Guam (United States Territory), where they are currently extirpated, as well as to maintaining kingfisher populations on the islands of Pohnpei and Palau. Results further indicated that limited forest resources may restrict dispersal opportunities and, therefore, play a role in delayed dispersal and cooperative behaviors in Micronesian kingfishers.

  7. The spectrum of skin diseases in a black population in Durban, KwaZulu-Natal, South Africa.

    PubMed

    Dlova, Ncoza C; Mankahla, Avumile; Madala, Nomandla; Grobler, Anneke; Tsoka-Gwegweni, Joyce; Hift, Richard J

    2015-03-01

    Precise knowledge of the prevalence and spectrum of skin diseases in a population allows for effective planning for provision of dermatology services and distribution of resources. There are no published data on the epidemiology of skin disorders in Durban, KwaZulu-Natal. We investigated the prevalence of skin diseases in black African patients attending a predominantly black private healthcare facility and profiled the patients. Clinical charts of all black African patients seen between January 2003 and December 2010 in a private practice in Durban were reviewed. The diseases seen were described and the prevalence calculated. A total of 6664 patient charts were reviewed. The five most common conditions were acne, eczemas, dyschromias, infections, and hair disorders. These data agree with reports from other parts of the world. Selection bias was presented by a single private practice, thus data may not be fully representative of our population. Acne, eczemas, dyschromias, infections, and hair disorders are, in that order, the five most common disorders encountered. © 2014 The International Society of Dermatology.

  8. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    PubMed

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Broadening our approaches to studying dispersal in raptors

    USGS Publications Warehouse

    Morrison, J.L.; Wood, P.B.

    2009-01-01

    Dispersal is a behavioral process having consequences for individual fitness and population dynamics. Recent advances in technology have spawned new theoretical examinations and empirical studies of the dispersal process in birds, providing opportunities for examining how this information may be applied to studies of the dispersal process in raptors. Many raptors are the focus of conservation efforts; thus, reliable data on all aspects of a species' population dynamics, including dispersal distances, movement rates, and mortality rates of dispersers, are required for population viability analyses that are increasingly used to inform management. Here, we address emerging issues and novel approaches used in the study of avian dispersal, and provide suggestions to consider when developing and implementing studies of dispersal in raptors. Clarifying study objectives is essential for selection of an appropriate methodology and sample size needed to obtain accurate estimates of movement distances and rates. Identifying an appropriate study-area size will allow investigators to avoid underestimating population connectivity and important population parameters. Because nomadic individuals of some species use temporary settling areas or home ranges before breeding, identification of these areas is critical for conservation efforts focusing on habitats other than breeding sites. Study designs for investigating raptor dispersal also should include analysis of environmental and social factors influencing dispersal, to improve our understanding of condition-dependent dispersal strategies. Finally, we propose a terminology for use in describing the variety of movements associated with dispersal behavior in raptors, and we suggest this terminology could be used consistently to facilitate comparisons among studies. ?? 2009 The Raptor Research Foundation, Inc.

  10. Population genetics at three spatial scales of a rare sponge living in fragmented habitats

    PubMed Central

    2010-01-01

    Background Rare species have seldom been studied in marine habitats, mainly because it is difficult to formally assess the status of rare species, especially in patchy benthic organisms, for which samplings are often assumed to be incomplete and, thus, inappropriate for establishing the real abundance of the species. However, many marine benthic invertebrates can be considered rare, due to the fragmentation and rarity of suitable habitats. Consequently, studies on the genetic connectivity of rare species in fragmented habitats are basic for assessing their risk of extinction, especially in the context of increased habitat fragmentation by human activities. Sponges are suitable models for studying the intra- and inter-population genetic variation of rare invertebrates, as they produce lecitotrophic larvae and are often found in fragmented habitats. Results We investigated the genetic structure of a Mediterranean sponge, Scopalina lophyropoda (Schmidt), using the allelic size variation of seven specific microsatellite loci. The species can be classified as "rare" because of its strict habitat requirements, the low number of individuals per population, and the relatively small size of its distribution range. It also presents a strong patchy distribution, philopatric larval dispersal, and both sexual and asexual reproduction. Classical genetic-variance-based methods (AMOVA) and differentiation statistics revealed that the genetic diversity of S. lophyropoda was structured at the three spatial scales studied: within populations, between populations of a geographic region, and between isolated geographic regions, although some stochastic gene flow might occur among populations within a region. The genetic structure followed an isolation-by-distance pattern according to the Mantel test. However, despite philopatric larval dispersal and fission events in the species, no single population showed inbreeding, and the contribution of clonality to the population makeup was

  11. Global spatial ecology of three closely-related gadfly petrels

    PubMed Central

    Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob

    2016-01-01

    The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa. PMID:27001141

  12. Global spatial ecology of three closely-related gadfly petrels

    NASA Astrophysics Data System (ADS)

    Ramos, Raül; Ramírez, Iván; Paiva, Vitor H.; Militão, Teresa; Biscoito, Manuel; Menezes, Dília; Phillips, Richard A.; Zino, Francis; González-Solís, Jacob

    2016-03-01

    The conservation status and taxonomy of the three gadfly petrels that breed in Macaronesia is still discussed partly due to the scarce information on their spatial ecology. Using geolocator and capture-mark-recapture data, we examined phenology, natal philopatry and breeding-site fidelity, year-round distribution, habitat usage and at-sea activity of the three closely-related gadfly petrels that breed in Macaronesia: Zino’s petrel Pterodroma madeira, Desertas petrel P. deserta and Cape Verde petrel P. feae. All P. feae remained around the breeding area during their non-breeding season, whereas P. madeira and P. deserta dispersed far from their colony, migrating either to the Cape Verde region, further south to equatorial waters in the central Atlantic, or to the Brazil Current. The three taxa displayed a clear allochrony in timing of breeding. Habitat modelling and at-sea activity patterns highlighted similar environmental preferences and foraging behaviours of the three taxa. Finally, no chick or adult was recaptured away from its natal site and survival estimates were relatively high at all study sites, indicating strong philopatry and breeding-site fidelity for the three taxa. The combination of high philopatry, marked breeding asynchrony and substantial spatio-temporal segregation of their year-round distribution suggest very limited gene flow among the three taxa.

  13. Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves

    PubMed Central

    McClain, Craig R.; Stegen, James C.; Hurlbert, Allen H.

