Sample records for national accelerator lab

  1. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2018-01-16

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  2. Determination of the Shock Properties of Ceramic Corbit 98: 98% Alumina

    DTIC Science & Technology

    2010-06-01

    sapphire or aluminum. A single stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used...stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used a higher performance gun...Gigapascals, one billion pascals of pressure or force per unit area HEL Hugoniot elastic limit LANL Los Alamos National Lab mm Millimeter, or one

  3. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  4. ATOM - Accelerating Therapeutics for Opportunities in Medicine | FNLCR Staging

    Cancer.gov

    The Frederick National Lab is a founding member of the Accelerating Therapeutics for Opportunities in Medicine (ATOM) Consortium,a public-private partnership with themission oftransforming drug discovery by accelerating the deve

  5. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  6. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  7. What We Do | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  8. EPICS Channel Access Server for LabVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, Alexander P.

    It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.

  9. What We Do | FNLCR Staging

    Cancer.gov

    The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can

  10. FDA Accelerates Testing and Review of Experimental Brain Cancer Drug | Frederick National Laboratory for Cancer Research

    Cancer.gov

    An investigational brain cancer drug made with disabled polio virus and manufactured at the Frederick National Lab has won breakthrough status from the Food and Drug Administration (FDA) to fast-track its further refinement and clinical testing.  Br

  11. All Scientists Meeting

    ScienceCinema

    Pier Oddone and Young-Kee Kim

    2018-04-17

    Pier Oddone and Young-Kee Kim of Fermi National Accelerator Laboratory lead an all-scientists meeting to discuss current and future work, scope of research, budget and funding information, and other information relating to the lab and its scientists.

  12. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  13. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  14. FDA Accelerates Testing and Review of Experimental Brain Cancer Drug | FNLCR Staging

    Cancer.gov

    An investigational brain cancer drug made with disabled polio virus and manufactured at the Frederick National Lab has won breakthrough status from the Food and Drug Administration (FDA) to fast-track its further refinement and clinical testing.  Br

  15. Measurement of the Neutron Electric Form Factor GEN at High Q2

    NASA Astrophysics Data System (ADS)

    McCormick, Kathy

    2003-01-01

    Experiment E02-0131 at Thomas Jefferson National Accelerator Facility (Jefferson Lab) will measure the neutron electric form factor GEn at the high four-momentum transfer values of Q2 ≈ 1.3, 2.4 and 3.4 (GeV/c)2 via a measurement of the cross section asymmetry AT in the reaction {}3vec He(vec e, e'n)pp . This measurement was approved for 32 days of running by Jefferson Lab PAC 212 in January 2002.

  16. The national labs and their future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, R.P.

    National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less

  17. Conference Committees: Conference Committees

    NASA Astrophysics Data System (ADS)

    2009-09-01

    International Programm Committee (IPC) Harald Ade NCSU Sadao Aoki University Tsukuba David Attwood Lawrence Berkeley National Laboratory/CXRO Christian David Paul Scherrer Institut Peter Fischer Lawrence Berkeley National Laboratory Adam Hitchcock McMaster University Chris Jacobsen SUNY, Stony Brook Denis Joyeux Lab Charles Fabry de l'Institut d'Optique Yasushi Kagoshima University of Hyogo Hiroshi Kihara Kansai Medical University Janos Kirz SUNY Stony Brook Maya Kiskinova ELETTRA Ian McNulty Argonne National Lab/APS Alan Michette Kings College London Graeme Morrison Kings College London Keith Nugent University of Melbourne Zhu Peiping BSRF Institute of High Energy Physics Francois Polack Soleil Christoph Quitmann Paul Scherrer Institut Günther Schmahl University Göttingen Gerd Schneider Bessy Hyun-Joon Shin Pohang Accelerator Lab Jean Susini ESRF Mau-Tsu Tang NSRRC Tony Warwick Lawrence Berkeley Lab/ALS Local Organizing Committee Christoph Quitmann Chair, Scientific Program Charlotte Heer Secretary Christian David Scientific Program Frithjof Nolting Scientific Program Franz Pfeiffer Scientific Program Marco Stampanoni Scientific Program Robert Rudolph Sponsoring, Financials Alfred Waser Industry Exhibition Robert Keller Public Relation Markus Knecht Computing and WWW Annick Cavedon Proceedings and Excursions and Accompanying Persons Program Margrit Eichler Excursions and Accompanying Persons Program Kathy Eikenberry Excursions and Accompanying Persons Program Marlies Locher Excursions and Accompanying Persons Program

  18. DOE EiR at Oakridge National Lab 2008/09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Michael

    2012-11-30

    This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less

  19. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  20. Computational Accelerator Physics. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, J.J.; Mondelli, A.A.

    1997-04-01

    The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less

  1. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  2. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  3. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Vivien E.

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab inmore » 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.« less

  4. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-12-09

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  5. Seventy Five Years of Particle Accelerators

    ScienceCinema

    Sessler, Andy

    2017-12-09

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  6. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    DOE PAGES

    Gonnella, D.; Aderhold, S.; Burrill, A.; ...

    2017-12-02

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15–20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping’s efficacy for improvement of cavity performance was demonstrated at threemore » independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here in this paper, we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.« less

  7. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnella, D.; Aderhold, S.; Burrill, A.

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15–20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping’s efficacy for improvement of cavity performance was demonstrated at threemore » independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here in this paper, we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.« less

  8. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  9. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    NASA Astrophysics Data System (ADS)

    Gonnella, D.; Aderhold, S.; Burrill, A.; Daly, E.; Davis, K.; Grassellino, A.; Grimm, C.; Khabiboulline, T.; Marhauser, F.; Melnychuk, O.; Palczewski, A.; Posen, S.; Ross, M.; Sergatskov, D.; Sukhanov, A.; Trenikhina, Y.; Wilson, K. M.

    2018-03-01

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15-20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping's efficacy for improvement of cavity performance was demonstrated at three independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnella, D.; Aderhold, S.; Burrill, A.

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15–20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping’s efficacy for improvement of cavity performance was demonstrated at threemore » independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here in this paper, we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.« less

  11. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less

  12. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    DOE PAGES

    Reece, Charles E.

    2016-12-28

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less

  13. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  14. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  15. Transport of LCLS-II 1.3 Ghz cryomodule to SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, M. W.; Arkan, T.; Peterson, T.

    2016-06-30

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These include a prototype built and delivered by each Lab. Another two 3.9 GHz cryomodules will be built, tested and transported by Fermilab to SLAC. Each assembly will be transported over-the-road from Fermilab or Jefferson Lab using specific routes to SLAC. The transport system consists of a base frame, isolation fixture and upper protective truss. The strongback cryomodule lifting fixture is described along with other supportingmore » equipment used for both over-the-road transport and local (on-site) transport at Fermilab. Initially, analysis of fragile components and stability studies will be performed in order to assess the risk associated with over-the-road transport of a fully assembled cryomodule.« less

  16. A New Era for Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, R. D.; Montgomery, H. E.; Pennington, M. R.

    On a cool Saturday morning in late April a seemingly endless stream of cars turned off Jefferson Avenue in Newport News, Virginia, bringing 12,000 people ages 1 to 91 to the Open House to learn more about “the new era in science” at the Thomas Jefferson National Accelerator Facility. Here, the visitors were dazzled by the complex equipment, the enthusiastic staff, and the advanced technology at the Laboratory.

  17. Metadata Guidelines for Digital Moving Images (Revised)

    DTIC Science & Technology

    2001-06-19

    Examples: See section on use of the 246 field for additional title examples drawn from MBRS, LC. Abang Ramadan and the Malaysian elephant satellite...the Malaysian elephant satellite projectØh[videorecording]/ØcSmithsonian Institution, National Zoo. 245 00 ØaVirtual surgeryØh[videorecording...Describes project to track populations of Malaysian elephants. 520 8/ ØaMusical film on accelerating science at FermiLab. 520 8/ ØaDescribes

  18. A New Era for Jefferson Lab

    DOE PAGES

    McKeown, R. D.; Montgomery, H. E.; Pennington, M. R.

    2016-09-16

    On a cool Saturday morning in late April a seemingly endless stream of cars turned off Jefferson Avenue in Newport News, Virginia, bringing 12,000 people ages 1 to 91 to the Open House to learn more about “the new era in science” at the Thomas Jefferson National Accelerator Facility. Here, the visitors were dazzled by the complex equipment, the enthusiastic staff, and the advanced technology at the Laboratory.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Steven Karl; Determan, John C.

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS modelmore » tailored to this particular class using fissile fuel.« less

  20. Ultra-trace analysis of 41Ca in urine by accelerator mass spectrometry: an inter-laboratory comparison

    PubMed Central

    Jackson, George S.; Hillegonds, Darren J.; Muzikar, Paul; Goehring, Brent

    2013-01-01

    A 41Ca interlaboratory comparison between Lawrence Livermore National Laboratory (LLNL) and the Purdue Rare Isotope Laboratory (PRIME Lab) has been completed. Analysis of the ratios assayed by accelerator mass spectrometry (AMS) shows that there is no statistically significant difference in the ratios. Further, Bayesian analysis shows that the uncertainties reported by both facilities are correct with the possibility of a slight under-estimation by one laboratory. Finally, the chemistry procedures used by the two facilities to produce CaF2 for the cesium sputter ion source are robust and don't yield any significant differences in the final result. PMID:24179312

  1. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  2. Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Shao, L.; Cline, D.; Ding, X.; Ho, Y. K.; Kong, Q.; Xu, J. J.; Pogorelsky, I.; Yakimenko, V.; Kusche, K.

    2013-02-01

    This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.

  3. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased),more » Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.« less

  4. Innovation Incubator: Whisker Labs Technical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparn, Bethany F.; Frank, Stephen M.; Earle, Lieko

    The Wells Fargo Innovation Incubator (IN2) is a program to foster and accelerate startup companies with commercial building energy-efficiency and demand management technologies. The program is funded by the Wells Fargo Foundation and co-administered by the National Renewable Energy Laboratory (NREL). Whisker Labs, an Oakland, California-based company, was one of four awardees in the first IN2 cohort and was invited to participate in the program because of its novel electrical power sensing technology for circuit breakers. The stick-on Whisker meters install directly on the front face of the circuit breakers in an electrical panel using adhesive, eliminating the need tomore » open the panel and install current transducers (CTs) on the circuit wiring.« less

  5. Joint Center for Artificial Photosynthesis

    ScienceCinema

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Na

    2018-05-30

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  6. Joint Center for Artificial Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, Carl; Lee, Kenny; Houle, Frances

    2013-12-10

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  7. Lab and Imaging Tests

    MedlinePlus

    ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ...

  8. A Measurement of GE^n at High Momentum Transfer in Hall A

    NASA Astrophysics Data System (ADS)

    Feuerbach, Robert J.; Wojtsekhowski, Bogdan

    2006-10-01

    A precision measurement of the electric form-factor of the neutron, GE^n, at Q^2 up to 3.5 GeV^2 was recently completed in Hall A at the Thomas Jefferson National Accelerator Facility(Jefferson Lab). The ratio GE^n/GM^n was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off neutrons in the reaction ^3He(e,e' n). The experiment took advantage of recent developments of the electron beam and target, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved polarizations above 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a new neutron detector was constructed to observe the released neutron. An overview of the experiment and the experimental motivation will be discussed, in particular the large range of predictions from modern calculations for GE^n at this relatively high Q^2. Finally, the analysis progress and preliminary results will be presented.

  9. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less

  10. Control Infrastructure for a Pulsed Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.

    2016-10-01

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  11. Control Infrastructure for a Pulsed Ion Accelerator

    DOE PAGES

    Persaud, A.; Regis, M. J.; Stettler, M. W.; ...

    2016-07-27

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  12. Operational experience on the generation and control of high brightness electron bunch trains at SPARC-LAB

    NASA Astrophysics Data System (ADS)

    Mostacci, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Cardelli, F.; Castellano, Michele; Chiadroni, Enrica; Cianchi, Alessandro; Croia, M.; Di Giovenale, Domenico; Di Pirro, Giampiero; Ferrario, Massimo; Filippi, Francesco; Gallo, Alessandro; Gatti, Giancarlo; Giribono, Anna; Innocenti, L.; Marocchino, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, Riccardo; Romeo, Stefano; Rossi, Andrea Renato; Shpakov, V.; Scifo, J.; Vaccarezza, Cristina; Villa, Fabio; Weiwei, L.

    2015-05-01

    Sub-picosecond, high-brightness electron bunch trains are routinely produced at SPARC-LAB via the velocity bunching technique. Such bunch trains can be used to drive multi-color Free Electron Lasers (FELs) and plasma wake field accelerators. In this paper we present recent results at SPARC-LAB on the generation of such beams, highlighting the key points of our scheme. We will discuss also the on-going machine upgrades to allow driving FELs with plasma accelerated beams or with short electron pulses at an increased energy.

  13. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  14. Optum Labs: building a novel node in the learning health care system.

    PubMed

    Wallace, Paul J; Shah, Nilay D; Dennen, Taylor; Bleicher, Paul A; Bleicher, Paul D; Crown, William H

    2014-07-01

    Unprecedented change in the US health care system is being driven by the rapid uptake of health information technology and national investments in multi-institution research networks comprising academic centers, health care delivery systems, and other health system components. An example of this changing landscape is Optum Labs, a novel network "node" that is bringing together new partners, data, and analytic techniques to implement research findings in health care practice. Optum Labs was founded in early 2013 by Mayo Clinic and Optum, a commercial data, infrastructure services, and care organization that is part of UnitedHealth Group. Optum Labs now has eleven collaborators and a database of deidentified information on more than 150 million people that is compliant with the Health Insurance Portability and Accountability Act (HIPAA) of 1996. This article describes the early progress of Optum Labs. The combination of the diverse collaborator perspectives with rich data, including deep patient and provider information, is intended to reveal new insights about diseases, treatments, and patients' behavior to guide changes in practice. Practitioners' involvement in agenda setting and translation of findings into practical care innovations accelerates the implementation of research results. Furthermore, feedback loops from the clinic help Optum Labs expand on successes and give quick attention to challenges as they emerge. Project HOPE—The People-to-People Health Foundation, Inc.

  15. Final report of CCAUV.V-K3: key comparison in the field of acceleration on the complex charge sensitivity

    NASA Astrophysics Data System (ADS)

    Qiao, Sun; Lifeng, Yang; Bartoli, Claire; Veldman, Ian; Ripper, Gustavo P.; Bruns, Thomas; Rask Licht, Torben; Kolasa, Joanna; Hof, Christian; Silva Pineda, Guillermo; Dickinson, Laurence; Ota, Akihiro; Cheung, Wan Sup; Yankovsky, Alexander; Shan, Cui

    2017-01-01

    This is the final report for CIPM key comparison CCAUV.V-K3 in the area of 'vibration' (quantity of acceleration). The aim of this comparison was to measure the voltage sensitivity of one accelerometer standard set with primary means at 27 frequencies from 0.1 Hz to 40 Hz. Fourteen Metrology Institutes from five RMOs have participated in the comparison with National Institute of Metrology, P.R. China as pilot lab and Laboratoire National de Métrologie et d'Essais and National Metrology Institute of South Africa as co-pilot labs. One quartz-flexure servo accelerometer of single-ended type and a signal conditioner was circulated among the participants. All but one of the participating laboratories provided their calibration results, which were mostly consistent within their declared expanded uncertainties for magnitude results. Only two participants failed to contribute to the KCRV values calculated for five frequencies. For phase shift, three participants could not contribute to the calculation of the KCRV values in a total of sixteen frequencies. This first low-frequency vibration key comparison revealed the current calibration capabilities of the fourteen participants of five RMOs. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  16. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  17. ALON® Components With Tunable Dielectric Properties for High Power Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Lee M; Jha, Santosh K; Lobur, Nicole

    There are challenges in linear particle accelerators associated with the need to suppress “higher order modes” (HOMs). HOMs are detrimental to accelerator operation as they are a source of beam instability. The absorption/suppression of HOMs and dissipation of the energy of higher order modes is vital to the function of these accelerators. Surmet has identified ALON® Optical Ceramic (Aluminum Oxynitride), a hard, durable ceramic that is fabricated through conventional powder processing techniques, as a potential material for HOM absorber. In this Phase I program, Surmet has produced new ALON-composite HOM absorber materials that function at both ambient and cryogenic temperatures.more » The composite materials were developed and evaluated in collaboration with Thomas Jefferson National Labs. Success in this Phase I and the potential Phase II will demonstrate the utility of ALON composite components for RF absorbing applications and lay the groundwork for commercialization of such products, with applications in basic science, medical and digital electronics industries.« less

  18. Designing a ruggedisation lab to characterise materials for harsh environments.

    PubMed

    Frazzette, Nicholas; Jethva, Janak; Mehta, Khanjan; Stapleton, Joshua J; Randall, Clive

    Designing products for use in developing countries presents a unique set of challenges including harsh operating environments, costly repairs and maintenance, and users with varying degrees of education and device familiarity. For products to be robust, adaptable and durable, they need to be ruggedised for environmental factors such as high temperature and humidity as well as different operational conditions such as shock and chemical exposure. The product characterisation and ruggedisation processes require specific expertise and resources that are seldom available outside of large corporations and elite national research labs. There is no standardised process since product needs strongly depend on the context and user base, making it particularly onerous for underfunded start-ups and academic groups. Standardised protocols that identify essential lab testing regimens for specific contexts and user groups can complement field-testing and accelerate the product development process while reducing costs. This article synthesises current methods and strategies for product testing employed by large corporations as well as defence-related entities. A technological and organisational framework for a service-for-fee product characterisation and ruggedisation lab that reduces costs and shortens the timespan from product invention to commercial launch in harsh settings is presented.

  19. Quantum Sensing for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel

    The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less

  20. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less

  1. Implementation of primary low-g shock standard for laser interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Wang, Jian-lin; Hu, Hong-bo

    2015-02-01

    This paper presents the novel implementation of a primary standard for low-g shock acceleration calibration based on rigid body collision using laser interferometry at National Institute of Metrology (NIM), China. The combination of an electromagnetic exciter and a pneumatic exciter as mechanical power supply of the shock excitation system are built up to achieve a wider acceleration range. Three types of material for shock pulse generators between airborne anvil and hammer are investigated and compared in the aspects of pulse shapes and acceleration levels. A heterodyne He-Ne laser interferometer is employed for precise measurement of shock acceleration with less electronic and mechanical influences from both the standard device itself and its surroundings. For signal acquisition and processing, virtual instrument technology is used to build up data acquisition PXI hardware from National Instrument and calibration software developed by LabVIEW. Some calibration results of a standard accelerometer measuring chain are shown accompany with the uncertainty evaluation budget. The expanded calibration uncertainty of shock sensitivity of the accelerometer measuring chain is 0.8%, k=2, with the peak range of half-sine squared acceleration shape from 20m/s2 to 10000 m/s2 and pulse duration from 0.5 ms to 10 ms. This primary shock standard can meet the traceability requirements of shock acceleration from various applications of industries from automobile to civil engineering and is used for piloting ongoing international shock comparison APMP.AUV.V-P1.

  2. Measuring GE^n at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Feuerbach, Robert

    2006-11-01

    A precision measurement of the electric form-factor of the neutron, GE^n, at Q^2 up to 3.5 GeV^2 was recently completed in Hall A at the Thomas Jefferson National Accelerator Facility(Jefferson Lab). The ratio of the electric to magnetic form-factors of the neutron, GE^n/GM^n, was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off neutrons in the reaction ^3He(e,e' n). The experiment took advantage of recent developments of the electron beam and target, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a newly contructed neutron detector observed the released neutron. An overview of the experiment and the experimental motivation will be discussed, in particular the large range of predictions from modern calculations for GE^n at this relatively high Q^2. Finally, the analysis progress and preliminary results will be presented.

  3. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  4. Ring Imaging Cerenkov Detector for CLAS12

    NASA Astrophysics Data System (ADS)

    Muhoza, Mireille; Aaron, Elise; Smoot, Waymond; Benmokhtar, Fatiha

    2017-09-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the additions to this detector is a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) will be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Detector tests are taking place at Jefferson Lab, while analysis software development is ongoing at Duquesne. I will be summarizing the work done at Duquesne on the Database development and the analysis of the ADC and TDCs for the Hamamatsu Multi-Anode PMTs that are used for Cerenkov light radiation. National Science Foundation, Award 1615067.

  5. Intern Programs | Tours

    Science.gov Websites

    accelerated through the Linac (Linear Accelerator) to an energy of 400 MeV. The Linac consists of two main of linear accelerators at NML ! Meet at the South entrance to NML (New Muon Lab) Building. 1:00 PM 1

  6. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheesbrough, Kate; Bader, Meghan

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing accessmore » to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.« less

  7. NBodyLab Simulation Experiments with GRAPE-6a AND MD-GRAPE2 Acceleration

    NASA Astrophysics Data System (ADS)

    Johnson, V.; Ates, A.