    2012-01-01

    Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea communities. Even when appropriate data exist, methodological problems have made it difficult to discern the relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns. Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic similarity between communities to environmental and spatial distances separating them for 270 sites across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dispersal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves, explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper than with spatial distance. Energy availability is the most influential environmental variable evaluated, accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predictions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to 2.1 g m−2 yr−1 and typically disperse 749 km from their natal site

  14. Ecological carryover effects associated with partial migration in white perch (Morone americana) within the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Gallagher, Brian K.; Piccoli, Philip M.; Secor, David H.

    2018-01-01

    Partial migration in complex life cycles allows environmental conditions experienced during one life-stage to interact with genetic thresholds and produce divergent spatial behaviors in the next stage. We evaluated partial migration over the entire life cycle of white perch, (Morone americana) within the Hudson River Estuary, combining otolith microchemistry, population demographics and environmental data analysis. Ecological carryover effects were used as a framework to test how environmental variation during the larval period influenced migration behaviors and growth characteristics in subsequent life-stages. Two annual cohorts of juveniles were classified based on whether they persisted in natal habitats (freshwater resident contingent) or dispersed into non-natal habitats (brackish water migratory contingent) as juveniles. The migratory contingent tended to hatch earlier and experience cooler temperatures as larvae, while the availability of zooplankton prey during the larval period appeared to influence growth dynamics before and after metamorphosis. Juvenile migration behaviors were reversible but usually persisted into adulthood. As juveniles, the consequences of partial migration on growth appeared to be modified by river flow, as demonstrated by the influence of a large storm event on feeding conditions in one of the study years. Migratory adults grew faster and attained larger maximum sizes, but may also experience higher rates of mortality. The interplay uncovered between life-stage transitions, conditional migration behaviors and habitat productivity throughout the life cycle shapes white perch population dynamics and will likely play an important role in responses to long-term environmental change.

  15. The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus engelmannii) under Global Change

    PubMed Central

    Conlisk, Erin; Lawson, Dawn; Syphard, Alexandra D.; Franklin, Janet; Flint, Lorraine; Flint, Alan; Regan, Helen M.

    2012-01-01

    A species’ response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species’ ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species - Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors – climate change, land use change, and altered fire frequency – emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations. PMID:22623955

  16. Microbial aetiology and sensitivity of asymptomatic bacteriuria among ante-natal mothers in Mulago hospital, Uganda.

    PubMed

    Andabati, G; Byamugisha, J

    2010-12-01

    Asymptomatic bacteriuria in pregnancy is associated with potential urinary and obstetric complications. However the prevalence aetiology and antimicrobial sensitivity patterns of asymptomatic bacteriurea among women attending ante-natal care in our Hospital is not known. To determine the prevalence and identify the aetiological agents associated with asymptomatic bacteriurea in antenatal mothers in Mulago Hospital. We also intended to determine the anti-microbial sensitivity patterns of the common uropathogen in this population We performed culture and anti-microbial sensitivity tests on urine samples from 218 consecutive ante-natal mothers in Mulago Hospital. All participants did not have any clinical symptoms attributable to urinary tract infection. Twenty nine (13.3%) of the samples had significant bacterial growth and E.coli was the commonest isolate (51.2%). There was a high level (20-62%) of anti-bacterial resistance to the commonly used antibiotics. Asymptomatic bacteriuria is common among ante-natal mothers in Mulago. E. Coli that is resistant to the most commonly used antibiotics is the commonest isolate."

  17. Climate change in metacommunities: dispersal gives double-sided effects on persistence.

    PubMed

    Eklöf, Anna; Kaneryd, Linda; Münger, Peter

    2012-11-05

    Climate change is increasingly affecting the structure and dynamics of ecological communities both at local and at regional scales, and this can be expected to have important consequences for their robustness and long-term persistence. The aim of the present work is to analyse how the spatial structure of the landscape and dispersal patterns of species (dispersal rate and average dispersal distance) affects metacommunity response to two disturbances: (i) increased mortality during dispersal and (ii) local species extinction. We analyse the disturbances both in isolation and in combination. Using a spatially and dynamically explicit metacommunity model, we find that the effect of dispersal on metacommunity persistence is two-sided: on the one hand, high dispersal significantly reduces the risk of bottom-up extinction cascades following the local removal of a species; on the other hand, when dispersal imposes a risk to the dispersing individuals, high dispersal increases extinction risks, especially when dispersal is global. Large-bodied species with long generation times at the highest trophic level are particularly vulnerable to extinction when dispersal involves a risk. This suggests that decreasing the mortality risk of dispersing individuals by improving the quality of the habitat matrix may greatly increase the robustness of metacommunities.

  18. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal modelling

    PubMed Central

    Naro-Maciel, Eugenia; Gaughran, Stephen J.; Putman, Nathan F.; Amato, George; Arengo, Felicity; Dutton, Peter H.; McFadden, Katherine W.; Vintinner, Erin C.; Sterling, Eleanor J.

    2014-01-01

    Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008–2012). Genetic analysis assigned natal origins almost exclusively (approx. 97%) to the West Central and South Central Pacific combined Regional Management Units. Further, our modelling results indicated that turtles could potentially drift from rookeries to Palmyra Atoll via surface currents along a near-Equatorial swathe traversing the Pacific. Comparing findings from genetics and modelling highlighted the complex impacts of ocean currents and behaviour on natal origins. Although the Palmyra feeding ground was highly differentiated genetically from others in the Indo-Pacific, there was no significant differentiation among years, sexes or stage-classes at the Refuge. Understanding the distribution of this foraging population advances knowledge of green turtles and contributes to effective conservation planning for this threatened species. PMID:24451389

  19. Predicting connectivity of green turtles at Palmyra Atoll, central Pacific: a focus on mtDNA and dispersal modelling

    USGS Publications Warehouse

    Naro-Maciel, Eugenia; Gaughran, Stephen J.; Putman, Nathan F.; Amato, George; Arengo, Felicity; Dutton, Peter H.; McFadden, Katherine W.; Vintinner, Erin C.; Sterling, Eleanor J.

    2014-01-01

    Population connectivity and spatial distribution are fundamentally related to ecology, evolution and behaviour. Here, we combined powerful genetic analysis with simulations of particle dispersal in a high-resolution ocean circulation model to investigate the distribution of green turtles foraging at the remote Palmyra Atoll National Wildlife Refuge, central Pacific. We analysed mitochondrial sequences from turtles (n = 349) collected there over 5 years (2008–2012). Genetic analysis assigned natal origins almost exclusively (approx. 97%) to the West Central and South Central Pacific combined Regional Management Units. Further, our modelling results indicated that turtles could potentially drift from rookeries to Palmyra Atoll via surface currents along a near-Equatorial swathe traversing the Pacific. Comparing findings from genetics and modelling highlighted the complex impacts of ocean currents and behaviour on natal origins. Although the Palmyra feeding ground was highly differentiated genetically from others in the Indo-Pacific, there was no significant differentiation among years, sexes or stage-classes at the Refuge. Understanding the distribution of this foraging population advances knowledge of green turtles and contributes to effective conservation planning for this threatened species.

  20. Attitude and beliefs of some nurses in government hospitals in Ibadan, Nigeria to natal/neonatal teeth in infants.

    PubMed

    Bankole, O O; Oke, G A

    2013-09-01

    Eruption of the first deciduous teeth in children has shown much variation and occasionally may erupt prematurely at birth or within one month of life. Myths about natal/neonatal teeth abound in the Nigerian culture. Nurses are health care providers who are in constant close contact with patients and can be invaluable in helping to dispel these associated myths. However, to provide correct information they should be adequately equipped to do so. The aim of this study thus, was to assess the attitudes and beliefs of some nurses in Ibadan, Nigeria to natal/neonatal teeth in infants. A cross sectional survey was conducted among 380 nurses in the teaching, general and local government hospitals and clinics in Ibadan, Nigeria. Results revealed that 41.3% of the respondents would express shock and surprise if they assisted in delivering a baby with natal teeth. Half of the respondents (49.7%) felt that natal/neonatal teeth will be a great source of embarrassment to the family while a smaller proportion (11.8%), believed it was a curse (p = 0.01). On the advice the respondents would give to the mothers, more than a th (39.7%), would recommend immediate extraction of the teeth. A further 42 (11.1%) nurses were of the opinion that spiritual cleansing should be carried out prior to extraction. A greater proportion of the older nurses would advice immediate extraction of the teeth (p = 0.031). Regarding the perceived effect of natal/neonatal teeth on the children, (7.4%), (12.6%) and (29.2%) of the respondents believed that the children will behave strangely, will possess spiritual authority and be victims of stigmatization later in life respectively. This study has revealed that knowledge gaps about natal/neonatal teeth exist among the nurses in Ibadan, Nigeria. Health education programmes targeted at nurses are essential to correct these beliefs.

  1. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  2. Evolution of limited seed dispersal ability on gypsum islands.

    PubMed

    Schenk, John J

    2013-09-01

    Dispersal is a major feature of plant evolution that has many advantages but is not always favored. Wide dispersal, for example, leads to greater seed loss in oceanic-island endemics, and evolution has favored morphologies that limit dispersal. I tested the hypothesis that selection favored limited dispersal on gypsum islands in western North America, where edaphic communities are sparsely vegetated except for a specialized flora that competes poorly with the surrounding flora. • I applied a series of comparative phylogenetic approaches to gypsophilic species of Mentzelia section Bartonia (Loasaceae) to investigate the evolution of limited dispersal function in seed wings, which increase primary dispersal by wind. Through these tests, I determined whether narrowed wings were selected for in gypsophilic species. • Gypsophily was derived four to seven times. Seed area was not significantly correlated with gypsophily or wing area. Wing area was significantly smaller in the derived gypsum endemics, supporting the hypothesis in favor of limited dispersal function. A model-fitting approach identified two trait optima in wing area, with gypsum endemics having a lower optimum. • Evolution into novel ecologies influences morphological evolution. Morphological characters have been selected for limited dispersal following evolution onto gypsum islands. Selection for limited dispersal ability has occurred across animals and plants, both in oceanic and terrestrial systems, which suggests that reduced dispersal ability may be a general process: selection favors limited dispersal if the difference in survival between the habitat of the parent and the surrounding area is great enough.

  3. Sail or sink: novel behavioural adaptations on water in aerially dispersing species.

    PubMed

    Hayashi, Morito; Bakkali, Mohammed; Hyde, Alexander; Goodacre, Sara L

    2015-07-03

    Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal ("ballooning") using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape. In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt 'ballooning' behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface. The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced

  4. Diet and food availability: implications for foraging and dispersal of Prince of Wales northern flying squirrels across managed landscapes

    Treesearch

    Elizabeth A. Flaherty; Merav Ben-David; Winston P. Smith

    2010-01-01

    Where dispersal is energetically expensive, feeding and food availability can influence dispersal success. The endemic Prince of Wales northern flying squirrel (Glaucomys sabrinus griseifrons) inhabits a landscape mosaic of old-growth, second-growth, and clearcut stands, with the latter two representing energetically expensive habitats. We...

  5. Habitat continuity and stepping-stone oceanographic distances explain population genetic connectivity of the brown alga Cystoseira amentacea.

    PubMed

    Buonomo, Roberto; Assis, Jorge; Fernandes, Francisco; Engelen, Aschwin H; Airoldi, Laura; Serrão, Ester A

    2017-02-01

    Effective predictive and management approaches for species occurring in a metapopulation structure require good understanding of interpopulation connectivity. In this study, we ask whether population genetic structure of marine species with fragmented distributions can be predicted by stepping-stone oceanographic transport and habitat continuity, using as model an ecosystem-structuring brown alga, Cystoseira amentacea var. stricta. To answer this question, we analysed the genetic structure and estimated the connectivity of populations along discontinuous rocky habitat patches in southern Italy, using microsatellite markers at multiple scales. In addition, we modelled the effect of rocky habitat continuity and ocean circulation on gene flow by simulating Lagrangian particle dispersal based on ocean surface currents allowing multigenerational stepping-stone dynamics. Populations were highly differentiated, at scales from few metres up to thousands of kilometres. The best possible model fit to explain the genetic results combined current direction, rocky habitat extension and distance along the coast among rocky sites. We conclude that a combination of variable suitable habitat and oceanographic transport is a useful predictor of genetic structure. This relationship provides insight into the mechanisms of dispersal and the role of life-history traits. Our results highlight the importance of spatially explicit modelling of stepping-stone dynamics and oceanographic directional transport coupled with habitat suitability, to better describe and predict marine population structure and differentiation. This study also suggests the appropriate spatial scales for the conservation, restoration and management of species that are increasingly affected by habitat modifications. © 2016 John Wiley & Sons Ltd.