    2005-12-01

    NbodyLab is an astrophysical N-body simulation testbed for student research. It is accessible via a web interface and runs as a backend framework under Linux. NbodyLab can generate data models or perform star catalog lookups, transform input data sets, perform direct summation gravitational force calculations using a variety of integration schemes, and produce analysis and visualization output products. NEMO (Teuben 1994), a popular stellar dynamics toolbox, is used for some functions. NbodyLab integrators can optionally utilize two types of low-cost desktop supercomputer accelerators, the newly available GRAPE-6a (125 Gflops peak) and the MD-GRAPE2 (64-128 Gflops peak). The initial version of NBodyLab was presented at ADASS 2002. This paper summarizes software enhancements developed subsequently, focusing on GRAPE-6a related enhancements, and gives examples of computational experiments and astrophysical research, including star cluster and solar system studies, that can be conducted with the new testbed functionality.

  8. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  9. History of the Bevatron

    ScienceCinema

    LBNL

    2017-12-09

    This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and ... This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.

  10. Adding Audio Supported Smartboard Lectures to an Introductory Astronomy Online Laboratory

    NASA Astrophysics Data System (ADS)

    Lahaise, U. G. L.

    2003-12-01

    SMART Board(TM) and RealProducer(R) Plus technologies were used to develop a series of narrated pre-lab introductory online lectures. Smartboard slides were created by capturing images from internet pages and power point slides, then annotated and saved as web pages using smartboard technology. Short audio files were recorded using the RealProducer Plus software which were then linked to individual slides. WebCT was used to deliver the online laboratory. Students in an Introductory Astronomy of the Solar System Online laboratory used the lectures to prepare for laboratory exercises. The narrated pre-lab lectures were added to six out of eight suitable laboratory exercises. A survey was given to the students to research their online laboratory experience, in general, and the impact of the narrated smartboard lectures on their learning success, specifically. Data were collected for two accelerated sessions. Results show that students find the online laboratory equally hard or harder than a separate online lecture. The accelerated format created great time pressure which negatively affected their study habits. About half of the students used the narrated pre-lab lectures consistently. Preliminary findings show that lab scores in the accelerated sessions were brought up to the level of full semester courses.

  11. Overview of torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade

    DOE PAGES

    Krave, S.; Velev, G.; Makarov, A.; ...

    2016-02-29

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12-GeV Hall B upgrade at Jefferson Lab (JLab). The production consisted of six large superconducting coils for the magnet and two spare coils. The toroidal field coils are approximately 2 m × 4 m × 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable, which will be conduction cooled by supercritical helium. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed unique manufacturingmore » techniques for each stage of the coil construction. Furthermore, this paper describes the tooling and manufacturing techniques required to produce the six production coils and the two spare coils needed by the project.« less

  12. Petabyte Class Storage at Jefferson Lab (CEBAF)

    NASA Technical Reports Server (NTRS)

    Chambers, Rita; Davis, Mark

    1996-01-01

    By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the experimental program at Jefferson Lab (JLab) is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. The design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS). Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered allow seamless access to specific data sets for the researcher, synchronize data retrievals with the scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability to perform data reconstruction and reduction at the same overall rate at which new data is being collected. The current implementation employs state-of-the-art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager (OSM) Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scalability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.

  13. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    ScienceCinema

    Perlmutter, Saul; Chu, Steven

    2018-05-31

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  14. Frederick National Lab Collaboration Success Stories | FNLCR Staging

    Cancer.gov

    IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to eval

  15. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy

    NASA Astrophysics Data System (ADS)

    John, Kevin

    2017-01-01

    Targeted radiotherapy is an emerging discipline of cancer therapy that exploits the biochemical differences between normal cells and cancer cells to selectively deliver a lethal dose of radiation to cancer cells, while leaving healthy cells relatively unperturbed. A broad overview of targeted alpha therapy including isotope production methods, and associated isotope production facility needs, will be provided. A more general overview of the US Department of Energy Isotope Program's Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy will also be presented focusing on the accelerator-production of 225Ac and final product isolation methodologies for medical applications.

  16. Collaborative Lab Reports with Google Docs

    NASA Astrophysics Data System (ADS)

    Wood, Michael

    2011-03-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with research at the Thomas Jefferson National Accelerator Facility, my collaboration consists of over 200 scientists, both national and international. A typical experiment will have a dozen or so principal investigators. Add in the hundreds of staff scientists, engineers, and technicians, and it is clear that science is truly a collaborative effort. This paper will describe the use of Google Docs for collaborative reports for an introductory physics laboratory.

  17. Ozone Contamination in Aircraft Cabins: Appendix B: Overview papers. Ozone destruction techniques

    NASA Technical Reports Server (NTRS)

    Wilder, R.

    1979-01-01

    Ozone filter test program and ozone instrumentation are presented. Tables on the flight tests, samll scale lab tests, and full scale lab tests were reviewed. Design verification, flammability, vibration, accelerated contamination, life cycle, and cabin air quality are described.

  18. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  19. A composite thin vacuum window for the CLAS photon tagger at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Matthews, S. K.; Crannell, Hall; O'Brien, J. T.; Sober, D. I.

    1999-01-01

    The construction of a thin vacuum window, currently in use on the CLAS photon tagging system at the Thomas Jefferson National Accelerator Facility, is described. A layer of woven Kevlar cloth supports a much thinner membrane of aluminized Mylar. Notable features of this particular window include its overall length (9.6 m), and the fact that the entire load is supported by the epoxy seal with no mechanical clamping around the edges. Results from a diverse program of materials testing, including a clear dependence of leak rate on relative humidity, are also reported.

  20. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less

  1. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  2. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and tomore » keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.« less

  3. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developingmore » nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material at the dislocations. He was purportedly the first to show that they were 'decorated' with iron.« less

  4. NREL Describes to U.S. Senate Role National Labs Play in Sustainable

    Science.gov Websites

    Transportation Innovation | News | NREL Describes to U.S. Senate Role National Labs Play in Sustainable Transportation Innovation NREL Describes to U.S. Senate Role National Labs Play in Sustainable industry through public and private partnerships. Gearhart's testimony stressed the role of innovation and

  5. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  6. Superconducting Magnets for the 12 GeV Upgrade at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fair, Ruben J.; Young, Glenn R.

    2015-06-01

    Jefferson Laboratory is embarked on an energy upgrade to its flagship continuous electron beam accelerator in order to expand the scope of its research capabilities and probe further into the structure of nuclear particles. The 12 GeV upgrade includes the design, manufacture, integration, installation and commissioning of eight different superconducting magnets in three separate experimental halls. The effort involves other national laboratories, universities and industry spanning three countries. This paper will summarize the key characteristics of these magnets, ranging in size from 0.2 to 23 MJ in stored energy, and featuring many different types and configurations. The paper will alsomore » give an overview of the specific technical challenges for each magnet, and a status report on magnet manufacture and expected delivery dates. The 12GeV upgrade at J-Lab represents the largest superconducting magnet fabrication and installation program currently ongoing in the United States and this paper will present the breadth of collaborations supporting it.« less

  7. Lab experiments are a major source of knowledge in the social sciences.

    PubMed

    Falk, Armin; Heckman, James J

    2009-10-23

    Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.

  8. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  9. Instrument front-ends at Fermilab during Run II

    NASA Astrophysics Data System (ADS)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  10. W. W. Hansen, Microwave Physics, and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Leeson, David

    2009-03-01

    The Stanford physicist W. W. Hansen (b. 1909, AB '29 and PhD '32, MIT post-doc 1933-4, Prof. physics '35-'49, d. 1949) played a seminal role in the development of microwave electronics. His contributions underlay Silicon Valley's postwar ``microwave'' phase, when numerous companies, acknowledging their unique scientific debt to Hansen, flourished around Stanford University. As had the prewar ``radio'' companies, they furthered the regional entrepreneurial culture and prepared the ground for the later semiconductor and computer developments we know as Silicon Valley. In the 1930's, Hansen invented the cavity resonator. He applied this to his concept of the radio-frequency (RF) linear accelerator and, with the Varian brothers, to the invention of the klystron, which made microwave radar practical. As WWII loomed, Hansen was asked to lecture on microwaves to the physicists recruited to the MIT Radiation Laboratory. Hansen's ``Notes on Microwaves,'' the Rad Lab ``bible'' on the subject, had a seminal impact on subsequent works, including the Rad Lab Series. Because of Hansen's failing health, his postwar work, and MIT-Stanford rivalries, the Notes were never published, languishing as an underground classic. I have located remaining copies, and will publish the Notes with a biography honoring the centenary of Hansen's birth. After the war, Hansen founded Stanford's Microwave Laboratory to develop powerful klystrons and linear accelerators. He collaborated with Felix Bloch in the discovery of nuclear magnetic resonance. Hansen experienced first-hand Stanford's evolution from its depression-era physics department to corporate, then government funding. Hansen's brilliant career was cut short by his death in 1949, after his induction in the National Academy of Sciences. His ideas were carried on in Stanford's two-mile long linear accelerator and the development of Silicon Valley.

  11. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  12. The ASCI Network for SC 2000: Gigabyte Per Second Networking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRATT, THOMAS J.; NAEGLE, JOHN H.; MARTINEZ JR., LUIS G.

    2001-11-01

    This document highlights the Discom's Distance computing and communication team activities at the 2000 Supercomputing conference in Dallas Texas. This conference is sponsored by the IEEE and ACM. Sandia's participation in the conference has now spanned a decade, for the last five years Sandia National Laboratories, Los Alamos National Lab and Lawrence Livermore National Lab have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives, Program rubric to demonstrate ASCI's emerging capabilities in computational science and our combined expertise in high performance computer science and communication networking developments within the program. At SC 2000, DISCOM demonstratedmore » an infrastructure. DISCOM2 uses this forum to demonstrate and focus communication and pre-standard implementation of 10 Gigabit Ethernet, the first gigabyte per second data IP network transfer application, and VPN technology that enabled a remote Distributed Resource Management tools demonstration. Additionally a national OC48 POS network was constructed to support applications running between the show floor and home facilities. This network created the opportunity to test PSE's Parallel File Transfer Protocol (PFTP) across a network that had similar speed and distances as the then proposed DISCOM WAN. The SCINET SC2000 showcased wireless networking and the networking team had the opportunity to explore this emerging technology while on the booth. This paper documents those accomplishments, discusses the details of their convention exhibit floor. We also supported the production networking needs of the implementation, and describes how these demonstrations supports DISCOM overall strategies in high performance computing networking.« less

  13. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  14. 75 FR 60734 - Endangered Species; File No. 13599-01

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Species; File No. 13599-01 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and..., Permits, Conservation and Education Division, Office of Protected Resources, National Marine Fisheries... is hereby given that National Ocean Service Marine Forensic Lab (NOS Lab, Julie Carter, Principal...

  15. Which Accelerates Faster--A Falling Ball or a Porsche?

    ERIC Educational Resources Information Center

    Rall, James D.; Abdul-Razzaq, Wathiq

    2012-01-01

    An introductory physics experiment has been developed to address the issues seen in conventional physics lab classes including assumption verification, technological dependencies, and real world motivation for the experiment. The experiment has little technology dependence and compares the acceleration due to gravity by using position versus time…

  16. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossenbacher, John

    2011-04-14

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema

    Grossenbacher, John

    2018-02-06

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  18. Hundreds of Area Residents Visit the National Lab Booth at the Annual In The Street Festival | Poster

    Cancer.gov

    Light-up yo-yos, brightly colored portion plates, and a fast spinner game lured hundreds of area residents to the Frederick National Lab booth at this year’s In The Street festival, where they also heard a message from the lab: Stay healthy through healthy habits.

  19. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGES

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; ...

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  20. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDONIAN,G.BABZIEN,MLBEN-ZVI,I.YAKIMENKO,Y.ET AL.

    VISA II is the follow-up project to the successful Visible to Infrared SASE Amplifier (VISA) experiment at the Accelerator Test Facility (ATF) in Brookhaven National Lab (BNL). This paper will report the motivation for and status of the two main experiments associated with the VISA II program. One goal of VISA II is to perform an experimental study of the physics of a chirped beam SASE FEL at the upgraded facilities of the ATF. This requires a linearization of the transport line to preserve energy chirping of the electron beam at injection. The other planned project is a strong bunchmore » compression experiment, where the electron bunch is compressed in the chicane, and the dispersive beamline transport, allowing studies of deep saturation.« less

  2. Evaluation of hardness and colour change of soft liners after accelerated ageing.

    PubMed

    Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline

    2009-07-01

    Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.

  3. About the Frederick National Laboratory for Cancer Research | FNLCR Staging

    Cancer.gov

    The Frederick National Lab is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and operated by Leidos Biomedical Research, Inc. The lab addresses some of the most urgent and intractable probl

  4. ESH&Q Joule: Greg Gilbert | News

    Science.gov Websites

    Accelerator Division Accelerator Physics Center Office of the Chief Safety Officer Environment, Safety, Health Plan II Policies Manuals Manuals Engineering Manual Environment, Safety and Health Manual (FESHM) Fermi . "Having been at the lab for a while, I've seen safety initiatives come and go," Greg said

  5. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2018-05-23

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  6. Solar University-National Lab Ultra-Effective Program | Photovoltaic

    Science.gov Websites

    Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the

  7. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  8. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  9. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  10. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirokawa, Takako; /U. Colorado, Boulder /SLAC

    In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI),more » thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.« less

  12. GeoLab's First Field Trials, 2010 Desert RATS: Evaluating Tools for Early Sample Characterization

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Bell, M. S.; Calaway, M. J.; Graff, Trevor; Young, Kelsey

    2011-01-01

    As part of an accelerated prototyping project to support science operations tests for future exploration missions, we designed and built a geological laboratory, GeoLab, that was integrated into NASA's first generation Habitat Demonstration Unit-1/Pressurized Excursion Module (HDU1-PEM). GeoLab includes a pressurized glovebox for transferring and handling samples collected on geological traverses, and a suite of instruments for collecting preliminary data to help characterize those samples. The GeoLab and the HDU1-PEM were tested for the first time as part of the 2010 Desert Research and Technology Studies (DRATS), NASA's analog field exercise for testing mission technologies. The HDU1- PEM and GeoLab participated in two weeks of joint operations in northern Arizona with two crewed rovers and the DRATS science team.

  13. The Installation of a P.E.T. Pharmacy at Washington University

    NASA Astrophysics Data System (ADS)

    Gaehle, G.; Schwarz, S.; Mueller, M.; Margenau, B.; Welch, M. J.

    2003-08-01

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  14. The Installation of a P.E.T. Pharmacy at Washington University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaehle, G.; Schwarz, S.; Mueller, M.

    2003-08-26

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  15. Accelerating Venture Creation and Building on Mutual Strengths in Experimental Business Labs

    ERIC Educational Resources Information Center

    Curley, Martin G.; Formica, Piero

    2010-01-01

    This paper articulates the opportunity of using an experimental business laboratory approach as a means of accelerating the creation, incubation and testing of new venture ideas. Such a strategy leads to the establishment of a micro-ecosystem of aspiring entrepreneurs and others in a business laboratory environment. The goal is to create a mini…

  16. Graphs as a Problem-Solving Tool in 1-D Kinematics

    ERIC Educational Resources Information Center

    Desbien, Dwain M.

    2008-01-01

    In this age of the microcomputer-based lab (MBL), students are quite accustomed to looking at graphs of position, velocity, and acceleration versus time. A number of textbooks argue convincingly that the slope of the velocity graph gives the acceleration, the area under the velocity graph yields the displacement, and the area under the…

  17. On the g/2 Acceleration of a Pulse in a Vertical Chain

    ERIC Educational Resources Information Center

    Foster, Theodore; van Wyngaarden, Willem; Cary, Arthur; Mottmann, John

    2013-01-01

    We have frequently enhanced our department's laboratory experiment involving standing transverse waves in a taut horizontal cord. In addition to the standard experiment, students in these labs investigate the surprising concept that the acceleration of a pulse in a chain hanging vertically is a constant and is equal to half the acceleration…

  18. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  19. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less

  20. National Center for the Training of Educational Resource Agents to Serve Rural Minorities. The Preparation of Problem Solving/Development/Diffusion Personnel to Serve Rural/Minority/Culturally Limited Populations.

    ERIC Educational Resources Information Center

    Tuskegee Inst., AL.

    A blueprint for Educational Resource Agents (ERA's) has been compiled by a consortium consisting of the National Federation for the Improvement of Rural Education, Tuskegee Institute, New Mexico State University, University of North Dakota, Northwest Regional Educational Lab., Southwestern Cooperative Educational Lab., Appalachia Educational Lab.,…

  1. Theoretical and Experimental Studies in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James

    This report describes research supported by the US Dept. of Energy Office of High Energy Physics (OHEP), performed by the UCLA Particle Beam Physics Laboratory (PBPL). The UCLA PBPL has, over the last two decades-plus, played a critical role in the development of advanced accelerators, fundamental beam physics, and new applications enabled by these thrusts, such as new types of accelerator-based light sources. As the PBPL mission is broad it is natural that it has been grown within the context of the accelerator science and technology stewardship of the OHEP. Indeed, steady OHEP support for the program has always beenmore » central to the success of the PBPL; it has provided stability, and above all has set the over-arching themes for our research directions, which have producing over 500 publications (>120 in high level journals). While other agency support has grown notably in recent years, permitting more vigorous pursuit of the program, it is transient by comparison. Beyond permitting program growth in a time of flat OHEP budgets, the influence of other agency missions is found in push to adapt advanced accelerator methods to applications, in light of the success the field has had in proof-of-principle experiments supported first by the DoE OHEP. This three-pronged PBPL program — advanced accelerators, fundamental beam physics and technology, and revolutionary applications — has produced a generation of students that have had a profound affect on the US accelerator physics community. PBPL graduates, numbering 28 in total, form a significant population group in the accelerator community, playing key roles as university faculty, scientific leaders in national labs (two have been named Panofsky Fellows at SLAC), and vigorous proponents of industrial application of accelerators. Indeed, the development of advanced RF, optical and magnet technology at the PBPL has led directly to the spin-off company, RadiaBeam Technologies, now a leading industrial accelerator firm. We note also that PBPL graduates remain as close elaborators for the program after leaving UCLA. The UCLA PBPL program is a foremost developer of on-campus facilities, such as the Neptune and Pegasus Laboratories, providing a uniquely strong environment for student-based research. In addition, the PBPL is a strong user of off-campus national lab facilities, such as SLAC FACET and NLCTA, and the BNL ATF. UCLA has also vigorously participated in the development of these facilities. The dual emphases on off- and on-campus opportunities permit the PBPL to address in an agile way a wide selection of cutting-edge research topics. The topics embraced by this proposal illustrate this program aspect well. These include: GV/m dielectric wakefield acceleration/coherent Cerenkov radiation experiments at FACET (E-201) and the ATF; synergistic laser-excited dielectric accelerator and light source development; plasma wakefield (PWFA) experiments on “Trojan horse” ionization injection (FACET E-210), quasi-nonlinear PWFA at BNL and the production at Neptune high transformer ratio plasma wakes; the inauguration of a new type of RF photoinjector termed “hybrid” at UCLA, and application to PWFA; space-charge dominated beam and cathode/near cathode physics; the study of advanced IFEL systems, for very high energy gain and utilization of novel OAM modes; the physcis of inverse Compton scattering (ICS), with applications to e+ production and γγ colliders; electron diffraction; and advanced beam diagnostics using coherent imaging techniques. These subjects are addressed under the leadership of PBPL director Prof. James Rosenzweig in Task A, and Prof. Pietro Musumeci in Task J, which was initiated following his OHEP Outstanding Junior Investigator award.« less

  2. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  3. Privacy Policy | FNLCR Staging

    Cancer.gov

    The privacy of our users is of utmost importance to Frederick National Lab. The policy outlined below establishes how Frederick National Lab will use the information we gather about you from your visit to our website. We may collect and store

  4. Designing virtual science labs for the Islamic Academy of Delaware

    NASA Astrophysics Data System (ADS)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.

  5. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kageya, Tsuneo; Ho, Dao; Peng, Peng

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14more » asymmetries.« less

  6. Monitoring structural response in pressurized environments. Part 2: Applications

    NASA Astrophysics Data System (ADS)

    Roach, D. P.

    There are various methods which can be used to monitor the structural response of electrical components, weapon systems, pressure vessels, submerged pipelines, deep sea vehicles and offshore structures. Numerous experimental techniques have been developed at Sandia National Labs in order to measure the strain, displacement and acceleration of a structural member. These techniques have been successfully implemented in adverse environments of 25 ksi and 300 F. A separate paper discusses the performance of various instrumentation schemes, the environmental protection of these diagnostics under pressure, and the means by which data is extracted from a closed pressure system. In this paper, specific hydrostatic and dynamic pressure tests are used to demonstrate how these techniques are employed, the problems encountered, and the importance of the data obtained.