  6. Geological hazards associated with intense rain and flooding in Natal

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; van Schalkwyk, A.

    1993-02-01

    The combination of rugged topography and climate predisposes the province of Natal to severe floods. Information available since 1856 shows that bridge and slope failures have been recorded in twenty out of twenty-five flood episodes. Bridge failures are caused mostly by geological factors. The mechanism of failure can be classified broadly into foundation failures and changes of river course. Scour and debris build-up have led to failures of foundations located in rock and alluvial sediments. In preparing and replacing bridges the aims have been to increase the area of waterway, increase foundation depths to reach more competent strata and lay protection along banks and abutments to counteract scour. Historically, slope failures have not been well documented but following the 1987/88 storms 223 slope failures were recorded. The classification of the failures allowed the mechanisms of failure to be ascertained, and general design considerations to be reviewed. In areas adjacent to the Drakensberg Mountains slope failures are part of a natural erosion cycle which may be accelerated in periods of heavy rain. Throughout Natal, hummocky ground adjacent to dolerite intrusions reveals the on-going history of failure caused by water ingress and the generation of high pore water pressures on the slip planes. Classic flows occurred throughout the Greater Durban area where residual sandy soils of the Natal Group sandstone became supersaturated. Slumping was common on steep terrain underlain by granite-gneiss in the Kwa-Zulu area. Shales of the Pietermaritzburg Formation are notoriously unstable, yet few failures occurred during the summer storms of 1987/88. Inadequate drainage was responsible for many failures, this was particularly so along the railways.

  7. Habitat selection by marine larvae in changing chemical environments.

    PubMed

    Lecchini, D; Dixson, D L; Lecellier, G; Roux, N; Frédérich, B; Besson, M; Tanaka, Y; Banaigs, B; Nakamura, Y

    2017-01-15

    The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Persistence of butterfly populations in fragmented habitats along urban density gradients: motility helps

    PubMed Central

    Rochat, E; Manel, S; Deschamps-Cottin, M; Widmer, I; Joost, S

    2017-01-01

    In a simulation study of genotypes conducted over 100 generations for more than 1600 butterfly’s individuals, we evaluate how the increase of anthropogenic fragmentation and reduction of habitat size along urbanisation gradients (from 7 to 59% of impervious land cover) influences genetic diversity and population persistence in butterfly species. We show that in areas characterised by a high urbanisation rate (>56% impervious land cover), a large decrease of both genetic diversity (loss of 60–80% of initial observed heterozygosity) and population size (loss of 70–90% of individuals) is observed over time. This is confirmed by empirical data available for the mobile butterfly species Pieris rapae in a subpart of the study area. Comparing simulated data for P. rapae with its normal dispersal ability and with a reduced dispersal ability, we also show that a higher dispersal ability can be an advantage to survive in an urban or highly fragmented environment. The results obtained here suggest that it is of high importance to account for population persistence, and confirm that it is crucial to maintain habitat size and connectivity in the context of land-use planning. PMID:28792492

  9. LANDSCAPE MODELING OF CHARACTERISTIC HABITAT SCALES, DISPERSAL, AND CONNECTIVITY FROM THE PERSPECTIVE OF THE ORGANISM

    EPA Science Inventory

    A modeling framework was developed to investigate the interactive effects of life history characteristics and landscape heterogeneity on dispersal success. An individual-based model was used to examine how dispersal between resource patches is affected by four landscape characte...

  10. Inference from habitat-selection analysis depends on foraging strategies.

    PubMed

    Bastille-Rousseau, Guillaume; Fortin, Daniel; Dussault, Christian

    2010-11-01

    1. Several methods have been developed to assess habitat selection, most of which are based on a comparison between habitat attributes in used vs. unused or random locations, such as the popular resource selection functions (RSFs). Spatial evaluation of residency time has been recently proposed as a promising avenue for studying habitat selection. Residency-time analyses assume a positive relationship between residency time within habitat patches and selection. We demonstrate that RSF and residency-time analyses provide different information about the process of habitat selection. Further, we show how the consideration of switching rate between habitat patches (interpatch movements) together with residency-time analysis can reveal habitat-selection strategies. 2. Spatially explicit, individual-based modelling was used to simulate foragers displaying one of six foraging strategies in a heterogeneous environment. The strategies combined one of three patch-departure rules (fixed-quitting-harvest-rate, fixed-time and fixed-amount strategy), together with one of two interpatch-movement rules (random or biased). Habitat selection of simulated foragers was then assessed using RSF, residency-time and interpatch-movement analyses. 3. Our simulations showed that RSFs and residency times are not always equivalent. When foragers move in a non-random manner and do not increase residency time in richer patches, residency-time analysis can provide misleading assessments of habitat selection. This is because the overall time spent in the various patch types not only depends on residency times, but also on interpatch-movement decisions. 4. We suggest that RSFs provide the outcome of the entire selection process, whereas residency-time and interpatch-movement analyses can be used in combination to reveal the mechanisms behind the selection process. 5. We showed that there is a risk in using residency-time analysis alone to infer habitat selection. Residency-time analyses, however

  11. A comparative framework to infer landscape effects on population genetic structure: Are habitat suitability models effective in explaining gene flow?

    Treesearch

    Maria C. Mateo-Sanchez; Niko Balkenhol; Samuel Cushman; Trinidad Perez; Ana Dominguez; Santiago Saura

    2015-01-01

    Most current methods to assess connectivity begin with landscape resistance maps. The prevailing resistance models are commonly based on expert opinion and, more recently, on a direct transformation of habitat suitability. However, habitat associations are not necessarily accurate indicators of dispersal, and thus may fail as a surrogate of resistance to...

  12. Hydrological modelling of snail dispersal patterns in Msambweni, Kenya and potential resurgence of Schistosoma haematobium transmission.