  7. Online aging study of a high rate MRPC

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Yi; Feng, S. Q.; Xie, Bo; Lv, Pengfei; Wang, Fuyue; Guo, Baohong; Han, Dong; Li, Yuanjing

    2016-05-01

    With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setup of the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector. Supported by National Natural Science Foundation of China (11420101004, 11461141011, 11275108), Ministry of Science and Technology (2015CB856905)

  8. SHMS Hodoscopes and Time of Flight System

    NASA Astrophysics Data System (ADS)

    Craycraft, Kayla; Malace, Simona

    2017-09-01

    As part of the Thomas Jefferson National Accelerator Facility's (Jefferson Lab) upgrade from 6 GeV to 12 GeV, a new magnetic focusing spectrometer, the Super High Momentum Spectrometer (SHMS), was installed in experimental Hall C. The detector stack consists of horizontal drift chambers for tracking, gas Cerenkov and Aerogel detectors and a lead glass calorimeter for particle identification. A hodoscope system consisting of three planes of scintillator detectors (constructed by James Madison University) and one plane of quartz bars (built by North Carolina A&T State University) is used for triggering and time of flight measurements. This presentation consists of discussion of the installation, calibration, and characterization of the detectors used in this Time of Flight system. James Madison University, North Carolina A&T State University.

  9. Frederick National Lab Supports Clinical Trials for Vaccine Against Mosquito-borne Chikungunya | Frederick National Laboratory for Cancer Research

    Cancer.gov

    An experimental vaccine for mosquito-borne chikungunya is being tested at sites in the Caribbean as part of a phase II clinical trial being managed by the Frederick National Lab. No vaccine or treatment currently exists for the viral disease, which c

  10. It Takes a Village: Documenting the Contributions of Non-Scientific Staff to Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Valerie

    Documenting the Contributions of Non-Scientific Staff to Scientific Research Science, especially large-scale basic research, is a collaborative endeavor, often drawing on the skills of people from a wide variety of disciplines. These people include not just scientists, but also administrators, engineers, and many others. Fermilab, a Department of Energy National Laboratory and the United States’ premier particle physics laboratory, exemplifies this kind of research; many of its high-energy physics experiments involve hundreds of collaborators from all over the world. The Fermilab Archives seeks to document the history of the lab and the unique scientific research its staff and visitors perform.more » Adequately documenting the lab’s work often requires us to go far beyond things like the writings and correspondence of scientists to also capture the administrative and social histories of the experiments and the context in which they were performed. At Fermilab, we have sought to capture these elements of the lab’s activities through an oral history program that focuses on support staff as well as physicists and collection development choices that recognize the importance of records documenting the cultural life of the lab. These materials are not merely supplementary, but rather essential documentation of the many types of labor that go into the planning and execution of an experiment or the construction of an accelerator and the context in which this work is performed. Any picture of these experiments and accelerators that did not include this type of information would be incomplete. While the importance and richness of this material is especially pronounced at Fermilab due to the massive size of its experiments and accelerator facilities and its vibrant cultural life, the fruitfulness of these collecting efforts at Fermilab suggests that other archives documenting modern STEM research should also make sure the contributions of non-technical and non-scientific staff are preserved and that researchers interested in this subject should not neglect such sources.« less

  11. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    NASA Astrophysics Data System (ADS)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  12. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  13. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  14. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  15. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  16. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  17. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  18. Every Day Is National Lab Day

    ERIC Educational Resources Information Center

    Bull, Glen

    2010-01-01

    President Barack Obama recently issued a call for increased hands-on learning in U.S. schools in an address at the National Academy of Sciences. Obama concluded that the future of the United States depends on one's ability to encourage young people to "create, and build, and invent." In this article, the author discusses National Lab Day (NLD)…

  19. Future{at}Labs.Prosperity Game{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.F.; Boyack, K.W.; Berman, M.

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, themore » national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.« less

  20. Health care information infrastructure: what will it be and how will we get there?

    NASA Astrophysics Data System (ADS)

    Kun, Luis G.

    1996-02-01

    During the first Health Care Technology Policy [HCTPI conference last year, during Health Care Reform, four major issues were brought up in regards to the underway efforts to develop a Computer Based Patient Record (CBPR)I the National Information Infrastructure (NIl) as part of the High Performance Computers & Communications (HPCC), and the so-called "Patient Card" . More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: Constructing a National Information Infrastructure (NIl); Building a Computer Based Patient Record System; Bringing the collective resources of our National Laboratories to bear in developing and implementing the NIl and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; Utilizing Government (e.g. DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs and accelerate technology transfer to address health care issues. During the second HCTP conference, in mid 1 995, a section of this meeting entitled: "Health Care Technology Assets of the Federal Government" addressed benefits of the technology transfer which should occur for maximizing already developed resources. Also a section entitled:"Transfer and Utilization of Government Technology Assets to the Private Sector", looked at both Health Care and non-Health Care related technologies since many areas such as Information Technologies (i.e. imaging, communications, archival I retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our National Labs and/or other federal agencies, i.e. ARPA. These technologies although they are not labeled under "Health Care" programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.

  1. Transfer and utilization of government technology assets to the private sector in the fields of health care and information technologies

    NASA Astrophysics Data System (ADS)

    Kun, Luis G.

    1995-10-01

    During the first Health Care Technology Policy conference last year, during health care reform, four major issues were brought up in regards to the efforts underway to develop a computer based patient record (CBPR), the National Information Infrastructure (NII) as part of the high performance computers and communications (HPCC), and the so-called 'patient card.' More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: (1) Constructing a national information infrastructure (NII); (2) Building a computer based patient record system; (3) Bringing the collective resources of our national laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; (4) Utilizing government (e.g., DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs, and accelerate technology transfer to address health care issues. This year a section of this conference entitled: 'Health Care Technology Assets of the Federal Government' addresses benefits of the technology transfer which should occur for maximizing already developed resources. This section entitled: 'Transfer and Utilization of Government Technology Assets to the Private Sector,' will look at both health care and non-health care related technologies since many areas such as information technologies (i.e. imaging, communications, archival/retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our national labs and/or other federal agencies, i.e., ARPA. These technologies although they are not labeled under health care programs they could provide enormous value to address technical needs. An additional issue deals with both the technical (hardware, software) and human expertise that resides within these labs and their possible role in creating cost effective solutions.

  2. Lattice Design for a High-Power Infrared FEL

    NASA Astrophysics Data System (ADS)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swapan Chattopadhyay

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jeffersonmore » Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale, Jefferson Lab's original kilowatt-scale infrared free-electron laser (FEL) is ''driven'' by a high-current cousin of CEBAF, a 70 MeV SRF linac with a high-current injector. The FEL serves multidisciplinary science and technology as the world's highest-average-power source of tunable coherent infrared light. An upgrade to 10 kW is in commissioning--as it was when Isabel began threatening.« less

  4. FOREWORD: Jefferson Lab: A Long Decade of Physics

    NASA Astrophysics Data System (ADS)

    Montgomery, Hugh

    2011-04-01

    Jefferson Lab Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  5. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  6. IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the immune re

  7. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  8. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  9. KSC-2012-2762

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a plant growth chamber to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  10. KSC-2012-2764

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a system for growing salad crops in space to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-2761

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-2763

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a system for growing salad crops in space to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  13. PREFACE: 17th Pan-American Synchrotron Radiation Instrumentation Conference SRI2013

    NASA Astrophysics Data System (ADS)

    Williams, Gwyn P.; Revesz, Peter; Arp, Uwe

    2014-03-01

    These proceedings are a collection of the articles presented at the seventeenth Pan-American Synchrotron Radiation Instrumentation Conference SRI2013, held on the campus of the National Institute of Standards and Technology (NIST), located in Gaithersburg, Maryland, United States of America, 19-21 June, 2013. SRI2013 was jointly hosted by the Cornell University Cornell High Energy Synchrotron Source (CHESS), the Thomas Jefferson National Accelerator Facility (Jefferson Lab), and the Synchrotron Ultraviolet Radiation Facility (SURF III) at NIST. This meeting's focus was clearly on instrumentation, thus fulfilling the intent of this SRI meeting series, which was initiated at NIST, then the National Bureau of Standards (NBS), in 1979. SRI2013 hosted more than 150 delegates, despite the new US governmental travel restrictions. This proceedings series aims to be an essential reference work for practitioners in the field. It primarily documents the evolution and development of techniques, but also recent scientific advances, that were presented during the two and a half days of the conference. We are extremely thankful to all the authors who contributed to making these proceedings a volume of reference as well as to the reviewers for their careful reading and constructive recommendations for improving the articles. Great thanks go to Robert Dragoset at NIST, for creating and maintaining the conference website and generating the conference logo. We are also thankful for the excellent support we received from the Conference Program at NIST, especially Kathy Kilmer and Angela Ellis. And we would like to dedicate these proceedings to the memory of Kathy Kilmer, who passed away on 15 October, 2013. NIST will not be the same without her. The Co-Editors: Uwe Arp (SURF/NIST) Peter Reversz (CHESS) Gwyn P Williams (Jefferson Lab)

  14. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  15. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    NASA Astrophysics Data System (ADS)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  16. Breakthrough: Record-Setting Cavity

    ScienceCinema

    Ciovati, Gianluigi

    2018-02-06

    Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the U.S. Department of Energy's Jefferson Lab in Newport News, VA, used ARRA funds to fabricate a niobium cavity for superconducting radiofrequency accelerators that has set a world record for energy efficiency. Jefferson Lab's scientists developed a new, super-hot treatment process that could soon make it possible to produce cavities more quickly and at less cost, benefitting research and healthcare around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.around the world. Accelerators are critical to our efforts to study the structure of matter that builds our visible universe. They also are used to produce medical isotopes and particle beams for diagnosing and eradicating disease. And they offer the potential to power future nuclear power plants that produce little or no radioactive waste.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less

  18. Basic instrumentation for Hall A at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Alcorn, J.; Anderson, B. D.; Aniol, K. A.; Annand, J. R. M.; Auerbach, L.; Arrington, J.; Averett, T.; Baker, F. T.; Baylac, M.; Beise, E. J.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Black, T.; Boeglin, W. U.; Boykin, D. V.; Brash, E. J.; Breton, V.; Breuer, H.; Brindza, P.; Brown, D.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Carr, R.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Choi, S.; Chudakov, E.; Churchwell, S.; Coman, M.; Cisbani, E.; Colilli, S.; Colombel, N.; Crateri, R.; Dale, D. S.; Degrande, N.; de Jager, C. W.; De Leo, R.; Deur, A.; Dezern, G.; Diederich, B.; Dieterich, S.; di Salvo, R.; Djawotho, P.; Domingo, J.; Ducret, J.-E.; Dutta, D.; Egiyan, K.; Epstein, M. B.; Escoffier, S.; Esp, S.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Folts, E.; Fonvieille, H.; Frois, B.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gavalya, A.; Gayou, O.; Gilad, S.; Gilman, R.; Giuliani, F.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Gorringe, T.; Gricia, M.; Griffioen, K.; Hamilton, D.; Hansen, J.-O.; Hersman, F. W.; Higinbotham, D. W.; Holmes, R.; Holmgren, H.; Holtrop, M.; d'Hose, N.; Hovhannisyan, E.; Howell, C.; Huber, G. M.; Hughes, E.; Hyde-Wright, C. E.; Ibrahim, H.; Incerti, S.; Iodice, M.; Iommi, R.; Ireland, D.; Jaminion, S.; Jardillier, J.; Jensen, S.; Jiang, X.; Jones, C. E.; Jones, M. K.; Joo, K.; Jutier, C.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khandaker, M.; Khayat, M.; Kino, K.; Kominis, I.; Korsch, W.; Kox, S.; Kramer, K.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Leone, A.; LeRose, J. J.; Marie, F.; Levchuk, L.; Leuschner, M.; Lhuillier, D.; Liang, M.; Livingston, K.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Lucentini, M.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martine, J.; Mayilyan, S.; McCarthy, J. S.; McCormick, K.; Mclntyre, J.; McKeown, R. D.; Meekins, D.; van der Meer, R. L. J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, J. A.; Miller, W.; Mitchell, J.; Mougey, J.; Nanda, S.; Nathan, A.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Petrosyan, A.; Pierangeli, L.; Platchkov, S.; Pomatsalyuk, R.; Pripstein, D.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quéméner, G.; Ransomez, R. D.; Ravel, O.; Reitz, B.; Roblin, Y.; Roche, R.; Roedelbronn, M.; Rondon-Aramayo, O. A.; Roos, P. G.; Rosner, G.; Rowntree, D.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatavenere, F.; Saha, A.; Saito, T.; Santavenere, F.; Sarty, A. J.; Schneider, W. J.; Segal, J. P.; Serdarevic-Offermann, A.; Shahinyan, A.; Slifer, K.; Smith, T. P.; Soldi, A.; Sorokin, P.; Souder, P.; Spiegel, S. L.; Stevens, M. A.; Strauch, S.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Todor, L.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Van Hoorebeke, L.; Van de Vyver, R.; van Verst, S.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Walter, R.; Watson, J. W.; Watts, D. P.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Xiang, H.; Xiong, F.; Xu, W.; Zainea, D. G.; Zeps, V.; Zhao, J.; Zheng, X.; Zhou, Z.-L.; Zhu, L.; Zolnierczuk, P. A.

    2004-04-01

    The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2×10 -4. A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10 38 cm-2 s-1. The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium.

  19. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-01

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  20. Integration and verification testing of the Large Synoptic Survey Telescope camera

    NASA Astrophysics Data System (ADS)

    Lange, Travis; Bond, Tim; Chiang, James; Gilmore, Kirk; Digel, Seth; Dubois, Richard; Glanzman, Tom; Johnson, Tony; Lopez, Margaux; Newbry, Scott P.; Nordby, Martin E.; Rasmussen, Andrew P.; Reil, Kevin A.; Roodman, Aaron J.

    2016-08-01

    We present an overview of the Integration and Verification Testing activities of the Large Synoptic Survey Telescope (LSST) Camera at the SLAC National Accelerator Lab (SLAC). The LSST Camera, the sole instrument for LSST and under construction now, is comprised of a 3.2 Giga-pixel imager and a three element corrector with a 3.5 degree diameter field of view. LSST Camera Integration and Test will be taking place over the next four years, with final delivery to the LSST observatory anticipated in early 2020. We outline the planning for Integration and Test, describe some of the key verification hardware systems being developed, and identify some of the more complicated assembly/integration activities. Specific details of integration and verification hardware systems will be discussed, highlighting some of the technical challenges anticipated.

  1. Utilization of an Accelerated Queso Fresco Recipe to Teach Concepts of Food Science in a Didactic Program in Dietetics

    ERIC Educational Resources Information Center

    Therrien, Mona; Calder, Beth L.; Castonguay, Zakkary J.

    2018-01-01

    Students in the Didactic Program in Dietetics (DPD) at the University of Maine were exposed to the cheese-making process, within a lab setting of two hours, utilizing an accelerated recipe for a Queso Fresco-style cheese. The purpose of this project was to provide students with a novel, hands-on learning experience, which covered concepts of…

  2. LabVIEW-based control and acquisition system for the dosimetric characterization of a silicon strip detector.

    PubMed

    Ovejero, M C; Pérez Vega-Leal, A; Gallardo, M I; Espino, J M; Selva, A; Cortés-Giraldo, M A; Arráns, R

    2017-02-01

    The aim of this work is to present a new data acquisition, control, and analysis software system written in LabVIEW. This system has been designed to obtain the dosimetry of a silicon strip detector in polyethylene. It allows the full automation of the experiments and data analysis required for the dosimetric characterization of silicon detectors. It becomes a useful tool that can be applied in the daily routine check of a beam accelerator.

  3. Innovation - A view from the Lab

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  4. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  5. Investigating {sup 13}C+{sup 12}C reaction by the activation method. Sensitivity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesneanu, Daniela, E-mail: chesneanu@nipne.ro; Trache, L.; Margineanu, R.

    2015-02-24

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the “Horia Hulubei” National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the {sup 12}C+{sup 13}C reaction at beam energies E{sub lab}= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of {sup 12}C+{sup 12}C over a wide energy range. A {sup 13}C beam withmore » intensities 0.5–2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with {sup 24}Na from the {sup 12}C({sup 13}C,p) reaction. The 1369 and 2754 keV gamma-rays from {sup 24}Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for E{sub lab} = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1–3 nb. This demonstrates that it is possible to measure {sup 12}C targets irradiated at lower energies for at least 10 times lower cross sections than before β–γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.« less

  6. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab

    PubMed Central

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-01-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468

  7. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    PubMed

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  8. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  9. Web Support

    Science.gov Websites

    Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center our response, please check the specific website or page in question for the name of the appropriate

  10. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.

    PubMed

    Bates, Maxwell; Berliner, Aaron J; Lachoff, Joe; Jaschke, Paul R; Groban, Eli S

    2017-01-20

    Wet Lab Accelerator (WLA) is a cloud-based tool that allows a scientist to conduct biology via robotic control without the need for any programming knowledge. A drag and drop interface provides a convenient and user-friendly method of generating biological protocols. Graphically developed protocols are turned into programmatic instruction lists required to conduct experiments at the cloud laboratory Transcriptic. Prior to the development of WLA, biologists were required to write in a programming language called "Autoprotocol" in order to work with Transcriptic. WLA relies on a new abstraction layer we call "Omniprotocol" to convert the graphical experimental description into lower level Autoprotocol language, which then directs robots at Transcriptic. While WLA has only been tested at Transcriptic, the conversion of graphically laid out experimental steps into Autoprotocol is generic, allowing extension of WLA into other cloud laboratories in the future. WLA hopes to democratize biology by bringing automation to general biologists.

  11. PCaPAC 2006 Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Chevtsov; Matthew Bickley

    2007-03-30

    The 6-th international PCaPAC (Personal Computers and Particle Accelerator Controls) workshop was held at Jefferson Lab, Newport News, Virginia, from October 24-27, 2006. The main objectives of the conference were to discuss the most important issues of the use of PCs and modern IT technologies for controls of accelerators and to give scientists, engineers, and technicians a forum to exchange the ideas on control problems and their solutions. The workshop consisted of plenary sessions and poster sessions. No parallel sessions were held.Totally, more than seventy oral and poster presentations as well as tutorials were made during the conference, on themore » basis of which about fifty papers were submitted by the authors and included in this publication. This printed version of the PCaPAC 2006 Proceedings is published at Jefferson Lab according to the decision of the PCaPAC International Program Committee of October 26, 2006.« less

  12. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  13. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  14. KSC-2012-2766

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Students view a demonstration by Dr. James Fesmire inside the cryogenics lab in the Operations and Checkout Building. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  15. My Brother’s Keeper National Lab Week

    NASA Image and Video Library

    2016-03-02

    Students in the My Brother’s Keeper program get an inside look at NASA Kennedy Space Center’s iconic Vehicle Assembly Building from the transfer aisle. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.

  16. KSC-2012-2767

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Outside the Operations and Checkout Building, Rudy Werlink gives students a first-hand look at the workings of the cryogenics lab. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-2765

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Students and their teachers get some hands-on experience inside the applied physics lab in the Operations and Checkout Building. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  18. Role of national labs in energy and environmental R & D: An industrial perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, N.

    1995-12-31

    The perceived role of national laboratories in energy and environmental research and development is examined from an industrial perspective. A series of tables are used to summarize issues primarily related to the automotive industry. Impacts of policy on energy, environment, society, and international competition are outlined. Advances and further needs in automotive efficiency and pollution control, and research roles for national labs and industry are also summarized. 6 tabs.

  19. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less

  20. 14. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3467. ACCELERATION DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. The CLAS12 torus detector magnet at Jefferson Laboratory

    DOE PAGES

    Luongo, Cesar; Wiseman, Mark A.; Kashy, David H.; ...

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, part of the detector for the 12GeV accelerator upgrade at Jefferson Lab. The coils were wound/fabricated by Fermi Lab, with Jlab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. The study provides an overview of the CLAS12 Torus magnet features, and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  2. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput-Ghoshal, Renuka; Hogan, John P.; Fair, Ruben J.

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  3. APEX: A Prime EXperiment at Jefferson Lab - Test Run Results and Full Run Plans; Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beacham, James

    2015-06-01

    APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson (A') with sub-GeV mass and coupling to ordinary matter of g' ~ (10 -6 - 10⁻²)e. Electrons impinge upon a fixed target of high-Z material. An A' is produced via a process analogous to photon bremsstrahlung, decaying to an e⁺+e⁻ pair. A test run was held in July of 2010, covering m A' = 175 to 250 MeV and couplings g'/e > 10⁻³. A full run is approved and will cover m A' ~ 65 to 525 MeV andmore » g'/e > 2.3 x 10⁻⁴, and is expected to occur sometime in 2016 or 2017.« less

  4. A PARMELA model of the CEBAF injector valid over a wide range of beam parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhong Zhang; Kevin Beard; Jay Benesch

    A PARMELA model of the CEBAF injector valid over a wide range of beam parameters Yuhong Zhang, Kevin Beard, Jay Benesch, Yu-Chiu Chao, Arne Freyberger, Joseph Grames, Reza Kazimi, Geoff Krafft, Rui Li, Lia Merminga, Matt Poelker, Michael Tiefenback, Byung Yunn Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 USA An earlier PARMELA model of the Jefferson Lab CEBAF photoinjector was recently revised. The initial phase space distribution of an electron bunch was determined by measuring spot size and pulselength of the driver laser and by beam emittance measurements. The improved model has been used formore » simulations of the simultaneous delivery of the Hall A beam required for a hypernuclear experiment, and the Hall C beam required for the G0 parity violation experiment.« less

  5. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Joshua T.; Biallas, George H.; Brown, G.

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete themore » system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.« less

  6. Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, Stanley

    This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less

  7. History of the Bevatron

    ScienceCinema

    None

    2017-12-09

    This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.

  8. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake.

    PubMed

    Pisco, Marco; Bruno, Francesco Antonio; Galluzzo, Danilo; Nardone, Lucia; Gruca, Grzegorz; Rijnveld, Niek; Bianco, Francesca; Cutolo, Antonello; Cusano, Andrea

    2018-04-27

    We have designed and developed lab-on-fibre seismic sensors containing a micro-opto-mechanical cavity on the fibre tip. The mechanical cavity is designed as a double cantilever suspended on the fibre end facet and connected to a proof mass to tune its response. Ground acceleration leads to displacement of the cavity length, which in turn can be remotely detected using an interferometric interrogation technique. After the sensors characterization, an experimental validation was conducted at the Italian National Institute of Geophysics and Volcanology (INGV), which is responsible for seismic surveillance over the Italian country. The fabricated sensors have been continuously used for long periods to demonstrate their effectiveness as seismic accelerometer sensors. During the tests, fibre optic seismic accelerometers clearly detected the seismic sequence that culminated in the severe Mw6.5 Norcia earthquake that struck central Italy on October 30, 2016. The seismic data provided by the optical sensors were analysed by specialists at the INGV. The wave traces were compared with state-of-the-art traditional sensors typically incorporated into the INGV seismic networks. The comparison verifies the high fidelity of the optical sensors in seismic wave detection, indicating their suitability for a novel class of seismic sensors to be employed in practical scenarios.

  9. Integrated tests of a high speed VXS switch card and 250 MSPS flash ADCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Dong, C. Cuevas, D. Curry, E. Jastrzembski, F. Barbosa, J. Wilson, M. Taylor, B. Raydo

    2008-01-01

    High trigger rate nuclear physics experiments proposed for the 12 GeV upgrade at the Thomas Jefferson National Accelerator Facility create a need for new high speed digital systems for energy summing. Signals from electronic detectors will be captured with the Jefferson Lab FADC module, which collects and processes data from 16 charged particle sensors with 10 or 12 bit resolution at 250 MHz sample rate. Up to sixteen FADC modules transfer energy information to a central energy summing module for each readout crate. The sums from the crates are combined to form a global energy sum that is used tomore » trigger data readout for all modules. The Energy Sum module and FADC modules have been designed using the VITA-41 VME64 switched serial (VXS) standard. The VITA- 41 standard defines payload and switch slot module functions, and offers an elegant engineered solution for Multi-Gigabit serial transmission on a standard VITA-41 backplane. The Jefferson Lab Energy Sum module receives data serially at a rate of up to 6 Giga-bits per second from the FADC modules. Both FADC and Energy Sum modules have been designed and assembled and this paper describes the integrated tests using both high speed modules in unison« less

  10. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    PubMed Central

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  11. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2018-05-24

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  12. A-Z Link

    Science.gov Websites

    Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center

  13. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  14. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  15. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  16. Computer Modeling of Complete IC Fabrication Process.

    DTIC Science & Technology

    1987-05-28

    James Shipley National Semi.Peter N. Manos AMD Ritu Shrivastava Cypress Semi. Corp.Deborah D. Maracas Motorola, Inc. Paramjit Singh Rockwell Intl.Sidney...Carl F Daegs Sandia Hishan Z Massoud Duke* UnIVersdy Anant Dix* Silicon Systems David Matthews Hughes Rese~arch Lab DIolidi DoIIos Spery Tmioomly K...Jaczynski AT&T Bell Labs Jack C. Carlson Motorola Sanjay Jain AT&T Bell Labs Andrew Chan Fairchild Weston Systems Werner Juengling AT&T Bell Labs

  17. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  18. Magneto Rayleigh-Taylor, Sausage, and Kink Instability Experiments on a MegaAmpere Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Gilgenbach, R. M.; Lau, Y. Y.; Weis, M. R.; Zhang, P.

    2015-11-01

    At the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) facility, a 1-MA Linear Transformer Driver (LTD) is being used to deliver 500-600 kA to cylindrical liners in order to study the magneto Rayleigh-Taylor (MRT), sausage, and kink instabilities in imploding and exploding Al plasmas. The liners studied in this experiment had thicknesses of 400 nm to 30 μm, heights of 1-2 cm, and diameters of 1-6 mm. The plasmas were imaged using 4-time-frame, laser shadowgraphy and shearing-interferometry at 532 nm. For imploding liners, the measured acceleration was found to be less than predicted from the current pulse, indicating significant diffusion of the azimuthal magnetic field. A simple experimental configuration is presented for ``end-on'' laser probing in the r- θ plane in order to study the interior of the liner. Finally, the effects of axial magnetic fields are determined by modifying the return current posts and incorporating external coils. Experimental growth rates are determined and discussed. This work was supported by DOE award DE-SC0012328. S.G. Patel supported by Sandia National Labs. D.A. Yager was supported by NSF fellowship grant DGE 1256260.

  19. KSC-2012-2769

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building, Rudy Werlink gives students a first-hand look at the workings of the sound testing area of cryogenics lab. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-2768

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Inside the Operations and Checkout Building, Rudy Werlink gives students a first-hand look at the workings of the sound testing area of cryogenics lab. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-2760

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. LaNetra C. Tate, center, materials engineer at Kennedy Space Center, is surrounded by students as she welcomes them for their tour of the Space Life Sciences Lab facilities. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  2. The Computer as Lab Partner.

    ERIC Educational Resources Information Center

    Nicklin, R. C.

    1985-01-01

    Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…

  3. CHEMICAL AND TOXICOLOGICAL EVALUATION OF CHLORINATED AND OZONATED-CHLORINATED DRINKING WATER: A COLLABORATION OF THE FOUR NATIONAL LABS OF THE U. S. EPA

    EPA Science Inventory

    CHEMICAL AND TOXICOLOGICAL EVALUATION OF CHLORINATED AND OZONATED-CHLORINATED DRINKING WATER: A COLLABORATION OF THE FOUR NATIONAL LABS OF THE U.S. EPA
    Susan D. Richardson1, Linda K. Teuschler2, Alfred D. Thruston, Jr.,1 Thomas Speth3, Richard J. Miltner3, Glenn Rice2, Kathle...

  4. 75 FR 29316 - Marine Mammals; File No. 13599

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... hereby given that the National Ocean Service Marine Forensic Lab (NOS Lab, Julie Carter, Principal... receive, import, export, transfer, archive, and conduct analyses of marine mammal and endangered species...

  5. NASA's GeneLab Phase II: Federated Search and Data Discovery

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  6. NASAs GeneLab Phase II: Federated Search and Data Discovery

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  7. Temporal and spatial characteristics of lead emissions from the lead-acid battery manufacturing industry in China.

    PubMed

    Liu, Wei; Tian, Jinping; Chen, Lujun; Guo, Yang

    2017-01-01

    An inventory of lead emissions was established for the lead-acid battery (LAB) manufacturing industry in China from 2000 to 2014. The lead emissions from the LAB manufacturing industry increased from 133 t in 2000 to a peak at 281 t in 2010 with the rapid development of LAB industry. Since 2011, a mandatory national clean action on LAB industry and a series of retrofitting measures have been implemented in China. As a result, more than 80% of small and low-efficient LAB manufacturers were closed, and technical-environmental performance of the industry has been improved significantly. Thus the lead emissions from the industry declined to 113 t in 2014. Geographically, lead emissions were attributed to several provinces with intensive LAB manufacturers, including Zhejiang, Guangdong, Jiangsu, Shandong, and Hebei Province. Spatial transfer of the LAB manufacturing industry from developed areas to developing areas in China was manifest due to strict environmental regulation, posing potential environmental risks to the areas undertaking the industry transfer. In light of the effectiveness of the national clean action, the LAB manufacturing industry will reduce lead emissions further by implementing the entry criteria strictly, adopting policy of total lead emissions control, and establishing a long-term regulatory mechanism for LAB manufacturers. The local authorities in some developing areas should improve abilities of environmental supervision and environmental risk prevention to deal with the spillover of lead emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design aremore » summarized.« less

  9. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CODING: ARIZONA LAB DATA (UA-D-13.0)

    EPA Science Inventory

    The purpose of this SOP is to define the coding strategy for Arizona Lab Data. This strategy was developed for use in the Arizona NHEXAS project and the "Border" study. Keywords: data; coding; lab data forms.

    The National Human Exposure Assessment Survey (NHEXAS) is a federal ...

  11. Creation Stations.

    ERIC Educational Resources Information Center

    Sauer, Jeff; Murphy, Sam

    1997-01-01

    In this comparison, NewMedia lab looks at 10 Pentium II workstations preconfigured for demanding three dimensional and multimedia work with OpenGL cards and fast Ultra SCSI hard drives. Highlights include costs, tests with Photoshop, technical support, and a sidebar that explains Accelerated Graphics Port. (Author/LRW)

  12. An Experimental Approach to Determine the Flight Dynamics of NASA’s Mars Science Lab Capsule

    DTIC Science & Technology

    2014-01-01

    simulated trajectories...........................................................................................10 Figure 13. Height vs . range from...Height vs . range from tracking radar. ...........................................................................24 Figure 31. Drift vs . range from...tracking radar. ..............................................................................24 vi Figure 32. In-bore axial acceleration vs . time

  13. Book Review - Panofsky on Physics, Politics, and Peace: Pief Remembers

    NASA Astrophysics Data System (ADS)

    Loew, Gregory

    The following sections are included: * Introduction: Genesis of the Book * Nature and Nurture: Pief's Early Life * This Review * High School in Hamburg; University at Princeton and Caltech * Pief and the Bomb * Accelerators and Physics at UCRL * Events Leading up to the Loyalty Oath * Stanford, the Microwave Lab and HEPL * The Rise of SLAC * Building SLAC * Physics Research at SLAC in the First Ten Years * Other Accelerator Activities under Pief * Science Advising and International Science * Arms Control (1981-2007): The Unfinished Business

  14. Physics Internationally From the Industrial Perspective

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2009-03-01

    Physicists traditionally get employed by academia, National Labs and industry. The investment of multi-national companies in R&D and manufacturing operations globally has been accelerating owing to availability of trained human resources and the economy of operation. This has created tremendous opportunities for candidates with global experience as opposed to a highly localized education. In the last decade, the investments made by Asian academic institutions in education and research has seen a significant increase creating opportunities for Graduate students and researchers alike in parts of the world other than US and Europe, the traditional destinations for students and researchers over the last several decades. Many Asian universities are hiring a diverse faculty from all over the world as opposed to hiring from local talent pools. Many of the Asian countries are focusing on creating local hitech economies by fostering global entrepreneurship programs. In my talk I will discuss this globalization phenomenon with specific examples from both academia and industry. I will also discuss strategies for academic institutions in terms of making the appropriate modification to their programs to deal with this inevitable evolution.

  15. Berkeley Lab Search - Search engine for Berkeley Lab

    Science.gov Websites

    twitter instagram google plus facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram

  16. Diagnostic and Therapeutic Radiopharmaceutical Agents for Selective Discrimination of Prostate Cancer

    DTIC Science & Technology

    2009-10-01

    Bottenus, Brienne N.∞; Fugate, Glenn A.†; Benny, Paul*. Actinides Separations, Conference Pacific Northwest National Lab 6/2006 In situ formation of...Bottenus, Brienne N.∞; Benny, Paul*. Actinides Separations, Conference Pacific Northwest National Lab 3/12/2006 S-functionalized cysteine ligands...cancer imaging. The successful preparation and radiolabeling of the first generation of compounds illustrates one the key critical objectives being

  17. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrington, John; Bernstein, Aron; Brooks, William

    2005-01-10

    This Conceptual Design Report (CDR) presents the compelling scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab to 12 GeV. Such a facility will make profound contributions to the study of hadronic matter.

  19. Apollo 20

    ERIC Educational Resources Information Center

    Houston Independent School District, 2013

    2013-01-01

    The Apollo 20 project was launched during the 2010-2011 school year to accelerate Houston Independent School District's (HISD's) efforts to improve student performance in every school and close the achievement gap districtwide. This partnership with EdLabs at Harvard University incorporates best practices from successful public and charter schools…

  20. A MySQL Based EPICS Archiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Slominski

    2009-10-01

    Archiving a large fraction of the EPICS signals within the Jefferson Lab (JLAB) Accelerator control system is vital for postmortem and real-time analysis of the accelerator performance. This analysis is performed on a daily basis by scientists, operators, engineers, technicians, and software developers. Archiving poses unique challenges due to the magnitude of the control system. A MySQL Archiving system (Mya) was developed to scale to the needs of the control system; currently archiving 58,000 EPICS variables, updating at a rate of 11,000 events per second. In addition to the large collection rate, retrieval of the archived data must also bemore » fast and robust. Archived data retrieval clients obtain data at a rate over 100,000 data points per second. Managing the data in a relational database provides a number of benefits. This paper describes an archiving solution that uses an open source database and standard off the shelf hardware to reach high performance archiving needs. Mya has been in production at Jefferson Lab since February of 2007.« less

  1. A&M. TAN607 second floor plan for cold assembly area. Metallurgical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607 second floor plan for cold assembly area. Metallurgical lab, chemistry lab, nuclear instrument lab, equipment rooms. Ralph M. Parsons 902-ANP-607-A 102. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-693-106754 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. 76 FR 18577 - Merritt Island National Wildlife Refuge, Volusia and Brevard Counties, FL; Collection of Entrance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Cove, Beacon 42, and Bio Lab). Fees are not required to enter any other portion of the refuge. DATES..., Beacon 42, and Bio Lab; Black Point Wildlife Drive; public access roads; parking lots; overlooks; and... the boat ramps at Bairs Cove, Beacon 42, and Bio Lab. If public comments were to provide substantive...

  3. Incites Analysis of DOE National Laboratories Data for: 1990-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Shelby

    2017-07-24

    This presentation analyzes the patterns of DOE, peer publications. The data received shows which labs are leading in total peer publications and which labs are leading in peer publications under each subject.

  4. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  5. Acquiring and Sharing Knowledge for Developing SCA Based Waveforms on SDRs

    DTIC Science & Technology

    2010-09-01

    H. Ozer, A. Zumbul TUBITAK , Gebze TURKEY hozer@uekae.tubitak.gov.tr ABSTRACT The NATO Research and Technology Organization (RTO) / Information...some of the important results achieved by national research labs in Germany (FKIE), Turkey ( TUBITAK ), and Norway (FFI) during the tenure of this Group...results achieved by national research labs in Germany (FKIE), Turkey ( TUBITAK ), and Norway (FFI) during the tenure of this Group. Firstly, we present

  6. HEPLIB `91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  7. HEPLIB 91: International users meeting on the support and environments of high energy physics computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstad, H.

    The purpose of this meeting is to discuss the current and future HEP computing support and environments from the perspective of new horizons in accelerator, physics, and computing technologies. Topics of interest to the Meeting include (but are limited to): the forming of the HEPLIB world user group for High Energy Physic computing; mandate, desirables, coordination, organization, funding; user experience, international collaboration; the roles of national labs, universities, and industry; range of software, Monte Carlo, mathematics, physics, interactive analysis, text processors, editors, graphics, data base systems, code management tools; program libraries, frequency of updates, distribution; distributed and interactive computing, datamore » base systems, user interface, UNIX operating systems, networking, compilers, Xlib, X-Graphics; documentation, updates, availability, distribution; code management in large collaborations, keeping track of program versions; and quality assurance, testing, conventions, standards.« less

  8. A versatile scalable PET processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less

  9. Sandia National Laboratories: News: Publications

    Science.gov Websites

    Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Report Economic Impact Environmental Reports Fact Sheets Search Sandia Publications Labs Accomplishments of the Labs, highlighting new programs, technologies, and community activities. Economic Impact

  10. DNA Microarray Wet Lab Simulation Brings Genomics into the High School Curriculum

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm; Zanta, Carolyn A.; Heyer, Laurie J.; Kittinger, Ben; Gabric, Kathleen M.; Adler, Leslie

    2006-01-01

    We have developed a wet lab DNA microarray simulation as part of a complete DNA microarray module for high school students. The wet lab simulation has been field tested with high school students in Illinois and Maryland as well as in workshops with high school teachers from across the nation. Instead of using DNA, our simulation is based on pH…

  11. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.

  12. Microgravity Acceleration Measurement System (MAMS) Flight Configuration Verification and Status

    NASA Technical Reports Server (NTRS)

    Wagar, William

    2000-01-01

    The Microgravity Acceleration Measurement System (MAMS) is a precision spaceflight instrument designed to measure and characterize the microgravity environment existing in the US Lab Module of the International Space Station. Both vibratory and quasi-steady triaxial acceleration data are acquired and provided to an Ethernet data link. The MAMS Double Mid-Deck Locker (DMDL) EXPRESS Rack payload meets all the ISS IDD and ICD interface requirements as discussed in the paper which also presents flight configuration illustrations. The overall MAMS sensor and data acquisition performance and verification data are presented in addition to a discussion of the Command and Data Handling features implemented via the ISS, downlink and the GRC Telescience Center displays.

  13. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  14. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  15. Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.

  16. Developing a Radiation Protection Hub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, Nolan E

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have beenmore » disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.« less

  17. Experience with ActiveX control for simple channel access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-05-15

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls.

  18. Indoor Microgravity Survey

    ERIC Educational Resources Information Center

    Secco, Richard A.; Sukara, Reynold E.

    2016-01-01

    There are many lab exercises for upper-level school students and freshman undergraduates to measure the value of the local acceleration due to gravity ("g") near Earth's surface. In these exercises, the value of "g" is usually taken to be constant. The approach is often based on measuring the period of a pendulum that is…

  19. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    DTIC Science & Technology

    1990-01-01

    induced by decalin exposure are processes, accelerated apoptosis has been describedin renal tissue with hydronephrosis (6), during the clearly intact...experimental hydronephrosis in topathology and cell proliferation induced by 2,2.4- the rat. Lab. Invest. 56(3): 273-281. trimethylpentane in the

  20. Little Green Man Physics

    ERIC Educational Resources Information Center

    Higbie, J.

    2013-01-01

    We have frequently enhanced our department's laboratory experiment involving standing transverse waves in a taut horizontal cord. In addition to the standard experiment, students in these labs investigate the surprising concept that the acceleration of a pulse in a chain hanging vertically is a constant and is equal to half the acceleration…

  1. Insights: Future of the national laboratories. National Renewable Energy Laboratory. [The future of the National Renewable Energy (Sources) Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.

    Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less

  2. Quantum Materials at the Nanoscale - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Stephen Lance

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16 papers in Nature, Nature Physics, Nature Materials, or Nature Communications; 4 papers in Science, and 8 papers in Applied Physics Letters. In this report, we provide some key highlights of the collaborative projects in which the QMN cluster members have been involved since 2007.« less

  3. Evaluation of notched wedge pavement joints vs. traditional butt joints for use in Connecticut.

    DOT National Transportation Integrated Search

    2008-01-01

    Following up on earlier research performed by several states and the : National Center for Asphalt Technology (NCAT) at Auburn University, the : University of Connecticuts Advanced Pavement Lab (CAP Lab) was : charged with evaluating the longitudi...

  4. America Calls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Born 75 years ago in the Manhattan Project that helped to end World War II, the national lab established at Oak Ridge, Tennessee, still serves national missions in energy, scientific discovery and national security today.

  5. Recent skyshine calculations at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyarenko, P.

    1997-12-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshinemore » dose maps.« less

  6. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  7. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-03-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  8. The Fiftieth Anniversary of Brookhaven National Laboratory: A Turbulent Time

    NASA Astrophysics Data System (ADS)

    Bond, Peter D.

    2018-06-01

    The fiftieth anniversary year of Brookhaven National Laboratory was momentous, but for reasons other than celebrating its scientific accomplishments. Legacy environmental contamination, community unrest, politics, and internal Department of Energy issues dominated the year. It was the early days of perhaps the most turbulent time in the lab's history. The consequences resulted in significant changes at the lab, but in addition they brought a change to contracts to manage the Department of Energy laboratories.

  9. National Labs Host Classroom Ready Energy Educational Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to take research to the classroom. The DOE ACTS program is designed for science and math teachers seeking an independent research experience with a mentor scientist at a DOE National Laboratory to serve as technical leaders and agents of positive change in their local, regional and national communities. (www.scied.science.doe.gov/scied/ACTS/about.htm) The National Labs developed education materials and outreach combined with DOE ACTS are several small steps in the right direction. That is, a small step toward impacting and influencing thousands of youth across the nation (our future workforce) as only teachers can do. (www.rne2ew.org http://www1.eere.energy.gov/education/)

  10. Take a Trip Around a 3D Printing Lab (360)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing has changed the way the world thinks about manufacture and design. Scientists and researchers at Lawrence Livermore National Lab are using a number of 3D printing processes to experiment with unique combinations of plastic, metal, and ceramics.