    PubMed

    Clennon, J A; King, C H; Muchiri, E M; Kitron, U

    2007-05-01

    Urinary schistosomiasis is an important source of human morbidity in Msambweni, Kenya, where the intermediate host snail, Bulinus nasutus is found in ponds and water pools. In the past, aquatic habitats in the area have been studied separately; however, recent collections of B. nasutus snails and shells indicated that many of these ponds are in fact connected during and following sufficient rains. Satellite imagery and a geographical information system (GIS) were used to survey the main water courses and potential drainage routes, to locate potential source populations of snails and to determine probable snail dispersal routes. The 2 water bodies implicated as being the most important Schistosoma haematobium transmission foci in the area were found to differ in their degree of connectivity to other B. nasutus source habitats. One pond becomes connected even after normal rains, while the other pond requires prolonged rains or flooding to become connected with source habitats. Consequently, the transmission foci differ in their susceptibility to snail population control measures. Spatially explicit dispersal models that consider the spatial and temporal patterns of connectivity between aquatic habitats will contribute to improved snail surveillance and more focused control for urinary schistosomiasis at a local level.

  13. Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea.

    PubMed

    Campbell, R A; Gales, N J; Lento, G M; Baker, C S

    2008-02-23

    Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometers. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion (Neophoca cinerea) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range (PhiST=0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.

  14. Evaluation of Bias in Roadside Point Count Surveys of Passerines in Shrubsteppe and Grassland Habitats in Southwestern Idaho

    Treesearch

    John T. Rotenberry; Steven T. Knick

    1995-01-01

    Breeding passerine abundances in Great Basin shrubsteppe and grassland habitats were surveyed in southwestern Idaho by using 73 pairs of 200-m radius circular point counts. Points were placed along roads and paired with points 400 m away from roads but in similar habitat. Grassland species such as Horned Larks (Eremophila alpestris) and Western...

  15. Prioritizing Tiger Conservation through Landscape Genetics and Habitat Linkages

    PubMed Central

    Yumnam, Bibek; Jhala, Yadvendradev V.; Qureshi, Qamar; Maldonado, Jesus E.; Gopal, Rajesh; Saini, Swati; Srinivas, Y.; Fleischer, Robert C.

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to

  16. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    PubMed

    Yumnam, Bibek; Jhala, Yadvendradev V; Qureshi, Qamar; Maldonado, Jesus E; Gopal, Rajesh; Saini, Swati; Srinivas, Y; Fleischer, Robert C

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status

  17. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2018-04-01

    Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation

    DOE PAGES

    McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; ...

    2016-02-22

    Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction

  19. Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.

    Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction

  20. The Ecology of a Keystone Seed Disperser, the Ant Rhytidoponera violacea

    PubMed Central

    Lubertazzi, Dave; Aliberti Lubertazzi, Maria A.; McCoy, Neil; Gove, Aaron D.; Majer, Jonathan D.; Dunn, Robert R.

    2010-01-01

    Rhytidoponera violacea (Forel) (Hymenoptera: Formicidae) is a keystone seed disperser in Kwongan heathl and habitats of southwestern Australia. Like many myrmecochorous ants, little is known about the basic biology of this species. In this study various aspects of the biology of R. violacea were examined and the researchers evaluated how these characteristics may influence seed dispersal. R. violacea nesting habits (relatively shallow nests), foraging behavior (scramble competitor and lax food selection criteria), and other life history characteristics complement their role as a mutualist that interacts with the seeds of many plant species. PMID:21067420

  1. The extent of wind-mediated dispersal of small metazoans, focusing nematodes.

    PubMed

    Ptatscheck, Christoph; Gansfort, Birgit; Traunspurger, Walter

    2018-05-01

    Wind-mediated transport is an important mechanism in the dispersal of small metazoans. Yet, concrete dispersal rates have hardly been examined. Here we present the results of an one-year field experiment investigating the composition and dispersal rates of aeroplankton. To gain insights into the dynamics of dispersal at the species level, we focused on nematodes, worldwide the most common metazoan taxon. Among the six taxa collected in this study (nematodes, rotifers, collembolans, tardigrades, mites, and thrips), nematodes had the highest dispersal rates (up to >3000 individuals m -2 in 4 weeks, 27 species identified) and represented >44% of aeroplankton. Only living nematodes, and no propagules, were dispersed. All taxa had a higher dispersal potential in environments linked to the source habitat, evidenced by the much higher deposition of organisms in funnels placed on the ground than on the rooftop of a ten-story building. Nematodes under conditions of high humidity and wind speed had the highest dispersal rates, while increasing temperatures and dryness had a significantly positive impact on the wind drift of mites and thrips. The results indicated that wind dispersal over long distances is possible. The notable organismal input by wind dispersal may contribute to biodiversity and ecosystem functions.

  2. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles.

    PubMed

    Gaspar, Philippe; Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  3. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles

    PubMed Central

    Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  4. Modeling the effects of dispersal on predicted contemporary and future fisher (Martes pennanti) distribution in the U.S

    Treesearch

    Lucretia Olson; M. Schwartz

    2013-01-01

    Many species at high trophic levels are predicted to be impacted by shifts in habitat associated with climate change. While temperate coniferous forests are predicted to be one of the least affected ecosystems, the impact of shifting habitat on terrestrial carnivores that live within these ecosystems may depend on the dispersal rates of the species and the patchiness...

  5. Physical condition, sex, and age-class of eastern red-backed salamanders (Plethodon cinereus) in forested and open habitats of West Virginia, USA

    Treesearch

    Breanna L. Riedel; Kevin R. Russell; W. Mark Ford

    2012-01-01

    Nonforested habitats such as open fields and pastures have been considered unsuitable for desiccation-prone woodland salamanders such as the Eastern Red-backed Salamander (Plethodon cinereus). Recent research has suggested that Plethodon cinereus may not only disperse across but also reside within open habitats including fields,...

  6. The roles of competition and habitat in the dynamics of populations and species distributions

    USGS Publications Warehouse

    Yackulic, Charles Brandon; Reid, Janice; Nichols, James D.; Hines, James E.; Davis, Raymond; Forsman, Eric

    2014-01-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading (barred owl: Strix varia) and a resident species (Northern spotted owl: Strix occidentalis caurina) in a 1000 km2 study area over a 22 - year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multiseason analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyze survey data using models that combine the general multistate-multiseason occupancy modeling framework with autologistic modeling - allowing us to account for important aspects of our study system. We find that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern spotted owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species both through its immediate effects on local extinction, and by indirectly lowering colonization rates as Northern

  7. Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.