  11. Celebrating 75 years of research

    USDA-ARS?s Scientific Manuscript database

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  12. Laser-driven particle acceleration for radiobiology and radiotherapy: where we are and where we are going

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio

    2017-05-01

    Radiation therapy of tumors progresses continuously and so do devices, sharing a global market of about $ 4 billions, growing at an annual rate exceeding 5%. Most of the progress involves tumor targeting, multi-beam irradiation, reduction of damage on healthy tissues and critical organs, dose fractioning. This fast-evolving scenario is the moving benchmark for the progress of the laser-based accelerators towards clinical uses. As for electrons, both energy and dose requested by radiotherapy are available with plasma accelerators driven by lasers in the power range of tens of TW but several issues have still to be faced before getting a prototype device for clinical tests. They include capability of varying electron energy, stability of the process, reliability for medical users. On the other side hadron therapy, presently applied to a small fraction of cases but within an exponential growth, is a primary option for the future. With such a strong motivation, research on laser-based proton/ion acceleration has been supported in the last decade in order to get performances suitable to clinical standards. None of these performances has been achieved so far with laser techniques. In the meantime a rich crop of data have been obtained in radiobiological experiments performed with beams of particles produced with laser techniques. It is quite significant however that most of the experiments have been performed moving bio samples to laser labs, rather moving laser equipment to bio labs or clinical contexts. This give us the measure that laser community cannot so far provide practical devices usable by non-laser people.

  13. Program Processes Thermocouple Readings

    NASA Technical Reports Server (NTRS)

    Quave, Christine A.; Nail, William, III

    1995-01-01

    Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.

  14. National Programs | FNLCR Staging

    Cancer.gov

    The Frederick National Lab (FNL) is a shared national resource that offers access to a suite of advanced biomedical technologies, provides selected science and technology services, and maintains vast repositories of research materials available to bi

  15. Simplex Optimization of Headspace-Enrichment Conditions of Residual Petroleum Distillates Used by Arsonists

    ERIC Educational Resources Information Center

    Warnke, Molly M.; Erickson, Angela E.; Smith, Eugene T.

    2005-01-01

    A forensic project is described that is suitable for an undergraduate instrumental methods lab. Accelerants commonly used by arsonists are analyzed by static headspace enrichment followed by gas chromatography. The conditions used for headspace enrichment (e.g., time and temperature) are known to influence the distribution of hydrocarbons…

  16. Galilean Tracks in the Physics Lab

    ERIC Educational Resources Information Center

    Hellman, Walter

    2011-01-01

    Variations of Galileo's famous track experiments in acceleration are commonly performed in high school and college. The purpose of this article is to present a sequence of three low-tech basic kinematics experiments using Galilean tracks that can be set up extremely quickly and yet generally yield excellent results. A low-cost construction method…

  17. 76 FR 62869 - Request for Information: Building A 21st Century Bioeconomy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ..., and agriculture, and accelerate the pace of discovery in fundamental life sciences research. (2... predictions of protein function for genes? Moving life sciences breakthroughs from lab to market: It is a challenge to commercialize advances in the life sciences because of the risk, expense, and need for many...

  18. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  19. Evolution of the Generic Lock System at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Bevins; Yves Roblin

    2003-10-13

    The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added formore » accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.« less

  20. Acceptance Tests for AMS Radiocarbon Measurements at iThemba LABS, Gauteng, South Africa

    NASA Astrophysics Data System (ADS)

    Mbele, Vela L.; Mullins, Simon M.; Winkler, Stephan R.; Woodborne, Stephan

    The accelerator mass spectrometer was commissioned recently at the iThemba LABS 6 MV tandem accelerator. Improvements in the vacuum system, requiring procurement of cryo-pumps and the reducing the tank pressure of the N2 + CO2 insulation gas mixture below the level used for IBA measurements, were necessary. This resulted in the reduction of the nitrogen background and improved the resolution of 14C from 14N background in the ionisation chamber. The nitrogen was leaking to the stripping canal because of inadequate sealing. The analysing magnet was scaled to detect C3+ ions, at 3 MV terminal potential. The first sensible spectra allowed for the pin-pointing of many persistent issues. This resulted in measurements with a precision better than 1 pMC, and current blank levels correspond to 12 half-lives of 14C or ∼68000 years. The radiocarbon sample preparation laboratory has reached production status. A brief outlook of the work towards the implementation of the measurement and chemical preparation protocols for radionuclides 10Be and 26Al is also summarised in the conclusion

  1. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, Joseph Maurice

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  2. Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2008-11-01

    We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.

  3. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Kneisel, P.; Ciovati, G.; Dhakal, P.; Saito, K.; Singer, W.; Singer, X.; Myneni, G. R.

    2015-02-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. Large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.

  4. Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities

    DOE PAGES

    Kneisel, P.; Ciovati, G.; Dhakal, P.; ...

    2014-12-01

    As a result of collaboration between Jefferson Lab and niobium manufacturer Companhia Brasileira de Metalurgia e Mineração (CBMM), ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large-grain high purity niobium was fabricated and successfully tested at Jefferson Lab in 2004. This work triggered research activities in other SRF laboratories around the world. The large-grain (LG) niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this technology. Many single cell cavities mademore » from material of different suppliers have been tested successfully and several multi-cell cavities have shown performances comparable to the best cavities made from standard fine-grain niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of E acc=45.6 MV/m. The quality factor of those cavities was also higher than that of fine-grain (FG) cavities processed with the same methods. Such performance levels push the state-of-the art of SRF technology and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and highlights some of the differences compared to standard FG material and opportunities for further developments.« less

  5. Developing Strategies to Block Beta-Catenin Action in Signaling and Cell Adhesion During Carcinogenesis

    DTIC Science & Technology

    2000-07-01

    identified by our collaborators in the Clevers lab in a two-hybrid screen for interactors with human 13-catenin. We have examined whether Brahma plays...Army and other research ongoing in my lab . I have thus acknowledged this support in several additional publications produced during this period, which...small increases in total Arm lead Peifer lab for helpful discussions. This work was supported by grants from the National Institutes of Health (GM

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Schlegel, David

    Lawrence Berkeley National Laboratory physicist and dark energy hunter David Schlegel chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer, June 22, 2011. Their conversation is the first installment of "Sit Down With Sabin," a weekly conversation hosted by Russell. Over the course of five conversations with Berkeley Lab staff this summer, Russell will explore the ups and downs of innovative science — all without the aid of PowerPoint slides. Brought to you by Berkeley Lab Public Affairs.

  7. Experimentally Building a Qualitative Understanding of Newton's Second Law

    NASA Astrophysics Data System (ADS)

    Gates, Joshua

    2014-12-01

    Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving1 and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for lab activities addressing the functional relationship among net force, mass, and acceleration, the qualitative understanding of the connection between forces and acceleration can still be lacking,2 leading to poor performance in problem solving and in assessments such as the Force Concept Inventory3 and Force and Motion Conceptual Evaluation.4 There is a need for strong conceptual understanding of the relationships between net force and acceleration and between acceleration and velocity in order to effectively address common force-motion misconceptions;5 there is a large literature concerning student understanding of force and motion.6

  8. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  9. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less

  10. Crack Velocities in Natural Rubber.

    DTIC Science & Technology

    1982-05-01

    vulcanized natural rubber (3). The surprisingly low value for natural rubber was attributed to highly anisotropic elastic behavior at high strains...Dr. R.L. Rabie Hercules Incorporated WX-2, MS-952 Alleghany Ballistic Lab Los Alamos National Lab. P.O. Box 210 P.O. Box 1663 Washington, D.C. 21502

  11. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  12. Contracting with the Frederick National Lab | FNLCR Staging

    Cancer.gov

    Our Acquisitions Directorate supports the national laboratory with high quality products and services to achieve its national mission. In addition to engaging large subcontractors, we are also committed to working with small businesses, minority- and

  13. Using the Wii Balance Board in Elevator Physics

    NASA Astrophysics Data System (ADS)

    Mullenax, Donna

    2013-04-01

    The Wii Balance Board is a popular accessory to the wireless video system the Wii. In the past few years, the Wii Remote™ and Wii Balance Board accessories to the Wii have made their way into physics labs as sensors to measure force and acceleration. In most introductory physics courses, the forces experienced while on an elevator are discussed and calculated. The Wii Balance Board is a very good tool for having students measure the forces experienced on an elevator and calculating the acceleration of the elevator when it starts to move and then while it is coming to a stop.

  14. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    DOE PAGES

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...

    2014-10-15

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  15. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    NASA Astrophysics Data System (ADS)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  16. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less

  17. Physician capability to electronically exchange clinical information, 2011.

    PubMed

    Patel, Vaishali; Swain, Matthew J; King, Jennifer; Furukawa, Michael F

    2013-10-01

    To provide national estimates of physician capability to electronically share clinical information with other providers and to describe variation in exchange capability across states and electronic health record (EHR) vendors using the 2011 National Ambulatory Medical Care Survey Electronic Medical Record Supplement. Survey of a nationally representative sample of nonfederal office-based physicians who provide direct patient care. The survey was administered by mail with telephone follow-up and had a 61% weighted response rate. The overall sample consisted of 4326 respondents. We calculated estimates of electronic exchange capability at the national and state levels, and applied multivariate analyses to examine the association between the capability to exchange different types of clinical information and physician and practice characteristics. In 2011, 55% of physicians had computerized capability to send prescriptions electronically; 67% had the capability to view lab results electronically; 42% were able to incorporate lab results into their EHR; 35% were able to send lab orders electronically; and, 31% exchanged patient clinical summaries with other providers. The strongest predictor of exchange capability is adoption of an EHR. However, substantial variation exists across geography and EHR vendors in exchange capability, especially electronic exchange of clinical summaries. In 2011, a majority of office-based physicians could exchange lab and medication data, and approximately one-third could exchange clinical summaries with patients or other providers. EHRs serve as a key mechanism by which physicians can exchange clinical data, though physicians' capability to exchange varies by vendor and by state.

  18. 360° Algae Lab Tour at NREL - Narrated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Nick

    Explore the National Renewable Energy Laboratory’s algae lab as researcher Nick Sweeney takes you on a 360-degree tour of the algal biofuels research facility. Discover how NREL is growing algae to learn how it can be used as a renewable source of food, fuels, and other products.

  19. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema

    Gerry Stokes; Jim Misewich; Caradonna, Peggy; Sullivan, John; Olsen, Jim

    2018-04-16

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  20. Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study

    EPA Science Inventory

    This study involves collaboration of four national laboratories/centers of the U.S. Environmental Protection Agency (EPA), as well as scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns related to...

  1. 77 FR 11106 - Proposed Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... register with PAMS to view the proposals that were submitted. They will also be able to maintain a minimal... research project. Lab technical proposals must be completed by DOE National Laboratories in order to... Office of Science to submit a proposal for funding through an interagency agreement. Neither lab nor...

  2. Successful Transportation Lab-Industry Collaborations Spotlighted at Summit

    Science.gov Websites

    hosted leaders from the business, government, and research communities at the EERE National Lab Impact prime examples of these win-win partnerships, with major automakers, component manufacturers, and fuel with a keynote address by Ford Motor Company Vice President of Research and Advanced Engineering Ken

  3. Special Report: Hazardous Wastes in Academic Labs.

    ERIC Educational Resources Information Center

    Sanders, Howard J.

    1986-01-01

    Topics and issues related to toxic wastes in academic laboratories are addressed, pointing out that colleges/universities are making efforts to dispose of hazardous wastes safely to comply with tougher federal regulations. University sites on the Environmental Protection Agency Superfund National Priorities List, costs, and use of lab packs are…

  4. Science Labs: Beyond Isolationism

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2007-01-01

    A national study released in 2005 concluded that most high school students are not exposed to high quality science labs because of these reasons: (a) poor school facilities and organizations; (b) weak teacher preparation; (c) poor design; (d) cluttered state standards; (e) little representation on state tests; and (f) scarce evidence of what…

  5. 360 Video Tour of 3D Printing Labs at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  6. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  7. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  8. Final Report on A. R. A. P.’s Model for the Atmospheric Marine Environment

    DTIC Science & Technology

    1982-01-01

    Around Airports," NASA CR-2752, prepared by A.R.A.P. for Marshall Space Center. 25. Brost , R.A. and Wyngaard, N.C., 1978: "A Model Study of the...FRANCE DR. R. A. BROST NCAR P.O. BOX 3000 BOULDER, CO 80307 JOHNS HOPKINS UNIV. APPLIED PHYSICS LAB R.E. GIBSON LIBRARY JOHNS HOPKINS ROAD...RESEARCH LABS BOULDER, CO 80303 DR. GEORGE L. HELLOR GEOPHYSICAL FLUID DYNAMICS LAE PRINCETON, NJ 08540 DR. TETSUJI YAMADA LOS ALAMOS NATIONAL LAB

  9. Moving Phones Tick Slower: Creating an Android App to Demonstrate Time Dilation

    ERIC Educational Resources Information Center

    Underwood, Bret; Zhai, Yunxiao

    2016-01-01

    Smartphones and tablets are packed with sensors that allow us to take experimental data, essentially making them mobile physics labs. Apps exist that make it easy to capture and analyze data from these sensors, allowing users to study diverse phenomena such as free fall acceleration, the speed of sound,radioactivity, and many others. Commonly, the…

  10. Micro-Bubble Experiments at the Van de Graaff Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.

    In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less

  11. Commerce Lab - A program of commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, J.; Atkins, H. L.; Williams, J. R.

    1985-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  12. Internships and Fellowships | FNLCR Staging

    Cancer.gov

    The Frederick National Lab hasmany exciting opportunities for scientists and biotechnology professionalsthrough numerous post-doctoral and pre-doctoral fellowship positions sponsored by the National Cancer Institute (NCI) at Frederick. In

  13. Technology | FNLCR Staging

    Cancer.gov

    The Frederick National Lab develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.

  14. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    NASA Astrophysics Data System (ADS)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  15. Leidos Biomed Teams with NCI, DOE, and Argonne National Lab to Support National X-Ray Resource | Poster

    Cancer.gov

    Scientists are making progress in understanding a bleeding disorder caused by prescription drug interactions, thanks to a high-tech research facility involving two federal national laboratories, Argonne and Frederick.

  16. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  17. KSC-2011-3465

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the experiment being conducted in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  18. KSC-2011-3470

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- A research laboratory is prepared for students to perform hands-on activities in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  19. Measuring the Density of Liquid Targets in the SeaQuest Experiment

    NASA Astrophysics Data System (ADS)

    Xi, Zhaojia; SeaQuest/E906 Collaboration

    2015-10-01

    The SeaQuest (E906) experiment, using the 120 GeV proton beam from the Main Injector at the Fermi National Accelerator Lab (FNAL), is studying the quark and antiquark structure of the nucleon using the Drell-Yan process. Based on the cross section ratios, σ (p + d) / σ (p + p) , SeaQuest will extract the Bjorken-x dependnce of the d / u ratio. The measurement will cover the large region (x > 0 . 25) with improved accuracy compared to the previous E866/Nusea experiment. Liquid D2 (LD2) and Liquid H2 (LH2) are the targets used in the SeaQuest experiment. The densities of LD2 and LH2 targets are two important quantities for the determination of the d / u ratio. We measure the pressure and temperature inside the flasks, from which the densities are calculated. The method, measurements and results of this study will be presented. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  20. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  1. Stereotactic radiosurgery for trigeminal neuralgia utilizing the BrainLAB Novalis system.

    PubMed

    Zahra, Hadi; Teh, Bin S; Paulino, Arnold C; Yoshor, Daniel; Trask, Todd; Baskin, David; Butler, E Brian

    2009-12-01

    Stereotactic radiosurgery (SRS) is one of the least invasive treatments for trigeminal neuralgia (TN). To date, most reports have been about Cobalt-based treatments (i.e., Gamma Knife) with limited data on image-guided stereotactic linear accelerator treatments. We describe our initial experience of using BrainLAB Novalis stereotactic system for the radiosurgical treatment of TN. A total of 20 patients were treated between July 2004 and February 2007. Each SRS procedure was performed using the BrainLAB Novalis System. Thin cuts MRI images of 1.5 mm thickness were acquired and fused with the simulation CT of each patient. Majority of the patients received a maximum dose of 90 Gy. The median brainstem dose to 1.0 cc and 0.1 cc was 2.3 Gy and 13.5 Gy, respectively. In addition, specially acquired three-dimensional fast imaging sequence employing steady-state acquisition (FIESTA) MRI was utilized to improve target delineation of the trigeminal proximal nerve root entry zone. Barrow Neurological Index (BNI) pain scale for TN was used for assessing treatment outcome. At a median follow-up time of 14.2 months, 19 patients (95%) reported at least some improvement in pain. Eight (40%) patients were completely pain-free and stopped all medications (BNI Grade I) while another 2 (10%) patients also stopped medications but reported occasional pain (BNI Grade II). Another 2 (10%) patients reported no pain and 7 (35%) patients only occasional pain while continuing medications, BNI Grade IIIA and IIIB, respectively. Median time to pain control was 8.5 days (range: 1-70 days). No patient reported severe pain, worsening pain or any pain not controlled on their previously taken medication. Intermittent or persistent facial numbness following treatments occurred in 35% of patients. No other complications were reported. Stereotactic radiosurgery using the BrainLAB Novalis system is a safe and effective treatment for TN. This information is important as more centers are obtaining image-guided stereotactic-based linear accelerators capable of performing radiosurgery.

  2. Successes and short comings in four years of an international external quality assurance program for animal Influenza surveillance

    USDA-ARS?s Scientific Manuscript database

    The US National institutes of Health-Centers of Excellence for Influenza Research and Surveillance is a research consortium that funds numerous labs worldwide to conduct influenza A surveillance in diverse animal species. There is no harmonization of testing procedures among these labs; therefore an...

  3. SOUTH WING, MTR661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH WING, MTR-661. INTERIOR DETAIL INSIDE LAB ROOM 131. CAMERA FACING NORTHEAST. NOTE CONCRETE BLOCK WALLS. SAFETY SHOWER AND EYE WASHER AT REAR WALL. INL NEGATIVE NO. HD46-7-2. Mike Crane, Photographer, 2/2005. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. National Lab Science Day | News

    Science.gov Websites

    Laboratory news From lab leadership Submit content - login required Provide feedback Subscribe to our officer at Fermilab, guided Secretary Moniz and members of the U.S. Senate and House on virtual tours of virtual tour Particle detector tours Collisions in 3-D DOE facilities Dark matter and dark energy Particle

  5. Meeting in San Francisco: Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study

    EPA Science Inventory

    This study involves the collaboration of the four national laboratories of the U.S. Environmental Protection Agency (EPA), as well as other scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns rela...

  6. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s “Four Lab Study” involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological...

  7. Berkeley Lab - Lawrence Berkeley National Laboratory

    Science.gov Websites

    nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10

  8. A CAT scan for cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  9. What Students Really Think about Doing Research

    ERIC Educational Resources Information Center

    Bernard, Warren

    2011-01-01

    There are many types of inquiry activities out there: Demonstrations, guided or scaffolded inquiry labs, open- or free-inquiry labs, and problem-based or project-based learning activities are all staples in science education. The importance of inquiry is highlighted in such documents as the National Science Education Standards (NRC 1996) and the…

  10. Traileka Glacier X-Stack. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkar, Shekhar

    2015-09-01

    The XStack Traleika Glacier (XSTG) project was a three-year research award for exploring a revolutionary exascale-class machine software framework. The XSTG program, including Intel, UC San Diego, Pacific Northwest National Lab, UIUC, Rice University, Reservoir Labs, ET International, and U. Delaware, had major accomplishments, insights, and products resulting from this three-year effort.

  11. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  12. 01-NIF Dedication: George Miller

    ScienceCinema

    George Miller

    2017-12-09

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  13. Employee Spotlight: Baris Key

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Baris

    2014-05-29

    Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.

  14. Employee Spotlight: Baris Key

    ScienceCinema

    Key, Baris

    2018-04-16

    Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.

  15. US standards lab comes under fire

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2014-09-01

    America's National Institute of Standards and Technology is accused of bowing to the nation's spies in supporting an encryption algorithm that appears to contain a "back door", as Edwin Cartlidge reports.

  16. 01-NIF Dedication: George Miller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Miller

    2009-07-02

    The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.

  17. New Webpage Brings Increased Visibility to Frederick National Laboratory Subcontracting Opportunities | Frederick National Laboratory for Cancer Research

    Cancer.gov

    A new webpage will now make it easier for small businesses and others to find and apply for Frederick National Laboratory for Cancer Research business opportunities. The new solicitations page, which launched on the Frederick National Lab website Aug

  18. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Dotson; M. Drury; R. May

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuablemore » for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.« less

  19. Environmental Report 1994

    DOT National Transportation Integrated Search

    1995-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  20. Environmental Report 1995

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  1. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2017-12-09

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  2. Environmental Report 1993

    DOT National Transportation Integrated Search

    1994-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  3. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  4. Advanced LabVIEW Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less

  5. Bioengineering/Biophysicist Post-doctoral Fellow | Center for Cancer Research

    Cancer.gov

    A post-doctoral fellow position is available in the Tissue Morphodynamics Unit headed by Dr. Kandice Tanner at the National Cancer Institute. The Tanner lab combines biophysical and cell biological approaches to understand the interplay between tissue architecture and metastasis. We use a combination of imaging modalities, cell biology and animal models. It is expected that as a member of this lab, one will have an opportunity to be exposed to all these areas. We value a vibrant and collaborative environment where lab members share ideas, reagents and expertise and want to work on fundamental problems in the establishment of metastatic lesions. Our lab is located in the NIH main campus in Bethesda. The research facilities at NIH are outstanding and the lab has state-of-the-art equipment such as multi-photon and confocal microscopes, FACS facilities and animal vivarium.

  6. 75 FR 28236 - Marine Mammals; File No. 13602

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XK54 Marine Mammals; File No. 13602 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... hereby given that Dr. Terrie Williams, Long Marine Lab, Institute of Marine Sciences, University of...

  7. 76 FR 7823 - Marine Mammals; File No. 13602

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XK54 Marine Mammals; File No. 13602 AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... that Dr. Terrie Williams, Long Marine Lab, Institute of Marine Sciences, University of California at...

  8. Quench studies of ILC cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  9. diversity | News

    Science.gov Websites

    , 2018 | Mario Lucero As a group, the Asian/Pacific community at Fermilab is the largest ethnic group, at schoolers April 30, 2018 Jose de la O leads a group on a tour of the lab's accelerators. Photo: Reidar Hahn only about self-doubt in one's abilities, but the thrill of making a discovery and being the one to

  10. Low-Torque Seal Development

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Borowski, Richard

    2009-01-01

    The EcoTurn Class K production prototypes have passed all AAR qualification tests and received conditional approval. The accelerated life test on the second set of seals is in progress. Due to the performance of the first set, no problems are expected.The seal has demonstrated superior performance over the HDL seal in the test lab with virtually zero torque and excellent contamination exclusion and grease retention.

  11. A Personal Perspective on Triangle Universities Nuclear Laboratory Development

    NASA Astrophysics Data System (ADS)

    Clegg, Thomas B.

    2011-10-01

    Nuclear physics research in NC began seriously in 1950 when Henry Newson and his colleagues at Duke attracted support for a 4 MeV Van de Graaff accelerator with which they grew their doctoral training program. The lab's scientific achievements also grew, including the discovery in 1966 of fine structure of nuclear analog states. By then UNC and NC State had attracted Eugen Merzbacher and Worth Seagondollar who, with Newson, brought more faculty to work at an enlarged three-university, cooperative lab. Launched at Duke in 1967 with a 30 MeV Cyclograff accelerator, and subsequently equipped with a polarized H and D ion source and polarized H and ^3He targets, an extensive program in light-ion and neutron physics ensued. Faculty interest in electromagnetic interactions led to development since 2001 of TUNL's HIγS facility to produce intense 1-100 MeV polarized photon beams with small energy spread. Photonuclear reaction studies there today are producing results of unmatched quality. These 60 years of nuclear physics research have produced ˜250 doctoral graduates, many of whom have gone on to very distinguished careers. A personal perspective on these activities will be presented.

  12. Rotational microfluidic motor for on-chip microcentrifugation

    NASA Astrophysics Data System (ADS)

    Shilton, Richie J.; Glass, Nick R.; Chan, Peggy; Yeo, Leslie Y.; Friend, James R.

    2011-06-01

    We report on the design of a surface acoustic wave (SAW) driven fluid-coupled micromotor which runs at high rotational velocities. A pair of opposing SAWs generated on a lithium niobate substrate are each obliquely passed into either side of a fluid drop to drive rotation of the fluid, and the thin circular disk set on the drop. Using water for the drop, a 5 mm diameter disk was driven with rotation speeds and start-up torques up to 2250 rpm and 60 nN m, respectively. Most importantly for lab-on-a-chip applications, radial accelerations of 172 m/s2 was obtained, presenting possibilities for microcentrifugation, flow sequencing, assays, and cell culturing in truly microscale lab-on-a-chip devices.

  13. America's Lab Report: Investigations in High School Science

    ERIC Educational Resources Information Center

    Singer, Susan R., Ed.; Hilton, Margaret L., Ed.; Schweingruber, Heidi A., Ed.

    2005-01-01

    Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation s high schools as a context for learning…

  14. LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  15. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ‘Four Lab Study’, involved participation of scientists and engineers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from water industry and academia. The study evaluated tox...

  16. Using National Instruments LabVIEW[TM] Education Edition in Schools

    ERIC Educational Resources Information Center

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  17. 360 Video Tour of 3D Printing Labs at LLNL

    ScienceCinema

    None

    2018-01-16

    Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.

  18. PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL

    Science.gov Websites

    ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California

  19. Differential workload calculation and its impact on lab science instruction at the community college level

    NASA Astrophysics Data System (ADS)

    Boyd, Beth Nichols

    The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based instruction, many community colleges assign less value to the time spent in science lab than in lecture in workload calculations. This discrepancy is inconsistent with both current state and nation-wide goals of science excellence and the standards set by the American Chemical Society (2009) and the American Association of Physics Teachers (2002). One implication of this differential lab-loading policy is that the science instructors must teach more hours per week to make the same workload as their colleagues in other disciplines which have no formal laboratory activities. Prior to this study, there was no aggregate data regarding the extent of this policy at the community college level nor of its possible impact upon instruction. The input of full-time two-year college members of four different professional science organizations was solicited and from their responses, it is clear that differential loading of lab hours is common and widely variable. A majority of the respondents to this study had their hours in lab assigned less credit than their hours in lecture, with multiple perceived impacts upon lab preparation, assistance, revision, and follow-up activities. In combination with open-ended comments made by study participants, the results suggest that science instructors do perceive impacts upon their ability to teach science labs in a pedagogically current and challenging manner when their hours spent in lab instruction are counted for less than their hours in lecture. It is hoped that the information from this study will be used to implement improvements in the working conditions needed to advance science instruction and student science outcomes at the community college level.

  20. Ion Sources, Preinjectors and the Road to EBIS (459th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, James

    2010-07-21

    To meet the requirements of the scientific programs of the Relativistic Heavy Ion Collider and the NASA Space Radiation Lab, BNL's Collider-Accelerator Department needs a variety of ion sources. Although these sources are a relatively small and inexpensive part of an accelerator, they can have a big impact on the machine's overall performance. For the 459th Brookhaven Lecture, James Alessi will describe C-AD's long history of developing state-of-the-art ion sources for its accelerators, and its current process for source and pre-injector development. He will follow up with a discussion of the features and development status of EBIS, which, as themore » newest source and preinjector, is in the final stages of commissioning at the end of a five-year construction project.« less

  1. Fire Science Strategy: Resource Conservation and Climate Change

    DTIC Science & Technology

    2014-09-01

    SMOKE MANAGEMENT ISSUES: CONCLUSIONS—KEY RESEARCH/DEMONSTRATION GAPS COVER PHOTO: CHONG, JOEY 2011. USDA FOREST SERVICE. FORT JACKSON...Fire Science Program LiDAR Light Detection and Ranging LANL Los Alamos National Lab NASA National Aeronautics and Space Administration NCAR...entities include the National Aeronautics and Space Administration ( NASA ), EPA, National Center for Atmospheric Research (NCAR), National Institute of

  2. MOGO: Model-Oriented Global Optimization of Petascale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Shende, Sameer S.

    The MOGO project was initiated under in 2008 under the DOE Program Announcement for Software Development Tools for Improved Ease-of-Use on Petascale systems (LAB 08-19). The MOGO team consisted of Oak Ridge National Lab, Argonne National Lab, and the University of Oregon. The overall goal of MOGO was to attack petascale performance analysis by developing a general framework where empirical performance data could be efficiently and accurately compared with performance expectations at various levels of abstraction. This information could then be used to automatically identify and remediate performance problems. MOGO was be based on performance models derived from application knowledge,more » performance experiments, and symbolic analysis. MOGO was able to make reasonable impact on existing DOE applications and systems. New tools and techniques were developed, which, in turn, were used on important DOE applications on DOE LCF systems to show significant performance improvements.« less

  3. Environmental Report 1996 Volume 2

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  4. Environmental Report 1996 Volume 1

    DOT National Transportation Integrated Search

    1997-09-01

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  5. Environmental Report 1995, Volume 2

    DOT National Transportation Integrated Search

    1996-09-03

    This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...

  6. Evaluation of marginal gap of Ni-Cr copings made with conventional and accelerated casting techniques.

    PubMed

    Tannamala, Pavan Kumar; Azhagarasan, Nagarasampatti Sivaprakasam; Shankar, K Chitra

    2013-01-01

    Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Experimental design, in vitro study, lab settings. Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.

  7. "It takes a village" to raise research productivity: Impact of a Trauma Interdisciplinary Group for Research (TIGR) at an urban, Level 1 trauma center.

    PubMed

    Nesmith, Elizabeth G; Medeiros, Regina S; Ferdinand, Colville H B; Hawkins, Michael L; Holsten, Steven B; Dong, Yanbin; Zhu, Haidong

    2013-07-01

    Few interdisciplinary research groups include basic scientists, pharmacists, therapists, nutritionists, lab technicians, as well as trauma patients and families, in addition to clinicians. Increasing interprofessional diversity within scientific teams working to improve trauma care is a goal of national organizations and federal funding agencies like the National Institutes of Health (NIH). This paper describes the design, implementation, and outcomes of a Trauma Interdisciplinary Group for Research (TIGR) at a Level 1 trauma center as it relates to increasing research productivity, with specific examples excerpted from an on-going NIH-funded study. We utilized a pre-test/post-test design with objectives aimed at measuring increases in research productivity following a targeted intervention. A SWOT (strengths, weaknesses, opportunities, threats) analysis was used to develop the intervention which included research skill-building activities, accomplished by adding multidisciplinary investigators to an existing NIH-funded project. The NIH project aimed to test the hypothesis that accelerated biologic aging from chronic stress increases baseline inflammation and reduces inflammatory response to trauma (projected N=150). Pre/Post-TIGR data related to participant screening, recruitment, consent, and research processes were compared. Research productivity was measured through abstracts, publications, and investigator-initiated projects. Research products increased from N =12 to N=42; (~ 400%). Research proposals for federal funding increased from N=0 to N=3, with success rate of 66%. Participant screenings for the NIH-funded study increased from N=40 to N=313. Consents increased from N=14 to N=70. Lab service fees were reduced from $300/participant to $5/participant. Adding diversity to our scientific team via TIGR was exponentially successful in 1) improving research productivity, 2) reducing research costs, and 3) increasing research products and mentoring activities that the team prior to TIGR had not entertained. The team is now well-positioned to apply for more federally funded projects and more trauma clinicians are considering research careers than before.

  8. Study on Orbital Liquid Transport and Interface Behavior in Vane Tank

    NASA Astrophysics Data System (ADS)

    Kang, Qi; Rui, Wei

    2016-07-01

    Liquid propellant tank is used to supply gas free liquid for spacecraft as an important part of propulsion system. The liquid behavior dominated by surface tension in microgravity is obviously different with that on the ground, which put forward a new challenge to the liquid transport and relocation. The experiments which are investigated at drop tower in National Microgravity Lab have concentrated on liquid relocation following thruster firing. Considered that the liquid located at the bottom in the direction of the acceleration vector, a sphere scale vane tank is used to study the liquid-gas interface behaviors with different acceleration vector and different filling independently and we obtain a series of stable equilibrium interface and relocation time. We find that there is an obvious sedimentation in the direction of acceleration vector when fill rate greater than 2% fill. Suggestions have been put forward that outer vanes transferring liquid to the outlet should be fixed and small holes should be dogged at the vane close to the center post to improve the liquid flow between different vanes when B0 is greater than 2.5. The research about liquid transport alone ribbon vanes is simulated though software Flow3D. The simulation process is verified by comparing the liquid lip and vapor-liquid interface obtained from drop tower experiment and simulation result when fill rate is 15%. Then the influence of fill rate, numbers of vanes and the gap between vane and wall is studied through the same simulate process. Vanes' configurations are also changed to study the effect on the lip and liquid volume below some section. Some suggestions are put forward for the design of vanes.

  9. KSC-2011-3472

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  10. KSC-2011-3468

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  11. KSC-2011-3469

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  12. KSC-2011-3475

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Kennedy Center Director Bob Cabana speaks to the students after they participated in hands-on projects in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  13. KSC-2011-3473

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- A student participates in a hands-on activity as a laboratory technician assists in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  14. KSC-2011-3474

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  15. KSC-2011-3466

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  16. KSC-2011-3464

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a hands-on activity as a laboratory technician looks on in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  17. KSC-2011-3471

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  18. KSC-2011-3467

    NASA Image and Video Library

    2011-05-12

    Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin

  19. Interlaboratory Analytical Comparison of Fatty Acid Concentrations in Serum or Plasma

    PubMed Central

    Schantz, Michele M.; Powers, Carissa D.; Schleicher, Rosemary L.; Betz, Joseph M.; Wise, Stephen A.

    2016-01-01

    The National Institute of Standards and Technology, in collaboration with the National Institutes of Health Office of Dietary Supplements and the Centers for Disease Control and Prevention, is conducting an accuracy-based program for improving the comparability of individual fatty acid measurements in serum and plasma. To date, two exercises of the Fatty Acid Quality Assurance Program (FAQAP) were conducted with 11 and 14 participants, respectively. The results from these two exercises indicate the need to improve the within-lab repeatability and between-lab reproducibility thus providing more confidence in the comparability of fatty acid measurements. PMID:27662814

  20. ISS As A National Lab

    NASA Image and Video Library

    2017-07-17

    In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Leidos Biomed Teams with NCI, DOE, and Argonne National Lab to Support National X-Ray Resource | FNLCR Staging

    Cancer.gov

    Scientists are making progress in understanding a bleeding disorder caused by prescription drug interactions, thanks to a high-tech research facility involving two federal national laboratories, Argonne and Frederick. Miroslawa Dauter is a Senior Res

  2. Switching the JLab Accelerator Operations Environment from an HP-UX Unix-based to a PC/Linux-based environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcguckin, Theodore

    2008-10-01

    The Jefferson Lab Accelerator Controls Environment (ACE) was predominantly based on the HP-UX Unix platform from 1987 through the summer of 2004. During this period the Accelerator Machine Control Center (MCC) underwent a major renovation which included introducing Redhat Enterprise Linux machines, first as specialized process servers and then gradually as general login servers. As computer programs and scripts required to run the accelerator were modified, and inherent problems with the HP-UX platform compounded, more development tools became available for use with Linux and the MCC began to be converted over. In May 2008 the last HP-UX Unix login machinemore » was removed from the MCC, leaving only a few Unix-based remote-login servers still available. This presentation will explore the process of converting an operational Control Room environment from the HP-UX to Linux platform as well as the many hurdles that had to be overcome throughout the transition period (including a discussion of« less

  3. Demonstration of a magnetic refrigerator for high temperature superconducting electric power applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, R.W.; Zimm, C.B.

    1994-07-29

    This presentation/paper gives an overview of the Oak Ridge National Lab`s collaboration with private industry in developing electric power applications for magnetic refrigeraters which use high temperature superconductors. Highlighted is the lab`s general approach and technical progress towards advancing magnetic refrigeration technology in the 20-80 K range by specifically developing a prototype magnetic cryocooler with could provide 50 W cooling at 40 K. Included is magnet schematics; a listing of the basic components; load points; magnet charge and cooldown; vendor for induction alloying elements; and performance testing. The projects are in collaboration with Astronautics Corporation of America and included aremore » the proposed projects for FY 1995, key personnel, and the fiscal 1994 budgets.« less

  4. Kathleen Igo | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Directorate: Clinical Research Program Department or lab: Clinical Monitoring Research Program (CMRP) How many years have you worked at the Frederick National Laboratory? I am in my 7th year of employment.

  5. Frederick National Lab's Contribution to ATOM | FNLCR Staging

    Cancer.gov

    As a founding member organization of ATOM, the Frederick National Labwill contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive modelin

  6. National labs team to develop better, cheaper fuel cells | Argonne National

    Science.gov Websites

    electricity through the reaction of hydrogen and oxygen - their only emission being the water formed when the Electrochemical Energy Science CTRCenter for Transportation Research CRIChain Reaction Innovations CIComputation

  7. Tech Transfer Award Hails FNL's Role in Ebola Response | Frederick National Laboratory for Cancer Research

    Cancer.gov

    For speeding the delivery of an effective candidate vaccine during the largest Ebola outbreak in history, the Frederick National Lab (as Leidos Biomed) was cited along with National Institute of Allergy and Infectious Diseases and GlaxoSmithKline in

  8. Collaboration with Pharma Will Introduce Nanotechnologies in Early Stage Drug Development | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Lab has begun to assist several major pharmaceutical companies in adopting nanotechnologies in early stage drug development, when the approach is most efficient and cost-effective. For some time, the national lab’s Nanotechno

  9. A Nation Deceived: How Schools Hold Back America's Brightest Students. The Templeton National Report on Acceleration. Volume 2

    ERIC Educational Resources Information Center

    Colangelo, Nicholas, Ed.; Assouline, Susan G., Ed.; Gross, Miraca U. M., Ed.

    2004-01-01

    With support from the John Templeton Foundation, the editors held a Summit on Acceleration at The University of Iowa in May 2003. They invited distinguished scholars and educators from around the country to help them formulate a national report on acceleration. Together, they deliberated about what schools need to know in order to make the best…

  10. MTR WING, TRA604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. FIRST FLOOR PLAN. ENTRY LOBBY, MACHINE SHOP, INSTRUMENT SHOP, COUNTING ROOM, HEALTH PHYSICS LAB, LABS AND OFFICES, STORAGE, SHIPPING AND RECEIVING. BLAW-KNOX 3150-4-2, 7/1950. INL INDEX NO. 053-604-00-099-100008, REV. 7. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. U.S. Army’s Ground Vehicle Energy Storage R&D Programs & Goals

    DTIC Science & Technology

    2010-11-10

    STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Briefing to ARPA-E BEEST Meeting 14. ABSTRACT NA 15...Program Collaboration & DOD Customers DOE Material Developers Battery Developers ANL USABC National Labs Universities Industrial Developers...qualification for military lead acid batteries; 6 water baths, 31 circuits, 1 thermal chamber • Electrochemical Research & Analysis Lab (EARL

  12. DefenseLink.mil - Honoring the Pledge

    Science.gov Websites

    gone about the business of bringing them home one by one. They're honoring the nation's pledge to leave no one behind. Army Sgt. Jared Michalek, a JPAC recovery team noncommissioned officer, looks for any prepare bone and tooth samples for DNA extraction. The DNA lab is one of the oldest and largest labs in

  13. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  14. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  15. LLNL: Science in the National Interest

    ScienceCinema

    George Miller

    2017-12-09

    This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

  16. George E. Pake Prize Lecture

    NASA Astrophysics Data System (ADS)

    Murray, Cherry

    2005-03-01

    Over the past decade, a combination of the changes in the regulatory environment coupled with accelerating advances in technology caused the telecommunications industry to experience first an accelerated growth `boom' followed by a major `bust' - perhaps corresponding to the worst downturn in its history. Throughout this turbulent time, Bell Lab’s parent company, Lucent, has transformed itself from a vertically integrated 38B telecomm systems company with 157k employees in 11 separate businesses into a horizontally layered, 9B network infrastructure systems integrator with 32K employees and 100 major customers. My talk will relate to how Bell Labs Research has weathered the `perfect storm', survived, and still maintains its focus on the future of telecommunications science and technology.

  17. Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski

    2011-09-01

    Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Somemore » examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.« less

  18. Sneak Preview of April 25 Science at the Theater

    ScienceCinema

    Ho, Shirley

    2017-12-12

    Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catch us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.

  19. A collection of problems for physics teaching

    NASA Astrophysics Data System (ADS)

    Gröber, S.; Jodl, H.-J.

    2010-07-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching, project-oriented learning and the use of remote labs/web experiments. We focus on Rutherford's scattering experiment, electron diffraction, Millikan's experiment and the use of pendulums to measure the dependence of gravitational acceleration on latitude. The collection contains about 50 problems with 160 subtasks and solutions, altogether 100 pages. Structure, content, range and the added value of the problems are described. The whole collection can be downloaded for free from http://rcl.physik.uni-kl.de.

  20. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  1. Electromagnetic launchers for space applications

    NASA Technical Reports Server (NTRS)

    Schroeder, J. M.; Gully, J. H.; Driga, M. D.

    1989-01-01

    An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.