    2016-02-01

    The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.

  8. Activity rhythms and distribution of natal dens for red foxes

    USGS Publications Warehouse

    Wenyang, Zhou; Wanhong, Wei; Biggins, Dean E.

    1995-01-01

    The red fox, Vulpes vulpes, was investigated with snow tracking, radiotracking and directive observation at the Haibei Research Station of Alpine Meadow Ecosystem, Academia Sinica, from March to September 1994. The objectives of this study were to determine the distribution and use of natal dens, activity rhythms, and home range sizes for the foxes.

  9. Environmentally Dependent Density-Distance Relationship of Dispersing Culex tarsalis in a Southern California Desert Region.

    PubMed

    Antonić, Oleg; Sudarić-Bogojević, Mirta; Lothrop, Hugh; Merdić, Enrih

    2014-09-01

    The direct inclusion of environmental factors into the empirical model that describes a density-distance relationship (DDR) is demonstrated on dispersal data obtained in a capture-mark-release-recapture experiment (CMRR) with Culex tarsalis conducted around the community of Mecca, CA. Empirical parameters of standard (environmentally independent) DDR were expressed as linear functions of environmental variables: relative orientation (azimuthal deviation of north) of release point (relative to recapture point) and proportions of habitat types surrounding each recapture point. The yielded regression model (R(2)  =  0.5373, after optimization on the best subset of linear terms) suggests that spatial density of recaptured individuals after 12 days of a CMRR experiment significantly depended on 1) distance from release point, 2) orientation of recapture points in relation to release point (preferring dispersal toward the south, probably due to wind drift and position of periodically flooded habitats suitable for species egg clutches), and 3) habitat spectrum in surroundings of recapture points (increasing and decreasing population density in desert and urban environment, respectively).

  10. Competition between relatives and the evolution of dispersal in a parasitoid wasp

    PubMed Central

    INNOCENT, T. M.; ABE, J.; WEST, S. A.; REECE, S. E.

    2014-01-01

    Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia. PMID:20492084

  11. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    PubMed

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  12. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.

    PubMed

    Dickson, Brett G; Roemer, Gary W; McRae, Brad H; Rundall, Jill M

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  13. Models of Regional Habitat Quality and Connectivity for Pumas (Puma concolor) in the Southwestern United States

    PubMed Central

    Dickson, Brett G.; Roemer, Gary W.; McRae, Brad H.; Rundall, Jill M.

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  14. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms

    PubMed Central

    Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y.; Perkins, Matthew J.; Field, Jennifer; Sogin, Mitchell L.; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M.; Joye, Samantha B.

    2015-01-01

    During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985

  15. Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae: Hippocampus).

    PubMed

    Lourie, S A; Green, D M; Vincent, A C J

    2005-04-01

    Four distinct phylogeographical patterns across Southeast Asia were observed for four species of seahorse (genus Hippocampus) with differing ecologies. For all species, genetic differentiation (based on cytochrome b sequence comparisons) was significantly associated with sample site (Phi(ST) = 0.190-0.810, P < 0.0001) and with geographical distance (Mantel's r = 0.37-0.59, P < 0.019). Geographic locations of genetic breaks were inconsistent across species in 7/10 comparisons, although some similarities across species were also observed. The two shallow-water species (Hippocampus barbouri and Hippocampus kuda) have colonized the Sunda Shelf to a lesser degree than the two deeper-water species (Hippocampus spinosissimus and Hippocampus trimaculatus). In all species the presence of geographically restricted haplotypes in the Philippines could indicate past population fragmentation and/or long-distance colonization. A nested clade analysis (NCA) revealed that long-distance colonization and/or fragmentation were likely the dominant forces that structure populations of the two shallow-water species, whereas range expansion and restricted dispersal with isolation by distance were proportionally more important in the history of the two deeper-water species. H. trimaculatus has the most widespread haplotypes [average clade distance (D(c)) of nonsingleton haplotypes = 1169 km], indicating potentially high dispersal capabilities, whereas H. barbouri has the least widespread haplotypes (average D(c) = 67 km) indicating potentially lower dispersal capabilities. Pleistocene separation of marine basins and postglacial flooding of the Sunda Shelf are extrinsic factors likely to have contributed to the phylogeographical structure observed, whereas differences among the species appear to reflect their individual ecologies.

  16. The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis.

    PubMed

    Banks, S C; Ward, S J; Lindenmayer, D B; Finlayson, G R; Lawson, S J; Taylor, A C

    2005-05-01

    Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that

  17. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    USGS Publications Warehouse

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  18. Gyrotactic swimmer dispersion in pipe flow: testing the theory

    NASA Astrophysics Data System (ADS)

    Croze, Ottavio A.; Bearon, Rachel N.; Bees, Martin A.

    2017-04-01

    Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with P$\\'e$clet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga $\\it Dunaliella\\,salina$, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained $\\it D. salina$ and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.

  19. Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.

    PubMed

    Webb, Sara L; Willson, Mary F

    1985-08-01

    We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.

  20. Habitat use and demography of Mus musculus in a rural landscape of Argentina.

    PubMed

    León, Vanina A; Fraschina, Jimena; Guidobono, Juan S; Busch, Maria

    2013-04-01

    The main goal of the paper was to determine the habitat distribution of the house mouse (Mus musculus) within a rural landscape of Buenos Aires province, Argentina. We also studied the seasonal variation in abundance and reproductive activity. The habitats studied were poultry farms, human houses in a small village, cropfields, pastures, cropfield and pasture edges, riparian habitats (streams), railway embankments and woodlots. We captured 817 M. musculus and 690 individuals of 5 native rodent species. M. musculus was captured in poultry farms, houses, riparian habitats, cropfield and borders, but it showed a significantly higher abundance in poultry farms compared to the other habitats. Its presence outside poultry farms was significantly related to the distance to streams and poultry farms. The mean trapping success index of M. musculus did not show significant variations between periods, but the proportion of active males was significantly higher in the spring-summer period than in the autumn-winter period. All captures of M. musculus in cropfields, borders and riparian habitats occurred in the spring-summer period. The capture of M. musculus in many types of habitats suggests that it can disperse outside poultry farms, and streams may be used as corridors. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  1. Human mediated transport determines the non-native distribution of a dispersal limited estuarine invertebrate

    EPA Science Inventory

    Sessile invertebrates are common invaders of estuarine ecosystems. To expand their non-native ranges, these invasive taxa must contend with the geographically and ecologically discontinuous nature of estuarine habitats, in many cases without the benefit of highly dispersed larval...