  2. National Labs and Nuclear Emergency Response

    NASA Astrophysics Data System (ADS)

    Budil, Kimberly

    2015-04-01

    The DOE national laboratories, and in particular the three NNSA national security laboratories, have long supported a broad suite of national nuclear security missions for the U.S. government. The capabilities, infrastructure and base of expertise developed to support the U.S. nuclear weapons stockpile have been applied to such challenges as stemming nuclear proliferation, understanding the nuclear capabilities of adversaries, and assessing and countering nuclear threats including essential support to nuclear emergency response. This talk will discuss the programs that are underway at the laboratories and the essential role that science and technology plays therein. Nuclear scientists provide expertise, fundamental understanding of nuclear materials, processes and signatures, and tools and technologies to aid in the identification and mitigation of nuclear threats as well as consequence management. This talk will also discuss the importance of direct engagement with the response community, which helps to shape research priorities and to enable development of useful tools and techniques for responders working in the field. National Labs and Nuclear Emergency Response.

  3. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  4. Student Internships

    Science.gov Websites

    Nanotechnologies (CINT) Los Alamos Neutron Science Center (LANSCE) National High Magnetic Field Laboratory (NHMFL Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Integrated Nanotechnologies Lujan Neutron Scattering Center National High Magnetic Field Lab Quantum

  5. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema

    Stephen Herring

    2017-12-09

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, lab

  6. Beverly Hayes | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Employee name: Bev Hayes Directorate: Management Operations Department or lab: Contracts and Acquisitions How many years have you worked at the Frederick National Laboratory? Four months going on one year! Job responsibilities: With the C&A manageme

  7. Estimates of effects of residual acceleration on USML-1 experiments

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    The purpose of this study effort was to develop analytical models to describe the effects of residual accelerations on the experiments to be carried on the first U.S. Microgravity Lab mission (USML-1) and to test the accuracy of these models by comparing the pre-flight predicted effects with the post-flight measured effects. After surveying the experiments to be performed on USML-1, it became evident that the anticipated residual accelerations during the USML-1 mission were well below the threshold for most of the primary experiments and all of the secondary (Glovebox) experiments and that the only set of experiments that could provide quantifiable effects, and thus provide a definitive test of the analytical models, were the three melt growth experiments using the Bridgman-Stockbarger type Crystal Growth Furnace (CGF). This class of experiments is by far the most sensitive to low level quasi-steady accelerations that are unavoidable on space craft operating in low earth orbit. Because of this, they have been the drivers for the acceleration requirements imposed on the Space Station. Therefore, it is appropriate that the models on which these requirements are based are tested experimentally. Also, since solidification proceeds directionally over a long period of time, the solidified ingot provides a more or less continuous record of the effects from acceleration disturbances.

  8. Frederick National Lab Aids Liberian Hospitals Through Project C.U.R.E. | Frederick National Laboratory for Cancer Research

    Cancer.gov

    When Project C.U.R.E.'s much-needed medical supplies and equipment arrive in Liberia, the Frederick National Lab’s Kathryn Kynvin is there to receive and distribute the donations to hospitals who continue to treat survivors of the most recent Ebola

  9. New National Cryo-EM Facility Provides Access to Cutting-Edge Technology for Cancer Research Community | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Cancer researchers nationwide now have access to the latest technology in the field of cryo-electron microscopy (cryo-EM)—the study of protein structures at atomic resolution—at the Frederick National Lab for Cancer Research. The emerging technol

  10. NREL: Speeches - Nation's Energy Future at Risk

    Science.gov Websites

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303 -275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy

  11. NREL: News - Technology Review Honors National Renewable Energy Lab

    Science.gov Websites

    Engineer as One of the World's Top Young Innovators Technology Review Honors National Renewable Technology Magazine Golden, Colo., May 20, 2002 The U.S. Department of Energy's National Renewable Energy Systems, has been chosen as one of the world's 100 Top Young Innovators by Technology Review, MIT's

  12. The Laser Institute of Technology for Education and Research at Camden County College: how it has changed and evolved after 20 years

    NASA Astrophysics Data System (ADS)

    Seeber, Fred P.

    2009-06-01

    The Laser Institute of Technology for Education and Research (LITER), nationally and internationally recognized in the field of Photonics, is a state of the art facility built in 1989 on the campus of Camden County College, Blackwood, NJ. This building consists of six high power laser labs, five low power laser labs and four fiber-optic laboratories. It also contains classrooms and research labs and the facility houses over $5,000,000 in equipment. This paper will discuss the evolution of this facility in regards to enrollment in its photonics programs, funding for new equipment purchases and maintaining and updating the facility in laser safety requirements as required by the ANSI Z-136.5 Standard for Educational Institutions. The paper will also discuss how OP-TEC (The National Center for Optics and Photonics Education) has helped to keep this Laser Institute at the cutting edge of photonics education.

  13. Development of a high average current polarized electron source with long cathode operational lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less

  14. Frederick National Lab Rallies to Meet Demand for Zika Vaccine | FNLCR Staging

    Cancer.gov

    The Frederick National Laboratory for Cancer Research’s Vaccine Pilot Plant, part of the Vaccine Clinical Materials Program (VCMP), is helping researchers produce investigational Zika vaccines for a new round of clinical trials. The plant has been

  15. Energy Secretary Rick Perry Visits Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Energy Secretary Rick Perry visited Oak Ridge National Laboratory on May 22, 2017. During his visit, the secretary not only toured the lab's premier research facilities, but also had some fun with two of its 3D-printed vehicles.

  16. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco; Harnett, Nicole; Jaffray, David

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance ofmore » all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less

  17. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2018-06-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  18. Lab Simulates Outdoor Algae Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Algae can be turned into renewable biofuel, which is why scientists want to discover an inexpensive, fast-growing strain of algae. Scientists at Pacific Northwest National Laboratory have developed a system to speed up this search. The unique climate-simulating system uses temperature controls and multi-colored LED lights to mimic the constantly changing conditions of an outdoor algae pond. By simulating outdoor climates inside the lab, the system saves researchers time and expense.

  19. The Mission Planning Lab: A Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.; Cervantes, Benjamin W.

    2009-01-01

    Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).

  20. Effectiveness of Learning with 3D-Lab on Omani Basic Education Students' Achievement, Attitudes and Scientific Thinking

    ERIC Educational Resources Information Center

    Musawi, Ali Al; Ambusaidi, Abdullah; Al-Balushi, Sulaiman; Al-Sinani, Mohamed; Al-Balushi, Kholoud

    2017-01-01

    This paper aims to measure the effectiveness of the 3DL on Omani students' acquisition of practical abilities and skills. It examines the effectiveness of the 3D-lab in science education and scientific thinking acquisition as part of a national project funded by The Research Council. Four research tools in a Pre-Post Test Control Group Design,…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, B.; Mendelsohn, M.; Cory, K.

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection,more » and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.« less

  2. The Grand Challenges of Organ Banking: Proceedings from the first global summit on complex tissue cryopreservation.

    PubMed

    Lewis, Jedediah K; Bischof, John C; Braslavsky, Ido; Brockbank, Kelvin G M; Fahy, Gregory M; Fuller, Barry J; Rabin, Yoed; Tocchio, Alessandro; Woods, Erik J; Wowk, Brian G; Acker, Jason P; Giwa, Sebastian

    2016-04-01

    The first Organ Banking Summit was convened from Feb. 27 - March 1, 2015 in Palo Alto, CA, with events at Stanford University, NASA Research Park, and Lawrence Berkeley National Labs. Experts at the summit outlined the potential public health impact of organ banking, discussed the major remaining scientific challenges that need to be overcome in order to bank organs, and identified key opportunities to accelerate progress toward this goal. Many areas of public health could be revolutionized by the banking of organs and other complex tissues, including transplantation, oncofertility, tissue engineering, trauma medicine and emergency preparedness, basic biomedical research and drug discovery - and even space travel. Key remaining scientific sub-challenges were discussed including ice nucleation and growth, cryoprotectant and osmotic toxicities, chilling injury, thermo-mechanical stress, the need for rapid and uniform rewarming, and ischemia/reperfusion injury. A variety of opportunities to overcome these challenge areas were discussed, i.e. preconditioning for enhanced stress tolerance, nanoparticle rewarming, cyroprotectant screening strategies, and the use of cryoprotectant cocktails including ice binding agents. Copyright © 2015.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{submore » 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.« less

  4. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  5. A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment

    DOE PAGES

    Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...

    2015-09-26

    In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less

  6. Experiments and Modeling of G-Jitter Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.

  7. The Heavy Nuclei eXplorer (HNX) Small Explorer Mission

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Krizmanic, John; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2015-04-01

    The Heavy Nuclei eXplorer (HNX) will investigate the nature of the reservoirs of nuclei at the cosmic-ray sources, the mechanisms by which nuclei are removed from the reservoirs and injected into the cosmic accelerators, and the acceleration mechanism. HNX will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), flying in the SpaceX DragonLab, to measure, for the first time, the abundance of every individual element in the periodic table from carbon through the actinides, providing the first measurement of many of these elements. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei Z >= 30, including about 50 actinides, and will: determine whether GCRs are accelerated from new or old material, and find their age; measure the mix of nucleosynthesis processes responsible for the UHGCRs; determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrument complement of HNX will be discussed.

  8. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  9. Tech Transfer Award Hails FNL's Role in Ebola Response | FNLCR Staging

    Cancer.gov

    For speeding the delivery of an effective candidate vaccine during the largest Ebola outbreak in history, the Frederick National Lab (as Leidos Biomed) was cited along with National Institute of Allergy and Infectious Diseases and GlaxoSmithKline in

  10. Recycling

    Science.gov Websites

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  11. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-01-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)

  12. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-06-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)

  13. 2017 Federal Green Challenge Award Winners in the Great Lakes Region

    EPA Pesticide Factsheets

    2017 FGC award winners in the Great Lakes region:the VA Minneapolis Health Care System, the EPA National Vehicle and Fuel Emissions Laboratory, the DOE Argonne National Lab, and the DHS U.S. Customs and Border Protection Detroit Field Office.

  14. Collaboration with Pharma Will Introduce Nanotechnologies in Early Stage Drug Development | FNLCR Staging

    Cancer.gov

    The Frederick National Lab has begun to assist several major pharmaceutical companies in adopting nanotechnologies in early stage drug development, when the approach is most efficient and cost-effective. For some time, the national lab’s Nanotechno

  15. Three Years of on Orbit ISS Oxygen Generation System Operation 2007-2010

    NASA Technical Reports Server (NTRS)

    Diderich, Greg S.; Polis, Pete; VanKeuren, Steven P.; Erickson, Bob

    2010-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) has accumulated 240 days of continuous operation at varied oxygen production rates within the US Laboratory Module (LAB) since it was first activated in July 2007. OGS relocated from the ISS LAB to Node 3 during 20A Flight (February 2010). The OGS rack delivery was accelerated for on-orbit checkout in the LAB, and it was launched to ISS in July of 2006. During the on-orbit checkout interval within the LAB from July 2007 to October 2008, OGS operational times were limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Longer runtimes are now achievable due to the continuous feedwater availability after ULF2 delivery and activation of the USOS Water Recovery System (WRS) racks. OGS is considered a critical function to maintaining six crew capability. There have been a number of failures which interrupted or threatened to interrupt oxygen production. Filters in the recirculation loop have clogged and have been replaced, Hydrogen sensors have fallen out of specifications, a pump delta pressure sensor failed, a pump failed to start, and the voltage on the cell stack increased out of tolerance. This paper will discuss the operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  16. Open-ended versus guided laboratory activities:Impact on students' beliefs about experimental physics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2016-12-01

    Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.

  17. Sneak Preview of April 25 Science at the Theater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Shirley

    Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catchmore » us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.« less

  18. RICH Detector for Jefferson Labs CLAS12

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  19. Growth and viability of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in traditional yoghurt enriched by honey and whey protein concentrate.

    PubMed

    Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V

    2015-01-01

    The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.

  20. Frederick National Laboratory Advisory Committee Welcomes New FNL, NCI Leaders | Poster

    Cancer.gov

    The Frederick National Laboratory Advisory Committee recently met to discuss the future of several high-profile Frederick National Lab initiatives in a meeting that included a chance to meet the new NCI and FNLCR leaders. Here is a look at a few of the highlights from the last of the 2017 FNLAC meetings.

  1. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    DTIC Science & Technology

    2009-05-01

    medical applications, such as the removal of dead tissue and the acceleration of wound healing. These "plasma-induced" bioeffects are therefore of... blood coagulation device. Unfortunately, due to various issues related to experimenting with blood in our lab, we were unable to conduct this...species with flagella) and viability, 1 mL of algal culture was added into a well of a 12-well culture plate ( liquid depth in the well 5 mm), the

  2. NBIC: National Ballast Information Clearinghouse

    Science.gov Websites

    SERC >| Marine Invasions Research Lab NBIC logo National Ballast Information Clearinghouse Smithsonian Environmental Research Center Logo US Coast Guard Logo Submit BW Report | Search NBIC Database | NBIC Research & Development | NBIC News | Home Photos of ships Photos of ships NOTE: 4 March 2018

  3. NBIC: National Ballast Information Clearinghouse News

    Science.gov Websites

    SERC >| Marine Invasions Research Lab NBIC logo National Ballast Information Clearinghouse Smithsonian Environmental Research Center Logo US Coast Guard Logo Submit BW Report | Search NBIC Database | NBIC Research & Development | NBIC News | Home NBIC News Recent News 29 March 2016 Based on

  4. Eric Stahlberg Named to FCW’s Federal 100 | FNLCR Staging

    Cancer.gov

    Eric Stahlberg, Ph.D., director of high-performance computing at the Frederick National Lab, has been named one of FCW‘s Federal 100 for his work in predictive oncology and his role in the collaboration between the National Cancer Institute and the

  5. Lab Plays Central Role in Groundbreaking National Clinical Trial in Precision Medicine | FNLCR Staging

    Cancer.gov

    The Molecular Characterization Laboratory at the Frederick National Laboratory for Cancer Research lies at the heart of an ambitious new approach for testing cancer drugs that will use the newest tools of precision medicine to select the best treatme

  6. Sandia National Laboratories: National Security Missions: Global Security

    Science.gov Websites

    Involvement News News Releases Media Contacts & Resources Lab News Image Gallery Publications Annual Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships Security Image Cyber and Infrastructure Security Advanced analyses and technologies for securing the

  7. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  8. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  9. The Extended Core Coax: A novel nanoarchitecture for lab-on-a-chip electrochemical diagnostics

    NASA Astrophysics Data System (ADS)

    Valera, Amy E.; D'Imperio, Luke; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.

    We report a novel nanoarchitecture, the Extended Core Coax (ECC) that has applicability for the detection of biomarkers in lab-on-a-chip diagnostic devices. ECC is capable of providing accessible, highly sensitive, and specific disease diagnosis at point-of-care. The architecture represents a vertically oriented nanocoax comprised of a gold inner metal core that extends 200nm above a chrome outer metal shield, separated by a dielectric annulus. Each ECC chip contains 7 discrete sensing arrays, 0.49 mm2 in size, containing 35,000 nanoscale coaxes wired in parallel. Previous non-extended nanocoaxial architectures have demonstrated a limit of detection (LOD) of 2 ng/mL of cholera toxin using an off-chip setup. This sensitivity compares favorably to the standard optical ELISA used in clinical settings. The ECC matches this LOD, and additionally offers the benefit of specific and reliable biofunctionalization on the extended gold core. Thus, the ECC is an attractive candidate for development as a full lab-on-a-chip biosensor for detection of infectious disease biomarkers, such as cholera toxin, through tethering of biomarker recognition proteins, such as antibodies, directly on the device. Support from the National Institutes of Health (National Cancer Institute award No. CA137681 and National Institute of Allergy and Infectious Diseases award No. AI100216).

  10. Red Storm usage model :Version 1.12.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jefferson, Karen L.; Sturtevant, Judith E.

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL),more » and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.« less

  11. Phase Field Fracture Mechanics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Brett Anthony

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  12. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  13. A Drop in the Bucket or a Pebble in a Pond: Commercial Building Partners’ Replication of EEMs Across Their Portfolios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonopoulos, Chrissi A.; Baechler, Michael C.; Dillon, Heather E.

    This study presents findings from questionnaire and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered with 12 organizations on new and retrofit construction projects as part of the U.S. Department of Energy (DOE) CBP program. PNNL and other national laboratories collaborate with industry leaders that own large portfolios of buildings to develop high performance projects for new construction and renovation. This project accelerates market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The labs provide assistancemore » to the partners’ design teams and make a business case for energy investments. From the owner’s perspective, a sound investment results in energy savings based on corporate objectives and design. Through a feedback questionnaire, along with personal interviews, PNNL gathered qualitative and quantitative information relating to replication efforts by each organization. Data through this process were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP entire program.« less

  14. U.S. EPA response to the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Tupin, Edward A; Boyd, Michael A; Mosser, Jennifer E; Wieder, Jessica S

    2012-05-01

    During the spring of 2011, the U.S. Environmental Protection Agency (EPA) used its national radiation monitoring and sampling system, RadNet, to detect, identify, and inform the public about radioactive material in the United States resulting from Japan's Fukushima Daiichi Nuclear Power Plant release. The RadNet system monitors ambient air, drinking water, precipitation, and pasteurized milk for radionuclides. To supplement its existing stationary (fixed) continuous air monitoring system, EPA deployed additional air monitors to Saipan, Guam, and locations in the western United States. The Agency also accelerated the regular quarterly sampling of milk and drinking water and collected an additional round of samples. For two months, staff located at EPA's Headquarters Emergency Operations Center, west coast regional offices, and National Air and Radiation Environmental Lab worked seven days a week to handle the increased radiochemical sample analysis from air filters, precipitation, drinking water, and milk; provide interagency scientific input; and answer press and public inquiries. EPA's data was consistent with what was expected from the Fukushima Daiichi Nuclear Power Plant release. The levels of radioactivity were so low that the readings from the near-real-time RadNet air monitors stayed within normal background ranges. Detailed sample analyses were needed to identify the radionuclides associated with the release. Starting at the end of April and continuing through May 2011, levels of radioactive material decreased as expected.

  15. Serum level of LOX-1 ligand containing ApoB is associated with increased carotid intima-media thickness in Japanese community-dwelling men, especially those with hypercholesterolemia LOX-1 ligand and IMT in Japanese.

    PubMed

    Okamura, Tomonori; Miura, Katsuyuki; Sawamura, Tatsuya; Kadota, Aya; Hisamatsu, Takashi; Fujiyoshi, Akira; Miyamatsu, Naomi; Takashima, Naoyuki; Miyagawa, Naoko; Kadowaki, Takashi; Ohkubo, Takayoshi; Murakami, Yoshitaka; Nakamura, Yasuyuki; Ueshima, Hirotsugu

    2016-01-01

    The serum level of LOX-1 ligand containing ApoB (LAB) may reflect atherogenicity better than usual lipid parameters; however, the relationship between LAB and carotid intima-media thickness (IMT) was not clear even in Asian populations. A total of 992 community-dwelling Japanese men, aged 40 to 79 years, were enrolled in the present study. Serum LAB levels were measured by enzyme-linked immunosorbent assays (ELISAs) with recombinant LOX-1 and monoclonal anti-apolipoprotein B antibody. Serum LAB levels (median [interquartile range], μg cs/L) were 5341 μg cs/L (4093-7125). The mean average IMT of the common carotid artery was highest in the fourth LAB quartile (842 μm) compared with the first quartile (797 μm) after adjustment for age, high-density lipoprotein cholesterol, triglyceride, body mass index, hypertension, diabetes, high sensitivity C-reactive protein, smoking, and alcohol drinking. However, this statistically significant difference was lost after further adjustment for total cholesterol (TC). After stratification using the combination of median LAB and hypercholesterolemia (serum TC ≥ 6.21 mmol/L and/or lipid-lowering medication), the adjusted mean average IMT (standard error) in the high LAB/hypercholesterolemia group was 886 μm (12.7), 856 μm (16.7) in the low LAB/hypercholesterolemia group, and 833 μm (8.4) in the low LAB/normal cholesterol group (P = .004). After further adjustment for TC, mean average IMT in the high LAB group was significantly higher than that measured in the low LAB group in hypercholesterolemic participants not taking lipid-lowering medication. Serum LAB was associated with an increased carotid IMT in Japanese men, especially those with hypercholesterolemia. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine

    PubMed Central

    Gaheen, Sharon; Hinkal, George W.; Morris, Stephanie A.; Lijowski, Michal; Heiskanen, Mervi

    2014-01-01

    The use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab. caNanoLab provides access to experimental and literature curated data from the NCI Nanotechnology Characterization Laboratory, the Alliance and the greater cancer nanotechnology community. PMID:25364375

  17. Giant Electromagnet Move at Brookhaven Lab, June 22, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-22

    On Saturday, June 22, 2013, a 50-foot-wide, circular electromagnet began its 3,200-mile land and sea voyage from Brookhaven National Laboratory in New York to a new home at Fermilab in Illinois. There, scientists will use it to study the properties of muons, subatomic particles that live only 2.2 millionths of a second, and the results could open the door to new realms of particle physics. In the first part of the move, Emmert International and a team of Fermilab and Brookhaven Lab scientists and engineers transported the electromagnet across the Brookhaven Lab site to a staging area by its mainmore » gate.« less

  18. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications

    DTIC Science & Technology

    2010-03-01

    polymerization b block BF3•Et2O boron trifluoride diethyl etherate BNL Brookhaven National Labs BF3•Et2O boron trifluoride diethyl etherate BSA...surface characterization of the polymers. We also acknowledge Brookhaven National Laboratory ( BNL ) where the NEXAFS surface characterization was...National Synchrotron Light Source at Brookhaven National Laboratory ( BNL ). The X-ray beam was elliptically polarized (polarization factor = 0.85

  19. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  20. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  1. Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Rob; Blue, Craig

    Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.