  2. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance.

    PubMed

    Van Eetvelde, M; Opsomer, G

    2017-08-01

    As heifer rearing is a costly investment, dairy farmers have been stimulated to maximize early growth of their calves, mainly by enhanced liquid feeding. However, the long-term effects of this "accelerated growth" are largely unknown. Studies recently performed at Ghent University indicate that in dairy cattle, certain maternal factors (such as young age and high milk yield) and environmental factors (such as high ambient temperatures) create a suboptimal environment for the developing foetus, altering the phenotype of the newborn calf. According to the "thrifty phenotype hypothesis," these metabolic alterations prepare the newborn for similar ("matching") conditions after birth, enhancing its survival during periods of limited feeding. Yet, when an abundance of nutrients is available in post-natal life (e.g., during periods of enhanced feeding), the "mismatch" between pre- and post-natal environment results in an early catch-up growth, with potential negative consequences. The aim of the article was to discuss this mismatch between pre- and post-natal environment in dairy calves. Previous studies, especially in human medicine, have shown catch-up growth to be associated with obesity, fertility problems, metabolic diseases and a reduced lifespan. Hence, we hypothesize that, by applying programs of accelerated growth, our current management system accentuates the mismatch between the pre- and post-natal environment in dairy calves. We can conclude that, although more research is necessary, the current findings point towards a more individual approach when rearing dairy heifers. © 2017 Blackwell Verlag GmbH.

  3. The Distribution and Habitat Affinities of the Invasive Ant Myrmica rubra (Hymenoptera: Formicidae) in Southern New England.

    PubMed

    Chen, Wen; Adams, Eldridge S

    2018-06-06

    The Eurasian ant Myrmica rubra (L.) (Hymenoptera: Formicidae) was first discovered in North America in the early 1900s in Massachusetts. Populations have since appeared in at least seven states within the United States and in seven Canadian provinces. We conducted a systematic search for the ant across southern New England-the states of Connecticut, Massachusetts, and Rhode Island-where M. rubra is spreading from multiple loci. The species occurs in two large regions in Massachusetts, each spanning approximately 75 km, and in several smaller populations in Massachusetts and Rhode Island. No populations were discovered anywhere in Connecticut or across large expanses of central Massachusetts and northern Rhode Island, despite the presence of apparently favorable habitat. This pattern of distribution suggests a combination of long-distance dispersal by human transport coupled with slow local spread. Resurveys of sites previously known to support M. rubra showed that populations persist for decades. Within invaded areas, M. rubra was strongly associated with particular habitats. Colonies were most prevalent in freshwater wetlands and in moist forests near wetlands and water; they were uncommon in drier forests and were rare in open habitats outside of wetlands. The slow rate of spread over the last 110 yr suggests that the ants do not easily disperse between patches of suitable habitat.

  4. How spatio-temporal habitat connectivity affects amphibian genetic structure.

    PubMed

    Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  5. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  6. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  7. Neither biased sex ratio nor spatial segregation of the sexes in the subtropical dioecious tree Eurycorymbus cavaleriei (Sapindaceae).

    PubMed

    Gao, Puxin; Kang, Ming; Wang, Jing; Ye, Qigang; Huang, Hongwen

    2009-06-01

    Knowledge of sex ratio and spatial distribution of males and females of dioecious species is both of evolutionary interest and of crucial importance for biological conservation. Eurycorymbus cavaleriei, the only species in the genus Eurycorymbus (Sapindaceae), is a dioecious tree endemic to subtropical montane forest in South China. Sex ratios were investigated in 15 natural populations for the two defined ages (young and old). Spatial distribution of males and females was further studied in six large populations occurring in different habitats (fragmented and continuous). The study revealed a slight trend of male-biased sex ratio in both ages of E. cavaleriei, but sex ratio of most populations (13 out of 15) did not display statistically significant deviation from equality. All of the four significantly male-biased populations in the young class shifted to equality or even female-biased. The Ripley's K analysis of the distribution of males with respect to females suggested that individuals of the opposite sexes were more randomly distributed rather than spatially structured. These results suggest that the male-biased sex ratio in E. cavaleriei may result from the precocity of males and habitat heterogeneity. The sex ratio and the sex spatial distribution pattern are unlikely to constitute a serious threat to the survival of the species.

  8. The Trajectory of Dispersal Research in Conservation Biology. Systematic Review

    PubMed Central

    Driscoll, Don A.; Banks, Sam C.; Barton, Philip S.; Ikin, Karen; Lentini, Pia; Lindenmayer, David B.; Smith, Annabel L.; Berry, Laurence E.; Burns, Emma L.; Edworthy, Amanda; Evans, Maldwyn J.; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C.; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R.; Westgate, Martin J.

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management

  9. The trajectory of dispersal research in conservation biology. Systematic review.

    PubMed

    Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J

    2014-01-01

    Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management

  10. Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic.

    PubMed

    Millar, Melissa A; Coates, David J; Byrne, Margaret

    2014-10-01

    Understanding patterns of pollen dispersal and variation in mating systems provides insights into the evolutionary potential of plant species and how historically rare species with small disjunct populations persist over long time frames. This study aims to quantify the role of pollen dispersal and the mating system in maintaining contemporary levels of connectivity and facilitating persistence of small populations of the historically rare Acacia woodmaniorum. Progeny arrays of A. woodmaniorum were genotyped with nine polymorphic microsatellite markers. A low number of fathers contributed to seed within single pods; therefore, sampling to remove bias of correlated paternity was implemented for further analysis. Pollen immigration and mating system parameters were then assessed in eight populations of varying size and degree of isolation. Pollen immigration into small disjunct populations was extensive (mean minimum estimate 40 % and mean maximum estimate 57 % of progeny) and dispersal occurred over large distances (≤1870m). Pollen immigration resulted in large effective population sizes and was sufficient to ensure adaptive and inbreeding connectivity in small disjunct populations. High outcrossing (mean tm = 0·975) and a lack of apparent inbreeding suggested that a self-incompatibility mechanism is operating. Population parameters, including size and degree of geographic disjunction, were not useful predictors of pollen dispersal or components of the mating system. Extensive long-distance pollen dispersal and a highly outcrossed mating system are likely to play a key role in maintaining genetic diversity and limiting negative genetic effects of inbreeding and drift in small disjunct populations of A. woodmaniorum. It is proposed that maintenance of genetic connectivity through habitat and pollinator conservation will be a key factor in the persistence of this and other historically rare species with similar extensive long-distance pollen dispersal and highly

  11. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium.