  2. Targeting Hidden Reservoirs of the AIDS Virus for Eradication | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Frederick National Lab scientists have developed a faster, more accurate way of pinpointing minute pockets of the AIDS virus that can hide out in infected tissue, thus exposing these remnants as targets for more definitive treatment of the infection.

  3. Creating Authentic Research Centers In Secondary Classrooms And Retaining The Best Science Teachers

    NASA Astrophysics Data System (ADS)

    Rodriguez, D.; McHenry, R. M.

    2006-12-01

    My name is David Rodriguez. I am a middle school science teacher with 18 years of teaching experience both in Leon County, Florida and in Guinea West Africa, and South Africa. I am a National Board Certified Teacher. Richard McHenry is a high school Chemistry Advance Placement teacher with over 25 years of teaching experience, also in Leon County, Florida. Rich is a National Board Certified Teacher as well. We participated in a Research Experience For Teachers (RET) program at the National High Magnetic Field Lab in Tallahassee, Florida in 2001 and 2002. This experience has had a profound impact on our teaching, and on our student's learning. During our experience, it became clear to us that there is great importance in how scientists approach their research. We discussed this approach with teams of scientists, and asked them how they thought it could be modeled in classrooms. As teachers, we have been convinced of the value of cooperative learning for years, but to assign roles in cooperative groups similar to the roles that are created in a research science setting has improved student learning. Each team of students is assigned a project manager, data analyst, engineer, and principal investigator. The role of each scientist is specific. As a result of our RET experience, Rich also created a new program in his high school class in which students write scientific papers at the end of each grading period that outline the achievements and lab experiences completed during that period. The importance of publishing research and communicating with the greater scientific community are highlighted through this unique experience. These papers go through a peer review process within the school, and are then sent to the National High Magnetic Field Lab for further review provided by scientists and educators. I was also involved in an atmospheric research project during my RET program that utilized teachers and students throughout the state in the collection of data. Elementary through high school teachers in the state of Florida were contacted and asked to collect a sample of Spanish Moss from trees near their schools. These samples were sent to scientists and educators involved in the RET program at the National High Magnetic Field Lab who examined and compared the concentrations of a number of pollutants. When presented with a an opportunity leave the classroom two years ago to take on a new position, I decided to continue teaching middle school science, in large part due to my continued involvement in the research programs available at the the National High Magnetic Field Lab. Programs such as the RET program are essential to retaining the best science teachers in our schools.

  4. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates formore » consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.« less

  5. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Laura Jeaneen

    The purpose of the L’Innovator is to assemble unique, state-of-the-art IP bundles developed at the national labs that aggregate synergistic technologies in furtherance of the emerging hydrogen and fuel cell market. The first L’Innovator IP bundle consists of Oxygen Reduction Reaction (ORR) Catalyst technology developed at Brookhaven National Laboratory (BNL), combined with Membrane Electrode Assembly (MEA) technology developed at Los Alamos National Laboratory (LANL).

  7. The USDA Forest Service National Seed Laboratory

    Treesearch

    Robert P. Karrfalt

    2006-01-01

    The USDA Forest Service National Seed Laboratory has provided seed technology services to the forest and conservation seed and nursery industry for more than 50 years. This paper briefly traces the lab’s evolution from a regional facility concerned principally with southern pines to its newest mission as a national facility working with all native U.S. plants and...

  8. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less

  9. Novel techniques and devices for in-situ film coatings of long, small diameter tubes or elliptical and other surface contours

    DOE PAGES

    Hershcovitch, Ady; Blaskiewicz, Michael; Brennan, Joseph Michael; ...

    2015-07-30

    In this study, devices and techniques that can, via physical vapor deposition,coat various surface contours or very long small aperture pipes, are described. Recently, a magnetron mole was developed in order to in-situ coat accelerator tube sections of the Brookhaven National Lab relativistic heavy ion collider that have 7.1 cm diameter with access points that are 500 m apart, for copper coat the accelerator vacuum tube in order to alleviate the problems of unacceptable ohmic heating and of electron clouds. A magnetron with a 50 cm long cathode was designed fabricated and successfully operated to copper coat a whole assemblymore » containing a full-size, stainless steel, cold bore, of the accelerator magnet tubing connected to two types bellows, to which two additional pipes made of accelerator tubing were connected. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system, which is enclosed in a flexible braided metal sleeve, is driven by a motorized spool. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate distance of less than 1.5 cm. Optimized process to ensure excellent adhesion was developed. Coating thickness of 10 μm Cu passed all industrial tests and even exceeded maximum capability of a 12 kg pull test fixture. Room temperature radio frequency (RF) resistivity measurement indicated that 10 μm Cu coated stainless steel accelerator tube has conductivity close to copper tubing. Work is in progress to repeat the RF resistivity measurement at cryogenic temperatures. Over 20 years ago, a device using multi axis robotic manipulators controlling separate robotic assemblies resulted in nine-axes of motion combined with conformal shape of the cathodes that can adapt to various curved surface contours was developed and successfully used for depositing optical coating on aircraft canopies. The techniques can be utilized for in situ coating of elliptical and other surface contour RF cavities and long beam pipes with thick superconducting films. Plans are to incorporate ion assisted deposition in those techniques for attaining dense, adherent and defect free coatings.« less

  10. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  11. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  12. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  13. Physical installation of Pelletron and electron cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure areamore » and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.« less

  14. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  15. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  16. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  17. Numerical Nudging: Using an Accelerating Score to Enhance Performance.

    PubMed

    Shen, Luxi; Hsee, Christopher K

    2017-08-01

    People often encounter inherently meaningless numbers, such as scores in health apps or video games, that increase as they take actions. This research explored how the pattern of change in such numbers influences performance. We found that the key factor is acceleration-namely, whether the number increases at an increasing velocity. Six experiments in both the lab and the field showed that people performed better on an ongoing task if they were presented with a number that increased at an increasing velocity than if they were not presented with such a number or if they were presented with a number that increased at a decreasing or constant velocity. This acceleration effect occurred regardless of the absolute magnitude or the absolute velocity of the number, and even when the number was not tied to any specific rewards. This research shows the potential of numerical nudging-using inherently meaningless numbers to strategically alter behaviors-and is especially relevant in the present age of digital devices.

  18. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-01

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negtive photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 μm thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  19. Irradiation of materials with short, intense ion pulses at NDCX-II

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.

    2017-06-01

    We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.

  20. Investigation of self-induced transparency in laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Paradkar, Bhooshan; Krasheninnikov, Sergei; Beg, Farhat

    2017-10-01

    Interaction of an intense laser beam with a thin (

  1. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  2. A proton medical accelerator by the SBIR route — an example of technology transfer

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  3. Well Monitoring System For EGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy; Glowka, Dave; Normann, Charles

    This grant is a collection of projects designed to move aircraft high temperature electronics technology into the geothermal industry. Randy Normann is the lead. He licensed the HT83SNL00 chip from Sandia National Labs. This chip enables aircraft developed electronics for work within a geothermal well logging tool. However, additional elements are needed to achieve commercially successful logging tools. These elements are offered by a strong list of industrial partners on this grant as: Electrochemical Systems Inc. for HT Rechargeable Batteries, Frequency Management Systems for 300C digital clock, Sandia National Labs for experts in high temperature solder, Honeywell Solid-State Electronics Centermore » for reprogrammable high temperature memory. During the course of this project MagiQ Technologies for high temperature fiber optics.« less

  4. Laboratory-acquired brucellosis: a Spanish national survey.

    PubMed

    Bouza, E; Sánchez-Carrillo, C; Hernangómez, S; González, M José

    2005-09-01

    A retrospective postal survey was carried out among 1240 clinical microbiology laboratory workers in Spain. Overall, 75 (43 microbiologists and 32 technicians) had suffered from laboratory-acquired brucellosis (LAB). Considering the total number of replies (N=628), the rate of LAB was 11.9%. The risk of suffering from LAB was clearly related to the number of isolates of Brucella spp. per year. A major break in biosafety measures was recognized in 60 cases (80%). In nine cases, processing was considered to be secure, and in six cases, the source of infection was unknown. Diagnosis was based on serology in all cases. In 51 cases (68%), blood cultures confirmed diagnosis. A variety of regimens were used to treat the 75 LAB cases. The combination of tetracycline and streptomycin was the most commonly used regimen (in 35 patients), followed by the combination of tetracycline and rifampicin (in 19 cases). Only 10 patients (13.3%) suffered from complications. No differences in resolution were observed according to the antimicrobial regimen. Microbiological laboratory workers are still at risk of developing LAB. Improvements in safety seem to be the best means of

  5. White coats and no trousers: narrating the experiences of women technicians in medical laboratories, 1930–90

    PubMed Central

    Hartley, J. M.; Tansey, E. M.

    2015-01-01

    Laboratory technicians are a vital part of any working lab. Not only is their knowledge and expertise important for the success of research, but they also often maintain the lab's intellectual and social life. Despite the importance of their work, they are rarely acknowledged in publications, and leave only a few traces within the historical record—the voices of women laboratory technicians are even harder to uncover. This paper attempts to correct this imbalance by presenting the narratives of women who worked as laboratory technicians at places such as the National Institute for Medical Research (NIMR), the Wellcome Research Laboratories, and established hospital and university labs in Cambridge, Oxford and London. The data were collected though narrative interviews. Specifically, the paper looks at the roles of these women within the lab, their experiences of the social and gender dynamics of the lab, and the development of expertise in regard to the work they carried out and the extent to which they received credit for their contributions to science. PMID:26489181

  6. A Project To Make the Laboratory More Accessible to Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Lunsford, Suzanne K.; Bargerhuff, Mary Ellen

    2006-03-01

    This article describes project CLASS (Creating Laboratory Access for Science Students) an innovative NSF-funded project originating at Wright State University in Dayton, Ohio. Project CLASS enables students to participate in chemistry labs regardless of physical or learning disabilities in grades 7 12. This nationally recognized project prepares educators to accommodate and develop adaptive lab equipment to meet the needs of students with physical and learning disabilities while maintaining the integrity of the science curriculum.

  7. Biosecurity Risk Assessment Methodology (BioRAM) v. 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CASKEY, SUSAN; GAUDIOSO, JENNIFER; SALERNO, REYNOLDS

    Sandia National Laboratories International Biological Threat Reduction Dept (SNL/IBTR) has an ongoing mission to enhance biosecurity assessment methodologies, tools, and guise. These will aid labs seeking to implement biosecurity as advocated in the recently released WHO's Biorisk Management: Lab Biosecurity Guidance. BioRAM 2.0 is the software tool developed initially using the SNL LDRD process and designed to complement the "Laboratory Biosecurity Risk Handbook" written by Ren Salerno and Jennifer Gaudioso defining biosecurity risk assessment methodologies.

  8. Warfighter Effectiveness Research Center Biannual Newsletter. Volume 1, Issue 2, June 2015

    DTIC Science & Technology

    2015-06-01

    academies involving NSA cyber attacks on their net- works. This exercise afforded a realistic, intense cyber operation for our research team to...If so, please contact Capt Aaron Celaya at aa- ron.celaya@usafa.edu or 719-333-WERC. WERC Cognitive Neuroscience Lab Supports National... Neuroscience Lab – headed by Assistant Professors Chris D’Lau- ro, Ph.D. and LCDR Brian Johnson, Ph.D. – has taken the lead on researching concus

  9. Multicore: Fallout from a Computing Evolution

    ScienceCinema

    Yelick, Kathy [Director, NERSC

    2017-12-09

    July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  10. Frederick National Lab Encourages Healthy Living at the Annual In The Street Festival | Poster

    Cancer.gov

    While it was the pleasant weather, live music, and scores of vendors that drew thousands to Frederick’s 2017 In The Street festival, it was the eye-catching activities and prizes that drew attendees to the Frederick National Laboratory for Cancer Research tent.

  11. Frederick National Lab Aids Liberian Hospitals Through Project C.U.R.E. | FNLCR Staging

    Cancer.gov

    When Project C.U.R.E.'s much-needed medical supplies and equipment arrive in Liberia, the Frederick National Lab’s Kathryn Kynvin is there to receive and distribute the donations to hospitals who continue to treat survivors of the most recent Ebola

  12. ARC-2010-ACD10-0020-073

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  13. ARC-2010-ACD10-0020-065

    NASA Image and Video Library

    2010-02-10

    Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.

  14. 77 FR 26045 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Accellera Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ..., IRELAND; Freescale Semiconductor, Austin, TX; IBM, Hopewell Junction, NY; Jasper Design Automation..., San Jose, CA; Vayavya Labs, Belguam, INDIA; Verilab, Austin, TX; and Xilinx, Inc., San Jose, CA, have... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and...

  15. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    data analytics and forecasting methods to identify correlations between electricity consumption threats, or cyber and physical attacks-our nation's electricity grid must evolve. As part of the Grid other national labs, and several industry partners-to advance resilient electricity distribution systems

  16. About the Air National Guard - The National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  17. Your National Guard - The National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  18. Chief, National Guard Bureau - Leadership - The National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  19. The National Guard - Official Website of the National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  20. National Guard Bureau Posture Statement - The National Guard

    Science.gov Websites

    ARNG Command Sergeant Major of the ARNG State Mission Sustainability Training ARNG Distributed Learning Program Training & Technology Battle Lab (T3BL) Civil Support Simulation Exercises Regional Training Site Maintenance Battle Focused Training Strategy Battle Staff Training Resources News Publications

  1. [Proceeding and Abstracts of the 1994 National Marine Educators Association Conference.

    ERIC Educational Resources Information Center

    Rigsby, Michael, Ed.; Tooker, Lisa, Ed.

    1994-01-01

    This bulletin contains the proceedings and 54 abstracts for symposia, workshops and contributed papers of the 1994 National Marine Educators Association Conference (Knoxville, Tennessee, August 8-11, 1994). Some of the topics covered in conference abstracts include: (1) elementary physical, chemical, and biological labs and curriculum; (2)…

  2. The Energy at ORNL

    ScienceCinema

    Haberl, Bianca; Shankar, Arjun; Hogle, Susan; Pierce, Eric; Chi, Miaofang; Davidson, Brian; Doughty, Ben; Elliott, Amy; Newby, Jason; Pandya, Tara; Lee, Ho Nyung; Wagner, Robert

    2018-06-13

    Scientists and engineers at Oak Ridge National Laboratory apply their expertise to the toughest challenges in energy, national security, and scientific discovery. They’re curious, passionate, and motivated, and they explain what drives them in this video from the lab’s annual Awards Night, Nov. 18, 2016.

  3. Queen City Forging Revitalized by Oak Ridge National Lab Partnership – U.S. Department of Energy

    ScienceCinema

    Mayer, Rob; Blue, Craig

    2018-01-16

    Oak Ridge National Laboratory, with support from the U.S. Department of Energy, teamed up with Queen City Forging, the U.S. Forging Industry, and Infrared Heating Technologies to develop a rapid-infrared heating furnace to produce aluminum turbochargers.

  4. Overview of the National Risk Management Research Laboratory: The Environmental Research Institute of the States Environmental Council of the States 2007

    EPA Science Inventory

    An overview of the EPA Science and Research Organization, The National Risk Management Research Lab, the current research being conducted, priority Environmental Technology Research Issues, and new approaches to environmental management and sustainability taking place at the Nati...

  5. Novel Therapeutic for Inflammatory Disorders | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Frederick National Lab's Molecular Targets Laboratory is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a novel inhibitor of the NF-kappa B signal transduction pathway, which leads to many inflammatory disorders.

  6. Production of Copper-Plated Beamline Bellows and Spools for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Katherine M.; Carpenter, Brian C.; Daly, Ed

    The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab) and Fermi National Accelerator Laboratory (FNAL), are participating in this project. The 1.3-GHz cryomodules for this project consist of eight cavities separated by bellows (expansion joints) and spools (tube sections), which are copper plated for RF conduction. JLab is responsible for procurement of these bellows and spools, which are delivered to JLab and FNAL for assembly into cryomodules. Achieving accelerator-grade copper plating is always amore » challenge and requires careful specification of requirements and application of quality control processes. Due to the demanding technical requirements of this part, JLab implemented procurement strategies to make the process more efficient as well as provide process redundancy. This paper discusses the manufacturing challenges that were encountered and resolved, as well as the strategies that were employed to minimize the impact of any technical issues.« less

  7. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  8. HTAPP: High-Throughput Autonomous Proteomic Pipeline

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2011-01-01

    Recent advances in the speed and sensitivity of mass spectrometers and in analytical methods, the exponential acceleration of computer processing speeds, and the availability of genomic databases from an array of species and protein information databases have led to a deluge of proteomic data. The development of a lab-based automated proteomic software platform for the automated collection, processing, storage, and visualization of expansive proteomic datasets is critically important. The high-throughput autonomous proteomic pipeline (HTAPP) described here is designed from the ground up to provide critically important flexibility for diverse proteomic workflows and to streamline the total analysis of a complex proteomic sample. This tool is comprised of software that controls the acquisition of mass spectral data along with automation of post-acquisition tasks such as peptide quantification, clustered MS/MS spectral database searching, statistical validation, and data exploration within a user-configurable lab-based relational database. The software design of HTAPP focuses on accommodating diverse workflows and providing missing software functionality to a wide range of proteomic researchers to accelerate the extraction of biological meaning from immense proteomic data sets. Although individual software modules in our integrated technology platform may have some similarities to existing tools, the true novelty of the approach described here is in the synergistic and flexible combination of these tools to provide an integrated and efficient analysis of proteomic samples. PMID:20336676

  9. NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware

    NASA Astrophysics Data System (ADS)

    Johnson, V. L.; Teuben, P. J.; Penprase, B. E.

    An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.

  10. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

    PubMed

    Pearce, J M; Anzalone, N C; Heldt, C L

    2016-08-01

    The open-source release of self-replicating rapid prototypers (RepRaps) has created a rich opportunity for low-cost distributed digital fabrication of complex 3-D objects such as scientific equipment. For example, 3-D printable reactionware devices offer the opportunity to combine open hardware microfluidic handling with lab-on-a-chip reactionware to radically reduce costs and increase the number and complexity of microfluidic applications. To further drive down the cost while improving the performance of lab-on-a-chip paper-based microfluidic prototyping, this study reports on the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3-D printer for paper-based microfluidic applications. An open-source hardware approach is used to demonstrate a 3-D printable upgrade for the 3-D printer, which combines a heated syringe pump with the RepRap/Arduino 3-D control. The bill of materials, designs, basic assembly, and use instructions are provided, along with a completely free and open-source software tool chain. The open-source hardware device described here accelerates the potential of the nascent field of electrochemical detection combined with paper-based microfluidics by dropping the marginal cost of prototyping to nearly zero while accelerating the turnover between paper-based microfluidic designs. © 2016 Society for Laboratory Automation and Screening.

  11. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  12. Supporting telemicroscopy and laboratory medicine activities. The Greek "TELE.INFO.MED.LAB" project.

    PubMed

    Miaoulis, G; Protopapa, E; Skourlas, C; Delides, G

    1995-01-01

    In this paper the authors present the basic results of the study for the "TELE.INFO.MED.LAB" project. This study is based on the local experience of the Metaxas Cancer Institute case and on international references. The possibilities rendered by current developments in telemedicine and particularly in telepathology accelerate and facilitate the communication of crucial medical data and creation of "second level" medical services overcoming the geographical particularities of the country. The availability of data transmission (signals, images, texts, etc.) enables the creation of a "uniform market" for various services. This system must take into account the financial realities, geographical aspects transportation problems and technological developments. Organization of this system, the choices of technical standards and the realization of a complete pilot project are described. For this system we also describe the functional and technical aspects, as well as software and hardware components for the different types of units.

  13. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crease, Robert P.

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, themore » discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.« less

  14. [Lab-on-a-chip systems in the point-of-care diagnostics].

    PubMed

    Szabó, Barnabás; Borbíró, András; Fürjes, Péter

    2015-12-27

    The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention.

  15. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  16. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2017-12-09

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  17. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  18. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  19. University of Maryland MRSEC - Collaborations

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership , National Nanotechnology Lab, Neocera, NIST, Rowan University, Rutgers University, Seagate, Tokyo Tech

  20. Economic impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Technology Transfer Department

    2001-06-01

    In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy.more » Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.« less

Top