    PubMed

    Hart, Andrew; Cortés, María Paz; Latorre, Mauricio; Martinez, Servet

    2018-01-01

    The analysis of codon usage bias has been widely used to characterize different communities of microorganisms. In this context, the aim of this work was to study the codon usage bias in a natural consortium of five acidophilic bacteria used for biomining. The codon usage bias of the consortium was contrasted with genes from an alternative collection of acidophilic reference strains and metagenome samples. Results indicate that acidophilic bacteria preferentially have low codon usage bias, consistent with both their capacity to live in a wide range of habitats and their slow growth rate, a characteristic probably acquired independently from their phylogenetic relationships. In addition, the analysis showed significant differences in the unique sets of genes from the autotrophic species of the consortium in relation to other acidophilic organisms, principally in genes which code for proteins involved in metal and oxidative stress resistance. The lower values of codon usage bias obtained in this unique set of genes suggest higher transcriptional adaptation to living in extreme conditions, which was probably acquired as a measure for resisting the elevated metal conditions present in the mine.

  12. Effective Dispersal of Caribbean Reef Fish is Smaller than Current Spacing Among Marine Protected Areas.

    PubMed

    Beltrán, Diana M; Schizas, Nikolaos V; Appeldoorn, Richard S; Prada, Carlos

    2017-07-05

    The oceans are deteriorating at a fast pace. Conservation measures, such as Marine Protected Areas, are being implemented to relieve areas from local stressors and allow populations to restore to natural levels. Successful networks of MPAs operate if the space among MPAs is smaller than the dispersal capacity of the species under protection. We studied connectivity patterns across populations in a series of MPAs in the common yellowhead Jawfish, Opistognathus aurifrons. Using the power of genome-wide variation, we estimated that the maximum effective dispersal is 8.3 km. We found that MPAs exchange migrants likely via intermediate unprotected habitats through stepping stone dispersal. At scales >50 km such connectivity is decreased, particularly across the Mona Passage. The MPA network studied would be unable to maintain connectivity of these small benthic fishes if habitat in between them is extirpated. Our study highlights the power of SNPs to derive effective dispersal distance and the ability of SNPs to make inferences from single individuals. Given that overall reef fish diversity is driven by species with life histories similar to that of the yellowhead jawfish, managers face a challenge to develop strategies that allow connectivity and avoid isolation of populations and their possible extinction.

  13. Human-Mediated Dispersal of Seeds by the Airflow of Vehicles

    PubMed Central

    von der Lippe, Moritz; Bullock, James M.; Kowarik, Ingo; Knopp, Tatjana; Wichmann, Matthias

    2013-01-01

    Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation. PMID:23320077

  14. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    PubMed

    Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric

    2003-03-01

    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

  15. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    PubMed

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  16. Regional zooplankton dispersal provides spatial insurance for ecosystem function.

    PubMed

    Symons, Celia C; Arnott, Shelley E

    2013-05-01

    Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.

  17. Calibrating the Planck cluster mass scale with cluster velocity dispersions

    NASA Astrophysics Data System (ADS)

    Amodeo, S.; Mei, S.; Stanford, S. A.; Bartlett, J. G.; Lawrence, C. L.; Chary, R. R.; Shim, H.; Marleau, F.; Stern, D.

    2017-12-01

    The potential of galaxy clusters as cosmological probes critically depends on the capability to obtain accurate estimates of their mass. This will be a key measurement for the next generation of cosmological surveys, such as Euclid. The discrepancy between the cosmological parameters determined from anisotropies in the cosmic microwave background and those derived from cluster abundance measurements from the Planck satellite calls for careful evaluation of systematic biases in cluster mass estimates. For this purpose, it is crucial to use independent techniques, like analysis of the thermal emission of the intracluster medium (ICM), observed either in the X-rays or through the Sunyaev-Zeldovich (SZ) effect, dynamics of member galaxies or gravitational lensing. We discuss possible bias in the Planck SZ mass proxy, which is based on X-ray observations. Using optical spectroscopy from the Gemini Multi-Object Spectrograph of 17 Planck-selected clusters, we present new estimates of the cluster mass based on the velocity dispersion of the member galaxies and independently of the ICM properties. We show how the difference between the velocity dispersion of galaxy and dark matter particles in simulations is the primary factor limiting interpretation of dynamical cluster mass measurements at this time, and we give the first observational constraints on the velocity bias.

  18. Bias against research on gender bias.

    PubMed

    Cislak, Aleksandra; Formanowicz, Magdalena; Saguy, Tamar

    2018-01-01

    The bias against women in academia is a documented phenomenon that has had detrimental consequences, not only for women, but also for the quality of science. First, gender bias in academia affects female scientists, resulting in their underrepresentation in academic institutions, particularly in higher ranks. The second type of gender bias in science relates to some findings applying only to male participants, which produces biased knowledge. Here, we identify a third potentially powerful source of gender bias in academia: the bias against research on gender bias. In a bibliometric investigation covering a broad range of social sciences, we analyzed published articles on gender bias and race bias and established that articles on gender bias are funded less often and published in journals with a lower Impact Factor than articles on comparable instances of social discrimination. This result suggests the possibility of an underappreciation of the phenomenon of gender bias and related research within the academic community. Addressing this meta-bias is crucial for the further examination of gender inequality, which severely affects many women across the world.

  19. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    PubMed

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  20. The Case for Natality in Pastoral Care and Why It Matters

    ERIC Educational Resources Information Center

    Barrow, Giles

    2017-01-01

    The author presents the concept of natality for consideration in terms of pastoral care and educational purpose. The discussion identifies significant threats to the future for pastoral care in schools, including the Global Educational Reform Movement and the increasing emphasis on teachers taking charge of discipline in the classroom, at the…